

Town of Wareham Climate Change Flood Vulnerability Assessment and Adaptation Planning

Board of Selectmen Update

December 18, 2018

Town of Wareham Primary Contact: Ken Buckland Town Planner Planning Department Project Manager: Elise Leduc Coastal Scientist Woods Hole Group Project Team: Joseph Famely Environmental Scientist Woods Hole Group

Outline

Overview of Project

- Project Goals & Objectives
- Project Methodology

Selected Scenarios

- Sea-Level Rise Scenarios
- Time Frames
- Risk Probabilities

• Schedule

Overview of Project

Project Goals & Objectives

- Provide data on likely future flooding scenarios
- Identify potential flooding impacts to <u>municipally-owned</u> infrastructure
- Identify potential flooding impacts to specific demographics
- Identify potential sea-level rise impacts to natural resources
- Identify potential adaptation strategies to reduce risk
- Prioritize investments in adaptation strategies
- Produce high-quality maps/graphics
- Public outreach and education

Overview of Project

Project Methodology

- 1. Determine Town assets
- 2. Determine critical elevations
- 3. Obtain probability of exceedance data
- 4. Determine consequence of flooding score
- 5. Calculate risk scores and rankings
- 6. Prioritize assets
- 7. Develop adaptation strategies
- 8. Public Outreach

– Phase I

Phase III

Phase II

Step 1: Determine critical assets

Based on the December 6th Steering Committee discussion, we will be including the following municipally owned assets <u>within the model grid</u>:

- Buildings
- Above ground utilities (e.g., wastewater pumping stations)
- Boat ramps, docks/piers, and aquaculture facilities
- Recreational facilities (e.g., baseballs fields, tennis courts, etc.)
- Select coastal parking lots
- Roads/bridges

Vulnerability Assessment and Adaptation Planning *Step 1: Determine critical assets*

Step 2: Determine critical elevations

Vulnerability Assessment and Adaptation Planning *Step 3: Obtain probability of exceedance data*

Step 3: Obtain probability of exceedance data

WOODSHOLEGROUP.COM

Step 3: Obtain probability of exceedance data

WOODSHOLEGROUP.COM

Step 3: Obtain probability of exceedance data

Q

	20	30	2070		
	Flood	Depth above	Flood	Depth above	
% Probability	elevation	critical elev.	elevation	critical elev.	
0.1	11.8	3.11	14.1	5.41	
0.2	11.5	2.81	14	5.31	
0.5	11	2.31	13.5	4.81	
1	10.3	1.61	12.8	4.11	
2	10	1.31	12.5	3.81	
5	9.3	0.61	12.1	3.41	
10	dry	0	11.5	2.81	
20	dry	0	11.1	2.41	
25	dry	0	10.9	2.21	
- 30	dry	0	10.8	2.11	
50	dry	0	9.3	0.61	
100	dry	0	dry	0	

Pump Station: Critical Elevation Threshold = 8.69 ft. NAVD88

Risk (R) = Probability of Flooding (P) x Consequence of Flooding (C)

Step 4: Determine consequence of flooding score

Rating	Area of Service Loss	Duration of Service Loss	Cost of Damage	Impact on Public Safety & Emergency Services	Impact on Important Economic Activities	Impact on Public Health & Environment
5	Whole town/city	> 30 days	>\$10m	Very high	Very high	Very high
4	Multiple neighborhoods	14 - 30 days	\$1m - \$10m	High	High	High
3	Neighborhood	7 - 14 days	\$100k - \$1m	Moderate	Moderate	Moderate
2	Locality	1 - 7 days	\$10k - \$100k	Low	Low	Low
1	Property	< 1 day	< \$10k	None	None	None

	Area of Service Loss	Duration of Service Loss	Cost of Damage	Impacts to Public Safety Services	Impacts to Economic Activities	Impacts to Public Health/ Environment	Consequence score
Rating	2	4	2	1	5	5	63

Risk (R) = Probability of Flooding (P) x Consequence of Flooding (C)

Step 5: Calculate risk scores and rankings

Step 6: Prioritize assets by composite risk score

Facility	Consequence Score	2030 Probability (%) ▼	2030 Risk Score	2070 Probability (%) 🔽	2070 Risk Score	Composite Risk Score
Bel Air Pump Station	50	50	2500	100	5000	3250
William L Foster Elementary School	63	10	630	100	6300	2331
Howe St Pump Station	47	25	1175	100	4700	2233
West Corner Pump Station	50	5	250	100	5000	1675
Broad Cove Sewer Pump Station	53	2	106	100	5300	1664
Hingham Bathing Beach (Parking Lot)	43	5	215	100	4300	1441
Mill St. Pump Station	63	5	315	50	3150	1166
Heliport at Bathing Beach	27	10	270	100	2700	999
Whitney Wharf	27	0	0	30	810	243
Downer Ave Sewer Pump	50	0	0	10	500	150
Beal St Sewer Pump Station (UNG)	50	0	0	0	0	0
Walton Cove Sewer Pump Station	50	0	0	0	0	0
Foundry Pond Dam	27	0	0	0	0	0

Step 7: Develop adaptation strategies

- Recommendations for adaption strategies will be developed
 - With order-of-magnitude cost estimates
- Types of potential adaptation strategies
 - <u>Protect</u>: Prevent damage to infrastructure by creating barriers; protection of natural resources
 - Examples: Sea walls, flood gates, hurricane barriers, beaches
 - <u>Accommodate</u>: Minimize and control damage to infrastructure.
 - Examples: Flood-proofing structures, sacrificial structures designed to absorb energy.
 - <u>Mitigate</u>: Reduce the chance of future harm/risk
 - Examples: possible changes to local zoning/permitting regulations
 - <u>Retreat</u>: Remove and relocate susceptible infrastructure from harm's way.
 - Examples: Property buyouts, new zoning limiting reconstruction, relocation of structures.

