

STORMWATER MANAGEMENT PLAN

2400-2402 CRANBERRY HIGHWAY WAREHAM, MASSACHUSETTS 02571

APPLICANT/OWNER

WAREHAM DEVELOPMENT, LLC & JB DEVELOPMENT, LLC BOURNE ACQUISITION, LLC & 2527 LLC 670 N. COMMERCIAL STREET SUITE 212 MANCHESTER, NH 03101

BY NOBIS GROUP® 585 MIDDLESEX STREET LOWELL, MA 01851 (978) 683-0891

www.nobis-group.com

Nobis Project No. 095561.150 DATED: APRIL 6, 2022 REVISED JULY 18, 2022

www.nobis-group.com

TABLE OF CONTENTS TRUE STORAGE FACILITY 2400 & 2402 CRANBERRY HIGHWAY, WAREHAM, MA

PAGE

<u>SECTIO</u>	N			PAGE
1.0	STOR	MWATE	R MANAGEMENT REPORT NARRATIVE	1
	1.1	PROJE	CT DESCRIPTION	1
	1.2	SITE D	ESCRIPTION	1
	1.3	HYDRC	DLOGIC ANALYSIS	2
		1.3.1	EXISTING CONDITIONS	3
		1.3.2	PROPOSED CONDITIONS	4
	1.4	WATEF	R QUALITY	
		1.4.1	WATER QUALITY CONTROL MEASURES	5
		1.4.2	STORMWATER RECHARGE	5
	1.5	CONCL	LUSION	6
2.0	REGUI	LATORY	COMPLIANCE	6
	2.1	MASSA	ACHUSETTS DEPARTMENT OF ENVIRONMENTAL	
		PROTE	CTION (MASSDEP) STORMWATER MANAGEMENT	
			DARDS	
		2.1.1	STANDARD #1: NO NEW UNTREATED DISCHARGES	
		2.1.2	STANDARD #2: PEAK RATE ATTENUATION	7
		2.1.3	STANDARD #3: RECHARGE	
		2.1.4	STANDARD #4: WATER QUALITY	9
		2.1.5	STANDARD #5: LAND USES WITH HIGHER POTENTIA	L
			POLLUTANT LOADS (LUHPPLS)	10
		2.1.6	STANDARD #6: CRITICAL AREAS	10
		2.1.7	STANDARD #7: REDEVELOPMENT AND OTHER	
			PROJECTS SUBJECT TO THE STANDARDS ONLY TO	
			THE MAXIMUM EXTENT PRACTICABLE	11
		2.1.8	STANDARD #8: CONSTRUCTION PERIOD POLLUTION	i
			PREVENTION AND EROSION AND SEDIMENTATION	
			CONTROL	11
		2.1.9	STANDARD #9: OPERATION AND MAINTENANCE	
			PLAN	11
		2.1.10	STANDARD #10: PROHIBITION OF ILLICIT DISCHARG	E12
	2.2	EPA NA	ATIONAL POLLUTANT DISCHARGE ELIMINATION	
		SYSTE	M (NPDES)	12

TABLE OF CONTENTS TRUE STORAGE FACILITY 2400 & 2402 CRANBERRY HIGHWAY, WAREHAM, MA

SECTION

PAGE

2.2.1 CONSTRUCTION GENERAL PERMIT (CGP)12

FIGURES

- 1 EXISTING DRAINAGE AREA PLAN
- 2 PROPOSED DRAINAGE AREA PLAN

APPENDICES

- SOIL INFORMATION Α **TEST PIT & BORING LOCATION PLAN TEST PIT & BORING LOGS** PERMEABILITY TESTING В HYDROCAD ANALYSIS EXTREME PRECIPITATION TABLE EXISTING CONDITIONS HYDROCAD CALCULATIONS PROPOSED CONDITIONS HYDROCAD CALCULATIONS С **RECHARGE VOLUME & DRAWDOWN CALCULATIONS** HYDROCAD STAGE-AREA STORAGE TABLE **RECHARGE VOLUME CALCULATIONS** DRAWDOWN CALCULATIONS D WATER QUALITY & TSS REMOVAL CALCULATIONS WATER QUALITY CALCULATIONS **TSS REMOVAL CALCULATIONS**
- E STORMWATER POLLUTION PREVENTION PLAN (SWPPP)
- F OPERATIONS & MAINTENANCE PLAN
- G MASSDEP CHECKLIST FOR STORMWATER REPORT

1.0 STORMWATER MANAGEMENT REPORT NARRATIVE

This Stormwater Management Report has been prepared to demonstrate compliance with the Massachusetts Department of Environmental Protection (MassDEP) Stormwater Management Standards in accordance with the Massachusetts Wetlands Protection Act Regulations (310 CMR 10.00) and Water Quality Certification Regulations (314 CMR 9.00).

