STORMWATER ANALYSIS AND DRAINAGE REPORT

Littleton Drive Affordable Housing Project Wareham, Massachusetts

December 2020

Prepared for:

Pennrose Properties, LLC 50 Milk Street, 16th Floor Boston, MA 02109

Prepared by:

Horsley Witten Group, Inc.

TABLE OF CONTENTS

STORMWATER CHECKLIST

1.0	STORMWATER AND DRAINAGE NARRATIVE	2
1.1.	. Existing Conditions	2
1.2.	P. Proposed Conditions	3
2.0	DRAINAGE DESIGN METHODOLOGY AND ANALYSIS	7
3.0	COMPLIANCE WITH MADEP STORMWATER STANDARDS	9
4.0	CONSTRUCTION ACTIVITIES AND GENERAL CONSTRUCTION SEQUENCE	14
5.0	POLLUTANT CONTROLS DURING CONSTRUCTION	14
5.0 5.1.	POLLUTANT CONTROLS DURING CONSTRUCTION	14 14
5.0 5.1. 5.2.	POLLUTANT CONTROLS DURING CONSTRUCTION . Structural Practices . Stabilization Practices	14 14 16
5.0 5.1. 5.2. 5.3.	POLLUTANT CONTROLS DURING CONSTRUCTION Structural Practices Stabilization Practices Other Types of Controls	14 14 16 16
5.0 5.1. 5.2. 5.3. 6.0	POLLUTANT CONTROLS DURING CONSTRUCTION Structural Practices. Stabilization Practices. Other Types of Controls. STORMWATER OPERATION AND MAINTENANCE PLAN.	14 16 16 16

FIGURES

Figure 1:	USGS Locus
Figure 2:	Soils Map
Figure 3:	FEMA Flood Zones
Figure 4:	Site Constraints

APPENDICES

- Appendix A: Site Soil Evaluations
- Appendix B: Drainage Area Maps
- Appendix C: GSI Sizing Calculations
- Appendix D: HydroCAD® Modeling
- Appendix E: TSS and Recharge Calculations
- Appendix F: Stormwater Operation and Maintenance Plan
- Appendix G: Hantush Method Groundwater Mounding Analysis

Page

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Nr 12-30-2020 Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

- New development
- Redevelopment

Mix of New Development and Redevelopment

201230_swcheck_20107 · 04/01/08

Stormwater Report Checklist • Page 2 of 8

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- U Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

🛛 Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist	(continued)
	· /

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

	Limited	Pro	ject
--	---------	-----	------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

1.0 STORMWATER AND DRAINAGE NARRATIVE

This Stormwater Management Report provides a summary of the proposed stormwater management for the Littleton Drive Affordable Housing Project. The purpose of this report is to describe the pre- and post-development site conditions and the practices to be used for reducing stormwater runoff and pollutants during and after construction. The proposed project has been developed to incorporate a series of green stormwater infrastructure (GSI) practices into the overall site and landscape design. The design includes surface GSI bioretention facilities for pre-treatment, recharge and water quality management for 1" of runoff from impervious surfaces. A surface infiltration basin and four underground chamber systems provide storage for peak flow attenuation for the 2-year, 10-year, and 100-year storms.

Due to the proximity of the proposed Project to existing wetlands, adherence to the Massachusetts Stormwater Standards (MASWS) (revised in January 2008) is required. The proposed site design conforms to the Standards by providing stormwater runoff treatment or the first 1-inch runoff from proposed impervious areas contributing to site runoff. On-site attenuation and infiltration is proposed to match or reduce peak runoff conditions for the 2, 10 and 100-year storm events. The proposed stormwater controls will be maintained during and after construction as part of the development regular landscape maintenance and as described further in the Operations and Maintenance Plan.

1.1. Existing Conditions

The project site is located at 4 Littleton Drive in the Town of Wareham, Massachusetts (Latitude 41.749903, Longitude -70.729243) The Town of Wareham identifies the Subject Property as Map 56 Lot 1. Refer to Figures 1 and 2 for regional location and general layout of the Subject Property, respectively.

According to the Town of Wareham Assessors Office, the Subject Property consists of 12.92acres of land. The Wareham Redevelopment Authority, in its January 2020 RFP, confirms that the actual size of the property is approximately 16.1 acres; the discrepancy is due to previously defined rights-of-way within the Subject Property that will be removed prior to construction.

The Subject Property is mostly wooded with the exception of a few paths with bare earth and historic subgrade utility services installed during a failed subdivision project between approximately 1971 and 1978. There are no formal buildings, structures, or asphalt paved roads on the Subject Property, though there are a few building encroachment from neighboring properties. Entry into the Subject Property was gained by following a walking path off Littleton Drive.

Wetland resource areas were previously identified and delineated by Green Seal Environmental Inc. in December 2019. Horsley Witten Group, Inc. (HW) wetland scientist reviewed this boundary and made minor adjustments to the wetland boundary as now shown on the existing conditions plan. Wetland resource areas were determined in accordance with methods developed by MassDEP, the Massachusetts Wetlands Protection Act regulations. The existing drainage area to Study Point 1 at Flax Pond is 19.56 acres (852,117 square feet) and is comprised of the following land cover:

		Area	
Coverage	Area (ft2)	(acres)	%
Roadway	1,175	0.03	0.1
Bare Soil-A/Bl	49,389	1.13	5.8
Roof	16,857	0.39	2.0
Woods-A/B	655,706	15.05	77.0
Woods-A	94,715	2.17	11.1
Grass- A/B	16,604	0.38	1.9
Grass-A	17,671	0.41	2.1
TOTAL	852,117	19.56	100%

Table 1: Existing Land Coverage

The existing conditions site draining to Study Point 1 (SP1) is approximately 19.6 acres, and includes nearly all of the subject property comprised of woodlands and bare soil paths and offsite areas consisting of a very small area of paved roads, rooftops, woods and grass areas. The area slopes very gently towards Flax Pond in the southeast corner at SP1.

1.1.1. Soils

According to the Commonwealth of Massachusetts Bureau of Geographical Information ("MassGIS"), soils underlying the Subject Property are classified as Deerfield and Windsor soils (Figure 3). The United States Department of Agriculture Soil Conservation Service identifies these soils as well drained to excessively drained.

The NRCS Soil Map is located in Appendix A.

1.2. Proposed Conditions

The proposed project includes the construction of a residential community consisting of a three story Senior's Only building consisting of 44 one-bedroom housing units and 10 multi-unit dwellings offering mixed-income housing. The buildings will be accessed by an internal road, and parking will be provided for each unit. Other site amenities include a community building, community gardens and walking trails. The site will be accessed via Littleton Drive, off Swifts Beach Road. A second, emergency-only point of egress will connect to the low-density residential neighborhood to the site's south and west. The site is to be serviced by Town water and sewer, natural gas, electric and cable service accessed from Littleton Drive. The Applicant has applied for wastewater allocation to support the proposed housing development.. Other site features include:

- Approximately 2,190 linear feet of 24' wide paved streets with perpendicular parking spaces for the 10 multi-unit residential buildings
- A total of 128 paved parking spaces

- ADA accessible sidewalks
- Interior landscaped areas, open spaces, and lighting.

1.2.1. Stormwater Management

The proposed stormwater management includes a GSI approach to capture, treat, infiltrate, and detain runoff, when applicable and to the maximum extent practicable, by using the following Stormwater Control Measures (SCM)s.

Bioretention Areas (BIO)

A bioretention area (sometimes referred to as a "rain garden" or a "biofilter") is a stormwater management practice to manage and treat stormwater runoff using a conditioned planting soil bed or "filter" media and plants to filter runoff captured in a shallow depression. The method combines physical filtering and adsorption with bio-geochemical processes to remove pollutants. The system consists of an inflow component, a pretreatment element, an overflow structure, a shallow ponding area (6 inches deep), a well-drained planting soil bed, and plants.

Underground Recharge Chambers (URC)

Underground recharge chambers capture, and store stormwater collected from surrounding rooftops and other impervious areas after treatment of the first inch of runoff from upgradient bioretention areas. Drainage pipes direct surface stormwater to subsurface interconnected storage units. Some of the stored water is released directly into the ground mimicking predevelopment conditions. Use of stormwater recharge chambers allows stored water to infiltrate and recharge groundwater. Larger storms beyond the infiltration rate of the underlying soils fill the chambers before being discharged either to the down-gradient infiltration basin, or directly to Flax Pond.

Infiltration Basin (IB)

The infiltration basin is a surface stormwater facility that is designed to collect and temporarily store runoff before infiltration into the subsoil. The infiltration basin allows stored water to infiltrate and recharge groundwater. Infiltration basins only receive runoff from adjacent pervious and rooftop areas, and after treatment of the one-inch runoff from upgradient bioretention areas.

Dry Well (Recharge Basin (RB))

A subsurface stormwater facility that is designed to collect and temporarily store rooftop runoff before infiltration into the subsoil. Use of stormwater recharge basins allows stored water to infiltrate and recharge groundwater.

Sediment Forebays

Sediment forebays are also provided at the bioretention areas for pretreatment of the surface water runoff from the proposed pavement and concrete surfaces to allow for sediment to settle from the incoming stormwater runoff prior to conveyance to the bioretention and infiltration basin/chamber systems. The forebays are designed to provide 0.1" of runoff volume as required

by the Massachusetts Stormwater Standards. The sediment forebays are designed to be easily accessed on a regular basis for cleanout and sediment removal. See the Stormwater Operation and Maintenance Plan.

1.2.2. Drainage Areas

The proposed development will occur within an approximately 9.0 acre development area generally in the center of the 16.1 acre parcel with buffer of not less than 50 feet and up to 150 feet to adjacent property lines to remain undeveloped. A 24-foot wide access street will connect into existing Littleton Drive at the northeast corner of the property. A looping path/trail is proposed to surround the development envelope. The proposed site development includes a low impact stormwater management approach, public sewer and water, natural gas and other associated utilities. The total proposed development is comprised of the following land cover:

	Area	Area	
Coverage	(ft2)	(acres)	%
Paved	101,620	2.33	11.8
Bare Soil-A/B	19,134	0.44	2.2
Roof	641,41	1.47	7.5
BMP	19,720	0.45	2.3
Woods-A/B	368,946	8.47	42.9
Woods-A	94,715	2.17	11.0
Grass- A/B	174,819	4.01	20.3
Grass- A	17,671	0.41	2.1
Total	860,766	19.76	100%

Table 2: Proposed Land Coverage

The proposed site drainage is divided into ten subcatchments: DA0, DA1E, DAW, DA2, DA3, DA3R, DA4, DA1OS, DA2OS, and DA3OS. The 10 drainage areas ultimately drain to the same study point (SP1) as outlined in the existing conditions above. Pre and Post Drainage maps can be found in **Appendix B**. The 0.2 acre increase in post-developed conditions drainage area is to due to the proposed grading at the beginning of the entrance driveway off of Littleton Drive where this small area of drainage will be managed by SCM P1.

DA0 is approximately 0.20 acres, located in the eastern portion of the property, and includes paved roads, open lawn, and the SCM. This area retains the 100-Year Storm within the SCM but is mapped to SP1.

DA1E is approximately 0.55 acres, also located in eastern portion of the property and includes the upper portion of Littleton Drive, sidewalks, the northern parking lot to the senior building, the SCM and open lawn areas. Runoff drains first to Bioretention area (BIO) P2, which overflows to the underground recharge chambers (C1), located under the parking lot, before discharging to SP1.

DA1W is approximately 0.50 acres, located in the central portion of Littleton Drive The area includes a portion of the roof from the senior building, paved roadway, sidewalks, the SCM, and open lawn/landscaped areas. Runoff drains first to BIO P3, which overflows to the underground recharge chambers (C1), located under the parking lot, before discharging to SP1.

DA2 is approximately 0.74 acres, located along the southwestern boundary of the site. The area includes a portion of the emergency access road, sidewalks, a portion of the rooftop from the senior building, the southern parking lot serving the senior building, the SCM, the community garden, and open lawn/landscaped areas. The area slopes from southeast to northwest. Runoff drains first to BIO P5, which overflows to the underground recharge chambers (C2), located under the southern parking lot, before discharging to SP1.

DA3 is approximately 2.40 acres, located in the central portion of the loop road and multi-unit townhouses and includes the community center. The area includes rooftops, parking for the townhouses and community center, roadway and sidewalks serving the multi-unit townhouses, the SCM, and open lawn/landscaped areas. Runoff drains first to BIO P4, which overflows to the underground recharge chambers (C3), located under the common open lawn/landscaped area, before discharging to the infiltration basin D4.

DA3R is approximately 0.22 acres, located in the eastern side of the loop road. The area includes only the rooftops of three multi-unit townhouses. These rooftops drain to a small underground chamber system (C4) before overflowing to the small depression. The area slopes to the northeast and retains the 100-Year Storm within the natural depression but is mapped to SP1.

DA4 is approximately 2.11 acres, located in the northern portion of the loop road and multi-unit townhouses. The area includes rooftops, parking for the townhouses, roadway and sidewalks serving the multi-unit townhouses, the SCM, and open lawn/landscaped areas. Runoff drains first to BIO P6, which overflows to the infiltration basin D4.

DA1OS is approximately 2.54 acres, located on the northern, mostly undeveloped area of the site. The area is mostly undeveloped forest draining to a natural depression. The area includes mostly undeveloped woods, some bare soil associated with the existing pathways, and open lawn/landscaped areas. The small underground chamber system (C4) draining the rooftops in DA3R overflows during larger storms to the small depression. The area slopes to the northeast and retains the 100-Year Storm within the natural depression but is mapped to SP1.

DA2OS is approximately 1.22 acres, located to the southern portion of the site adjacent to Flax Pond and SP1. The area includes mostly natural undeveloped woods and the existing bare soil pathway. The area slopes directly to Flax Pond and discharged to SP1.

DA3OS is approximately 9.31 acres, located to the northwest of the property and includes offsite existing developed lots consisting of mostly undeveloped woods, existing residential rooftops, lawns, the SCM, and the existing bare soil pathway. The area slopes to the proposed surface infiltration basin (D4) and retains storms in excess of the 100-year event, but is mapped to SP1.

2.0 DRAINAGE DESIGN METHODOLOGY AND ANALYSIS

The drainage design was completed by performing the following series of tasks:

- Site soil evaluations (6 test pits) (Appendix A)
- Delineation of drainage areas and sub catchments (Appendix B)
- Sizing the bioretention areas, and underground recharge chambers (Appendix C)
- Modeling the proposed drainage network with HydroCAD® software (Appendix D)
- TSS and Recharge calculations (Appendix E)
- Operation and Maintenance Guide (Appendix F)
- Groundwater mounding analyses using the Hantush Method (Appendix G)

Six soil test pits were excavated on the site to assess the subsurface conditions and determine its suitability for the construction of stormwater management practices. The soil test pit data are included in **Appendix A**. Six test pits are located across the site in locations deemed proximate to proposed infiltration systems but distributed across the site to allow for comparison of groundwater elevations.

The soil map unit comprising the majority of the site is "Deerfield loamy sand 0 to 3 percent slopes." The Deerfield series is described in the 1969 Soils Survey as consisting "of very deep, moderately well drained soils on terraces, deltas, and outwash plains. They formed in thick deposits of sand derived mainly from granite, gneiss, and quartzite. Typically, these soils have a very dark grayish brown loamy sand surface layer 9 inches thick. The subsoil from 9 to 19 inches is yellowish-brown loamy that is mottled. The subsoil from 19 to 27 inches is mottled sand. The substratum from 27 to 65 inches is olive gray sand. Slopes range from 0 to 15 percent." MassGIS and the 1969 Plymouth County Soils Survey list Deerfield soils as HSG B while the 2010 on-line Plymouth County Soils Survey HSG List has Deerfield identified as HSG A. Our field observations confirmed a fine sand soil layer as shallow as 41" that confines downward water movement. For hydrologic calculations, HW split the difference between HSG A and B for both pre-development and post-development conditions.

The test pits revealed a soil column that consisted of approximately 3 to 5 inches of organic matter, 2 to 9-inches of loamy sand woodland topsoil overlying 2 inches to 24 inches of loamy sand subsoil. The underlying fine sand substratum extends to the bottom of the deep observation test pits to a depth of up to approximately 10 feet. The entirety of the soil column was a single-grained texture and of a friable consistency.

Groundwater was observed in four test holes (TP-1, TP-2, TP-5 and TP-6), which are distributed across the site. Observed depth to water ranged from 48 inches to 91 inches feet below grade. Redoxymorphic (Redox) features were observed in 5 out of 6 test holes. The Estimated Seasonal High Ground Water (ESHGW) elevation was determined by depth to observed Redox. Using this method, the highest estimated groundwater elevation was determined to be at

elevation 9.8. Perforated pipes were installed in two test pits (TP-2 and Tp-4) to allow for future observation of groundwater prior to development of final construction drawings.

A double-ring infiltrometer test was performed at TP-6, at a depth of 44 inches in the fine sand layer. Results ranged from 9.3 in/hr. to 10.3 in/hr. To be conservative in the HydroCAD drainage model, 50% of the lowest observed rate (4.5 in/hr) will be used in the design of all proposed infiltration areas. This rate coincides with the requirements set forth in the Massachusetts Stormwater Management Standards. Based on the infiltration test data results, existing subsoils, and deep depth to groundwater, this site is feasible for stormwater infiltration.

Soil logs are provided in Appendix A and the test pits locations are located on the Grading and Drainage Plan.

The Stormwater Management System has been designed to accomplish the following major objectives:

- To capture and treat, at a minimum, the "first flush" (first one-inch of stormwater runoff) from the impervious surfaces to maintain or improve water quality conditions when compared to existing conditions.
- To provide groundwater recharge to the greatest extent practicable in conformance with the Massachusetts Department of Environmental Protection groundwater recharge criteria.
- To meet or reduce peak flow rates for post-developed conditions as compared to predeveloped conditions at the study point located along the perimeter of Flax Pond.

These objectives are met through the use of the following stormwater management measures:

- Bioretention systems sized to treat the first one-inch of stormwater runoff for water quality treatment of runoff from the driveway, walkways, and parking areas. The systems are equipped with overflows to convey runoff from larger storm events into proposed underground recharge chambers and/or the infiltration basin. (Appendix C)
- Underground recharge chambers and infiltration basins sized to infiltrate and detain onsite runoff.
- Dry wells to capture rooftop runoff from three of the multi-unit townhouse buildings.

The proposed Stormwater Management System was designed to accommodate predevelopment site hydrologic conditions as well as reduce stormwater pollution from the proposed site conditions. Stormwater runoff quantity was evaluated for the 2-year, 10-year, and 100-year Type III, 24-hour storm events for both pre-development and post-development conditions. Pre-development and post-development conditions were modeled using HydroCAD software, which combines USDA Soil Conservation Service hydrology and hydraulic techniques (commonly known as SCS TR-55 and TR-20) to generate hydrographs (See **Appendix B** for both "Pre-developed" and "Post-developed" Drainage Area Maps). The rainfall amounts used for calculating runoff for the storm events were obtained from the Upper 90th percentile confidence limit from NOAA Atlas 14 which is being proposed by MassDEP as the new designrainfall rates in the update to the Massachusetts Stormwater Management Standards. Rainfall values are listed below in Table 3. A summary table of pre- and post-development runoff peak flow rates and volumes is provided in Table 4.

Storm Frequency (24- hour – Type III Storm)	Precipitation Value (inches)
Water Quality Event (WQv)	1" per impervious acre ¹
2-year	3.44
10-Year	5.05
25-Year	6.05
100-Year	7.60

Table 3: Precipitation Values for Design and Hydrological/Hydraulic Analysis

Stormwater runoff quality was evaluated to ensure that pollutant export from the project site was minimized to the maximum extent practicable. The stormwater management system for the site was designed in accordance with the MASWS and the applicable criteria within the Town's Subdivision Regulations and Zoning Bylaw (i.e. the 20-year frequency Storm).

Table 4: Peak Flow and Volume Comparison

STUDY POINT 1 – Flax Pond Wetland Perimeter

DESIGN	PRE-DEVELO	OPMENT	POST-DEVE		PERCENT REDUCTION		
STORM	PEAK FLOW (CFS)	VOLUME (AF)	PEAK FLOW (CFS)	VOLUME (AF)	PEAK FLOW	VOLUME	
2 YR	0.15	0.096	0.01	0.008	93.3%	91.7%	
10 YR	1.92	0.671	0.17	0.046	91.1%	93.1%	
100 YR	11.01	2.342	3.79	0.301	65.6%	86.8.7%	

3.0 COMPLIANCE WITH MADEP STORMWATER STANDARDS

The Massachusetts Stormwater Standards were revised in February 2008 to include ten stormwater management standards, established jointly by the DEP and the Office of Coastal Zone Management, and published in the 2008 update of the Stormwater Management Handbook. Projects that are within the jurisdiction of the Wetlands Protection Act Regulations, 310 CMR 10.00 are subjected to these Stormwater Management Standards. For this project, adherence to the Handbook is required as the project is within the jurisdiction of the Wetlands Protection Act. Therefore, the stormwater management system was designed in accordance with the MASWS.

The following is a list of Stormwater Management Standards and accompanying documentation describing compliance of the proposed retrofit project with each Standard:

1. No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

No new untreated stormwater will discharge to wetland areas. The proposed GSI practices have been sized to meet the water quality volume (WQV). Stormwater runoff will flow through the GSI practices before being infiltrated or reaching the study point. Infiltration chambers and an infiltration basin have been designed to ensure that post-development peak flow rates for the 2-, 10- and 100-Year storm events match predevelopment rates for Study Point 1 at the perimeter of the wetland at Flax Pond.

2. Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates.

Discharge rates for pre and post-development were calculated using HydroCAD® v10.10-4a, and SCS-TR20 based stormwater modeling computer program (**Appendix D**). Postdevelopment peak discharge rates are less than pre-development rates for the 2-, 10-, and 100year storms. A summary table of these precipitation events is provided in Table 3.Updated rainfall values from NOAA Atlas 14 Upper Confidence Limit were utilized for this analysis.

3. Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Under the proposed design, the stormwater runoff is being directed to recharge basins, underground recharge chambers, and a surface infiltration basin. The intent is to recharge groundwater to the maximum extent practicable as required by Standard 3. Since the site is characterized with a high infiltration rate (greater than 2.4 in/hr.), at least 44% of the total suspended solids must be removed prior to discharge to the infiltration structure. The required TSS pretreatment will be done through bioretention practices. TSS and recharge calculations are provided in **Appendix E**. Because storms equal to or great than the 10-year storm are being infiltrated into soils with a separation distance to the seasonal high groundwater elevation, a groundwater mounding analysis is provided in **Appendix G**.

4. Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:

• Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;

- Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
- Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The stormwater management practices are sized to capture the require water quality volume (Appendix C).

The stormwater management pretreatment and treatment systems for the sites have been selected and sized for the most removal of the average annual load of TSS possible. The following removal rates were taken MA Stormwater Handbook:

Bioretention (with sediment forebay): Recommended design rate: 90%

TSS calculations are provided in **Appendix E.** Source controls and pollution prevention will be controlled by the methods outlined in **Sections 5.0 and 7.0**. The proposed Operation and Maintenance Plan was developed to ensure that the stormwater system continues to function as it was designed into the future (**Appendix F**).

5. For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater SCMs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The site is not considered a LUHPPL; thus, this standard is not applicable.

6. Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water

shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

The project site is not located within a Zone II but is considered a Nitrogen Sensitive Area

The project proposed to use stormwater pretreatment, treatment, and infiltration SCMs identified in Standard 6 for discharges within sensitive areas. Infiltrated stormwater likely drains to both the Wareham River and Marks Cove, both of which have been identified a nitrogen sensitive in the 2014 Massachusetts Estuary Project "Report for the Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for the Wareham River, Broad Marsh and Mark's Cove Embayment System, Wareham, Massachusetts." Sediment forebays with filtering bioretention areas are approved treatment SCMs with 44% TSS reduction prior to infiltration occurring, and subsurface structures, and infiltration basins are approved infiltration SCMs. All are appropriate to maximize nitrogen removal.

7. A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

This project is not a redevelopment project, therefore, Standard 7 does not apply.