Step 8: Public education and outreach

- Presentation to Board of Selectmen (3 meetings budgeted)
- Hold additional public information sessions
- Utilize local radio, access cable TV, and social media to get message out

Outline

Overview of Project

- Project Goals & Objectives
- Project Methodology

Selected Scenarios

- Sea-Level Rise Scenarios
- Time Frames
- Risk Probabilities
- Schedule

Q

Selected Scenarios

Sea-Level Rise

Selected Scenarios

Sea-Level Rise

Relative mean sea level (feet NAVD88) for Woods Hole, MA								
Scenario	Cross-walked probabilistic projections	2030	2050	2070	2100			
	Unlikely to exceed (83%) under RCP8.5	0.6	1.3	2.3	4.0			
Intermediate	 Extremely unlikely to exceed (95%) under R Unlikely to exceed (83%) under RCP4.5 About as likely as not to exceed (50%) under possible ice sheet instabilities 	Extremely unlikely to exceed (95%) under RCP4.5 Unlikely to exceed (83%) under RCP4.5 About as likely as not to exceed (50%) under RCP4.5 when accounting for possible ice sheet instabilities						
	Extremely unlikely to exceed (95%) under RCP8.5	0.8	1.7	2.9	5.1			
Intermediate - High	 Unlikely to exceed (83%) under RCP4.5 when accounting for possible ice sheet instabilities About as likely as not to exceed (50%) under RCP8.5 when accounting for possible ice sheet instabilities 							
	Extremely unlikely to exceed (99.5%) under RCP8.5	. 1.1	2.4	4.2	7.7			
High	 Unlikely to exceed (83%) under RCP8.5 when accounting for possible ice sheet instabilities Extremely unlikely to exceed (95%) under RCP4.5 when accounting for possible ice sheet instabilities 							
Extreme (Maximum physically plausible)	Exceptionally unlikely to exceed (99.9%) under RCP8.5	1.3	3.1	5.4	10.3			
	 Extremely unlikely to exceed (95%) under RCP8.5 when accounting for possible ice sheet instabilities 							

For reference: Mean sea level in 2000 was -0.3 ft (NAVD88)

Selected Scenarios

Time Horizons and Risk Probabilities

- Model results will be developed for two (2) planning horizons
 - 2030 (results complete)
 - **2070** (results scheduled for Feb 2019)
 - Probability of inundation maps developed for both time horizons
- Depth of Inundation maps will be developed for two (2) probability levels
 - **1%** (100-year event)
 - 2% or 5% (50- or 20-year event; TBD following review of results)

Schedule

Task	Schedule	
Task 1. Establish Study Parameters		
Steering Committee Meeting 1 - Kick-off meeting	Nov 2018	
Collect data sets (GIS Asset Data)	Nov/Dec 2018	
Determine parameters	Nov/Dec 2018	
Steering Committee Meeting 2 (Working Meeting - Review Data/Parameters/Assets)	late Nov. 2018	
Draft Tech Memo	Dec 14, 2018	Comments due by
Board of Selectmen Meeting (Review parameters; introduce goals and objectives)	Dec 18, 2018	noon on Dec 27 th
Final Tech Memo	Dec 31, 2018	Empile
Task 2 Vulnarability Assassment		
Task 2. Vulnerability Assessment	Nov/Doc 2019	<u>kbuckland@warenam.ma.us</u>
Inventory and Assess Condition and Elevation of Town Assets	Nov/Dec 2018	
Asset Consequence Scoring	Dec 2018- Jan 2019	
Steering Committee Meeting 2 (Working Meeting - Asset Consequence Scoring)	Jan 2019	
Develop inundation mans/vulnerability assessment (2030)	Jan 2019	
Develop inundation maps/vulnerability assessment (2030)	Jan 2019	
Natural resources migration manning	lan-Feb 2019	
Steering Committee Meeting 4 (Working Meeting - Review Results)	early Feb 2019	
Site specific maps for 3 assets	Feb 2019	
Draft Tech Memo	Feb 15, 2019	-
Public/Board of Selectmen Meeting (Working Meeting - Present Vulnerability Assessment)	late Feb 2019	-
Final Tech Memo	Mar 1, 2019	
	,	
Task 3. Develop Adaptation Strategies and Prepare Final Report		-
Develop prioritization	Mar 2019	-
Develop short, mid, and long term adaptation strategies	Mar-Apr 2019	-
Steering Committee Meeting 5 (Working Meeting - Review/Prioritize Strategies)	early Apr 2019	-
Develop order of magnitude costs	Apr 2019	-
Recommendations for Town policies and regulations	Apr 2019	
Steering Committee Meeting 6 (Working Meeting - Review/Finalize Strategies)	early May 2019	
Draft Report	May 31, 2019	Hard
Board of Selectmen Presentation	early June 2019	
Final Report	Jun 30, 2019	deadline

Questions?