1.1 **PROJECT DESCRIPTION**

The Owner/Applicant, Wareham Development, LLC, JB Development, LLC, Bourne Acquisition, LLC & 2527 LLC, is proposing to develop an existing parcel of land located at 2400 & 2402 Cranberry Highway in Wareham, Massachusetts (the "Site"). The subject properties are identified by the Town of Wareham Assessor's office as Tax Map 108 Lots 1002.B1, 1002.B2, 1002.D, 1003.B1, 1003.B2, and 1003.B3. The Site currently consists of a 6,900 square foot one-story building that was used as a Buick Dealership showroom and garage and most recently as Wareham Pharmacy. The northern portion of the building was used as the auto showroom/pharmacy retail area. The southern portion of the building is a three-bay garage. A former auto body shop was located to the south of the standing structure. This was demolished and little evidence of the structure is left. A residential house was historically located on the southern portion of 2402 Cranberry Highway, this structure was demolished, and no apparent evidence of the structure remains.

The Applicant proposes to develop the Site in order to construct a 60,000 square foot storage facility. As proposed, the Project includes the demolition of the former auto showroom/pharmacy, three-bay garage and the existing pavement parking and driveways including the closer of three driveways to Cranberry Highway. The redevelopment will include the construction of the storage facility building, new parking and drive aisles, landscape improvements, and utility and stormwater management improvements to support the redevelopment.

1.2 SITE DESCRIPTION

The Site is a 3-acre parcel of land located at 2400 & 2402 Cranberry Highway (MA Route 28) in Wareham, Massachusetts bounded by commercial and residential properties. Great Hill Drive and the Great Hill Estates Mobile Home Park are located immediately north and east of the Site. A vacant building is located immediately southeast of the Site. Across Cranberry Highway, wooded land and a truck repair shop are located to the southwest and west of the subject property.

A portion of the Site lies within a surface watershed draining to a wetland complex and stream that is connected to Horseshoe Pond. The surface water runoff is collected along Cranberry

Highway and piped to the wetland complex southwest of the site. The north and eastern portions of the Site drain to a low point and infiltrate into the ground surface.

Existing topography from the central portion of the Site slopes from the building(s) at approximately elevation 50.7 to Cranberry Highway to the south and west to approximately elevation 49.5 to 50.0. Existing topography along the north and east of the Site ranges from approximately elevation 52.5 at the North corner adjacent to Great Hill Drive to elevation 46.5 at the eastern low point of the Site. Please refer to the Existing Conditions Plan, which is included as part of the Site Plans.

Based on available information and field observations performed by a professional wetlands scientist, there are no known wetland resource areas or associated buffers located on, or within 100-ft of the Site. According to the Natural Resources Conservation Service (NRCS) Web Soil Survey, 90% of the Site is classified as Urban land (#602B) and 10% of the Site is classified as Montauk fine sandy loam and Montauk-Urban land complex (#301B and #636B). Montauk soils refer to well drained soils formed in lodgment or flow till, in upland hills and moraines.

Nobis Group prepared a Geotechnical Engineering Report for the Site dated November 21, 2021 based on the findings of subsurface investigations. Nobis Group and Provencher Engineering, LLC coordinated and observed numerous test borings and test pits throughout 2020 and 2021. The general subsurface soil conditions encountered in the test borings and test pits consisted of a surficial layer of topsoil and/or fill (up to 7 feet thick) underlain by natural sand/gravel. Groundwater was generally observed 5 to 9 below existing ground. Test pits TP-103 through TP-108 were performed in support of the design of proposed potential stormwater infiltration systems. Constant head and falling head infiltration tests were performed to determine the saturated hydraulic conductivity of the soil where proposed infiltration BMP's could occur. Per the Massachusetts Stormwater Handbook, "Dynamic Field" Method, an infiltration testing are provided in Appendix A.

1.3 HYDROLOGIC ANALYSIS

The hydrologic analysis was performed using the HydroCAD computer program. The HydroCAD model is based on the Natural Resources Conservation Service (NRCS) Technical Release 20 (TR-20) Model for Project Formulation Hydrology. Runoff coefficients for the existing and proposed development conditions were determined using NRCS Technical Release 55 (TR-55) methodology as provided in HydroCAD. Rainfall volumes used for this analysis are based on the "Extreme

Precipitation in a Changing Climate for New York and the New England States", version 1.12, published by the USDA, NRCS and Cornell University's Northeast Regional Climate Center.