8. A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

An Erosion and Sediment Control Plan is included in construction documents, and a Pollutant Prevention Plan is included in this Report. Silt fence and/or silt socks are proposed at the limit of work; silt socks are proposed along the downgradient edges of the area of disturbance. Disturbed areas will be stabilized with seeding and mulching, as soon as possible to minimize erosion and sedimentation. Additional pollutant controls during construction are described in **Section 5.0** and on the plans. A Stormwater Pollution Plan (SWPPP) is required as part of the NPDES Construction General Permit and will be submitted prior to construction.

The contractor will be required to establish erosion controls prior to beginning any other projectrelated work. The Erosion and Sediment Control Plan will also establish the limit of work, beyond which the contractor will not be allowed to perform any project work. It is the contractor's responsibility to monitor and correct erosion control practices throughout the duration of the project. Erosion control measures will not be removed until the project reaches completion as directed by the project engineer or landscape architect.

9. A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

The long-term stormwater operation and maintenance plan for each stormwater best management practice is discussed in **Section 6.0** and provided with this report in **Appendix F**.

10. All illicit discharges to the stormwater management system are prohibited.

There will be no illicit discharges to the stormwater management system. The Long-Term Pollution Prevention Plan provided includes measures to prevent illicit discharges.

4.0 CONSTRUCTION ACTIVITIES AND GENERAL CONSTRUCTION SEQUENCE

Construction activities will involve site preparation and earthwork necessary for construction of the proposed project. These activities primarily include the following:

- Erosion control installation
- Clearing and grubbing of existing vegetation within the proposed limits of work
- Excavation stockpiling, and hauling of excavated foundation, topsoil and subsoils
- Rough grading of all disturbed areas
- Construction of stormwater management system
- Construction of new housing units,
- Installation of utilities
- Paving
- Finish grading, final site stabilization and landscaping

Erosion and sediment control (ESC) measures will be installed per the construction plans and specifications prior to commencement of any soil disturbing activities. ESC measures will remain in place until final site stabilization is complete. Topsoil will be separated from the remaining soil and stockpiled on-site for use during site finish grading. The stockpiled topsoil will be protected to prevent erosion and sedimentation.

5.0 POLLUTANT CONTROLS DURING CONSTRUCTION

Controls will be used to reduce erosion during the construction period. Perimeter controls and sediment settling devices will be installed during construction to minimize sediment movement in stormwater and to protect the adjacent properties and buffers on the property.

5.1. Structural Practices

The following are the structural practices that will be implemented as part of the construction activity.

- <u>Silt Fence & Sediment Silt Sock Barrier</u> will be installed prior to commencement of construction. This type of practice creates erosion control barriers to intercept sediment in diffuse runoff. The Town will be informed upon installation so that they may inspect these barriers prior to construction. Portions of the erosion control barriers will be replaced and/or repaired as necessary to prevent erosion. Barriers will be installed parallel to land slope at the perimeter of the work site. In addition, silt fence barriers will be installed around the bioretention areas during construction.
- <u>Silt Sacks (or approved equivalent)</u> will be installed at identified existing catch basins and structure following construction of the proposed catch basins to prevent

sedimentation during the any additional construction. The Silt Sack will be replaced and disposed of off-site if damage is observed.

- <u>Bioretention Area(s)</u> will be graded to within one foot of design elevations until site is fully stabilized to capture sediment during construction. Heavy equipment will not be allowed to operate on the surface location where the systems are planned because soil compaction would adversely impact their long-term performance. Silt fence will be utilized around the perimeter of the bioretention systems during construction. Light earthmoving equipment will be used for excavation and construction of the systems. All excavated materials from the area will be removed and disposed of in an approved location. All bioretention areas will be inspected at least once every seven calendar days and immediately after storm events by the Site Superintendent.
- <u>Slope Stabilization</u> will be installed immediately upon obtaining final grades as shown on the project site plans. Areas that fail to stabilize will be re-graded to final grade and stabilized as necessary. Amount of land disturbed will be minimized to reduce potential for erosion and sedimentation. Stabilization measures shall be initiated within 14 days following the end of construction at each portion of the site and as soon as practicable.

The entire stormwater management systems including overflow spillways and sediment forebays will be inspected upon completion of construction. Sediment will be removed from all elements of the stormwater management system. All control measures must be installed and maintained in accordance with manufacturer's specifications, good engineering practices, and in accordance with this Plan (every seven calendar days and after storm events). If inspections show that a control has failed or been installed incorrectly, the Operator must replace or modify it within 24 hours.

Structural controls will be regularly inspected to ensure proper performance. The following operation and maintenance provisions will be provided:

- Silt fences will be inspected for depth of sediment, tears, to determine if the fabric is securely attached to the fence posts, and to determine if the fence posts are firmly in the ground. Silt fence will be replaced when necessary.
- Silt Socks shall be inspected for depth of sediment and any breaches will promptly be repaired or replaced when necessary.
- Sediment shall be removed where accumulation reaches one-third the above ground height of any barrier.
- Once each workday structural control measures receiving flows from areas that have not been stabilized shall be inspected.
- Remedial action shall be taken in areas where temporary and permanent seeding is deemed inefficient through weekly inspections to establish a stabilized surface.
- All SCMs will be cleared of accumulated foreign debris, including leaves and lawn cuttings.

- All SCMs will be inspected for slope integrity and erosion.
- All control measures will be inspected at least once every 7-calendar days and within 24 hours after storm events of 0.5 inches or more.
- All measures will be maintained in good working order, if a repair is necessary, it will be initiated within 24 hours of discovery.

5.2. Stabilization Practices

The amount of land disturbed during construction will be minimized to reduce the potential for erosion and sedimentation. Prompt surface stabilization will be practiced to control erosion in areas where disturbances cannot be avoided during construction. Stabilization measures shall be initiated within 14 days following the end of construction at each portion of the site. Exceptions to this requirement are allowable when snow cover prevents the initiation of stabilization within 14 days, in which case such measures shall be undertaken as soon as possible.

Stabilization measures that may be used during construction are described below:

- <u>Temporary Seeding</u> Temporary seeding of disturbed surfaces with fast-growing grasses (annual rye) to provide greater resistance to stormwater runoff and/or wind erosion for areas where construction has temporarily ceased.
- <u>Permanent Seeding</u> Permanent seeding of surfaces with vegetation, including but not limited to grass, trees, bushes, and shrubs, to stabilize the soil. Establishing a permanent and sustainable ground cover at a site stabilizes the soil while reducing the sediment content in runoff.
- <u>Permanent Planting</u> the contractor shall install and adequately establish all planting as required at the completion of the project.
- <u>Mulching/Hydro mulching</u> hydro mulch will be placed on the soil surface to cover and hold in place disturbed soils.

Temporary seeding or other soil stabilization measures will be provided where construction activities have ceased at the site. Topsoil stockpiles will be temporarily seeded or covered to prevent erosion and will be surrounded with silt fence. When the site's final grade has been established, permanent vegetation will be planted on the disturbed areas. The vegetation will consist of grass, shrubs, bushes, and trees.

5.3. Other Types of Controls

Additional controls/practices will be undertaken to reduce pollution in stormwater runoff flows which include, but are not limited to, control of off-site mud tracking from construction site, dust suppression, proper sanitary waste disposal, earthwork procedures timed and conducted in manners aimed to minimize erosion and sedimentation, snow removal plans, proper

management of waste materials, proper management of hazardous waste, proper material stockpiling, and spill prevention and control measures.

- <u>Dust Suppression</u> Water sprays shall be used to control dust during extended dry periods during construction.
- <u>Sanitary Wastes</u> All sanitary wastes will be collected from the portable units by a licensed sanitary waste management contractor (as required by local regulations).
- <u>Earthwork</u> The exposure of disturbed surfaces to stormwater and potential stormwater erosion will be minimized by well-organized earthwork procedures. Stabilization procedures shall be undertaken in accordance with this report. Grubbing during wet seasons will be avoided if feasible.
- <u>Snow Removal Plan</u> Plowed snow collected from the parking areas will be deposited onto free draining, pervious surfaces, away from the site's drainage conveyance structures to maximize infiltration. Snowmelt runoff that is not infiltrated will be directed to the site's stormwater management system. Snow is not to be plowed or piled onto the stormwater management facility or wetlands.
- <u>Waste Materials</u> Dumpsters rented from a licensed solid waste management company will be used to store solid waste and debris that cannot be recycled, reused or salvaged. The dumpsters will meet all local and state solid waste management regulations. Dumpsters will be covered when refuse is not being directly deposited or withdrawn from them. Potentially hazardous wastes will be separated from normal wastes, including segregation of storage areas and proper labeling of containers. Removal of all waste from the site will be performed by licensed contractors in accordance with applicable regulatory requirements and disposed of at either local or regional approved facilities. Waste materials will not be buried on-site. All site personnel will be instructed regarding the correct procedures for waste disposal. Notices stating these procedures will be posted at the site. Solvents and flushing materials used during construction and preoperational cleaning will be provided, handled, managed, and removed by the contractor for appropriate off-site disposal.
- <u>Hazardous Waste Materials</u> Any disposal of hazardous materials will be completed using the required paperwork. Copies will be provided to the Engineer and to the Town.
- <u>Spill Prevention and Control Measures</u> To minimize the risk of spills or other accidental exposure of materials and substances to stormwater runoff, the following material management practices will be used throughout the project:
 - An effort will be made to store only enough products required to do the job.
 - All materials stored on-site will be stored in a neat, orderly manner in their appropriate containers and, if possible, under a roof or other enclosure.
 - Products will be kept in their original containers with the original manufacturer's label.

- Substances will not be mixed with one another unless recommended by the manufacturer.
- Whenever possible, the maximum amount of a product will be used before disposing of the container.
- Manufacturers' recommendations for proper use and disposal will be followed.
- The site superintendent will conduct daily inspections to ensure proper use and disposal of materials.

To reduce the risk associated with hazardous materials used on the site, the following practices will be used:

- Products will be kept in original containers unless they are not resealable.
- Original labels and material safety data sheets will be retained and kept on-site; they contain important product information.
- If surplus product must be disposed of, manufacturers' or local and state recommended methods for proper disposal will be followed.
- <u>Materials List</u> Materials or substances listed below are expected to be present on-site during construction:

- Concrete	- Fertilizers
- Asphalt	- Petroleum Based Products
- Paints (enamel and latex)	 Cleaning Solvents
- Metal Studs	- Wood
- Concrete	- Tar
- Sealants	- Adhesives

The following product-specific practices will be followed on-site:

- <u>Petroleum Products</u> All on-site vehicles will be monitored for leaks and receive preventative maintenance to reduce the chance of leakage. Petroleum products will be stored in tightly sealed containers which area clearly labeled. Any asphalt substances used on-site will be applied according to the manufacturers' recommendations.
- <u>Fertilizers</u> Fertilizers used will be applied only in the minimum amounts recommended by the manufacturer. Once applied, fertilizer will be worked into the soil to limit exposure to stormwater. Products will be stored in a covered shed. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.
- <u>Paints</u> All containers will be tightly sealed and stored indoors when not required for use. Excess paint will not be discharged to the storm sewer system but will be properly disposed of according to the manufacturers' instructions or state and local regulations.
- <u>Concrete Trucks</u> Concrete trucks will not be allowed to wash out or discharge surplus concrete or drum wash water on the site.

In addition to the good housekeeping and material management practices discussed in the previous sections of this plan, the following practices will be followed for spill prevention and cleanup:

- Manufacturers' recommended methods for spill cleanup will be clearly posted, and site personnel will be made aware of the procedures and location of the information and cleanup supplies.
- Materials and equipment necessary for spill cleanup will be kept in the material storage area on-site. Equipment and materials will include, but not be limited to, brooms, dustpans, mops, rags, gloves, goggles, speedi-dry, sand, sawdust, and plastic and metal trash containers specifically for this purpose.
- All spills will be cleaned up immediately after discovery. Spills large enough to reach the storm water system will be reported to the National Response Center at 1-800-424-8802.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with a hazardous substance.
- Spills of toxic or hazardous material will be reported to the appropriate state or local government agency, regardless of the size.
- The site superintendent responsible for the day-to-day site operations will be the spill prevention and clean-up coordinator. He will designate at least three other site personnel who will receive spill prevention and cleanup training. These individuals will each become responsible for a particular phase of prevention and cleanup. The names of responsible spill personnel will be posted in the material storage area and in the on-site office trailer.

6.0 STORMWATER OPERATION AND MAINTENANCE PLAN

All stormwater management measures and controls identified in this report shall be operated and maintained appropriately during the construction phase of the project and during regular operation of the site in the post-construction period as required on the construction drawings and the separate Stormwater Management Maintenance Plan (Appendix F).

7.0 REFERENCES

- 1. MADEP (Massachusetts Department of Environmental Protection). 2008. Massachusetts Stormwater Standards Manual.
- Northeast Regional Climate Center and Natural Resources Conservation Service. 2010-2018. Extreme Precipitation for New York and New England. Version 1.12. <u>http://precip.eas.cornell.edu/</u>

FIGURES

Figure 2

Figure 3

Date: 12/16/2020

Basemap: Massachusetts 2019 USGS Color Ortho Imagery Legend Horsley Witten Group Sustainable Environmental Solutions 90 Route 64 - Unit 1 - Standwich, MA 02563 506-873 - 6600 - horsleywitten.com MassDEP Wetlands (2005) Subject Property Marsh/Bog **Potential Vernal Pools Existing Constraints** Wooded marsh Natural Heritage Atlas (14th Ed.) **Undeveloped Land** NHESP Priority Habitats of Rare Species Salt Marsh **4 Littleton Drive** Open Water **NHESP Estimated Habitats** Wareham, MA 0 200 Feet of Rare Wildlife Date: 12/16/2020 Figure 4

APPENDIX A

Site Soil Evaluations NRCS Soils Report

Commonwealth of Massachusetts

City/Town of Wareham

Soil Suitability Assessment

On-Site Review

Deep C	Observation He	ole Number: _		12/18/2	2020	8:	00 am-	3:00 pm	38F, Cloudy			
		F	lole #	Date		Ti	me		Weather		Latitude	Longitude
1. Land Use: Woods					low bru	sh/woods		١	None			0-3%
	(e.g. woodla	and, agricultural fie	eld, vacant lot	i, etc.)	Vegetatio	on		S	Surface Stones (e.g.	cobbles, stones, bo	oulders, etc.)	Slope (%)
Descr	iption of Location	on: see site pla	in									
2. Soil Parent Material: Outwash						Outwas	sh plain					
0. 5: /	_					Landforn	n F.		Positi	on on Landscape (S	SU, SH, BS, FS, T	S)
3. Distanc	ces From:	Open Wa	ter Body	>100'		feet	Draina	ge Way	>100'	feet VV	etlands >10	0' feet
		Prop	erty Line	>100'		feet Drink	king Wat	ter Well	NA	feet	Other	feet
4. Unsuita	able Materials F	Present: Ves	✓ No	If Yes:	🗌 Di	sturbed Soil	🗌 Fil	l Material	U Weat	hered/Fractured Ro	ck 🗌 Be	edrock
5. Groundwater Observed: Ves		🗌 No	If Yes:		Depth	n weeping	from pit	90"	Depth stand	ing water in hole		
						s	oil Log					
Depth	Soil Horizon/	Soil Texture	Soil Ma	trix: Color-	Redoximorphic Features Coars			e Fragments Soil Structure Consist		Soil	Other	
(in)	Layer	(USDA)	Moist ((Munsell)	Depth	Color	Percent	Gravel	by Volume	Soli Structure	(Moist)	Other
5-0	0				-	-	-	-	-		(
	-											
0-9	Ар	LS	10 `	/R 4/1	-	-	-	<1	<1	М	L	
9-33	Bw	LS	10 \	/R 6/6	-	-	-	<1	<1	М	L	
33-96	33-96 C FMS 10 YR 7/3		64"	7.5 YR 6/8 10 YR 8/2	25%	<1	<1	М	Fr			
Additional	I Notes:	<u>I</u>	<u> </u>		1	<u> </u>	<u>I</u>	l	<u> </u>	<u> </u>		l

Commonwealth of Massachusetts

City/Town of Wareham

Soil Suitability Assessment

On-Site Review

Deep C	Observation Ho	ble Number: 2 He	ole #	12/18/ Date	2020	8 — Ti	:00 am- : ^{me}	3:00 pm	38F, Cloudy Weather		Latitude	Longitude
1. Land U	se: Woods				low brush/woods			None			0-3%	
	(e.g. woodla	and, agricultural fiel	ld, vacant lot	i, etc.)	Vegetatio	on		S	Surface Stones (e.g.	cobbles, stones, bo	ulders, etc.)	Slope (%)
Descr	iption of Locatio	on: see site pla	n									
2. Soil Pa	rent Material:	sh		Outwa	sh plain							
2 Distanc	os From:	Open Wat	or Rody	>100'		Landforr	n Drainad		Positi	on on Landscape (۵	SU, SH, BS, FS, T otlanda	5) יר
J. Distant	Les FIOIII.			>100		feet			>100	feet VV		feet
		Prope	erty Line	>100		feet Drink	ang wat	ervveii	NA	feet		feet
4. Unsuita	able Materials P	resent: Yes	🖌 No	If Yes:	Di:	sturbed Soil	🗌 Fill	Material	U Weat	hered/Fractured Ro	ck 🗌 Be	edrock
5. Groundwater Observed: Ves No			If Yes:	91" Depth weeping from pit			Depth standing water in hole					
						S	oil Log					
Depth (in)	Soil Horizon/	Soil Texture	Soil Mat	trix: Color- Munsell)	Redox	kimorphic Fe	atures	Coars %	se Fragments by Volume	Soil Structure	Soil Consistence	Other
(11)	Layor		Wolst	(Manoen)	Depth	Color	Percent	Gravel	Cobbles/Stones		(Moist)	
3-0	0				-	-	-	-	-			
0-2	А	LS	10 \	YR 5/1	-	-	-	<1	<1	М	L	
2-4	Bw ₁	LS	10 \	/R 3/3	-	-	-	<1	<1	М	L	
4-24	Bw ₂	LS	10 \	/R 7/6				<1	<1	М	L	
24-100	С	FS	10 \	/R 7/3	48"	5 YR 5/8 5 YR 7/1	25%	<1	<1	М	Fr	
Additional	Notes:	-	-		-		-					
City/Town of Wareham

Soil Suitability Assessment

Deen (Deep Observation Hole Number:	ole Number: ³	ber: ³ 12/18/2		2020 8:00 am- 3:00 pm			38F, Cloudy				
Doop		Ho Ho	ole#	Date			Time		Weather		Latitude	Longitude
1. Land U	se: Woods				low bru	ish/woods		. <u> </u>	None			0-3%
	(e.g. woodla	and, agricultural fiel	d, vacant lot	, etc.)	Vegetati	on		ç	Surface Stones (e.g.	cobbles, stones, bo	ulders, etc.)	Slope (%)
Descr	iption of Locatio	on: see site plar	ı									
2. Soil Pa	rent Material:		Outwas	sh		Outv	vash plain					
			_		Land		ndform		Position on Landsc		SU, SH, BS, FS, ⁻	TS)
3. Distanc	ces From:	Open Wat	Open Water Body >10			_{feet} Drainage Way		ge Way	>100'	feetW	etlands >10)0' feet
		Prope	Property Line >100'		_{feet} Drinking V			er Well	NA	feet	Other	feet
4. Unsuita	4. Unsuitable Materials Present: Yes Vo			If Yes:	Disturbed Soil Fill Material				U Weat	hered/Fractured Ro	ck 🗌 E	Bedrock
5. Groundwater Observed: Ves Vo			If Yes:	NA Depth weeping from pit				NA	Depth stand	ing water in hole		
							Soil Log					
Depth	Soil Horizon/	Soil Texture	Soil Mat	rix: Color-	Redo	ximorphic	Features	Coar	se Fragments		Soil	0.11
(in)	Layer	(USDA)	Moist (Munsell)	Dopth	Color	Porcont	% Gravel	by Volume	Soll Structure	Consistence (Moist)	Otner
1.0					Deptin	000	Feiceni	Glavel	Cobbles/Stories		(10131)	
4-0	0				-	-	-	-	-			
0-2	А	LS	ו 10	/R 4/1	-	-	-	<1	<1	М	L	
2-4	E	LS	10 \	/R 5/1	-	-	-	<1	<1	М	L	
4-24	Bw	LS	10 \	/R 6/6	-	-	-	<1	<1	М	L	
24-32	C ₁	CS	10 \	/R 6/6	-	-	-	5	<1	М	L	
32-126	C ₂	FS	10 \	(R 7/4	-	-	-	<1	<1	М	Fr	
Additional	l Notes:	1				<u>I</u>				<u> </u>		

City/Town of Wareham

Soil Suitability Assessment

Deep Observation Hole Number:	ble Number: ⁴	er: <u>4</u> 12/18/2		2020 8:00 am- 3:00 pm			38F, Cloudy					
2000 0		Ho	ole #	Date		<u>т</u>	ïme		Weather		Latitude	Longitude
1. Land U	se: Woods				low bru	sh/woods		١	None			0-3%
	(e.g. woodla	nd, agricultural fiel	d, vacant lot	, etc.)	Vegetatio	on		S	Surface Stones (e.g.	cobbles, stones, bo	ulders, etc.)	Slope (%)
Descri	iption of Locatic	on: see site plar	ı									
2. Soil Pa	rent Material:		Outwas	sh	Outwash plain							
	-			. 100	Land		ndform		Position on Landsca		SU, SH, BS, FS,	TS)
3. Distanc	es From:	Open wat	iter Body >100'			feet	Draina	ge vvay	>100	feet VV	etiands >1	00 ^r feet
		Prope	rty Line	Line >100'		feet Drinking Water Well		er Well	NA	feet	Other	feet
4. Unsuitable Materials Present: Yes Ves			🗸 No	If Yes:	Di:	sturbed Soil	🗌 Fil	Material	Ueat	hered/Fractured Ro	ck	Bedrock
5. Groundwater Observed:			✓ No	If Yes:	: NA Depth we			from pit NA Depth s			ing water in hole	
						\$	Soil Log					
Depth	Soil Horizon/	Soil Texture	Soil Mat	rix [.] Color-	Pode	(imorphic E	ooturoo	Coars	se Fragments		Soil	
(in)	Layer	(USDA)	Moist (Munsell)	Red0/			%	by Volume	Soil Structure	Consistence	e Other
					Depth	Color	Percent	Gravel	Copples/Stones		(IVIOIST)	
5-0	0				-	-	-	-	-			
0-2	А	LS	10 Y	/R 3/1	-	-	-	<1	<1	М	L	
2-4	Е	LS	10 ነ	(R 7/1	-	-	-	<1	<1	М	L	
4-6	Bw ₁	LS	10 ነ	(R 3/4	-	-	-	<1	<1	М	L	
6-18	Bw ₂	LS	10 ነ	/R 6/8	-	-	-	<1	<1	М	L	
18-24	C ₁	CS	10 \	/R 6/8	-	-	-	15	<1	М	L	
24-108	C ₂	FS	10 \	/R 7/4	-	-	-	<1	<1	М	Fr	
Additional	Notes:											