1.3.1 EXISTING CONDITIONS

Under existing conditions, the Site is mostly developed to the south and west and undeveloped woods to the north and east. The developed portion of the Site is abandoned/vacant. Previous uses most recently were a car showroom and garage and retail pharmacy. The existing pavement is deteriorating with vegetation coming up through the cracks in the pavement. Runoff from the developed portion of the Site appears to flow overland, untreated to Cranberry Highway. Runoff from the undeveloped portion of the Site appears to flow overland and infiltrate at a low point in the woods. Figure 1 illustrates the existing drainage patterns on the Site.

Currently, the Site is divided into six (6) drainage areas and stormwater runoff flows to three (3) points of interest, which have been identified as Onsite Infiltration East, Offsite Southeast, and Cranberry Highway. Descriptions of the existing drainage areas are listed below:

- Drainage Area E-1 is a 123,196 square foot area that is located at the north and east portions of the property. The area is primarily wooded but also includes some of the developed Site including the three-car garage bay and small portions of the paved parking lot. Stormwater runoff from this drainage area primarily flows overland and untreated to a depression within the wooded area on-site. The runoff is contained and infiltrates in the local depression for all storm events analyzed.
- Drainage Area E-2 is a 4,645 square foot area that is located adjacent to the southeast property line. The area is primarily grassed and wooded with a small portion of the area containing a rubble stockpile and gravel surface from the previously developed land. Stormwater runoff from this drainage area flows overland and untreated onto the adjacent property to the southeast.
- Drainage Areas E-3 through E-6 total a 65,134 square foot area that is located along the west portion of the property. The area primarily contains the developed area of the Site including buildings, paved surfaces, and portions of Cranberry Highway. Stormwater runoff from this drainage area flows overland and untreated to the drainage system in Cranberry Highway.

1.3.2 **PROPOSED CONDITIONS**

In the proposed condition, previously untreated runoff from the Site will be directed to new control measures to provide the required water quality treatment and stormwater recharge. The proposed Site layout will result in improved infiltration and groundwater recharge. Figure 2 illustrates the proposed post construction drainage conditions for the Site.

In the proposed condition, the Site will be divided into fifteen (15) drainage areas that discharge treated stormwater to three (3) existing points of interest. Descriptions of the proposed drainage areas are listed below:

- Drainage Area P-1A is a 83,866 square foot area that is located at the north, east, and southeast portions of the property. The area is primarily comprised of an undisturbed wooded area, the proposed sewage disposal system and the proposed stormwater infiltration basin including the sediment forebay.
- Drainage Areas P-1B through P-1E total a 14,792 square foot area consisting almost entirely of paved parking and driveways along the east side of the developed area. The stormwater runoff from these areas is captured in deep-sump hooded catch basins and discharged into Sediment Forebay 1 in Drainage Area P-1A.
- Drainage Area P-1F is a 30,000 square foot area that is located centrally to the Site. The area is comprised of the roof area only. Stormwater runoff is collected by roof drains prior to being discharged to the stormwater infiltration basin located in P-1A.
- Drainage Area P-2 is a 5,227 square foot area that is located adjacent to the southeast property line. The area is primarily grassed and wooded. Stormwater runoff from this drainage area flows overland onto the adjacent property to the southeast similarly to the existing conditions.
- Drainage Areas P-6A through P-6E total a 22,329 square foot area consisting almost entirely of paved parking and driveways along the west side of the developed area. The stormwater runoff from these areas is captured in deep-sump hooded catch basins and discharged into Sediment Forebay 2 in Drainage Area P-1A.

• Drainage Areas P-3 through P-6 total a 36,761 square foot area that is located along the west portion of the property. The area primarily contains the developed area of the Site including portions of Cranberry Highway, landscaped areas, and the sidewalks and driveway within the State Highway Layout. Stormwater runoff from this drainage area flows overland to the drainage system in Cranberry Highway.

Please refer to Appendix B for detailed printouts of the HydroCAD analysis. Hydrologic results are summarized in the Regulatory Compliance section of this report.

1.4 WATER QUALITY

Stormwater runoff from the proposed driveway areas will be collected in a series of deep-sump hooded catch basins and piped to sediment forebays prior to being discharged to the infiltration basin onsite. Clean runoff from the roof will be collected and routed directly to the infiltration basin for recharge.

1.4.1 WATER QUALITY CONTROL MEASURES

The proposed stormwater management systems implement a treatment train of Best Management Practices (BMPs) that has been designed to provide a minimum 80% TSS (total suspended solids) removal for stormwater runoff from the proposed roadway and driveways. TSS removal is proposed to be obtained through the use of deep- sump, hooded catch basins and sediment forebays for the infiltration basin. Calculations for the provided TSS removal are provided in Appendix D.