City/Town of Wareham

Soil Suitability Assessment

Deep C	Deep Observation Hole Num	ole Number: ⁵		12/18/2	/2020 8:00 am- 3:00 pm			38F, Cloudy				
		Ha	ole #	Date		Ti	me		Weather		Latitude	Longitude
1. Land U	se: Woods				low bru	sh/woods		I	None			0-3%
	(e.g. woodla	nd, agricultural fiel	d, vacant lot	, etc.)	Vegetatio	on		3	Surface Stones (e.g.	cobbles, stones, bo	ulders, etc.)	Slope (%)
Descr	iption of Locatic	on: see site plar	ı									
2. Soil Pa	rent Material:		Outwas	sh	Outwash plain							
	_				Land		dform		Position on Landsca		SU, SH, BS, FS, 1	ΓS)
3. Distanc	es From:	Open Wate	Open Water Body >100'			feet	Drainag	ge Way	>100'	00' _{feet} Wetlands		00' feet
		Prope	erty Line >100'			feet Drink	rinking Water Well		NA	feet	Other	feet
4. Unsuitable Materials Present: Yes Vo			√ No	If Yes:	🗌 Di	sturbed Soil	🗌 Fill	Material	U Weat	hered/Fractured Ro	ck 🗌 E	Bedrock
5. Groundwater Observed: Ves Vo			If Yes:	NA Depth weeping from pit				84" Depth standing water in hole				
						s	oil Log					
Denth	Soil Horizon/	Soil Texture	Soil Mat	rix: Color-	Pada	vimornhia Ea	aturaa	Coar	se Fragments		Soil	
(in)	Layer	(USDA)	Moist (Munsell)	Reu0/		alures	%	by Volume	Soil Structure	Consistence	Other
				· · · ·	Depth	Color	Percent	Gravel	Cobbles/Stones		(IVIOISI)	
3-0	0				-	-	-	-	-			
0-3	А	LS	10 ነ	(R 3/1	-	-	-	<1	<1	М	L	
3-5	E	LS	10 א	(R 7/1	-	-	-	<1	<1	М	L	
5-9	Bw ₁	LS	10 א	/R 5/6	-	-	-	<1	<1	М	L	
9-21	Bw ₂	LS	10 א	(R 6/6	-	-	-	<1	<1	М	L	
21-30	C ₁	CS	10 \	/R 6/6	-	-	-	10	<1	М	L	
30-90	C ₂	FS	10 \	(R 7/2	60"	10 YR 7/8 10 YR 7/3	25%	<1	<1	М	Fr	
Additional	Notes:											

City/Town of Wareham

Soil Suitability Assessment

Deen (Deep Observation Hole Number:	ole Number ^{. 6}	ber: ⁶ 12/18/2		2020	8	:00 am-	3:00 pm	38F, Cloudy			
Doop		Ho Ho	ole#	Date		T	ime		Weather		Latitude	Longitude
1. Land U	se: Woods				low bru	ish/woods		I	None			0-3%
	(e.g. woodla	and, agricultural field	d, vacant lot	, etc.)	Vegetati	on		ç	Surface Stones (e.g.	cobbles, stones, bo	ulders, etc.)	Slope (%)
Descr	iption of Locatio	on: see site plar	ı									
2. Soil Pa	rent Material:		Outwas	sh	Outwash plain							
					Land		ndform		Positi	on on Landscape (S	SU, SH, BS, FS,	TS)
3. Distanc	ces From:	Open Wat	er Body	>100'	feet		Drainage Way		>100'	feetW	etlands >10	00' feet
		Prope	rty Line	>100'		_{feet} Drin	rinking Water Well		NA	feet	Other	feet
4. Unsuitable Materials Present: Yes Vo			If Yes:	🗌 Di	sturbed Soil	🗌 Fil	l Material	U Weat	hered/Fractured Ro	ck 🔲 I	Bedrock	
5. Groundwater Observed: Yes Vo			If Yes:	NA Depth weeping f			from pit	70"	Depth stand	ing water in hole		
						S	Soil Log					
Depth	Soil Horizon/	Soil Texture	Soil Mat	riv: Color-	Dede	vina amabia Es	-	Coar	se Fragments		Soil	
(in)	Laver	(USDA)	Moist (Munsell)	Redo	ximorphic Fe	eatures	%	by Volume	Soil Structure	Consistence	e Other
	,	(-)	``````````````````````````````````````	,	Depth	Color	Percent	Gravel	Cobbles/Stones		(Moist)	
3-0	0				-	-	-	-	-			
0-3	А	LS	10 א	/R 3/1	-	-	-	<1	<1	М	L	
3-5	E	LS	10 \	(R 7/2	-	-	-	<1	<1	М	L	
5-9	Bw ₁	LS	10 N	′R 4/4	-	-	-	<1	<1	М	L	
9-24	Bw ₂	LS	10 N	/R 8/2	-	-	-	<1	<1	М	L	
24-41	C ₁	CS	10 N	/R 7/4	-	-	-	10	<1	М	L	
41-96	C ₂	FS	10 \	/R 8/3	48"	10 YR 7/8 10 YR 7/3	25%	<1	<1	М	Fr	
Additional	Notes:	-	-		-	-	-		-			

<u>Horsley Witten Group, Inc.</u>
Sustainable Environmental Solutions
www.horsleywitten.com

Double Ring Infiltrometer Test Results

Project: Littleton Drive Affordable Housing Project No: 20107 Calculated By: JEH Checked By: RAC

		Depth of Water, H (in)			Ring Penetra	tion Depth (in)			
Location:	TP-6		inner	<u>outer</u>	<u>inner</u>	outer	Weather: Mostly	sunny	
Date:	12/18/20	$\mathbf{H}_{\mathrm{init}}$	3	3	5	5	Air (°F):	35 H ₂ O (° F):	40
Time:	14:00	$\mathbf{H}_{\mathbf{final}}$	3	3					
Depth of Test:	44''								

				Inner	Ring				Outer	r Ring		
Time (mm:ss)	Time (s)	Δ Time (s)	Level	D Level	$\mathbf{IC}(\mathbf{am} \mathbf{a})$	IC (om/hw)	IC (in/ha)	Level	D Level	$\mathbf{ID}\left(\mathbf{am}/\mathbf{a}\right)$	ID (om/ha)	IC (in/ha)
			(cm3)	(cm3)	IC (cm/s)	IC (cm/nr)	IC (III/IIF)	(cm3)	(cm3)	IK (CIII/S)	IK (CH/HF)	IC (III/IIF)
00:00	0	0		-	-	-	-	0	-	-	-	-
00:10	10	10	75	75	0.011	38	15	700	700	0.033	120	47
00:20	20	10	100	25	0.004	13	5	1050	350	0.017	60	24
00:30	30	10	250	150	0.021	76	30	1200	150	0.007	26	10
00:40	40	10	300	50	0.007	25	10	1400	200	0.009	34	13
00:50	50	10	310	10	0.001	5	2	1600	200	0.009	34	13
01:00	60	10	325	15	0.002	8	3	1900	300	0.014	51	20
01:10	70	10	400	75	0.011	38	15	2100	200	0.009	34	13
01:20	80	10	450	50	0.007	25	10	2400	300	0.014	51	20
01:30	90	10	525	75	0.011	38	15	2500	100	0.005	17	7
01:40	100	10	600	75	0.011	38	15	2900	400	0.019	68	27
01:50	110	10	650	50	0.007	25	10	3000	100	0.005	17	7
02:00	120	10	700	50	0.007	25	10	3200	200	0.009	34	13
02:10	130	10	750	50	0.007	25	10	3500	300	0.014	51	20
02:20	140	10	800	50	0.007	25	10	3600	100	0.005	17	7
02:30	150	10	825	25	0.004	13	5	3900	300	0.014	51	20
02:40	160	10	900	75	0.011	38	15	4100	200	0.009	34	13
02:50	170	10	950	50	0.007	25	10	4400	300	0.014	51	20
03:00	180	10	975	25	0.004	13	5	4500	100	0.005	17	7
03:10	190	10	1000	25	0.004	13	5	4800	300	0.014	51	20
03:30	200	10	1100	100	0.014	51	20	5000	200	0.009	34	13
03:40	210	10	1150	50	0.007	25	10	5200	200	0.009	34	13
03:50	220	10	1200	50	0.007	25	10	5400	200	0.009	34	13
04:00	230	10	1250	50	0.007	25	10	5700	300	0.014	51	20
04:10	240	10	1300	50	0.007	25	10	5900	200	0.009	34	13
04:20	250	10	1325	25	0.004	13	5	6000	100	0.005	17	7
04:30	260	10	1400	75	0.011	38	15	6400	400	0.019	68	27
04:40	270	10	1425	25	0.004	13	5	6600	200	0.009	34	13
04:50	280	10	1450	25	0.004	13	5	6700	100	0.005	17	7
05:00	290	10	1500	50	0.007	25	10	6800	100	0.005	17	7
05:10	300	10	1550	50	0.007	25	10	7000	200	0.009	34	13
05:20	310	10	1600	50	0.007	25	10	7300	300	0.014	51	20
05:30	320	10	1650	50	0.007	25	10	7400	100	0.005	17	7
05:40	330	10	1700	50	0.007	25	10	7500	100	0.005	17	7
05:50	340	10	1750	50	0.007	25	10	7900	400	0.019	68	27
06:00	350	10	1800	50	0.007	25	10	8000	100	0.005	17	7
06:10	360	10	1850	50	0.007	25	10	8300	300	0.014	51	20
			•		Avg	26.2	10.3			Avg	39.4	15.5

Area Inner Ring (cm2)	707
Area Outer Ring (cm2)	2827
Area Annular Space (cm2)	2107

707

50	
50	
45	
40	Outer Ring
40	

<u>Horsley Witten Group, Inc.</u>
Sustainable Environmental Solutions
www.horsleywitten.com

Double Ring Infiltrometer Test Results

Project: Littleton Drive Affordable Housing Project No: 20107 Calculated By: JEH Checked By: RAC

		Depth of Water, H (in)			Ring Penetra	ation Depth (in)				
Location:	TP-6		<u>inner</u>	outer	<u>inner</u>	outer	Weather: Mostly	y sunn	ıy	
Date:	12/18/20	$\mathbf{H}_{\mathrm{init}}$	3	3	5	5	Air (°F):	35	H ₂ O (°F):	40
Time:	14:00	$\mathbf{H}_{\mathrm{final}}$	3	3						
Depth of Test:	44''									

				Inner	· Ring			Outer Ring				
Time (mm:ss)	Time (s)	Δ Time (s)	Level	D Level	$\mathbf{IC}(\mathbf{am} \mathbf{a})$	IC (om/ha)	IC (in/ha)	Level	D Level	\mathbf{ID} (am/a)	ID (om/hu)	IC (in/ha)
			(cm3)	(cm3)	IC (CIII/S)	ic (cm/nr)	IC (III/III/)	(cm3)	(cm3)	IK (CIII/S)	IK (CII/IIF)	IC (III/IIF)
00:00	0	0		-	-	-	-	0	-	-	-	-
00:10	10	10	100	100	0.014	51	20	600	600	0.028	103	40
00:20	20	10	150	50	0.007	25	10	700	100	0.005	17	7
00:30	30	10	200	50	0.007	25	10	1100	400	0.019	68	27
00:40	40	10	225	25	0.004	13	5	1300	200	0.009	34	13
00:50	50	10	250	25	0.004	13	5	1500	200	0.009	34	13
01:00	60	10	300	50	0.007	25	10	1700	200	0.009	34	13
01:10	70	10	350	50	0.007	25	10	1800	100	0.005	17	7
01:20	80	10	400	50	0.007	25	10	2000	200	0.009	34	13
01:30	90	10	450	50	0.007	25	10	2200	200	0.009	34	13
01:40	100	10	500	50	0.007	25	10	2400	200	0.009	34	13
01:50	110	10	550	50	0.007	25	10	2600	200	0.009	34	13
02:00	120	10	600	50	0.007	25	10	2800	200	0.009	34	13
02:10	130	10	625	25	0.004	13	5	3000	200	0.009	34	13
02:20	140	10	650	25	0.004	13	5	3200	200	0.009	34	13
02:30	150	10	700	50	0.007	25	10	3300	100	0.005	17	7
02:40	160	10	750	50	0.007	25	10	3600	300	0.014	51	20
02:50	170	10	800	50	0.007	25	10	3800	200	0.009	34	13
03:00	180	10	850	50	0.007	25	10	4000	200	0.009	34	13
03:10	190	10	900	50	0.007	25	10	4200	200	0.009	34	13
03:30	200	10	950	50	0.007	25	10	4400	200	0.009	34	13
03:40	210	10	1000	50	0.007	25	10	4600	200	0.009	34	13
03:50	220	10	1050	50	0.007	25	10	4800	200	0.009	34	13
04:00	230	10	1100	50	0.007	25	10	5000	200	0.009	34	13
04:10	240	10	1150	50	0.007	25	10	5200	200	0.009	34	13
04:20	250	10	1200	50	0.007	25	10	5400	200	0.009	34	13
04:30	260	10	1225	25	0.004	13	5	5600	200	0.009	34	13
04:40	270	10	1250	25	0.004	13	5	5800	200	0.009	34	13
04:50	280	10	1300	50	0.007	25	10	6000	200	0.009	34	13
05:00	290	10	1350	50	0.007	25	10	6200	200	0.009	34	13
05:10	300	10	1400	50	0.007	25	10	6400	200	0.009	34	13
05:20	310	10	1450	50	0.007	25	10	6600	200	0.009	34	13
05:30	320	10	1500	50	0.007	25	10	6900	300	0.014	51	20
05:40	330	10	1525	25	0.004	13	5	7100	200	0.009	34	13
05:50	340	10	1575	50	0.007	25	10	7300	200	0.009	34	13
06:00	350	10	1625	50	0.007	25	10	7500	200	0.009	34	13
06:10	360	10	1675	50	0.007	25	10	7700	200	0.009	34	13
06:20	370	10	1700	25	0.004	13	5	7900	200	0.009	34	13
06:30	380	10	1750	50	0.007	25	10	8100	200	0.009	34	13
06:40	390	10	1800	50	0.007	25	10	8200	100	0.005	17	7
				<u>.</u>	Avg	23.5	9.3		•	Avg	35.9	14.1

Area Inner Ring (cm2)707Area Outer Ring (cm2)2827Area Annular Space (cm2)2107

45 –

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Plymouth County, Massachusetts**

Littleton Village

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Plymouth County, Massachusetts	14
1—Water	14
11A—Rainberry coarse sand, 0 to 3 percent slopes	14
37A—Massasoit - Mashpee complex, 0 to 3 percent slopes	16
60A—Swansea coarse sand, 0 to 2 percent slopes	18
66A—Ipswich - Pawcatuck - Matunuck complex, 0 to 2 percent slopes,	
very frequently flooded	20
255B—Windsor loamy sand, 3 to 8 percent slopes	23
256A—Deerfield loamy fine sand, 0 to 3 percent slopes	24
256B—Deerfield loamy fine sand, 3 to 8 percent slopes	26
480B—Plymouth - Carver complex, 3 to 8 percent slopes	27
481B—Plymouth - Carver complex, 3 to 8 percent slopes, bouldery	29
608—Water, ocean	32
619A—Deerfield-Urban land complex, 0 to 3 percent slopes	32
665B—Udipsamments, 0 to 8 percent slopes	34
700A—Udipsamments, wet substratum, 0 to 3 percent slopes	36
704A—Freetown and Swansea coarse sands, 0 to 3 percent slopes,	
sanded surface and inactive	37
References	40

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND				MAP INFORMATION		
Area of Int	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:12,000.		
Soils	Soil Map Unit Polygons	00 V	Very Stony Spot Wet Spot	Please rely on the bar scale on each map sheet for map measurements.		
D Special	Soil Map Unit Points Point Features		Other Special Line Features	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
9 10 10 10 10 10 10 10 10 10 10 10 10 10	Blowout Borrow Pit	Water Fea	tures Streams and Canals ation	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
× ◇ ×	Clay Spot Closed Depression Gravel Pit	~	Rails Interstate Highways	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
:. ©	Gravelly Spot Landfill	~ ~	Major Roads	Soil Survey Area: Plymouth County, Massachusetts		
۸ ب	Lava Flow Marsh or swamp Mino or Quarty	Background Aerial Photography		Survey Area Data: Version 13, Jun 9, 2020 Soil map units are labeled (as space allows) for map scales		
© 0	Miscellaneous Water Perennial Water			Date(s) aerial images were photographed: Dec 31, 2009—Jul 3, 2017		
× +	Rock Outcrop Saline Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor		
:: = 0	Sandy Spot Severely Eroded Spot Sinkhole			shifting of map unit boundaries may be evident.		
) S	Slide or Slip Sodic Spot					

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Water	1.6	0.5%
11A	Rainberry coarse sand, 0 to 3 percent slopes	3.8	1.1%
37A	Massasoit - Mashpee complex, 0 to 3 percent slopes	12.3	3.7%
60A	Swansea coarse sand, 0 to 2 percent slopes	13.4	4.0%
66A	Ipswich - Pawcatuck - Matunuck complex, 0 to 2 percent slopes, very frequently flooded	34.0	10.2%
255B	Windsor loamy sand, 3 to 8 percent slopes	71.0	21.2%
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	111.5	33.3%
256B	Deerfield loamy fine sand, 3 to 8 percent slopes	12.0	3.6%
480B	Plymouth - Carver complex, 3 to 8 percent slopes	8.3	2.5%
481B	Plymouth - Carver complex, 3 to 8 percent slopes, bouldery	13.1	3.9%
608	Water, ocean	12.1	3.6%
619A	Deerfield-Urban land complex, 0 to 3 percent slopes	32.5	9.7%
665B	Udipsamments, 0 to 8 percent slopes	0.9	0.3%
700A	Udipsamments, wet substratum, 0 to 3 percent slopes	0.0	0.0%
704A	Freetown and Swansea coarse sands, 0 to 3 percent slopes, sanded surface and inactive	8.3	2.5%
Totals for Area of Interest		334.9	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the

landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present

or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Plymouth County, Massachusetts

1—Water

Map Unit Setting

National map unit symbol: bd0b Elevation: 0 to 330 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 98 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Minor Components

Swansea

Percent of map unit: 1 percent Landform: Kettles, bogs, swamps, marshes, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Freetown

Percent of map unit: 1 percent Landform: Bogs, marshes, kettles, swamps, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

11A—Rainberry coarse sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9y41 Elevation: 0 to 400 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Rainberry and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rainberry

Setting

Landform: Kettles, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Parent material: Sandy and gravelly glaciofluvial deposits

Typical profile

Oi - 0 to 4 inches: slightly decomposed plant material *Oe - 4 to 7 inches:* moderately decomposed plant material *A - 7 to 9 inches:* coarse sand *Eg - 9 to 13 inches:* coarse sand *Bhs1 - 13 to 15 inches:* coarse sand *Bhs2 - 15 to 17 inches:* coarse sand *Bs - 17 to 21 inches:* coarse sand *Bhs3 - 21 to 29 inches:* gravelly coarse sand *Cg1 - 29 to 33 inches:* gravelly coarse sand *Cg2 - 33 to 67 inches:* gravelly sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 19.98 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water capacity: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: A/D Ecological site: F149BY008MA - Very Wet Outwash Hydric soil rating: Yes

Minor Components

Massasoit

Percent of map unit: 5 percent Landform: Depressions, drainageways, terraces Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Mashpee

Percent of map unit: 5 percent *Landform:* Terraces, depressions, drainageways Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Swansea

Percent of map unit: 3 percent Landform: Depressions, kettles, bogs, swamps, marshes Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Deerfield

Percent of map unit: 2 percent Landform: Outwash plains, terraces, deltas Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

37A—Massasoit - Mashpee complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: bd1q Elevation: 0 to 400 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Massasolt and similar soils: 55 percent Mashpee and similar soils: 35 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Massasoit

Setting

Landform: Terraces, drainageways, depressions Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy and gravelly glaciofluvial deposits

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material Oa - 1 to 3 inches: highly decomposed plant material A - 3 to 5 inches: fine sand Eg1 - 5 to 11 inches: fine sand Eg2 - 11 to 13 inches: fine sand Bhs - 13 to 17 inches: fine sand Bsm - 17 to 23 inches: fine sand Bs - 23 to 26 inches: fine sand BC - 26 to 43 inches: fine sand Cg - 43 to 80 inches: loamy very fine sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to ortstein
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: Occasional
Available water capacity: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: D Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Description of Mashpee

Setting

Landform: Terraces, depressions, drainageways Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy and gravelly glaciofluvial deposits

Typical profile

Oe1 - 0 to 2 inches: moderately decomposed plant material Oe2 - 2 to 4 inches: moderately decomposed plant material Oa - 4 to 5 inches: highly decomposed plant material AE - 5 to 7 inches: loamy fine sand Eg - 7 to 11 inches: fine sand Bh1 - 11 to 13 inches: fine sand Bh2 - 13 to 17 inches: fine sand Bs - 17 to 24 inches: loamy fine sand C1 - 24 to 39 inches: fine sand C2 - 39 to 65 inches: fine sand

Properties and qualities

Slope: 0 to 3 percent *Depth to restrictive feature:* More than 80 inches Drainage class: Poorly drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 5.95 in/hr) Depth to water table: About 0 to 12 inches Frequency of flooding: None Frequency of ponding: Occasional Available water capacity: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Minor Components

Deerfield

Percent of map unit: 5 percent Landform: Outwash plains, terraces, deltas Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Rainberry

Percent of map unit: 3 percent Landform: Depressions, kettles Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

Squamscott

Percent of map unit: 2 percent Landform: Lake plains, lake terraces Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

60A—Swansea coarse sand, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w68y Elevation: 0 to 170 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of unique importance

Map Unit Composition

Swansea, sanded surface, and similar soils: 86 percent Minor components: 14 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Swansea, Sanded Surface

Setting

Landform: Depressions, bogs, kettles Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy human-transported material over highly decomposed organic material over sandy and gravelly glaciofluvial deposits

Typical profile

[^]Ap - 0 to 15 inches: coarse sand 2Oab - 15 to 36 inches: muck 2Cg - 36 to 79 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: FrequentNone
Frequency of ponding: None
Available water capacity: Very high (about 12.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

Minor Components

Freetown, sanded surface

Percent of map unit: 5 percent Landform: Kettles, depressions, bogs Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Aquic udipsamments

Percent of map unit: 3 percent Landform: Depressions Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread *Down-slope shape:* Linear, convex, concave *Across-slope shape:* Linear, convex, concave *Hydric soil rating:* No

Rainberry, sanded surface

Percent of map unit: 3 percent Landform: Depressions, kettles Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

Tihonet

Percent of map unit: 3 percent Landform: Bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: Yes

66A—Ipswich - Pawcatuck - Matunuck complex, 0 to 2 percent slopes, very frequently flooded

Map Unit Setting

National map unit symbol: 2tyqm Elevation: 0 to 10 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Not prime farmland

Map Unit Composition

Ipswich and similar soils: 50 percent Pawcatuck and similar soils: 25 percent Matunuck and similar soils: 15 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ipswich

Setting

Landform: Tidal marshes Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Partially- decomposed herbaceous organic material

Typical profile

Oe - 0 to 42 inches: mucky peat *Oa - 42 to 59 inches:* muck

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.14 to 99.90 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: Very frequent
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to strongly saline (1.0 to 112.0 mmhos/cm)
Sodium adsorption ratio, maximum: 20.0
Available water capacity: Very high (about 26.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D Ecological site: R144AY002CT - Tidal Salt High Marsh mesic very frequently flooded, R144AY001CT - Tidal Salt Low Marsh mesic very frequently flooded Hydric soil rating: Yes

Description of Pawcatuck

Setting

Landform: Tidal marshes Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Partially- decomposed herbaceous organic material over sandy mineral material

Typical profile

Oe - 0 to 46 inches: mucky peat *Cg - 46 to 60 inches:* mucky sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.14 to 99.90 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: Very frequent
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to strongly saline (1.0 to 112.0 mmhos/cm)
Sodium adsorption ratio, maximum: 20.0
Available water capacity: Very high (about 21.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D *Ecological site:* R144AY002CT - Tidal Salt High Marsh mesic very frequently flooded, R144AY001CT - Tidal Salt Low Marsh mesic very frequently flooded *Hydric soil rating:* Yes

Description of Matunuck

Setting

Landform: Tidal marshes Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Partially- decomposed herbaceous organic material over glaciofluvial deposits and/or sandy marine deposits

Typical profile

Oe - 0 to 12 inches: mucky peat Cg - 12 to 72 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.14 to 99.90 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: Very frequent
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to strongly saline (1.0 to 112.0 mmhos/cm)
Sodium adsorption ratio, maximum: 20.0
Available water capacity: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: A/D Ecological site: R144AY002CT - Tidal Salt High Marsh mesic very frequently flooded, R144AY001CT - Tidal Salt Low Marsh mesic very frequently flooded Hydric soil rating: Yes

Minor Components

Hooksan

Percent of map unit: 5 percent Landform: Dunes Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Succotash

Percent of map unit: 5 percent Landform: Spits on back-barrier flats Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

255B—Windsor loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svkf Elevation: 0 to 1,210 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Windsor, loamy sand, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Windsor, Loamy Sand

Setting

Landform: Deltas, outwash plains, dunes, outwash terraces Landform position (three-dimensional): Riser, tread Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

O - 0 to 1 inches: moderately decomposed plant material

A - 1 to 3 inches: loamy sand

Bw - 3 to 25 inches: loamy sand

C - 25 to 65 inches: sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Minor Components

Hinckley, loamy sand

Percent of map unit: 10 percent Landform: Deltas, outwash plains, eskers, kames Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest, rise Down-slope shape: Convex Across-slope shape: Convex, linear

Hydric soil rating: No

Deerfield, loamy sand

Percent of map unit: 5 percent Landform: Outwash plains, terraces, deltas Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

256A—Deerfield loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2xfg8 Elevation: 0 to 1,100 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Deerfield and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Kame terraces, outwash plains, outwash deltas, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Convex, linear, concave Across-slope shape: Concave, linear, convex Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap - 0 to 9 inches: loamy fine sand Bw - 9 to 25 inches: loamy fine sand BC - 25 to 33 inches: fine sand Cg - 33 to 60 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0
Available water capacity: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: A Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 7 percent Landform: Outwash deltas, kame terraces, outwash terraces, outwash plains Landform position (three-dimensional): Tread Down-slope shape: Linear, concave, convex Across-slope shape: Concave, linear, convex Hydric soil rating: No

Wareham

Percent of map unit: 5 percent Landform: Drainageways, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Sudbury

Percent of map unit: 2 percent Landform: Kame terraces, outwash plains, outwash terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Convex, linear, concave Across-slope shape: Concave, linear, convex Hydric soil rating: No

Ninigret

Percent of map unit: 1 percent *Landform:* Outwash terraces, outwash plains, kame terraces *Landform position (three-dimensional):* Tread *Down-slope shape:* Linear, convex *Across-slope shape:* Concave, convex *Hydric soil rating:* No

256B—Deerfield loamy fine sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2xfg9 Elevation: 0 to 1,190 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Deerfield and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Kame terraces, outwash plains, outwash terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Convex, linear, concave Across-slope shape: Concave, linear, convex Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap - 0 to 9 inches: loamy fine sand Bw - 9 to 25 inches: loamy fine sand BC - 25 to 33 inches: fine sand Cg - 33 to 60 inches: sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0
Available water capacity: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 7 percent Landform: Outwash deltas, kame terraces, outwash plains, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Linear, concave, convex Across-slope shape: Concave, linear, convex Hydric soil rating: No

Wareham

Percent of map unit: 5 percent Landform: Depressions, drainageways Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Sudbury

Percent of map unit: 2 percent Landform: Outwash deltas, kame terraces, outwash plains, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Linear, concave, convex Across-slope shape: Concave, linear, convex Hydric soil rating: No

Ninigret

Percent of map unit: 1 percent Landform: Kame terraces, outwash terraces, outwash plains Landform position (three-dimensional): Tread Down-slope shape: Convex, linear Across-slope shape: Convex, concave Hydric soil rating: No

480B—Plymouth - Carver complex, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: bcyz Elevation: 0 to 400 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Plymouth and similar soils: 45 percent *Carver and similar soils:* 40 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Plymouth

Setting

Landform: Outwash plains, moraines

Landform position (two-dimensional): Summit, shoulder

Landform position (three-dimensional): Interfluve, tread

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Sandy and gravelly supraglacial meltout till over sandy and gravelly glaciofluvial deposits

Typical profile

Oi - 0 to 4 inches: slightly decomposed plant material

Oe - 4 to 6 inches: moderately decomposed plant material

A - 6 to 7 inches: loamy coarse sand

E - 7 to 11 inches: coarse sand

Bs - 11 to 15 inches: loamy coarse sand

Bw - 15 to 20 inches: coarse sand

BC - 20 to 29 inches: coarse sand

C - 29 to 64 inches: gravelly coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F149BY005MA - Dry Outwash Hydric soil rating: No

Description of Carver

Setting

Landform: Outwash plains, pitted outwash plains, moraines Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy glaciofluvial deposits

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *Oe - 2 to 3 inches:* moderately decomposed plant material *A - 3 to 7 inches:* coarse sand *E - 7 to 10 inches:* coarse sand *Bw1 - 10 to 15 inches:* coarse sand *Bw2 - 15 to 28 inches:* coarse sand *BC - 28 to 32 inches:* coarse sand *C - 32 to 67 inches:* coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: F149BY005MA - Dry Outwash Hydric soil rating: No

Minor Components

Barnstable

Percent of map unit: 10 percent Landform: Moraines Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Merrimac

Percent of map unit: 5 percent Landform: Outwash plains, terraces, kames Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

481B—Plymouth - Carver complex, 3 to 8 percent slopes, bouldery

Map Unit Setting

National map unit symbol: bcz2 Elevation: 0 to 400 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F *Frost-free period:* 145 to 240 days *Farmland classification:* Not prime farmland

Map Unit Composition

Plymouth, bouldery, and similar soils: 45 percent *Carver, bouldery, and similar soils:* 40 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Plymouth, Bouldery

Setting

Landform: Outwash plains, moraines Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve, tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly supraglacial meltout till over sandy and gravelly glaciofluvial deposits

Typical profile

Oi - 0 to 4 inches: slightly decomposed plant material

Oe - 4 to 6 inches: moderately decomposed plant material

A - 6 to 7 inches: loamy coarse sand

E - 7 to 11 inches: coarse sand

Bs - 11 to 15 inches: loamy coarse sand

Bw - 15 to 20 inches: coarse sand

BC - 20 to 29 inches: coarse sand

C - 29 to 64 inches: gravelly coarse sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 0.1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F149BY005MA - Dry Outwash Hydric soil rating: No

Description of Carver, Bouldery

Setting

Landform: Outwash plains, pitted outwash plains, moraines Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex
Across-slope shape: Convex Parent material: Sandy glaciofluvial deposits

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *Oe - 2 to 3 inches:* moderately decomposed plant material *A - 3 to 7 inches:* coarse sand *E - 7 to 10 inches:* coarse sand *Bw1 - 10 to 15 inches:* coarse sand *Bw2 - 15 to 28 inches:* coarse sand *BC - 28 to 32 inches:* coarse sand *C - 32 to 67 inches:* coarse sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 0.1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: F149BY005MA - Dry Outwash Hydric soil rating: No

Minor Components

Barnstable, bouldery

Percent of map unit: 5 percent Landform: Moraines Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Poquonock, bouldery

Percent of map unit: 5 percent Landform: Drumlins, ground moraines, till plains Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Merrimac

Percent of map unit: 5 percent Landform: Outwash plains, terraces, kames Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

608—Water, ocean

Map Unit Setting

National map unit symbol: bqv2 Elevation: 0 to 70 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days

Map Unit Composition

Water, ocean: 95 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Minor Components

Beaches, sandy

Percent of map unit: 5 percent Landform: Shores, back-barrier beaches, barrier beaches, beaches Landform position (two-dimensional): Footslope Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: Unranked

619A—Deerfield-Urban land complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2xfgb Elevation: 0 to 210 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Deerfield and similar soils: 45 percent *Urban land:* 35 percent *Minor components:* 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Kame terraces, outwash plains, outwash terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Convex, linear, concave Across-slope shape: Concave, linear, convex Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap - 0 to 9 inches: loamy fine sand Bw - 9 to 25 inches: loamy fine sand BC - 25 to 33 inches: fine sand Cg - 33 to 60 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0
Available water capacity: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: A Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

Description of Urban Land

Setting

Landform: Outwash plains Down-slope shape: Linear Across-slope shape: Linear

Typical profile

M - 0 to 10 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: 0 inches to manufactured layer Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr) Available water capacity: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: Unranked

Minor Components

Walpole

Percent of map unit: 7 percent Landform: Outwash plains, outwash terraces, outwash deltas, depressions Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Udorthents

Percent of map unit: 5 percent Landform: Outwash plains Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Windsor

Percent of map unit: 5 percent Landform: Outwash plains, outwash terraces, outwash deltas, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Linear, concave, convex Across-slope shape: Concave, linear, convex Hydric soil rating: No

Merrimac

Percent of map unit: 3 percent Landform: Kame terraces, outwash terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Convex, concave, linear Across-slope shape: Linear, concave, convex Hydric soil rating: No

665B—Udipsamments, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2pr8k Elevation: 0 to 390 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udipsamments and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udipsamments

Setting

Landform: Dikes Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Sandy human transported material over sandy and gravelly glaciofluvial deposits

Typical profile

 A *P* - 0 to 9 inches: loamy sand C1 - 9 to 22 inches: sand C2 - 22 to 49 inches: coarse sand C3 - 49 to 54 inches: sand C4 - 54 to 79 inches: coarse sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Udipsamments, wet substratum

Percent of map unit: 10 percent Landform: Dikes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Hydric soil rating: No

Udorthents, loamy

Percent of map unit: 5 percent Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Tihonet

Percent of map unit: 5 percent Landform: Bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

700A—Udipsamments, wet substratum, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: bd02 Elevation: 0 to 390 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 195 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udipsamments, wet substratum, and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Udipsamments, Wet Substratum

Setting

Landform: Dikes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Sandy human transported material over sandy and gravelly glaciofluvial deposits

Typical profile

[^]Ap - 0 to 3 inches: loamy fine sand [^]C1 - 3 to 20 inches: fine sand Ab - 20 to 24 inches: loamy fine sand Bwb - 24 to 31 inches: fine sand BC - 31 to 44 inches: fine sand C2 - 44 to 51 inches: fine sand C3 - 51 to 72 inches: very fine sand

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr) Depth to water table: About 20 to 48 inches Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Ecological site: R149BY002MA - Coastal Dunes Hydric soil rating: No

Minor Components

Tihonet

Percent of map unit: 10 percent Landform: Bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip Down-slope shape: Linear Across-slope shape: Linear Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Udipsamments

Percent of map unit: 5 percent Landform: Dikes Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Ecological site: R149BY002MA - Coastal Dunes Hydric soil rating: No

Udorthents, wet substratum

Percent of map unit: 5 percent Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

704A—Freetown and Swansea coarse sands, 0 to 3 percent slopes, sanded surface and inactive

Map Unit Setting

National map unit symbol: 2tx05 Elevation: 0 to 140 feet Mean annual precipitation: 40 to 52 inches *Mean annual air temperature:* 48 to 55 degrees F *Frost-free period:* 190 to 250 days *Farmland classification:* Farmland of unique importance

Map Unit Composition

Freetown, sanded surface, inactive, and similar soils: 50 percent *Swansea, sanded surface, inactive, and similar soils:* 40 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Freetown, Sanded Surface, Inactive

Setting

Landform: Kettles, depressions, bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy human transported material over organic material

Typical profile

^*Ap - 0 to 15 inches:* coarse sand 20*a - 15 to 79 inches:* muck

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: FrequentNone
Frequency of ponding: None
Available water capacity: Very high (about 20.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Description of Swansea, Sanded Surface, Inactive

Setting

Landform: Kettles, depressions, bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Parent material: Highly decomposed organic material over loose sandy and gravelly glaciofluvial deposits

Typical profile

^Ap - 0 to 15 inches: coarse sand
Oa - 15 to 36 inches: muck
2Cg - 36 to 79 inches: coarse sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water capacity: High (about 11.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

Minor Components

Rainberry, sanded surface

Percent of map unit: 5 percent Landform: Kettles, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

Tihonet

Percent of map unit: 5 percent Landform: Outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX B

Drainage Area Maps

	255B	Revisions	Rev. Date By Apr. Description
		Horsley Witten Group, Inc. Sustainable Environmental Solutions of Route 6A Sandwich, MA 02663 508-833-8600 voice 508-833-3150 fax	Date: Design By: Drawn By: Checked By: 12/30/2020 JLV RAC
		IN Set: LITTLETON DRIVE WAREHAM, MA	INTIRE EXISTING DRAINAGE AREA MAP
		Prepared For: Pennrose Properties, LLC 50 Milk Street, 16th Floor Boston, MA 02109 Phone.—	- 60-
		Survey Provided By, Horsley Witten Group, Inc. 90 Route 6A Phone(508) 833-6600 Fax(508) 833-3150 Parted:	
SOIL	TYPES	Registration:	
256A	DEERFIELD LOAMY FINE SAND (HSG A/B)		
255B	WINDSOR LOAMY SAND (HSG A)	Project Number:	
619A	DEERFIELD URBAN LAND	20107 Sheet Number:	
		1 of 2	!

		Revisions	Perioded By: PAAC Rev. Date By Appr. Description
		Horsley Witten Group, Inc. sustainable Environmental Solutions on Route 6A Sandwich, MA 02663 508-333-3150 fax	Date: Design By: Drawn By: Cr 12/30/2020 JLV JLV
11-11-1-3-1-3-1-1-1-1-1-1-1-1-1-1-1-1-1		All Set. LITTLETON DRIVE WAREHAM, MA	PROPOSED DRAINAGE AREA MAP
		Prepared For: Pennrose Properties, LLC 50 Mik Street, 16th Floor Boston, MA 02109 Boston, MA 02109	- 50
1 and		Survey Provided By. Horsley Written Group, Inc. 90 Route 6A Phone(508) 833-6600 Face(508) 833-3150 Face(508) 833-3150	
SOIL	TYPES	Registration:	
256A	DEERFIELD LOAMY FINE SAND (HSG A/B)		
255B	WINDSOR LOAMY SAND (HSG A)	Project Number:	
619A	DEERFIELD URBAN LAND	20107 Sheet Number:	,
		∠ or 2	

APPENDIX C

GSI Sizing Calculations

cells only. All other cells are formulas or links

Project:	Littleton Drive	Project No:	20107	Instructions: Enter values in	cells only. All other cells are formulas or
Project Location:	Littleton Drive Wareham,			and do not need to be edited.	See cell comments for descriptions and formulas used.
	MA				
Calculated By:	JLV	-			
Checked By:	RAC				
Date :	12/30/2020				

Water Quality Volume (WQv)

Based upon 1-inch of rainfall times the contributing impervious area contributing impervious area

WQv (cf) = (1" rainfall/12) * Imp. Area (sf)

Storm Type: 1 Inch

							WQv	WQv
		% Imp.	Draina	ge Area	Imp. A	rea	Required*	required
DA	Description	%	sf	ac	sf	ac	cf	af
DA1	Littleton Dr North	41%	8,731	0.20	3,600	0.08	300	0.007
DA2	East of Parking	66%	23,804	0.55	15,658	0.36	1,305	0.030
DA3	West of Parking	31%	21,567	0.50	6,706	0.15	559	0.013
DA4	Middle	40%	104,650	2.40	41,974	0.96	3,498	0.080
DA5	Community Garden	34%	32,001	0.73	11,016	0.25	918	0.021
DA6	Middle North	23%	91,735	2.11	21,490	0.49	1,791	0.041
	TOTALS		282488	6.49	100,444	2.31	8,370	0.192

Infiltrating BMP Sizing Calculations

Sizing Equations: Infiltrating BMP

Required Surface Area (sf) = (WQv) (df) / [(k) (hf + df) (tf)]

Where: df = Filter bed depth (ft) k = Coefficient of permeability of filter media (ft/day)*hf* = Ave. height of water above filter bed (ft) *tf* = Design filter bed drain time (days)

BIORETENTION SIZING:

					hmax-					Sediment		
					Height of	hf=avg		Surface	Surface	Forebay	Sediment	WQV
		WQv			water above	of		Area	Area	Required	Forebay	Treatment
BMP		Required	df	К	filter	above		Required	Provided	10% WQv	Provided	Provided
Area	Drainage Area Name	(af)	(ft)	(ft/day)	(in.)	(ft)	tf (days)	(sf)	(sf)	(cf)	(cf)	(af)
DA1	Littleton Dr North	0.007	1.50	1	6	0.25	2	129	700	30		0.037
DA2	East of Parking	0.030	1.50	1	6	0.25	2	559	810	130		0.043
DA3	West of Parking	0.013	1.50	1	6	0.25	2	240	300	56		0.016
DA4	Middle	0.080	1.50	1	6	0.25	2	1499	2170	350		0.116
DA5	Community Garden	0.021	1.50	1	6	0.25	2	393	400	92		0.021
DA6	Middle North	0.041	1.50	1	6	0.25	2	768	1000	179		0.054
		0.400						2507	5290	0.07	0	0.000
	IUIALS	0.192						3587	5380	837	0	0.288
	Percentage of Treatment Provided 150%								0%	150%		

APPENDIX D

HydroCAD Modeling

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2yr	Type III 24-hr		Default	24.00	1	3.44	2
2	10yr	Type III 24-hr		Default	24.00	1	5.05	2
3	100yr	Type III 24-hr		Default	24.00	1	7.60	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Are	ea CN	Description				
(acre	s)	(subcatchment-numbers)				
0.40	06 39	>75% Grass cover, Good, HSG A (DA3OS)				
4.01	13 50	>75% Grass cover, Good, HSG A/B (DA0, DA1E, DA1OS, DA1W, DA2, DA3,				
		DA3OS, DA4)				
0.43	39 77	Dirt roads, HSG A/B (DA1OS, DA2OS, DA3OS)				
2.30	98 06	Paved parking, HSG A (DA0, DA1E, DA1W, DA2, DA3, DA4)				
0.02	27 98	Paved roads w/curbs & sewers, HSG A (DA3OS)				
1.47	72 98	Roofs, HSG A (DA1OS, DA1W, DA2, DA3, DA3OS, DA3R, DA4)				
0.45	53 98	Water Surface, HSG A (DA0, DA1E, DA1W, DA2, DA3, DA3OS, DA4)				
2.17	74 30	Woods, Good, HSG A (DA3OS)				
8.47	70 42	Woods, Good, HSG A/B (DA1OS, DA2, DA2OS, DA3OS)				
19.76	60 55	TOTAL AREA				

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
19.760	HSG A	DA0, DA1E, DA1OS, DA1W, DA2, DA2OS, DA3, DA3OS, DA3R, DA4
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
19.760		TOTAL AREA

20107 DR PR	Type III 24-hr 2yr Rainfall=3.44"
Prepared by {enter your company name	here} Printed 12/30/2020
TIYUIOCAD® 10.10-4a 3/11 01443 @ 2020 TIYUI	Fage 5
Time span=0.00-4 Runoff by SCS TR Reach routing by Dyn-Stor-Ind	48.00 hrs, dt=0.05 hrs, 961 points x 2 R-20 method, UH=SCS, Weighted-CN I method . Pond routing by Dyn-Stor-Ind method
Cubectobecont DAA: Littleton Dr. North	Pupoff Area-9 721 of 40 25% Importance Pupoff Dopth-1 20"
Subcatchment DAU. Littleton Dr North	Tc=5.0 min CN=74 Runoff=0.27 cfs 0.020 af
SubcatchmentDA1E: East of Parking Lot	Runoff Area=23,804 sf 70.19% Impervious Runoff Depth=1.89" Tc=5.0 min CN=84 Runoff=1.21 cfs 0.086 af
Subcatchment DA1OS: Northeast Flow Length=600'	Runoff Area=110,519 sf 0.14% Impervious Runoff Depth=0.07" Slope=0.0100 '/' Tc=44.0 min CN=45 Runoff=0.03 cfs 0.016 af
SubcatchmentDA1W: West of Parking Lo	t Runoff Area=21,567 sf 63.19% Impervious Runoff Depth=1.59" Tc=5.0 min CN=80 Runoff=0.92 cfs 0.066 af
Subcatchment DA2: Community Garden	Runoff Area=32,001 sf 57.61% Impervious Runoff Depth=1.32" Tc=5.0 min CN=76 Runoff=1.12 cfs 0.081 af
Subcatchment DA2OS: Flax Pond Bank Flow Length=400'	Runoff Area=52,772 sf 0.00% Impervious Runoff Depth=0.07" Slope=0.0100 '/' Tc=37.3 min CN=45 Runoff=0.01 cfs 0.008 af
Subcatchment DA3: Middle	Runoff Area=104,650 sf 49.70% Impervious Runoff Depth=1.20" Tc=5.0 min CN=74 Runoff=3.26 cfs 0.240 af
Subcatchment DA3OS: Northwest Offsite Flow Length=450'	Runoff Area=405,501 sf 7.28% Impervious Runoff Depth=0.06" Slope=0.0100 '/' Tc=39.0 min CN=44 Runoff=0.07 cfs 0.046 af
SubcatchmentDA3R: Roofs	Runoff Area=9,486 sf 100.00% Impervious Runoff Depth=3.21" Tc=5.0 min CN=98 Runoff=0.73 cfs 0.058 af
Subcatchment DA4: Middle North	Runoff Area=91,735 sf 44.93% Impervious Runoff Depth=1.08" Tc=5.0 min CN=72 Runoff=2.53 cfs 0.190 af
Pond C1: Northern Parking Discarded=0.31 c	Peak Elev=13.54' Storage=2,012 cf Inflow=2.13 cfs 0.151 af cfs 0.151 af Primary=0.00 cfs 0.000 af Outflow=0.31 cfs 0.151 af
Pond C2: Southern Parking Discarded=0.27 c	Peak Elev=13.05' Storage=750 cf Inflow=1.12 cfs 0.081 af cfs 0.081 af Primary=0.00 cfs 0.000 af Outflow=0.27 cfs 0.081 af
Pond C3: Middle Discarded=0.66 c	Peak Elev=13.18' Storage=2,540 cf Inflow=3.26 cfs 0.240 af cfs 0.240 af Primary=0.00 cfs 0.000 af Outflow=0.66 cfs 0.240 af
Pond C4: Roofs Discarded=0.08 c	Peak Elev=13.97' Storage=786 cf Inflow=0.73 cfs 0.058 af cfs 0.058 af Primary=0.00 cfs 0.000 af Outflow=0.08 cfs 0.058 af
Pond D1: Infiltration Basin	Peak Elev=12.38' Storage=1,172 cf Inflow=2.53 cfs 0.235 af Outflow=0.95 cfs 0.235 af
Pond P0: Natural Depression	Peak Elev=14.00' Storage=2 cf Inflow=0.03 cfs 0.016 af Outflow=0.03 cfs 0.016 af

Pond P1: Littleton Dr North Bio

Peak Elev=13.88' Storage=163 cf Inflow=0.27 cfs 0.020 af Outflow=0.10 cfs 0.020 af

Pond SP1: FLAX POND

Inflow=0.01 cfs 0.008 af Primary=0.01 cfs 0.008 af

Total Runoff Area = 19.760 ac Runoff Volume = 0.809 af Average Runoff Depth = 0.49" 78.45% Pervious = 15.502 ac 21.55% Impervious = 4.258 ac

Summary for Subcatchment DA0: Littleton Dr North

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.27 cfs @ 12.09 hrs, Volume= 0.020 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

A	rea (sf)	CN	Description						
	3,600	98	Paved park	ing, HSG A	L Contraction of the second seco				
*	4,431	50	>75% Gras	5% Grass cover, Good, HSG A/B					
	700	98	Water Surfa	ace, HSG A					
	8,731	74	Weighted A	eighted Average					
	4,431		50.75% Pe	rvious Area					
	4,300		49.25% Imp	pervious Ar	ea				
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				

Subcatchment DA0: Littleton Dr North

Summary for Subcatchment DA1E: East of Parking Lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.21 cfs @ 12.08 hrs, Volume= 0.086 af, Depth= 1.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	Area (sf)	CN	Description	Description						
	15,658	98	Paved park	ing, HSG A	L .					
*	7,095	50	>75% Gras	75% Grass cover, Good, HSG A/B						
	1,051	98	Water Surface, HSG A							
	23,804	84	Weighted A	verage						
	7,095		29.81% Pe	rvious Area						
	16,709		70.19% Im	pervious Ar	ea					
-		~		A	D					
, I	c Length	Slop	e Velocity	Capacity	Description					
(mir	i) (feet)	(ft/ft) (ft/sec)	(cfs)						
5.	0				Direct Entry,					

Subcatchment DA1E: East of Parking Lot

Summary for Subcatchment DA1OS: Northeast Depression

Runoff = 0.03 cfs @ 15.41 hrs, Volume= 0.016 af, Depth= 0.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	A	rea (sf)	CN	Description								
		150	98	Boofs, HSG A								
*		3,318	77	Dirt roads, I	irt roads, HSG A/B							
*		78,963	42	Woods, Go	od, HSG A/	Έ						
*		28,088	50	>75% Gras	75% Grass cover, Good, HSG A/B							
	1	10,519	45	45 Weighted Average								
110,369 99.86% Pervious Area												
		150		0.14% Impe	ervious Area	а						
	Тс	Length	Slope	Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	27.3	100	0.0100	0.06		Sheet Flow,						
						Woods: Light underbrush n= 0.400 P2= 3.44"						
	16.7	500	0.0100	0.50		Shallow Concentrated Flow,						
						Woodland Kv= 5.0 fps						
	44.0	600	Total									

Subcatchment DA1OS: Northeast Depression

Summary for Subcatchment DA1W: West of Parking Lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.92 cfs @ 12.08 hrs, Volume= 0.066 af, Depth= 1.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

A	Area (sf)	CN	Description		
	6,706	98	Paved park	ing, HSG A	Α
*	7,939	50	>75% Gras	s cover, Go	ood, HSG A/B
	6,467	98	Roofs, HSC	βA	
	455	98	Water Surfa	ace, HSG A	٩
	21,567	80	Weighted A	verage	
	7,939		36.81% Per	vious Area	а
	13,628		63.19% Imp	pervious Ar	rea
Tc	Length	Slop	e Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)	
5.0					Direct Entry,

Subcatchment DA1W: West of Parking Lot

Summary for Subcatchment DA2: Community Garden

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.12 cfs @ 12.08 hrs, Volume= 0.081 af, Depth= 1.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	Area (sf)	CN	Description					
	11,016	98	Paved park	ing, HSG A	4			
*	7,510	50	>75% Gras	s cover, Go	ood, HSG A/B			
	445	98	Water Surfa	ace, HSG A	4			
	6,976	98	Roofs, HSG	βA				
*	6,054	42	Woods, Go	od, HSG A/	/B			
	32,001	76	Weighted A	verage				
	13,564		42.39% Per	vious Area	3			
	18,437		57.61% Impervious Area					
Т	c Length	Slop	e Velocity	Capacity	Description			
(mir	i) (feet)	(ft/f	t) (ft/sec)	(cfs)				
5.	0				Direct Entry,			

Subcatchment DA2: Community Garden

Summary for Subcatchment DA2OS: Flax Pond Bank

Runoff = 0.01 cfs @ 15.31 hrs, Volume= 0.008 af, Depth= 0.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	A	rea (sf)	CN	Description						
*		4,594	77	Dirt roads. HSG A/B						
*		48,178	42	Woods, Go	od, HSG A/	/В				
		52,772 52,772	45	Weighted A 100.00% Pe	verage ervious Are	а				
	Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description				
	27.3	100	0.0100	0.06		Sheet Flow, Woods: Light underbrush n= 0,400 P2= 3,44"				
	10.0	300	0.0100	0.50		Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
	37.3	400	Total							

Subcatchment DA2OS: Flax Pond Bank

Summary for Subcatchment DA3: Middle

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.26 cfs @ 12.09 hrs, Volume= 0.240 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	Area (sf)	CN	Description						
	41,974	98	Paved park	ing, HSG A	A				
*	52,638	50	>75% Gras	>75% Grass cover, Good, HSG A/B					
	7,340	98	Roofs, HSC	Roofs, HSG A					
	2,698	98	Water Surfa	ace, HSG A	Α				
	104,650	74	Weighted A	verage					
	52,638		50.30% Pe	rvious Area	а				
	52,012		49.70% Imp	pervious Ar	rea				
	Tc Length	Slop	e Velocity	Capacity	Description				
(n	nin) (feet)	(ft/	ft) (ft/sec)	(cfs)					
	5.0				Direct Entry,				

Subcatchment DA3: Middle

Summary for Subcatchment DA3OS: Northwest Offsite

Runoff = 0.07 cfs @ 15.65 hrs, Volume= 0.046 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	A	rea (sf)	CN	Description						
		1,176	98	Paved roads w/curbs & sewers, HSG A						
		15,531	98	Roofs, HSG A						
*		11,222	77	Dirt roads, l	HSG A/B					
*	2	235,751	42	Woods, Go	od, HSG A	/B				
*		16,604	50	>75% Gras	s cover, Go	bod, HSG A/B				
		17,671	39	>75% Gras	s cover, Go	bod, HSG A				
		94,715	30	Woods, Go	od, HSG A					
		12,831	98	Water Surfa	ace, HSG A					
	4	05,501	44	Weighted A	verage					
	3	375,963		92.72% Pe	rvious Area					
		29,538		7.28% Impe	ervious Are	а				
	Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	27.3	100	0.0100	0.06		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.44"				
	11.7	350	0.0100	0.50		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	39.0	450	Total							

Subcatchment DA3OS: Northwest Offsite

Summary for Subcatchment DA3R: Roofs

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.73 cfs @ 12.07 hrs, Volume= 0.058 af, Depth= 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

Summary for Subcatchment DA4: Middle North

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.53 cfs @ 12.09 hrs, Volume= 0.190 af, Depth= 1.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	Area (sf)	CN	Description						
	21,490	98	Paved park	Paved parking, HSG A					
*	50,514	50	>75% Ġras	>75% Grass cover, Good, HSG A/B					
	18,191	98	Roofs, HSG A						
	1,540	98	Water Surfa	ace, HSG A	Α				
	91,735	72	Weighted A	verage					
	50,514		55.07% Pei	a					
	41,221		44.93% Imp	pervious Ar	rea				
Т	c Length	Slop	e Velocity	Capacity	Description				
(mir	n) (feet)	(ft/1	ft) (ft/sec)	(cfs)					
5.	0				Direct Entry,				

Subcatchment DA4: Middle North

Summary for Pond C1: Northern Parking

Inflow Area	=	1.042 ac, 6	6.86% Imp	ervious, In	flow Depth =	1.74"	for 2yr e	event
Inflow	=	2.13 cfs @	12.08 hrs,	Volume=	0.151	af		
Outflow	=	0.31 cfs @	11.80 hrs,	Volume=	0.151	af, Atte	ən= 86%,	Lag= 0.0 min
Discarded	=	0.31 cfs @	11.80 hrs,	Volume=	0.151	af		-
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0.000	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 13.54' @ 12.63 hrs Surf.Area= 2,955 sf Storage= 2,012 cf

Plug-Flow detention time= 46.0 min calculated for 0.151 af (100% of inflow) Center-of-Mass det. time= 45.9 min (876.8 - 830.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	2,959 cf	39.50'W x 74.82'L x 4.25'H Field A
			12,560 cf Overall - 3,675 cf Embedded = 8,885 cf x 33.3% Voids
#2A	13.00'	3,675 cf	ADS_StormTech SC-740 +Cap x 80 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			80 Chambers in 8 Rows
		6 634 of	Total Available Storage

6,634 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	14.50'	18.0" Round Culvert
			L= 85.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.50' / 13.50' S= 0.0118 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.31 cfs @ 11.80 hrs HW=12.31' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.31 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=12.25' TW=0.00' (Dynamic Tailwater)

-3=Culvert (Controls 0.00 cfs) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
Pond C1: Northern Parking - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 8 Rows x 51.0" Wide + 6.0" Spacing x 7 + 12.0" Side Stone x 2 = 39.50' Base Width 9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

80 Chambers x 45.9 cf = 3,675.2 cf Chamber Storage

12,559.8 cf Field - 3,675.2 cf Chambers = 8,884.6 cf Stone x 33.3% Voids = 2,958.6 cf Stone Storage

Chamber Storage + Stone Storage = 6,633.8 cf = 0.152 af Overall Storage Efficiency = 52.8%Overall System Size = $74.82' \times 39.50' \times 4.25'$

80 Chambers 465.2 cy Field 329.1 cy Stone

Pond C1: Northern Parking

Summary for Pond C2: Southern Parking

Inflow Area	=	0.735 ac, 5	7.61% Imp	ervious,	Inflow Depth	= 1.3	32" for	[·] 2yr e	vent	
Inflow	=	1.12 cfs @	12.08 hrs,	Volume=	= 0.08	31 af				
Outflow	=	0.27 cfs @	12.00 hrs,	Volume=	= 0.08	31 af,	Atten=	76%,	Lag= 0.0 mir	۱
Discarded	=	0.27 cfs @	12.00 hrs,	Volume=	= 0.08	31 af			-	
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	= 0.00)0 af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 13.05' @ 12.51 hrs Surf.Area= 2,600 sf Storage= 750 cf

Plug-Flow detention time= 15.2 min calculated for 0.081 af (100% of inflow) Center-of-Mass det. time= 15.2 min (865.7 - 850.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	2,609 cf	34.75'W x 74.82'L x 4.25'H Field A
			11,049 cf Overall - 3,216 cf Embedded = 7,834 cf x 33.3% Voids
#2A	13.00'	3,216 cf	ADS_StormTech SC-740 +Cap x 70 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			70 Chambers in 7 Rows
		5 824 of	Total Available Storage

5,824 cf Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
		Head (feet) 0.20 0.40 0.60 0.80 1.00
		Coef. (English) 2.80 2.92 3.08 3.30 3.32
Primary	14.50'	10.0" Round Culvert
		L= 70.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 14.50' / 14.20' S= 0.0043 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf
	Routing Discarded Device 3 Primary	RoutingInvertDiscarded12.25'Device 315.00'Primary14.50'

Discarded OutFlow Max=0.27 cfs @ 12.00 hrs HW=12.35' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.27 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=12.25' TW=0.00' (Dynamic Tailwater)

-3=Culvert (Controls 0.00 cfs) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond C2: Southern Parking - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 7 Rows x 51.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 34.75' Base Width 9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

70 Chambers x 45.9 cf = 3,215.8 cf Chamber Storage

11,049.5 cf Field - 3,215.8 cf Chambers = 7,833.7 cf Stone x 33.3% Voids = 2,608.6 cf Stone Storage

Chamber Storage + Stone Storage = 5,824.4 cf = 0.134 afOverall Storage Efficiency = 52.7%Overall System Size = $74.82' \times 34.75' \times 4.25'$

70 Chambers 409.2 cy Field 290.1 cy Stone

Pond C2: Southern Parking

Summary for Pond C3: Middle

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area	a =	2.402 ac, 4	9.70% Impervio	us, Inflow De	pth = 1.20"	for 2yr e	vent
Inflow	=	3.26 cfs @	12.09 hrs, Volu	ıme=	0.240 af		
Outflow	=	0.66 cfs @	11.95 hrs, Volu	ıme=	0.240 af, At	tten= 80%,	Lag= 0.0 min
Discarded	=	0.66 cfs @	11.95 hrs, Volu	ıme=	0.240 af		
Primary	=	0.00 cfs @	0.00 hrs, Volu	ime=	0.000 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 13.18' @ 12.56 hrs Surf.Area= 6,318 sf Storage= 2,540 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 23.7 min (880.4 - 856.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	6,249 cf	53.75'W x 117.54'L x 4.25'H Field A
			26,850 cf Overall - 8,085 cf Embedded = 18,764 cf x 33.3% Voids
#2A	13.00'	8,085 cf	ADS_StormTech SC-740 +Cap x 176 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			176 Chambers in 11 Rows
		14,334 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	13.60'	18.0" Round Culvert L= 112.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.60' / 13.00' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.66 cfs @ 11.95 hrs HW=12.31' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.66 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=12.25' TW=12.25' (Dynamic Tailwater) -3=Culvert (Controls 0.00 cfs) -3=Culvert (Controls 0.00 cfs)

Pond C3: Middle - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

16 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 115.54' Row Length +12.0" End Stone x 2 = 117.54' Base Length 11 Rows x 51.0" Wide + 6.0" Spacing x 10 + 12.0" Side Stone x 2 = 53.75' Base Width

9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

176 Chambers x 45.9 cf = 8,085.4 cf Chamber Storage

26,849.8 cf Field - 8,085.4 cf Chambers = 18,764.3 cf Stone x 33.3% Voids = 6,248.5 cf Stone Storage

Chamber Storage + Stone Storage = 14,334.0 cf = 0.329 af Overall Storage Efficiency = 53.4% Overall System Size = 117.54' x 53.75' x 4.25'

176 Chambers 994.4 cy Field 695.0 cy Stone

0	0							
		L	L	U	L	L	U	

Pond C3: Middle

Summary for Pond C4: Roofs

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area	ı =	0.218 ac,10	0.00% Impervi	ious, Inflow D	Depth = 🔅	3.21" fo	or 2yrev	/ent
Inflow	=	0.73 cfs @	12.07 hrs, Vo	olume=	0.058 a	f		
Outflow	=	0.08 cfs @	11.65 hrs, Vo	olume=	0.058 a	f, Atten=	= 89%, I	Lag= 0.0 min
Discarded	=	0.08 cfs @	11.65 hrs, Vo	olume=	0.058 a	f		
Primary	=	0.00 cfs @	0.00 hrs, Vo	olume=	0.000 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 13.97' @ 12.67 hrs Surf.Area= 804 sf Storage= 786 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 58.6 min (812.6 - 754.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	832 cf	20.50'W x 39.22'L x 4.25'H Field A
			3,417 cf Overall - 919 cf Embedded = 2,498 cf x 33.3% Voids
#2A	13.00'	919 cf	ADS_StormTech SC-740 +Cap x 20 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			20 Chambers in 4 Rows
		1,751 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	14.50'	8.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.50' / 14.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Discarded OutFlow Max=0.08 cfs @ 11.65 hrs HW=12.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=12.25' TW=14.00' (Dynamic Tailwater)

Pond C4: Roofs - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

5 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 37.22' Row Length +12.0" End Stone x 2 = 39.22' Base Length 4 Rows x 51.0" Wide + 6.0" Spacing x 3 + 12.0" Side Stone x 2 = 20.50' Base Width

9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

20 Chambers x 45.9 cf = 918.8 cf Chamber Storage

3,416.8 cf Field - 918.8 cf Chambers = 2,498.0 cf Stone x 33.3% Voids = 831.8 cf Stone Storage

Chamber Storage + Stone Storage = 1,750.6 cf = 0.040 afOverall Storage Efficiency = 51.2%Overall System Size = $39.22' \times 20.50' \times 4.25'$

20 Chambers 126.5 cy Field 92.5 cy Stone

Pond C4: Roofs

Summary for Pond D1: Infiltration Basin

Inflow Area	=	13.817	ac, 20	0.40% Imp	ervious,	Inflow	Depth =	0.20'	' for	2yr ev	vent	
Inflow	=	2.53 c	fs @	12.09 hrs,	Volume	=	0.235	af		-		
Outflow	=	0.95 c	fs @	12.40 hrs,	Volume	=	0.235	af, A	tten= 6	62%, I	Lag= ´	19.0 min
Discarded	=	0.95 c	fs @	12.40 hrs,	Volume	=	0.235	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 12.38' @ 12.40 hrs Surf.Area= 9,129 sf Storage= 1,172 cf

Plug-Flow detention time= 5.8 min calculated for 0.235 af (100% of inflow) Center-of-Mass det. time= 5.7 min (918.1 - 912.3)

Volume	Inve	rt Avail.Sto	orage Storage	Description	
#1	12.2	5' 106,7	25 cf Custon	n Stage Data (Prism	natic)Listed below (Recalc)
Elevatio	on st	Surf.Area	Inc.Store	Cum.Store	
(196	<u>()</u>	(Sq-It)		(cubic-leet)	
12.2	25	8,600	0	0	
12.5	50	9,600	2,275	2,275	
13.0	00	11,200	5,200	7,475	
14.0	00	16,200	13,700	21,175	
14.5	50	88,000	26,050	47,225	
15.0	00	150,000	59,500	106,725	
Device	Routing	Invert	Outlet Device	s	
#1	Discardeo	d 12.25'	4.500 in/hr E	xfiltration over Sur	face area Phase-In= 0.01'
Discard		Wax=0.05 c	fe @ 12.40 hre	HIV-12 38' (Eroo [Discharge)

Discarded OutFlow Max=0.95 cfs @ 12.40 hrs HW=12.38' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.95 cfs)

Pond D1: Infiltration Basin

Summary for Pond P0: Natural Depression

Inflow Area =	2.755 ac,	8.03% Impervious,	Inflow Depth = 0.0)7" for 2yr event
Inflow =	0.03 cfs @	15.41 hrs, Volume=	= 0.016 af	
Outflow =	0.03 cfs @	15.46 hrs, Volume=	= 0.016 af,	Atten= 0%, Lag= 3.0 min
Discarded =	0.03 cfs @	15.46 hrs, Volume=	= 0.016 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.00' @ 15.46 hrs Surf.Area= 5,706 sf Storage= 2 cf

Plug-Flow detention time= 1.6 min calculated for 0.016 af (100% of inflow) Center-of-Mass det. time= 1.6 min (1,101.6 - 1,100.0)

Volume	Inver	t Avail.	Storage	Storage	Description			
#1	14.00	•	4,675 cf	Custom	Stage Data (Prismat	ic)Listed	below (Recalc)	
Elevatio (fee	on S et)	urf.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)			
14.0 14.5	00 50	5,700 13,000		0 4,675	0 4,675			
Device	Routing	Inv	ert Outle	et Device:	5			
#1	Discarded	14.(00' 4.50	0 in/hr Ex	cfiltration over Surfac	ce area	Phase-In= 0.01'	

Discarded OutFlow Max=0.03 cfs @ 15.46 hrs HW=14.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Pond P0: Natural Depression

Summary for Pond P1: Littleton Dr North Bio

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=101)

Inflow Area	=	0.200 ac, 4	9.25% Impervious	, Inflow Depth =	1.20" for	2yr event
Inflow	=	0.27 cfs @	12.09 hrs, Volum	e= 0.020	af	
Outflow	=	0.10 cfs @	12.41 hrs, Volum	e= 0.020	af, Atten=	65%, Lag= 19.7 min
Discarded	=	0.10 cfs @	12.41 hrs, Volum	e= 0.020	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 13.88' @ 12.41 hrs Surf.Area= 1,724 sf Storage= 163 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 11.2 min (867.9 - 856.7)

Volume	Inv	rert Avai	.Storage	Storage	Description	
#1	13.	75'	3,534 cf	Custom	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc (cubi	c.Store ic-feet)	Cum.Store (cubic-feet)	
13.7 14.0 14.2 15.0	75 00 25 00	700 2,600 2,800 3,725		0 413 675 2,447	0 413 1,088 3,534	
Device	Routing	Inv	/ert Out	let Device	S	
#1	Discard	ed 13.	.75' 2.41 Exc	l 0 in/hr E luded Sur	xfiltration over face area = 0 sf	Surface area above 13.00'

Discarded OutFlow Max=0.10 cfs @ 12.41 hrs HW=13.88' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.10 cfs)

Pond P1: Littleton Dr North Bio

Summary for Pond SP1: FLAX POND

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	19.760 ac, 2	1.55% Impe	ervious, Ir	nflow Depth =	0.0	0" for 2yr	event
Inflow	=	0.01 cfs @	15.31 hrs,	Volume=	0.008	af		
Primary	=	0.01 cfs @	15.31 hrs,	Volume=	0.008	af,	Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2

Pond SP1: FLAX POND

20107 DR PR Prepared by {enter your company name HydroCAD® 10.10-4a s/n 01445 © 2020 Hydro	Type III 24-hr 10yr Rainfall=5.05"here}Printed 12/30/2020ocAD Software Solutions LLCPage 36
Time span=0.00-4 Runoff by SCS TR Reach routing by Dyn-Stor-Ind	18.00 hrs, dt=0.05 hrs, 961 points x 2 R-20 method, UH=SCS, Weighted-CN I method - Pond routing by Dyn-Stor-Ind method
Subcatchment DA0: Littleton Dr North	Runoff Area=8,731 sf 49.25% Impervious Runoff Depth=2.40" Tc=5.0 min CN=74 Runoff=0.56 cfs 0.040 af
Subcatchment DA1E: East of Parking Lot	Runoff Area=23,804 sf 70.19% Impervious Runoff Depth=3.32" Tc=5.0 min CN=84 Runoff=2.12 cfs 0.151 af
Subcatchment DA1OS: Northeast Flow Length=600'	Runoff Area=110,519 sf 0.14% Impervious Runoff Depth=0.46" Slope=0.0100 '/' Tc=44.0 min CN=45 Runoff=0.33 cfs 0.097 af
Subcatchment DA1W: West of Parking Lo	t Runoff Area=21,567 sf 63.19% Impervious Runoff Depth=2.94" Tc=5.0 min CN=80 Runoff=1.70 cfs 0.121 af
Subcatchment DA2: Community Garden	Runoff Area=32,001 sf 57.61% Impervious Runoff Depth=2.58" Tc=5.0 min CN=76 Runoff=2.22 cfs 0.158 af
Subcatchment DA2OS: Flax Pond Bank Flow Length=400'	Runoff Area=52,772 sf 0.00% Impervious Runoff Depth=0.46" Slope=0.0100 '/' Tc=37.3 min CN=45 Runoff=0.17 cfs 0.046 af
Subcatchment DA3: Middle	Runoff Area=104,650 sf 49.70% Impervious Runoff Depth=2.40" Tc=5.0 min CN=74 Runoff=6.76 cfs 0.481 af
Subcatchment DA3OS: Northwest Offsite Flow Length=450'	Runoff Area=405,501 sf 7.28% Impervious Runoff Depth=0.41" Slope=0.0100 '/' Tc=39.0 min CN=44 Runoff=1.06 cfs 0.319 af
SubcatchmentDA3R: Roofs	Runoff Area=9,486 sf 100.00% Impervious Runoff Depth=4.81" Tc=5.0 min CN=98 Runoff=1.08 cfs 0.087 af
Subcatchment DA4: Middle North	Runoff Area=91,735 sf 44.93% Impervious Runoff Depth=2.24" Tc=5.0 min CN=72 Runoff=5.48 cfs 0.392 af
Pond C1: Northern Parking Discarded=0.31 c	Peak Elev=14.82' Storage=4,705 cf Inflow=3.81 cfs 0.272 af cfs 0.272 af Primary=0.00 cfs 0.000 af Outflow=0.31 cfs 0.272 af
Pond C2: Southern Parking Discarded=0.27 d	Peak Elev=13.80' Storage=2,287 cf Inflow=2.22 cfs 0.158 af fs 0.158 af Primary=0.00 cfs 0.000 af Outflow=0.27 cfs 0.158 af
Pond C3: Middle Discarded=0.66 c	Peak Elev=14.25' Storage=7,746 cf Inflow=6.76 cfs 0.481 af fs 0.481 af Primary=0.00 cfs 0.000 af Outflow=0.66 cfs 0.481 af
Pond C4: Roofs Discarded=0.08 of	Peak Elev=14.77' Storage=1,205 cf Inflow=1.08 cfs 0.087 af cfs 0.081 af Primary=0.18 cfs 0.006 af Outflow=0.26 cfs 0.087 af
Pond D1: Infiltration Basin	Peak Elev=12.89' Storage=6,305 cf Inflow=5.49 cfs 0.712 af Outflow=1 13 cfs 0.712 af
Pond P0: Natural Depression	Peak Elev=14.01' Storage=36 cf Inflow=0.38 cfs 0.103 af Outflow=0.38 cfs 0.103 af

Pond P1: Littleton Dr North Bio

Peak Elev=14.02' Storage=458 cf Inflow=0.56 cfs 0.040 af Outflow=0.15 cfs 0.040 af

Pond SP1: FLAX POND

Inflow=0.17 cfs 0.046 af Primary=0.17 cfs 0.046 af

Total Runoff Area = 19.760 ac Runoff Volume = 1.894 af Average Runoff Depth = 1.15" 78.45% Pervious = 15.502 ac 21.55% Impervious = 4.258 ac

Summary for Subcatchment DA0: Littleton Dr North

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.56 cfs @ 12.08 hrs, Volume= 0.040 af, Depth= 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area (sf)	CN	Description						
	3,600	98	Paved park	ing, HSG A	١				
*	4,431	50	>75% Grass cover, Good, HSG A/B						
	700	98	Water Surfa	ace, HSG A	١				
	8,731	74	Weighted A	/eighted Average					
	4,431		50.75% Pervious Area						
	4,300		49.25% Im	pervious Ar	ea				
Т	c Length	Slope	e Velocity	Capacity	Description				
(mir	n) (feet)	(ft/ft) (ft/sec)	(cfs)					
5.	0				Direct Entry,				

Subcatchment DA0: Littleton Dr North

Summary for Subcatchment DA1E: East of Parking Lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.12 cfs @ 12.07 hrs, Volume= 0.151 af, Depth= 3.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area (sf)	CN	Description					
	15,658	98	Paved park	ing, HSG A				
*	7,095	50	>75% Grass cover, Good, HSG A/B					
	1,051	98	Water Surfa	ace, HSG A	L			
	23,804	3,804 84 Weighted Average						
	7,095		29.81% Pervious Area					
	16,709		70.19% Im	pervious Are	ea			
Т	c Length	Slop	e Velocity	Capacity	Description			
(mir	n) (feet)	(ft/ft) (ft/sec)	(cfs)				
5.	0				Direct Entry,			

Subcatchment DA1E: East of Parking Lot

Summary for Subcatchment DA1OS: Northeast Depression

Runoff = 0.33 cfs @ 12.86 hrs, Volume= 0.097 af, Depth= 0.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

_	A	rea (sf)	CN	Description							
		150	98	Roofs, HSC	βA						
*		3,318	77	Dirt roads, I	HSG A/B						
*		78,963	42	Woods, Go	Noods, Good, HSG A/B						
*		28,088	50	>75% Grass cover, Good, HSG A/B							
	1	10,519	45	Weighted A							
	1	10,369	1	99.8 <mark>6</mark> % Pei	vious Area						
		150		0.14% Impe	ervious Area	а					
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	27.3	100	0.0100	0.06		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.44"					
	16.7	500	0.0100	0.50		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
	44 0	600	Total								

Subcatchment DA1OS: Northeast Depression

Summary for Subcatchment DA1W: West of Parking Lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.70 cfs @ 12.08 hrs, Volume= 0.121 af, Depth= 2.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area (sf)	CN	Description						
	6,706	98	Paved park	ing, HSG A	A				
*	7,939	50	>75% Gras	>75% Grass cover, Good, HSG A/B					
	6,467	98	Roofs, HSC	oofs, HSG A					
	455	98	Water Surfa	ater Surface, HSG A					
	21,567	80	Weighted A	Neighted Average					
	7,939		36.81% Pe	36.81% Pervious Area					
	13,628		63.19% lmp	pervious Ar	rea				
_		<u> </u>		• •	-				
To	c Length	Slop	e Velocity	Capacity	Description				
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)					
5.0)				Direct Entry,				

Subcatchment DA1W: West of Parking Lot

Summary for Subcatchment DA2: Community Garden

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.22 cfs @ 12.08 hrs, Volume= 0.158 af, Depth= 2.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area (sf)	CN	Description				
	11,016	98	Paved parkir	ng, HSG A			
*	7,510	50	>75% Grass	cover, Go	od, HSG A/B		
	445	98	Water Surface	ce, HSG A			
	6,976	98	Roofs, HSG	А			
*	6,054	42	Woods, Goo	d, HSG A/	Έ		
	32,001	76	Weighted Av	/erage			
	13,564		42.39% Perv	∕ious Area			
	18,437	57.61% Impervious Area					
	Tc Length	Slop	be Velocity	Capacity	Description		
<u>(n</u>	nin) (feet)	(ft/	ft) (ft/sec)	(cfs)			
	F 0				Direct Entry		

Direct Entry,

Subcatchment DA2: Community Garden

Summary for Subcatchment DA2OS: Flax Pond Bank

Runoff = 0.17 cfs @ 12.76 hrs, Volume= 0.046 af, Depth= 0.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	A	rea (sf)	CN	Description							
*		4,594	77	Dirt roads, I	Dirt roads. HSG A/B						
*		48,178	42	Woods, Go	od, HSG A/	В					
		52,772 52,772	45	Weighted A 100.00% Pe	verage ervious Are	а					
	Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description					
	27.3	100	0.0100	0.06		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.44"					
	10.0	300	0.0100	0.50		Shallow Concentrated Flow, Woodland Kv= 5.0 fps					
	37 3	400	Total								

Subcatchment DA2OS: Flax Pond Bank

Summary for Subcatchment DA3: Middle

[49] Hint: Tc<2dt may require smaller dt

6.76 cfs @ 12.08 hrs, Volume= 0.481 af, Depth= 2.40" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area (sf)	CN	Description	Description				
	41,974	98	Paved park	ing, HSG A	A			
*	52,638	50	>75% Gras	>75% Grass cover, Good, HSG A/B				
	7,340	98	Roofs, HSC	βA				
	2,698	98	Water Surfa	ace, HSG A	A			
	104,650	74	Weighted A	verage				
	52,638		50.30% Pe	vious Area	а			
	52,012		49.70% lm	pervious Are	rea			
				_				
	Tc Length	Slop	e Velocity	Capacity	Description			
(m	nin) (feet)	(ft/f	t) (ft/sec)	(cfs)				
!	5.0				Direct Entry,			

Subcatchment DA3: Middle

Summary for Subcatchment DA3OS: Northwest Offsite

Runoff = 1.06 cfs @ 12.82 hrs, Volume= 0.319 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area (sf)	CN	Description							
	1,176	98	Paved roads w/curbs & sewers, HSG A							
	15,531	98	Roofs, HSC	loofs, HSG A						
*	11,222	77	Dirt roads, l	Dirt roads, HSG A/B						
*	235,751	42	Woods, Go	Noods, Good, HSG A/B						
*	16,604	50	>75% Gras	s cover, Go	bod, HSG A/B					
	17,671	39	>75% Gras	s cover, Go	bod, HSG A					
	94,715	30	Woods, Go	od, HSG A						
	12,831	98	Water Surfa	ace, HSG A						
405,501 44 Weighted Average										
	375,963		92.72% Pe	rvious Area						
	29,538	7.28% Impervious Area			а					
-	C Length	Slope	e Velocity	Capacity	Description					
(mi	n) (feet)	(ft/ft) (ft/sec)	(cfs)						
27	.3 100	0.0100	0.06		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.44"					
11	.7 350	0.0100	0.50		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
39	.0 450	Total								

Subcatchment DA3OS: Northwest Offsite

Printed 12/30/2020

Page 46

Summary for Subcatchment DA3R: Roofs

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.08 cfs @ 12.07 hrs, Volume= 0.087 af, Depth= 4.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

Summary for Subcatchment DA4: Middle North

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.48 cfs @ 12.08 hrs, Volume= 0.392 af, Depth= 2.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area (sf)	CN	Description	Description				
	21,490	98	Paved park	Paved parking, HSG A				
*	50,514	50	>75% Gras	•75% Grass cover, Good, HSG A/B				
	18,191	98	Roofs, HSC	θA				
	1,540	98	Water Surfa	ace, HSG A	Α			
	91,735	35 72 Weighted Average						
	50,514 55.07% Pervious Area							
	41,221		44.93% Imp	pervious Are	rea			
_		<u> </u>		• •	–			
T	c Length	Slop	e Velocity	Capacity	Description			
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)				
5.0)				Direct Entry,			

Subcatchment DA4: Middle North

Summary for Pond C1: Northern Parking

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area	a =	1.042 ac, 6	6.86% Impervious	, Inflow Depth =	3.14" for	r 10yr event
Inflow	=	3.81 cfs @	12.08 hrs, Volum	e= 0.272	af	
Outflow	=	0.31 cfs @	11.65 hrs, Volum	e= 0.272	af, Atten=	92%, Lag= 0.0 min
Discarded	=	0.31 cfs @	11.65 hrs, Volum	e= 0.272	af	
Primary	=	0.00 cfs @	0.00 hrs, Volum	e= 0.000	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.82' @ 13.27 hrs Surf.Area= 2,955 sf Storage= 4,705 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 130.5 min (944.7 - 814.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	2,959 cf	39.50'W x 74.82'L x 4.25'H Field A
			12,560 cf Overall - 3,675 cf Embedded = 8,885 cf x 33.3% Voids
#2A	13.00'	3,675 cf	ADS_StormTech SC-740 +Cap x 80 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			80 Chambers in 8 Rows
		6,634 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	14.50'	18.0" Round Culvert
	-		L= 85.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.50' / 13.50' S= 0.0118 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.31 cfs @ 11.65 hrs HW=12.31' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.31 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=12.25' TW=0.00' (Dynamic Tailwater) -3=Culvert (Controls 0.00 cfs) -3=Culvert (Controls 0.00 cfs)

Pond C1: Northern Parking - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 8 Rows x 51.0" Wide + 6.0" Spacing x 7 + 12.0" Side Stone x 2 = 39.50' Base Width 9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

80 Chambers x 45.9 cf = 3,675.2 cf Chamber Storage

12,559.8 cf Field - 3,675.2 cf Chambers = 8,884.6 cf Stone x 33.3% Voids = 2,958.6 cf Stone Storage

Chamber Storage + Stone Storage = 6,633.8 cf = 0.152 af Overall Storage Efficiency = 52.8%Overall System Size = $74.82' \times 39.50' \times 4.25'$

80 Chambers 465.2 cy Field 329.1 cy Stone

Pond C1: Northern Parking

Summary for Pond C2: Southern Parking

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area	ı =	0.735 ac, 5	7.61% Impe	rvious, Inflow	/ Depth =	2.58"	for 10yr	event
Inflow	=	2.22 cfs @	12.08 hrs, \	Volume=	0.158	af		
Outflow	=	0.27 cfs @	11.75 hrs, \	Volume=	0.158	af, Atte	en= 88%,	Lag= 0.0 min
Discarded	=	0.27 cfs @	11.75 hrs, \	Volume=	0.158	af		-
Primary	=	0.00 cfs @	0.00 hrs, \	Volume=	0.000	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 13.80' @ 12.81 hrs Surf.Area= 2,600 sf Storage= 2,287 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 64.7 min (895.6 - 830.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	2,609 cf	34.75'W x 74.82'L x 4.25'H Field A
			11,049 cf Overall - 3,216 cf Embedded = 7,834 cf x 33.3% Voids
#2A	13.00'	3,216 cf	ADS_StormTech SC-740 +Cap x 70 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			70 Chambers in 7 Rows
		5,824 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
		Head (feet) 0.20 0.40 0.60 0.80 1.00
		Coef. (English) 2.80 2.92 3.08 3.30 3.32
Primary	14.50'	10.0" Round Culvert
		L= 70.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 14.50' / 14.20' S= 0.0043 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf
	Routing Discarded Device 3 Primary	RoutingInvertDiscarded12.25'Device 315.00'Primary14.50'

Discarded OutFlow Max=0.27 cfs @ 11.75 hrs HW=12.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.27 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=12.25' TW=0.00' (Dynamic Tailwater) -3=Culvert (Controls 0.00 cfs) -3=Culvert (Controls 0.00 cfs)

Pond C2: Southern Parking - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 7 Rows x 51.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 34.75' Base Width 9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

70 Chambers x 45.9 cf = 3,215.8 cf Chamber Storage

11,049.5 cf Field - 3,215.8 cf Chambers = 7,833.7 cf Stone x 33.3% Voids = 2,608.6 cf Stone Storage

Chamber Storage + Stone Storage = 5,824.4 cf = 0.134 afOverall Storage Efficiency = 52.7%Overall System Size = $74.82' \times 34.75' \times 4.25'$

70 Chambers 409.2 cy Field 290.1 cy Stone

Pond C2: Southern Parking
Summary for Pond C3: Middle

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=1)

Inflow Area	a =	2.402 ac, 4	9.70% Impervie	ous, Inflow De	pth = 2.40)" for 10yr	event
Inflow	=	6.76 cfs @	12.08 hrs, Vol	lume=	0.481 af		
Outflow	=	0.66 cfs @	11.75 hrs, Vol	lume=	0.481 af, /	Atten= 90%,	Lag= 0.0 min
Discarded	=	0.66 cfs @	11.75 hrs, Vol	lume=	0.481 af		
Primary	=	0.00 cfs @	0.00 hrs, Vol	lume=	0.000 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.25' @ 13.06 hrs Surf.Area= 6,318 sf Storage= 7,746 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 101.1 min (937.1 - 836.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	6,249 cf	53.75'W x 117.54'L x 4.25'H Field A
			26,850 cf Overall - 8,085 cf Embedded = 18,764 cf x 33.3% Voids
#2A	13.00'	8,085 cf	ADS_StormTech SC-740 +Cap x 176 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			176 Chambers in 11 Rows
		14,334 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	13.60'	18.0" Round Culvert L= 112.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.60' / 13.00' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.66 cfs @ 11.75 hrs HW=12.33' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.66 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=12.25' TW=12.25' (Dynamic Tailwater) -3=Culvert (Controls 0.00 cfs) -3=Culvert (Controls 0.00 cfs)

Pond C3: Middle - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

16 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 115.54' Row Length +12.0" End Stone x 2 = 117.54' Base Length 11 Rows x 51.0" Wide + 6.0" Spacing x 10 + 12.0" Side Stone x 2 = 53.75' Base Width

9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

176 Chambers x 45.9 cf = 8,085.4 cf Chamber Storage

26,849.8 cf Field - 8,085.4 cf Chambers = 18,764.3 cf Stone x 33.3% Voids = 6,248.5 cf Stone Storage

Chamber Storage + Stone Storage = 14,334.0 cf = 0.329 af Overall Storage Efficiency = 53.4% Overall System Size = 117.54' x 53.75' x 4.25'

176 Chambers 994.4 cy Field 695.0 cy Stone

-					

Pond C3: Middle

Summary for Pond C4: Roofs

Inflow Area	ı =	0.218 ac,10	0.00% Impe	ervious, Inflow D	Depth = 4.	81" for	10yr event	:
Inflow	=	1.08 cfs @	12.07 hrs,	Volume=	0.087 af			
Outflow	=	0.26 cfs @	12.45 hrs,	Volume=	0.087 af,	Atten=7	76%, Lag=	22.6 min
Discarded	=	0.08 cfs @	11.35 hrs,	Volume=	0.081 af			
Primary	=	0.18 cfs @	12.45 hrs,	Volume=	0.006 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.77' @ 12.45 hrs Surf.Area= 804 sf Storage= 1,205 cf

Plug-Flow detention time= 85.2 min calculated for 0.087 af (100% of inflow) Center-of-Mass det. time= 85.1 min (832.0 - 746.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	832 cf	20.50'W x 39.22'L x 4.25'H Field A
			3,417 cf Overall - 919 cf Embedded = 2,498 cf x 33.3% Voids
#2A	13.00'	919 cf	ADS_StormTech SC-740 +Cap x 20 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			20 Chambers in 4 Rows
		1 751 cf	Total Available Storage

1,751 cf I otal Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	14.50'	8.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.50' / 14.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Discarded OutFlow Max=0.08 cfs @ 11.35 hrs HW=12.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.18 cfs @ 12.45 hrs HW=14.77' TW=14.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.18 cfs @ 1.39 fps)

Pond C4: Roofs - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

5 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 37.22' Row Length +12.0" End Stone x 2 = 39.22' Base Length 4 Rows x 51.0" Wide + 6.0" Spacing x 3 + 12.0" Side Stone x 2 = 20.50' Base Width

9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

20 Chambers x 45.9 cf = 918.8 cf Chamber Storage

3,416.8 cf Field - 918.8 cf Chambers = 2,498.0 cf Stone x 33.3% Voids = 831.8 cf Stone Storage

Chamber Storage + Stone Storage = 1,750.6 cf = 0.040 afOverall Storage Efficiency = 51.2%Overall System Size = $39.22' \times 20.50' \times 4.25'$

20 Chambers 126.5 cy Field 92.5 cy Stone

Pond C4: Roofs

Summary for Pond D1: Infiltration Basin

Inflow Area	=	13.817 ac, 2	20.40% Impe	ervious,	Inflow Depth	= 0.6	62" for	10yr	event	
Inflow	=	5.49 cfs @	12.08 hrs,	Volume	= 0.7	12 af				
Outflow	=	1.13 cfs @	13.53 hrs,	Volume	= 0.7	12 af,	Atten= 7	79%,	Lag= 87.2 mi	n
Discarded	=	1.13 cfs @	13.53 hrs,	Volume	= 0.7	12 af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 12.89' @ 13.53 hrs Surf.Area= 10,861 sf Storage= 6,305 cf

Plug-Flow detention time= 48.2 min calculated for 0.711 af (100% of inflow) Center-of-Mass det. time= 48.2 min (952.9 - 904.8)

Volume	Inver	t Avail.Sto	rage Storage	e Description				
#1	12.25	5' 106,72	25 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)			
Elevatio (fee	on S :t)	Surf.Area (sg-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
12.2	<u>.,</u> 25	8.600	0	0				
12.5	50	9,600	2,275	2,275				
13.0	0	11,200	5,200	7,475				
14.0	0	16,200	13,700	21,175				
14.5	50	88,000	26,050	47,225				
15.0	00	150,000	59,500	106,725				
Device	Routing	Invert	Outlet Device	es				
#1	Discarded	12.25'	4.500 in/hr E	xfiltration over	Surface area Phase-In= 0.01'			
Discarde	Discarded OutFlow Max=1.13 cfs @ 13.53 hrs HW=12.89' (Free Discharge) 1=Exfiltration (Exfiltration Controls 1.13 cfs)							

Hydrograph Inflow 5.49 cfs Discarded 6 Inflow Area=13.817 ac Peak Elev=12.89' 5-Storage=6,305 cf 4 Flow (cfs) 3-2-1.13 cfs 1 0-2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ò Time (hours)

Pond D1: Infiltration Basin

Summary for Pond P0: Natural Depression

Inflow Area =	2.755 ac,	8.03% Impervious, Ir	nflow Depth = 0.45"	for 10yr event
Inflow =	0.38 cfs @	12.80 hrs, Volume=	0.103 af	
Outflow =	0.38 cfs @	12.83 hrs, Volume=	0.103 af, At	ten= 0%, Lag= 1.6 min
Discarded =	0.38 cfs @	12.83 hrs, Volume=	0.103 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.01' @ 12.83 hrs Surf.Area= 5,792 sf Storage= 36 cf

Plug-Flow detention time= 1.6 min calculated for 0.103 af (100% of inflow) Center-of-Mass det. time= 1.6 min (967.5 - 965.9)

Volume	Invert	: Avail.St	torage Stor	age Description			
#1	14.00	4,	675 cf Cus	tom Stage Data (P	rismatic)Listed	below (Recalc)	
Elevatio (fee	on S •t)	urf.Area (sq-ft)	Inc.Store (cubic-feet	e Cum.Store) (cubic-feet)			
14.0 14.5	00 50	5,700 13,000	(4,675	0 0 5 4,675			
Device	Routing	Inver	t Outlet Dev	/ices			
#1	Discarded	14.00	' 4.500 in/h	r Exfiltration over	Surface area	Phase-In= 0.01'	

Discarded OutFlow Max=0.38 cfs @ 12.83 hrs HW=14.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.38 cfs)

Pond P0: Natural Depression

Summary for Pond P1: Littleton Dr North Bio

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=87)

Inflow Area	=	0.200 ac, 4	9.25% Imper	vious, Inflow	Depth =	2.40"	for 10y	vr event
Inflow =	=	0.56 cfs @	12.08 hrs, V	/olume=	0.040	af		
Outflow =	=	0.15 cfs @	12.48 hrs, V	/olume=	0.040	af, Atte	n= 74%	, Lag= 23.7 min
Discarded =	=	0.15 cfs @	12.48 hrs, V	/olume=	0.040	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.02' @ 12.48 hrs Surf.Area= 2,614 sf Storage= 458 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 23.6 min (859.6 - 836.0)

)
)

Discarded OutFlow Max=0.15 cfs @ 12.48 hrs HW=14.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.15 cfs)

Pond P1: Littleton Dr North Bio

Summary for Pond SP1: FLAX POND

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	19.760 ac, 2	1.55% Impe	ervious,	Inflow De	epth = C).03"	for 10y	r event
Inflow	=	0.17 cfs @	12.76 hrs,	Volume	=	0.046 a	f		
Primary	=	0.17 cfs @	12.76 hrs,	Volume	=	0.046 a	f, Atte	n= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2

Pond SP1: FLAX POND

20107 DR PR Prepared by {enter your company name HydroCAD® 10.10-4a s/n 01445 © 2020 Hydro	Type III 24-hr 100yr Rainfall=7.60"here}Printed 12/30/2020bCAD Software Solutions LLCPage 67
Time span=0.00-4 Runoff by SCS TR Reach routing by Dyn-Stor-Ind	8.00 hrs, dt=0.05 hrs, 961 points x 2 -20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment DA0: Littleton Dr North	Runoff Area=8,731 sf 49.25% Impervious Runoff Depth=4.57" Tc=5.0 min CN=74 Runoff=1.07 cfs 0.076 af
SubcatchmentDA1E: East of Parking Lot	Runoff Area=23,804 sf 70.19% Impervious Runoff Depth=5.71" Tc=5.0 min CN=84 Runoff=3.58 cfs 0.260 af
Subcatchment DA1OS: Northeast Flow Length=600'	Runoff Area=110,519 sf 0.14% Impervious Runoff Depth=1.53" Slope=0.0100 '/' Tc=44.0 min CN=45 Runoff=1.74 cfs 0.323 af
Subcatchment DA1W: West of Parking Lo	t Runoff Area=21,567 sf 63.19% Impervious Runoff Depth=5.25" Tc=5.0 min CN=80 Runoff=3.02 cfs 0.217 af
Subcatchment DA2: Community Garden	Runoff Area=32,001 sf 57.61% Impervious Runoff Depth=4.80" Tc=5.0 min CN=76 Runoff=4.11 cfs 0.294 af
Subcatchment DA2OS: Flax Pond Bank Flow Length=400'	Runoff Area=52,772 sf 0.00% Impervious Runoff Depth=1.53" Slope=0.0100 '/' Tc=37.3 min CN=45 Runoff=0.91 cfs 0.154 af
SubcatchmentDA3: Middle	Runoff Area=104,650 sf 49.70% Impervious Runoff Depth=4.57" Tc=5.0 min CN=74 Runoff=12.85 cfs 0.915 af
Subcatchment DA3OS: Northwest Offsite Flow Length=450'	Runoff Area=405,501 sf 7.28% Impervious Runoff Depth=1.44" Slope=0.0100 '/' Tc=39.0 min CN=44 Runoff=6.25 cfs 1.115 af
SubcatchmentDA3R: Roofs	Runoff Area=9,486 sf 100.00% Impervious Runoff Depth=7.36" Tc=5.0 min CN=98 Runoff=1.64 cfs 0.134 af
Subcatchment DA4: Middle North	Runoff Area=91,735 sf 44.93% Impervious Runoff Depth=4.35" Tc=5.0 min CN=72 Runoff=10.73 cfs 0.763 af
Pond C1: Northern Parking Discarded=0.31 c	Peak Elev=15.54' Storage=5,685 cf Inflow=6.60 cfs 0.477 af fs 0.357 af Primary=3.56 cfs 0.120 af Outflow=3.87 cfs 0.477 af
Pond C2: Southern Parking Discarded=0.27 c	Peak Elev=15.18' Storage=4,628 cf Inflow=4.11 cfs 0.294 af fs 0.267 af Primary=0.82 cfs 0.026 af Outflow=1.09 cfs 0.294 af
Pond C3: Middle Discarded=0.66 c	Peak Elev=15.54' Storage=12,316 cf Inflow=12.85 cfs 0.915 af fs 0.721 af Primary=4.82 cfs 0.194 af Outflow=5.48 cfs 0.915 af
Pond C4: Roofs Discarded=0.08 c	Peak Elev=15.29' Storage=1,423 cf Inflow=1.64 cfs 0.134 af fs 0.101 af Primary=0.90 cfs 0.033 af Outflow=0.98 cfs 0.134 af
Pond D1: Infiltration Basin	Peak Elev=14.22' Storage=28,339 cf Inflow=12.07 cfs 2.071 af Outflow=5.02 cfs 2.071 af
Pond P0: Natural Depression	Peak Elev=14.32' Storage=2,567 cf Inflow=1.90 cfs 0.356 af Outflow=1.08 cfs 0.356 af

Pond P1: Littleton Dr North Bio

Peak Elev=14.27' Storage=1,152 cf Inflow=1.07 cfs 0.076 af Outflow=0.16 cfs 0.076 af

Pond SP1: FLAX POND

Inflow=3.79 cfs 0.301 af Primary=3.79 cfs 0.301 af

Total Runoff Area = 19.760 ac Runoff Volume = 4.250 af Average Runoff Depth = 2.58" 78.45% Pervious = 15.502 ac 21.55% Impervious = 4.258 ac

Summary for Subcatchment DA0: Littleton Dr North

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.07 cfs @ 12.08 hrs, Volume= 0.076 af, Depth= 4.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	Area (sf)	CN	Description							
	3,600	98	Paved park	ing, HSG A	A line line line line line line line line					
*	4,431	50	>75% Gras	s cover, Go	bod, HSG A/B					
	700	98	Water Surfa	ace, HSG A	N Contraction of the second seco					
	8,731	74	Weighted A	Weighted Average						
	4,431		50.75% Pe	rvious Area	l					
	4,300		49.25% Im	pervious Ar	ea					
То	c Length	Slop	e Velocity	Capacity	Description					
(min) (feet)	(ft/f	i) (ft/sec)	(cfs)						
5.0)				Direct Entry,					

Subcatchment DA0: Littleton Dr North

Summary for Subcatchment DA1E: East of Parking Lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.58 cfs @ 12.07 hrs, Volume= 0.260 af, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	Area (sf)	CN	Description								
	15,658	98	Paved parking, HSG A								
*	7,095	50	>75% Gras	s cover, Go	ood, HSG A/B						
	1,051	98	Water Surface, HSG A								
	23,804	84	Weighted A	Weighted Average							
	7,095		29.81% Pe	29.81% Pervious Area							
	16,709		70.19% lm	pervious Ar	ea						
٦	Fc Length	Slop	e Velocity	Capacity	Description						
(mi	n) (feet)	(ft/f	t) (ft/sec)	(cfs)							
F	0				Diss of Fata						

Direct Entry,

Subcatchment DA1E: East of Parking Lot

Summary for Subcatchment DA1OS: Northeast Depression

Runoff = 1.74 cfs @ 12.71 hrs, Volume= 0.323 af, Depth= 1.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	Α	rea (sf)	CN	Description								
		150	98	8 Roofs, HSG A								
*		3,318	77	Dirt roads, I	HSG A/B							
*		78,963	42	Woods, Go	od, HSG A	/B						
*		28,088	50	>75% Gras	s cover, Go	ood, HSG A/B						
	1	10,519	45	Weighted A	verage							
	1	10,369		99.86% Pei	vious Area							
		150		0.14% Impe	ervious Area	а						
				-								
	Тс	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	27.3	100	0.0100	0.06		Sheet Flow,						
						Woods: Light underbrush n= 0.400 P2= 3.44"						
	16.7	500	0.0100	0.50		Shallow Concentrated Flow,						
						Woodland Kv= 5.0 fps						
	44.0	600	Total									

Subcatchment DA1OS: Northeast Depression

Summary for Subcatchment DA1W: West of Parking Lot

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.02 cfs @ 12.07 hrs, Volume= 0.217 af, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	Area (sf)	CN	Description							
	6,706	98	Paved park	ing, HSG A	A					
*	7,939	50	>75% Gras	s cover, Go	ood, HSG A/B					
	6,467	98	Roofs, HSC	βA						
	455	98	Water Surfa	ace, HSG A	Α					
	21,567	80	Weighted A	Neighted Average						
	7,939		36.81% Pe	vious Area	а					
	13,628		63.19% Imp	pervious Are	rea					
To (min	c Length) (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description					
5.0)				Direct Entry,					

Subcatchment DA1W: West of Parking Lot

Summary for Subcatchment DA2: Community Garden

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.11 cfs @ 12.08 hrs, Volume= 0.294 af, Depth= 4.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	Area (sf)	CN	Description								
	11,016	98	Paved park	ing, HSG A	Α						
*	7,510	50	>75% Grass	s cover, Go	ood, HSG A/B						
	445	98	Water Surfa	ice, HSG A	Α						
	6,976	98	Roofs, HSG	iΑ							
*	6,054	42	Woods, Goo	od, HSG A/	VB						
	32,001	76	Weighted Average								
	13,564		42.39% Per	vious Area	a						
	18,437		57.61% Imp	57.61% Impervious Area							
	Tc Length	Slop	be Velocity	Capacity	Description						
(m	nin) (feet)	(ft/	ft) (ft/sec)	(cfs)							

Direct Entry,

Subcatchment DA2: Community Garden

Summary for Subcatchment DA2OS: Flax Pond Bank

Runoff = 0.91 cfs @ 12.61 hrs, Volume= 0.154 af, Depth= 1.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	A	rea (sf)	CN	Description							
*		4,594	77	Dirt roads, I	HSG A/B						
*		48,178	42	Woods, Go	od, HSG A/	/В					
		52,772 52,772	45	5 Weighted Average 100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description					
	27.3	100	0.0100	0.06		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.44"					
	10.0	300	0.0100	0.50		Shallow Concentrated Flow, Woodland Kv= 5.0 fps					
	37.3	400	Total								

Subcatchment DA2OS: Flax Pond Bank

Summary for Subcatchment DA3: Middle

[49] Hint: Tc<2dt may require smaller dt

Runoff = 12.85 cfs @ 12.08 hrs, Volume= 0.915 af, Depth= 4.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	Area (sf)	CN	Description							
	41,974	98	Paved park	ing, HSG A	A					
*	52,638	50	>75% Gras	s cover, Go	iood, HSG A/B					
	7,340	98	Roofs, HSC	θA						
	2,698	98	Water Surfa	ace, HSG A	Α					
	104,650	74	Weighted A	verage						
	52,638		50.30% Pe	rvious Area	а					
	52,012		49.70% Imp	pervious Ar	rea					
_										
-	Tc Length	Slop	e Velocity	Capacity	Description					
(mi	<u>n) (feet)</u>	(ft/1	t) (ft/sec)	(cfs)						
5	.0				Direct Entry,					

Subcatchment DA3: Middle

Summary for Subcatchment DA3OS: Northwest Offsite

Runoff = 6.25 cfs @ 12.65 hrs, Volume= 1.115 af, Depth= 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	A	rea (sf)	CN	Description						
		1,176	98	Paved road	s w/curbs &	& sewers, HSG A				
		15,531	98	Roofs, HSG A						
*		11,222	77	Dirt roads, l	HSG A/B					
*	2	235,751	42	Woods, Go	od, HSG A	/B				
*		16,604	50	>75% Gras	s cover, Go	bod, HSG A/B				
		17,671	39	>75% Gras	s cover, Go	bod, HSG A				
		94,715	30	Woods, Go	od, HSG A					
		12,831	98	Water Surfa	ace, HSG A					
	4	05,501	44	Weighted A	verage					
	3	375,963		92.72% Pei	rvious Area					
		29,538		7.28% Impe	ervious Are	а				
	Tc	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	27.3	100	0.0100	0.06		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.44"				
	11.7	350	0.0100	0.50		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	39.0	450	Total							

Subcatchment DA3OS: Northwest Offsite

Summary for Subcatchment DA3R: Roofs

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.64 cfs @ 12.07 hrs, Volume= 0.134 af, Depth= 7.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

Summary for Subcatchment DA4: Middle North

[49] Hint: Tc<2dt may require smaller dt

Runoff = 10.73 cfs @ 12.08 hrs, Volume= 0.763 af, Depth= 4.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

/	Area (sf)	CN	Description							
	21,490	98	Paved park	ing, HSG A	Ą					
*	50,514	50	>75% Gras	s cover, Go	ood, HSG A/B					
	18,191	98	Roofs, HSC	βA						
	1,540	98	Water Surfa	ace, HSG A	Α					
	91,735	72	Weighted A	Weighted Average						
	50,514		55.07% Pe	vious Area	а					
	41,221		44.93% Imp	pervious Are	rea					
_				_						
Tc	Length	Slop	e Velocity	Capacity	Description					
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)						
5.0					Direct Entry,					

Subcatchment DA4: Middle North

Summary for Pond C1: Northern Parking

Inflow Area	ı =	1.042 ac, 6	6.86% Impervious,	Inflow Depth =	5.49" fo	or 100y	r event
Inflow	=	6.60 cfs @	12.07 hrs, Volume	= 0.477 a	af		
Outflow	=	3.87 cfs @	12.20 hrs, Volume	= 0.477 ;	af, Atten	= 41%,	Lag= 7.5 min
Discarded	=	0.31 cfs @	11.05 hrs, Volume	= 0.357 a	af		
Primary	=	3.56 cfs @	12.20 hrs, Volume	= 0.120 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 15.54' @ 12.20 hrs Surf.Area= 2,955 sf Storage= 5,685 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 112.2 min (910.7 - 798.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	2,959 cf	39.50'W x 74.82'L x 4.25'H Field A
			12,560 cf Overall - 3,675 cf Embedded = 8,885 cf x 33.3% Voids
#2A	13.00'	3,675 cf	ADS_StormTech SC-740 +Cap x 80 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			80 Chambers in 8 Rows
		6 624 of	Total Available Storage

6,634 cf Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
		Head (feet) 0.20 0.40 0.60 0.80 1.00
		Coef. (English) 2.80 2.92 3.08 3.30 3.32
Primary	14.50'	18.0" Round Culvert
-		L= 85.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 14.50' / 13.50' S= 0.0118 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
	Routing Discarded Device 3 Primary	RoutingInvertDiscarded12.25'Device 315.00'Primary14.50'

Discarded OutFlow Max=0.31 cfs @ 11.05 hrs HW=12.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.31 cfs)

Primary OutFlow Max=3.55 cfs @ 12.20 hrs HW=15.53' TW=0.00' (Dynamic Tailwater) -3=Culvert (Inlet Controls 3.55 cfs @ 2.73 fps) -2=Broad-Crested Rectangular Weir (Passes 3.55 cfs of 4.72 cfs potential flow)

Pond C1: Northern Parking - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 8 Rows x 51.0" Wide + 6.0" Spacing x 7 + 12.0" Side Stone x 2 = 39.50' Base Width 9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

80 Chambers x 45.9 cf = 3,675.2 cf Chamber Storage

12,559.8 cf Field - 3,675.2 cf Chambers = 8,884.6 cf Stone x 33.3% Voids = 2,958.6 cf Stone Storage

Chamber Storage + Stone Storage = 6,633.8 cf = 0.152 af Overall Storage Efficiency = 52.8%Overall System Size = $74.82' \times 39.50' \times 4.25'$

80 Chambers 465.2 cy Field 329.1 cy Stone

Pond C1: Northern Parking

Summary for Pond C2: Southern Parking

Inflow Area	=	0.735 ac, 5	7.61% Imp	ervious, Inflov	v Depth =	4.80"	for	100yı	r event	
Inflow	=	4.11 cfs @	12.08 hrs,	Volume=	0.294	af				
Outflow	=	1.09 cfs @	12.46 hrs,	Volume=	0.294	af, Atte	en= 7	3%,	Lag= 23	.1 min
Discarded	=	0.27 cfs @	11.50 hrs,	Volume=	0.267	af				
Primary	=	0.82 cfs @	12.46 hrs,	Volume=	0.026	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 15.18' @ 12.46 hrs Surf.Area= 2,600 sf Storage= 4,628 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 133.4 min (946.5 - 813.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	2,609 cf	34.75'W x 74.82'L x 4.25'H Field A
			11,049 cf Overall - 3,216 cf Embedded = 7,834 cf x 33.3% Voids
#2A	13.00'	3,216 cf	ADS_StormTech SC-740 +Cap x 70 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			70 Chambers in 7 Rows
		5 824 of	Total Available Storage

5,824 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	14.50'	10.0" Round Culvert
			L= 70.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 14.50' / 14.20' S= 0.0043 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf

Discarded OutFlow Max=0.27 cfs @ 11.50 hrs HW=12.29' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.27 cfs)

Primary OutFlow Max=0.80 cfs @ 12.46 hrs HW=15.17' TW=0.00' (Dynamic Tailwater) -3=Culvert (Passes 0.80 cfs of 0.96 cfs potential flow) -2=Broad-Crested Rectangular Weir (Weir Controls 0.80 cfs @ 1.16 fps)

Pond C2: Southern Parking - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 7 Rows x 51.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 34.75' Base Width 9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

70 Chambers x 45.9 cf = 3,215.8 cf Chamber Storage

11,049.5 cf Field - 3,215.8 cf Chambers = 7,833.7 cf Stone x 33.3% Voids = 2,608.6 cf Stone Storage

Chamber Storage + Stone Storage = 5,824.4 cf = 0.134 afOverall Storage Efficiency = 52.7%Overall System Size = $74.82' \times 34.75' \times 4.25'$

70 Chambers 409.2 cy Field 290.1 cy Stone

Pond C2: Southern Parking

Summary for Pond C3: Middle

Inflow Area	a =	2.402 ac, 4	9.70% Imp	ervious, Inflow	Depth = 4.5	7" for 100y	r event
Inflow	=	12.85 cfs @	12.08 hrs,	Volume=	0.915 af		
Outflow	=	5.48 cfs @	12.30 hrs,	Volume=	0.915 af,	Atten= 57%,	Lag= 13.6 min
Discarded	=	0.66 cfs @	11.35 hrs,	Volume=	0.721 af		
Primary	=	4.82 cfs @	12.30 hrs,	Volume=	0.194 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 15.54' @ 12.30 hrs Surf.Area= 6,318 sf Storage= 12,316 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 127.0 min (944.6 - 817.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	6,249 cf	53.75'W x 117.54'L x 4.25'H Field A
			26,850 cf Overall - 8,085 cf Embedded = 18,764 cf x 33.3% Voids
#2A	13.00'	8,085 cf	ADS_StormTech SC-740 +Cap x 176 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			176 Chambers in 11 Rows
		14.224 of	Total Available Storage

14,334 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Device 3	15.00'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	13.60'	18.0" Round Culvert
			L= 112.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 13.60' / 13.00' S= 0.0054 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Discarded OutFlow Max=0.66 cfs @ 11.35 hrs HW=12.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.66 cfs)

Primary OutFlow Max=4.80 cfs @ 12.30 hrs HW=15.54' TW=13.43' (Dynamic Tailwater) -3=Culvert (Passes 4.80 cfs of 8.09 cfs potential flow) -2=Broad-Crested Rectangular Weir (Weir Controls 4.80 cfs @ 2.23 fps)

Pond C3: Middle - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

16 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 115.54' Row Length +12.0" End Stone x 2 = 117.54' Base Length 11 Rows x 51.0" Wide + 6.0" Spacing x 10 + 12.0" Side Stone x 2 = 53.75' Base Width

9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

176 Chambers x 45.9 cf = 8,085.4 cf Chamber Storage

26,849.8 cf Field - 8,085.4 cf Chambers = 18,764.3 cf Stone x 33.3% Voids = 6,248.5 cf Stone Storage

Chamber Storage + Stone Storage = 14,334.0 cf = 0.329 af Overall Storage Efficiency = 53.4% Overall System Size = 117.54' x 53.75' x 4.25'

176 Chambers 994.4 cy Field 695.0 cy Stone

0									0	
Γ										
Π										
Γ										
Π				Γ						
Γ										
Π										
U	U	U	U	U	U	U	U	U	U	

Hydrograph Inflow Outflow Discarded Primary 12.85 cfs Inflow Area=2.402 ac 14 Peak Elev=15.54' 13 12 Storage=12,316 cf 11 10-9 Flow (cfs) 8-5.48 cfs 7-6-4.82 cfs 5 4 3-0.6 fs 2 1 0-2 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 6 Ó Time (hours)

Pond C3: Middle

Summary for Pond C4: Roofs

Inflow Area	=	0.218 ac,10	0.00% Imperviou	s, Inflow Depth =	7.36"	for 100y	r event
Inflow	=	1.64 cfs @	12.07 hrs, Volu	ne= 0.134	4 af		
Outflow	=	0.98 cfs @	12.18 hrs, Volu	ne= 0.134	4 af, Atte	en= 40%,	Lag= 6.3 min
Discarded	=	0.08 cfs @	10.55 hrs, Volu	me= 0.10 ⁻	1 af		
Primary	=	0.90 cfs @	12.18 hrs, Volu	ne= 0.033	3 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 15.29' @ 12.18 hrs Surf.Area= 804 sf Storage= 1,423 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 74.4 min (815.4 - 740.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.25'	832 cf	20.50'W x 39.22'L x 4.25'H Field A
			3,417 cf Overall - 919 cf Embedded = 2,498 cf x 33.3% Voids
#2A	13.00'	919 cf	ADS_StormTech SC-740 +Cap x 20 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			20 Chambers in 4 Rows
		1 751 cf	Total Available Storage

1,751 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	12.25'	4.500 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	14.50'	8.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 14.50' / 14.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Discarded OutFlow Max=0.08 cfs @ 10.55 hrs HW=12.30' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.89 cfs @ 12.18 hrs HW=15.28' TW=14.03' (Dynamic Tailwater) →2=Culvert (Inlet Controls 0.89 cfs @ 2.55 fps)

Pond C4: Roofs - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

5 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 37.22' Row Length +12.0" End Stone x 2 = 39.22' Base Length 4 Rows x 51.0" Wide + 6.0" Spacing x 3 + 12.0" Side Stone x 2 = 20.50' Base Width

9.0" Stone Base + 30.0" Chamber Height + 12.0" Stone Cover = 4.25' Field Height

20 Chambers x 45.9 cf = 918.8 cf Chamber Storage

3,416.8 cf Field - 918.8 cf Chambers = 2,498.0 cf Stone x 33.3% Voids = 831.8 cf Stone Storage

Chamber Storage + Stone Storage = 1,750.6 cf = 0.040 afOverall Storage Efficiency = 51.2%Overall System Size = $39.22' \times 20.50' \times 4.25'$

20 Chambers 126.5 cy Field 92.5 cy Stone

Pond C4: Roofs

Summary for Pond D1: Infiltration Basin

Inflow Area	=	13.817 ac, 2	20.40% Impe	ervious,	Inflow Depth =	1.80)" for	100yr	event	
Inflow	=	12.07 cfs @	12.32 hrs,	Volume	= 2.071	af				
Outflow	=	5.02 cfs @	13.15 hrs,	Volume	= 2.071	af, <i>i</i>	Atten= 5	58%, L	_ag= 49.6	min
Discarded	=	5.02 cfs @	13.15 hrs,	Volume	= 2.071	af			-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.22' @ 13.15 hrs Surf.Area= 48,167 sf Storage= 28,339 cf

Plug-Flow detention time= 124.2 min calculated for 2.069 af (100% of inflow) Center-of-Mass det. time= 124.1 min (996.1 - 872.0)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	12.2	5' 106,72	25 cf Custor	n Stage Data (Pi	Prismatic)Listed below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
	<u>, ()</u>				
12.2	25	8,600	0	0	
12.5	50	9,600	2,275	2,275	
13.0	00	11,200	5,200	7,475	
14.0	00	16,200	13,700	21,175	
14.5	50	88,000	26.050	47,225	
15.0	00	150,000	59,500	106,725	
Device	Routing	Invert	Outlet Device	es	
#1	Discardeo	d 12.25'	4.500 in/hr E	Exfiltration over	r Surface area Phase-In= 0.01'
Discarde	ed OutFlo filtration(w Max=5.02 cf Exfiltration Cor	s @ 13.15 hrs htrols 5.02 cfs)	HW=14.22' (Fr	ree Discharge)

Pond D1: Infiltration Basin

Summary for Pond P0: Natural Depression

Inflow Area	=	2.755 ac,	8.03% Impervious, Inflow De	epth = 1.55" for 100yr event
Inflow	=	1.90 cfs @	12.67 hrs, Volume=	0.356 af
Outflow	=	1.08 cfs @	13.21 hrs, Volume=	0.356 af, Atten= 43%, Lag= 32.5 min
Discarded	=	1.08 cfs @	13.21 hrs, Volume=	0.356 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.32' @ 13.21 hrs Surf.Area= 10,365 sf Storage= 2,567 cf

Plug-Flow detention time= 17.9 min calculated for 0.356 af (100% of inflow) Center-of-Mass det. time= 17.9 min (927.8 - 909.9)

Volume	Inver	t Avail.	Storage	Storage	Description			
#1	14.00	•	4,675 cf	Custom	Stage Data (Prismat	ic)Listed	below (Recalc)	
Elevatio (fee	on S et)	urf.Area (sq-ft)	Inc (cubic	.Store c-feet)	Cum.Store (cubic-feet)			
14.0 14.5	00 50	5,700 13,000		0 4,675	0 4,675			
Device	Routing	Inv	ert Outle	et Device:	5			
#1	Discarded	14.(00' 4.50	0 in/hr Ex	cfiltration over Surfac	ce area	Phase-In= 0.01'	

Discarded OutFlow Max=1.08 cfs @ 13.21 hrs HW=14.32' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.08 cfs)

Pond P0: Natural Depression

Summary for Pond P1: Littleton Dr North Bio

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=65)

Inflow Area =	0.200 ac,	49.25% Impervious,	Inflow Depth = 4.5	7" for 100yr event
Inflow =	1.07 cfs @) 12.08 hrs, Volume	e= 0.076 af	
Outflow =	0.16 cfs @) 12.60 hrs, Volume	e= 0.076 af, <i>i</i>	Atten= 85%, Lag= 31.5 min
Discarded =	0.16 cfs @) 12.60 hrs, Volume	e= 0.076 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 14.27' @ 12.60 hrs Surf.Area= 2,828 sf Storage= 1,152 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 57.8 min (875.3 - 817.5)

Volume	Invert	Avail.Stor	age Storag	e Description	
#1	13.75'	3,53	84 cf Custo	m Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)	Surf ۱)	Area sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
13.75 14.00 14.25 15.00	2 2 3	700 2,600 2,800 3,725	0 413 675 2,447	0 413 1,088 3,534	
Device Ro	uting	Invert	Outlet Devic	es	
#1 Dis	carded	13.75'	2.410 in/hr l Excluded Su	Exfiltration over urface area = 0 sf	Surface area above 13.00'

Discarded OutFlow Max=0.16 cfs @ 12.60 hrs HW=14.27' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.16 cfs)

Pond P1: Littleton Dr North Bio

Summary for Pond SP1: FLAX POND

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	19.760 ac, 2	1.55% Impe	ervious,	Inflow Depth :	= 0.1	18" for 10	0yr event
Inflow	=	3.79 cfs @	12.20 hrs,	Volume	= 0.30	1 af		
Primary	=	3.79 cfs @	12.20 hrs,	Volume	= 0.30	1 af,	Atten= 0%	, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 2

Pond SP1: FLAX POND

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2yr	Type III 24-hr		Default	24.00	1	3.44	2
2	10yr	Type III 24-hr		Default	24.00	1	5.05	2
3	100yr	Type III 24-hr		Default	24.00	1	7.60	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
39	>75% Grass cover, Good, HSG A (DA1)
50	>75% Grass cover, Good, HSG A/B (DA1)
77	Dirt roads, HSG A/B (DA1)
98	Paved roads w/curbs & sewers, HSG A (DA1)
98	Roofs, HSG A (DA1)
30	Woods, Good, HSG A (DA1)
42	Woods, Good, HSG A/B (DA1)
44	TOTAL AREA
	CN 39 50 77 98 98 30 42 44

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
19.562	HSG A	DA1
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
19.562		TOTAL AREA

Time span=0.00-40.00 hrs, dt=0.05 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

> Runoff Area=19.562 ac 2.12% Impervious Runoff Depth=0.06" Flow Length=1,236' Tc=53.5 min CN=44 Runoff=0.15 cfs 0.096 af

Pond SP1: Pond

Subcatchment DA1: Pond

Inflow=0.15 cfs 0.096 af Primary=0.15 cfs 0.096 af

Total Runoff Area = 19.562 acRunoff Volume = 0.096 afAverage Runoff Depth = 0.06"97.88% Pervious = 19.148 ac2.12% Impervious = 0.414 ac

Summary for Subcatchment DA1: Pond

Runoff = 0.15 cfs @ 15.87 hrs, Volume= 0.096 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 2yr Rainfall=3.44"

	Area	(ac)	CN	Desc	cription		
	0.	027	98	Pave	ed roads w	/curbs & se	ewers, HSG A
	0.	387	98	Roof	s, HSG A		
*	1.	134	77	Dirt r	oads, HS0	G A/B	
*	15.	053	42	Woo	ds, Good,	HSG A/B	
*	0.	381	50	>75%	6 Grass co	over, Good	, HSG A/B
	0.	406	39	>75%	6 Grass co	over, Good	HSG A
	2.	174	30	Woo	ds, Good,	HSG A	
_	19.	562	44	Weig	hted Aver	age	
	19.	148		97.8	, 8% Pervio	us Area	
	0.	414		2.12	% Impervi	ous Area	
					•		
	Tc	Lengt	h :	Slope	Velocity	Capacity	Description
	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	•
	27.3	10	0 0	.0100	0.06		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.44"
	3.5	17	50	.0280	0.84		Shallow Concentrated Flow,
							Woodland Kv= 5.0 fps
	22.7	96	1 0	.0050	0.71		Shallow Concentrated Flow,
							Nearly Bare & Untilled Kv= 10.0 fps
	53.5	1,23	6 T	otal			

Subcatchment DA1: Pond

Summary for Pond SP1: Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	\rea =	19.562 ac,	2.12% Impervious,	Inflow Depth = 0.0	06" for 2yr event
Inflow	=	0.15 cfs @	15.87 hrs, Volume	= 0.096 af	
Primary		0.15 cfs @	15.87 hrs, Volume	= 0.096 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond SP1: Pond

Time span=0.00-40.00 hrs, dt=0.05 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

> Runoff Area=19.562 ac 2.12% Impervious Runoff Depth=0.41" Flow Length=1,236' Tc=53.5 min CN=44 Runoff=1.92 cfs 0.671 af

Pond SP1: Pond

Subcatchment DA1: Pond

Inflow=1.92 cfs 0.671 af Primary=1.92 cfs 0.671 af

Total Runoff Area = 19.562 acRunoff Volume = 0.671 afAverage Runoff Depth = 0.41"97.88% Pervious = 19.148 ac2.12% Impervious = 0.414 ac

Summary for Subcatchment DA1: Pond

Runoff = 1.92 cfs @ 13.06 hrs, Volume= 0.671 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 10yr Rainfall=5.05"

	Area	(ac)	CN	Desc	ription		
	0.	027	98	Pave	d roads w	/curbs & se	ewers, HSG A
	0.	387	98	Roof	s, HSG A		
*	1.	134	77	Dirt r	oads, HS0	G A/B	
*	15.	053	42	Woo	ds. Good.	HSG A/B	
*	0.	381	50	>75%	6 Grass co	over. Good	HSG A/B
	0.	406	39	>75%	6 Grass co	over. Good	HSG A
	2.	174	30	Woo	ds, Good,	HSG A	
	19.	562	44	Weig	hted Aver	age	
	19.	148		97.88	3% Pervio	us Area	
	0.	414		2.129	% Impervi	ous Area	
	Tc	Length	n S	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	27.3	100) ().	0100	0.06		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.44"
	3.5	175	5 0.	0280	0.84		Shallow Concentrated Flow,
							Woodland Kv= 5.0 fps
	22.7	961	1 0.	0050	0.71		Shallow Concentrated Flow,
_							Nearly Bare & Untilled Kv= 10.0 fps
_	53.5	1,236	6 To	otal			

Hydrograph Runoff 1.92 cfs 2 Type III 24-hr 10yr Rainfall=5.05" Runoff Area=19.562 ac Runoff Volume=0.671 af Flow (cfs) Runoff Depth=0.41" Flow Length=1,236' Tc=53.5 min **CN=44** 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Subcatchment DA1: Pond

Summary for Pond SP1: Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	rea =	19.562 ac,	2.12% Impervious,	Inflow Depth = 0.4	41" for 10yr event
Inflow	=	1.92 cfs @	13.06 hrs, Volume	= 0.671 af	
Primary	=	1.92 cfs @	13.06 hrs, Volume	= 0.671 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond SP1: Pond

Time (hours)

Time span=0.00-40.00 hrs, dt=0.05 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

> Runoff Area=19.562 ac 2.12% Impervious Runoff Depth=1.44" Flow Length=1,236' Tc=53.5 min CN=44 Runoff=11.01 cfs 2.342 af

Pond SP1: Pond

Subcatchment DA1: Pond

Inflow=11.01 cfs 2.342 af Primary=11.01 cfs 2.342 af

Total Runoff Area = 19.562 acRunoff Volume = 2.342 afAverage Runoff Depth = 1.44"97.88% Pervious = 19.148 ac2.12% Impervious = 0.414 ac

Summary for Subcatchment DA1: Pond

Runoff = 11.01 cfs @ 12.86 hrs, Volume= 2.342 af, Depth= 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs Type III 24-hr 100yr Rainfall=7.60"

	Area	(ac)	CN	Desc	ription		
	0.	027	98	Pave	d roads w	/curbs & se	ewers, HSG A
	0.	387	98	Roof	s, HSG A		
*	1.	134	77	Dirt r	oads, HS0	G A/B	
*	15.	053	42	Woo	ds. Good.	HSG A/B	
*	0.	381	50	>75%	6 Grass co	over. Good	HSG A/B
	0.	406	39	>75%	6 Grass co	over. Good	HSG A
	2.	174	30	Woo	ds, Good,	HSG A	
	19.	562	44	Weig	hted Aver	age	
	19.	148		97.88	3% Pervio	us Area	
	0.	414		2.129	% Impervi	ous Area	
	Tc	Length	n S	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	27.3	100) ().	0100	0.06		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.44"
	3.5	175	5 0.	0280	0.84		Shallow Concentrated Flow,
							Woodland Kv= 5.0 fps
	22.7	961	1 0.	0050	0.71		Shallow Concentrated Flow,
_							Nearly Bare & Untilled Kv= 10.0 fps
_	53.5	1,236	6 To	otal			

Subcatchment DA1: Pond

Summary for Pond SP1: Pond

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	\rea =	19.562 ac,	2.12% Impervious,	Inflow Depth = 1.4	44" for 100yr event
Inflow	=	11.01 cfs @	12.86 hrs, Volume	= 2.342 af	
Primary	/ =	11.01 cfs @	12.86 hrs, Volume	= 2.342 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.05 hrs

Pond SP1: Pond

APPENDIX E

TSS and Recharge Calculations

	Location:	DA3 to Surface Infiltration B	asin overflow to SP1		
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
n					
atic	Bioretention Area	0.90	1.00	0.90	0.10
in .	Subsurface Infiltration				
alc	Structure	0.80	0.10	0.08	0.02
sh					
ova Srk	Infiltration Basin	0.80	0.02	0.02	0.00
ĔĂ					
Re		0.00	0.00	0.00	0.00
S					
Ĕ		0.00	0.00	0.00	0.00
		Total T	SS Removal =	100%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Drojact	20107		100%	
	Prenared Rv	RAC		*Equals remaining load from	n previous BMP (F)
	Date:	12/29/2020		which enters the BMP	

	Location:	DA3R to Subsurface Chamb	pers and Natural Depression		
	В	С	D	Е	F
	1	TSS Removal	Starting TSS	Amount	Remaining
	BMP'	Rate	Load*	Removed (C*D)	Load (D-E)
ation	Subsurface Infiltration Structure	0.80	1.00	0.80	0.20
alcula	Infiltration Basin	0.80	0.20	0.16	0.04
oval C orkshe		0.00	0.04	0.00	0.04
Remo		0.00	0.04	0.00	0.04
TSS		0.00	0.04	0.00	0.04
		Total T	SS Removal =	96%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	20107			-
	Prepared By:	RAC		*Equals remaining load from	n previous BMP (E)
	Date:	12/29/2020		which enters the BMP	

TSS Removal Efficiencies for Best Management Practices					
Best Management Practice (BMP)	TSS Removal Efficiency				
Non-Struct	Non-Structural Pretreatment BMPs				
Street Sweeping	0-10%, See Volume 2, Chapter 1.				
Structura	I Pretreatment BMPs				
Deep Sump Catch Basins	25% only if used for pretreatment and only if off-line				
Oil Grit Separator	25% only if used for pretreatment and only if off-line				
Proprietary Separators	Varies – see Volume 2, Chapter 4.				
Sediment Forebays	25% if used for pretreatment				
Vegetated filter strips	10% if at least 25 feet wide, 45% if at least 50 feet wide				
Tı	reatment BMPs				
Bioretention Areas including rain	90% provided it is combined with adequate				
gardens	pretreatment				
Constructed Stormwater Wetlands	80% provided it is combined with a sediment forebay				
Extended Dry Detention Basins	50% provided it is combined with a sediment forebay				
Gravel Wetlands	80% provided it is combined with a sediment forebay				
Proprietary Media Filters	Varies – see Volume 2, Chapter 4				
Sand/Organic Filters	80% provided it is combined with sediment forebay				
Treebox filter	80% provided it is combined with adequate				
	pretreatment				
Wet Basins	80% provided it is combined with sediment forebay				
	Conveyance				
Drainage Channels	For conveyance only. No TSS Removal credit.				
Grass Channels (formerly biofilter	50% if combined with sediment forebay or equivalent				
swales)					
Water Quality Swale –	70% provided it is combined with sediment forebay or				
wet & dry	equivalent				
In	filtration BMPs				
Dry Wells	80% for runoff from non-metal roofs; may also be used				
	for runoff from metal roofs but only if metal roof is not				
	located within a Zone II, or IWPA or at an industrial site				
Infiltration Basins & Infiltration	80% provided it is combined with adequate				
Irenches	pretreatment (sediment forebay or vegetated filter strip,				
	grass channel, water quality swale prior to initiation				
Leaching Catch Basins	80% provided a deep sump catch basin is used for				
	pretreatment				
Subsurface Structure	80% provided they are combined with one or more				
	pretreatment BMPs prior to infiltration.				
	Other BMPs				
Dry Detention Basins	For peak rate attenuation only. No TSS Removal credit.				
Green Roofs	See Volume 2. Chapter 2. May reduce required water				
	quality volume. No TSS Removal Credit.				
Porous Pavement	80% if designed to prevent runon and with adequate				
	storage capacity. Limited to uses identified in Volume				
	2, Chapter 2.				
Rain Barrels and Cisterns	May reduce required water quality volume. No TSS				
	Removal Credit.				

From MassDEP Stormwater Handbook Vol. 1

APPENDIX F

Stormwater Operation and Maintenance Plan

(bound separately)

APPENDIX G

Groundwater Mounding Analysis

Enter data in green cells as per their yellow labels, other values will be computed from those entries.

Results are highlighted in pink.

									-	overall dist in other di	tance mension,	I _s				x	
		Zma	ax Beneat	h Center o	f Entire Dra	ain Field (L*V	∨)			otherwise	it is W				dis	tance from c	enter
Meters and Days	Length of Drain Field Subunit	Width of Drain Field Subunit		Separation between Drain Field Subunits	Fraction of Drain Field Subunit that is Trench Area	Horizontal Hydraulic Conductivity	Specific Yield use 0.001 to approximate steady state at 10 years	time use 10 years to approximate steady state			subunit (I*v	v) •	W _s S	n = 2 f = fract	in I me ional area tl	ong direction asured from nat is trench = 1	n center 0.5
	l _s	Ws		Sp	f	Kh	Sy	time				•					
	ft	ft		ft		ft/days	none	days			lf	this distan	ice is > I, the	n it is overa	all L, othei	wise it is W	
	74.82	39.5	5		1	90	0.001	3650			0	verall dime	ensions:				
	L	w	q effective in subunit Is x ws	q in trenches	q' effective on LxW	Q	Zmax 12	Initial Saturated Thickness			If If	: n*W+(n-1 : n*W+(n-1)*Sp > I _s , L =)*Sp < I _s , W =	= n*W+(n-1) = n*W+(n-1)	*Sp other *Sp other	wise L = I _s wise W = w	
Number of							iterations		alpna	beta	a2+b2	w part1	vv(a2+b2)	5"	ZI	niter	aipna
subunits, n	ft	ft	ft/day	ft/day	ft/day	gallons/day	ft	ft			NOTE: if a2+b	2>0.04, solut	tion is inaccura	te			
1	74.82	39.5	7.0163	7.0163	7.0163	155,105	2.341	150	8.42645E-05	4.4486E-05	9.07951E-09	9 17.940031	17.94003108	9.28182E-0	8 2.358	151.1792474	8.39352E-05
1	74.82	39.5	7.0163	7.0163	7.0163	155,105	2.341	150	8.42645E-05	4.4486E-05	9.07951E-09	9 17.940031	17.94003108	9.28182E-0	8 2.358	151.1792474	8.39352E-05
1	74.82	39.5	7.0163	7.0163	7.0163	155,105	2.341	150	8.42645E-05	4.4486E-05	9.07951E-09	9 17.940031	17.94003108	9.28182E-0	8 2.358	151.1792474	8.39352E-05
1	74.82	39.5	7.0163	7.0163	7.0163	155,105	2.341	150	8.42645E-05	4.4486E-05	9.07951E-09	9 17.940031	17.94003108	9.28182E-0	8 2.358	151.1/924/4	8.39352E-05

If this distance is >

copy an entire row from above and insert copied cells above this line to evaluate various loading rates and numbers of subunits

				Water Tab	le Rise or	Side Slope											
		Uses S	Subunit Ge	eometry an	d Material	Properties fr	om Zmax T	able									
L W effective in subunit Is x ws q in trenches ws q' effective on LxW Q I/day Q I/day Distance from Center of Drain Field in Long Distance from Center of Drain Field in Long Dimension (x in figure) in figure)							Initial Saturated Thickness	alpha1	alpha2	beta1	beta2	a2+b2	W part1	W(a2+b2)			
Number of subunits, n	ft	ft	ft/day	ft/day	ft/day	gallons/day	ft	ft	ft	ft					NOTE: if a	2+b2>0.04, sol	lution is inaccu
1	74.82	39.5	7.0163	7.0163	7.0163	155105.076 155105.076	2.341			150	8.42645E-05	5 8.426E-0	5 4.4486E-05	4.4486E-05	9.08E-09	17.94003108	17.94003108
-	74.82 74.82 74.82	39.5 39.5 39.5	7.0163 7.0163 7.0163	7.0163 7.0163 7.0163	7.0163 7.0163 7.0163	155105.076 155105.076 155105.076	2.341 2.341 2.341			150 150 150	8.42645E-05 8.42645E-05	5 8.426E-0 5 8.426E-0 5 8.426E-0	5 4.4486E-05 5 4.4486E-05 5 4.4486E-05	4.4486E-05 4.4486E-05 4.4486E-05	9.08E-09 9.08E-09 9.08E-09	17.94003108 17.94003108 17.94003108	17.94003108 17.94003108 17.94003108

to evaluate various loading rates and numbers of subunits

				Water Tab	ole Rise or	Side Slope											
		Uses S	Subunit Ge	eometry ar	nd Material	Properties fr	om Zmax T	able									
	L	w	q effective in subunit Is x ws	q in trenches	q' effective on LxW	Q I/day	Zsx 12 iterations	Distance from Center of Drain Field in Long Dimension (x in figure)	Distance from Center of Drain Field in Wide Dimension (y in figure)	Initial Saturated Thickness	alpha1	alpha2	beta1	beta2	a2+b2	W part1	W(a2+b2)
Number of subunits, n	ft	ft	ft/day	ft/day	ft/day	gallons/day	ft	ft	ft	ft					NOTE: if a	2+b2>0.04, sol	ution is inaccu
1	75.2	34.8	6.6669	6.6669	6.6669	130503.3255	1.982			150	8.46924E-05	8.469E-05	3.91928E-05	3.91928E-05	8.71E-09	17.9817078	17.9817078
1	75.2	34.8	6.6669	6.6669	6.6669	130503.3255	1.982			150	8.46924E-05	8.469E-05	3.91928E-05	3.91928E-05	8.71E-09	17.9817078	17.9817078
1	75.2	34.8	6.6669	6.6669	6.6669	130503.3255	1.982			150	8.46924E-05	8.469E-05	3.91928E-05	3.91928E-05	8.71E-09	17.9817078	17.9817078
1	75.2	34.8	6.6669	6.6665	0.6669	130503.3255	1.982			150	8.46924E-05	8.469E-05	3.91928E-05	3.91928E-05	8.71E-09	17.9817078	17.9817078

+h2:	>0.04 solutio	n is inaccurat	<u>م</u>			
	-0.04, 301atio	in io inaccurat	0			
-09	17.981708	17.9817078	8.24923E-08	1.994	150.9970613	8.44123
-09	17.981708	17.9817078	8.24923E-08	1.994	150.9970613	8.44123
-09	17.981708	17.9817078	8.24923E-08	1.994	150.9970613	8.44123
~~	17 00 1700	1 - 001 - 0 - 0		1 00 1	1	

Water Table Mounding calculated based on Hantush 1967, WRR

Enter data in green cells as per their yellow labels, other values will be computed from those entries.

Results are highlighted in pink.

		Zma	ax Beneat	h Center of		I	in other di then it is o otherwise	mension, overall L, — it is W			
Meters and Days	Length of Drain Field Subunit	Width of Drain Field Subunit		Separation between Drain Field Subunits	Fraction of Drain Field Subunit that is Trench Area	Horizontal Hydraulic Conductivity	Specific Yield use 0.001 to approximate steady state at 10 years	time use 10 years to approximate steady state			subunit (I*w)
	l _s	Ws		Sp	f	Kh	Sy	time			
	ft	ft		ft		ft/days	none	days			lf ti
	117.88	53.75			1	90	0.001	3650			Ov
	L	w	q effective in subunit Is x	q in trenches	q' effective on LxW	Q	Zmax 12	Initial Saturated Thickness			lf: lf:
			ws				iterations		alpha	beta	a2+b2
Number of subunits, n	ft	ft	ft/day	ft/day	ft/day	gallons/day	ft	ft			NOTE: if a2+b2:
1	117.88	53.75	7.4358	7.4358	7.4358	352,408	5.011	150	0.00013276	6.05348E-05	2.12896E-08
1	117.88	53.75	7.4358	7.4358	7.4358	352,408	5.011	150	0.00013276	6.05348E-05	2.12896E-08
1	117.88	53.75	7.4358	7.4358	7.4358	352,408	5.011	150	0.00013276	6.05348E-05	2.12896E-08
1	117.88	53.75	7.4358	7.4358	7.4358	352,408	5.011	150	0.00013276	0.05348E-05	2.12896E-08

copy an entire row from above and insert copied cells above this line to evaluate various loading rates and numbers of subunits

				Water Tak	ole Rise on	Side Slope											
		Uses S	Subunit Ge	eometry an	d Material	Properties fr	rom Zmax ⊺	Fable									
L W effective in subunit Is x ws q in trenches ws q' effective on LxW Q I/day Q I/day Distance from Center of Drain Field in Long Distance from Center of Drain Field in Long Dimension (x in figure)								Initial Saturated Thickness	alpha1	alpha2	beta1	beta2	a2+b2	W part1	W(a2+b2)		
Number of subunits, n	ft	ft	ft/day	ft/day	ft/day	gallons/day	ft	ft	ft	ft					NOTE: if a	2+b2>0.04, sol	lution is inaccu
	1 117.88	53.75	7.4358	7.4358	7.4358	352407.8565	5.011			150	0.00013276	0.0001328	6.05348E-05	6.05348E-05	2.13E-08	17.08783001	17.08783001
	1 117.88 1 117.88	53.75 53.75	7.4358 7.4358 7.4358	7.4358 7.4358 7.4358	7.4358 7.4358 7.4358	352407.8565 352407.8565 352407.8565	5.011 5.011 5.011			150 150 150	0.00013276	0.0001328	6.05348E-05 6.05348E-05 6.05348E-05	6.05348E-05 6.05348E-05	2.13E-08 2.13E-08 2.13E-08	17.08783001 17.08783001 17.08783001	17.08783001 17.08783001 17.08783001

overall distance

if a2+b2>	if a2+b2>0.04, solution is inaccurate												
396E-08	17.08783	17.08783001	1.90616E-07	5.087	152.5435708	0.000131648							
396E-08	17.08783	17.08783001	1.90616E-07	5.087	152.5435708	0.000131648							
396E-08	17.08783	17.08783001	1.90616E-07	5.087	152.5435708	0.000131648							

17.08783 17.08783001 1.90616E-07

5.087 152.5435708 0.000131648

to evaluate various loading rates and numbers of subunits

					Water Tab	le Rise or	Side Slope											
		Uses	s Sı	ubunit Ge	eometry an	d Material	Properties fr	om Zmax T	able									
	L	w		q effective in subunit Is x ws	q in trenches	q' effective on LxW	Q I/day	Zsx 12 iterations	Distance from Center of Drain Field in Long Dimension (x in figure)	Distance from Center of Drain Field in Wide Dimension (y in figure)	Initial Saturated Thickness	alpha1	alpha2	beta1	beta2	a2+b2	W part1	W(a2+b2)
Number of subunits, r	ft	ft		ft/day	ft/day	ft/day	gallons/day	ft	ft	ft	ft					NOTE: if a	2+b2>0.04, sol	ution is inaccu
	1 39.2	2 2	20.5	5.9699	5.9699	5.9699	35902.85564	0.585			150	4.41707E-05	4.417E-05	2.30877E-05	2.30877E-05	2.48E-09	19.2361435	19.2361435
	1 39.2		20.5	5.9699	5.9699	5.9699	35902.85564	0.585			150	4.41707E-05	4.417E-05	2.30877E-05	2.30877E-05	2.48E-09	19.2361435	19.2361435
	1 39.2	2 2	20.5	5.9699	5.9699	5.9699	35902.85564	0.585			150	4.41707E-05	4.417E-05	2.30877E-05 2.30877E-05	2.30877E-05	2.48E-09 2.48E-09	19.2361435	19.2361435

	vv parti		3	21	Tille	71	арпа
+b2	>0.04, solut	ion is inaccurat	е				
-09	19.236144	19.2361435	2.69368E-08	0.	586 1	150.292906	4.41276E-05
-09	19.236144	19.2361435	2.69368E-08	0.	586 1	150.292906	4.41276E-05
-09	19.236144	19.2361435	2.69368E-08	0.	586 1	150.292906	4.41276E-05
-09	19.236144	19,2361435	2.69368E-08	0	586 1	150 292906	4 41276E-05

INFILTRATION BASIN

copy an entire row from above and insert copied cells above this line to evaluate various loading rates and numbers of subunits

				Water Tak	ole Rise on	Side Slope											
		Uses S	Subunit Ge	eometry an	d Material	Properties fr	om Zmax T	able			_						
	L	w	q effective in subunit Is x ws	q in trenches	q' effective on LxW	Q I/day	Zsx 12 iterations	Distance from Center of Drain Field in Long Dimension (x in figure)	Distance from Center of Drain Field in Wide Dimension (y in figure)	Initial Saturated Thickness	alpha1	alpha2	beta1	beta2	a2+b2	W part1	W(a2+b2)
Number of subunits, n	ft	ft	ft/day	ft/day	ft/day	gallons/day	ft	ft	ft	ft					NOTE: if a	2+b2>0.04, sol	ution is inaccu
1	370 370	30	11.4746 11.4746	11.4746 11 4746	11.4746 11 4746	952711.6532 952711.6532	11.767			150 150	0.000416705	0.0004167	3.37869E-05	3.37869E-05	1.75E-07 1.75E-07	14.98249795 14 98249795	14.98249795 14 98249795
1	370 370 370	30 30) 11.4746) 11.4746) 11.4746	11.4746 11.4746	11.4746 11.4746 11.4746	952711.6532 952711.6532	11.767 11.767 11.767			150 150 150	0.000416705 0.000416705	0.0004167 0.0004167	3.37869E-05 3.37869E-05	3.37869E-05 3.37869E-05	1.75E-07 1.75E-07 1.75E-07	14.98249795 14.98249795	14.98249795 14.98249795

-07	14.982498	14.98249795	3.02304E-07	12.168	156.0838299	0.000408503
-07	14.982498	14.98249795	3.02304E-07	12.168	156.0838299	0.000408503
-07	14.982498	14.98249795	3.02304E-07	12.168	156.0838299	0.000408503
-07	14.982498	14.98249795	3.02304E-07	12.168	156.0838299	0.000408503