The treatment train for the proposed infiltration basin provides efficient removal of free oils, debris and total suspended solids (TSS). The BMP's progress through a series of deep-sump hooded catch basins discharging to sediment forebays. The sediment forebays are designed to hold a volume of 0.1-inch of runoff per impervious acre. From the sediment forebay, the stormwater runoff discharges into the infiltration basin through a stone weir/spillway. The infiltration basin has been designed to treat the 1-inch water quality volume as required within an area with a rapid infiltration rate (greater than 2.4 inches per hour).

1.4.2 STORMWATER RECHARGE

Stormwater recharge for the proposed redevelopment significantly exceeds the requirements and is provided through the infiltration of treated runoff from the proposed impervious driveways and infiltration of clean runoff from the building roof area. Calculations for the provided recharge volume and system drawdown time for the infiltration basin are provided in Appendix C.

1.5 CONCLUSION

The stormwater management plan presented herein and as shown on the Site Plans has been prepared in accordance with applicable state, and federal regulations. The design includes Best Management Practices for maintaining stormwater runoff quality both during and after construction, and is designed to protect downstream and underlying receiving waters from stormwater related impacts. The Project will result in an improvement of stormwater runoff quality and quantity.

2.0 REGULATORY COMPLIANCE

2.1 MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION (MASSDEP) STORMWATER MANAGEMENT STANDARDS

The proposed True Storage Facility has been designed to comply with the stormwater management standards described in the Department of Environmental Protection's Stormwater Management Policy.

2.1.1 STANDARD #1: NO NEW UNTREATED DISCHARGES

No new stormwater conveyances may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The Project has been designed to fully comply with Standard 1.

No new untreated stormwater discharges are proposed under the development. All proposed stormwater conveyances for the Project will not cause erosion or scour to wetlands or receiving waters.

The Best Management Practices (BMPs) included in the proposed stormwater management system have been designed in accordance with the Massachusetts Stormwater Handbook. Supporting information and computations demonstrating that no new untreated discharges will result from the Project are presented below as part of Standards 4 through 6.

The project has been designed so that new stormwater conveyances do not discharge untreated stormwater into, or cause erosion to, wetlands or waters.

2.1.2 STANDARD #2: PEAK RATE ATTENUATION

Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre- development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

The Project has been designed to fully comply with Standard 2.

The rainfall-runoff response of the Site under existing and proposed conditions was analyzed for storm events with recurrence intervals of 2, 10, 25, and 100 years, per MassDEP standards. Rainfall volumes used for this analysis were based on the "Extreme Precipitation in a Changing Climate for New York and the New England States", version 1.12, published by the USDA, NRCS and Cornell University's Northeast Regional Climate Center; they were 3.35, 4.94, 6.16 and 8.62 inches, respectively. The results of the analysis, as summarized in Table 1 below, indicate that the post-development discharge rates do not exceed the pre-development discharge rates. Due to the amount of detention and infiltration provided by the infiltration basin, the post-development discharge rates are less than the pre-development discharge rates for all storm events analyzed.

POI #	DESCRIPTION									
			2 Year	10 Year	25 Year	100 Year				
			(cfs)	(cfs)	(cfs)	(cfs)				
POI-1	On-site	EXIST. =	0.0	0.0	0.0	0.0				
	Infiltration	PROP. =	0.0	0.0	0.0	0.0				
POI-2	Off-site Flow to	EXIST. =	0.1	0.2	0.3	0.5				
	Southeast	PROP. =	0.0	0.2	0.3	0.5				
	Abutter									
POI-3	Off-site Flow to	EXIST. =	2.8	4.5	5.7	8.3				
	Cranberry	PROP. =	1.0	1.8	2.5	3.9				
	Highway									

TABLE 1: PEAK DISCHARGE RATES

Additionally, stormwater volumes were analyzed for all storm events to ensure the Project will not cause any downstream flooding impacts. Again, Due to the amount of detention and infiltration provided by the infiltration basin, the post-development stormwater volumes are less than the pre-development stormwater volumes for all storm events analyzed. Table 2 below summarizes the stormwater volume analysis.

POI #	DESCRIPTION			ST	ORM EVE	NT
			2 Year	10 Year	25 Year	100 Year
			(cf)	(cf)	(cf)	(cf)
POI-1	On-site	EXIST. =	0.0	0.0	0.0	0.0
	Infiltration	PROP. =	0.0	0.0	0.0	0.0
POI-2	Off-site Flow to	EXIST. =	261	625	955	1,704
	Southeast	PROP. =	204	552	883	1,657
	Abutter					
POI-3	Off-site Flow to	EXIST. =	12,228	20,215	26,521	39,463
	Cranberry	PROP. =	4,296	8,014	11,130	17,801
	Highway					

 TABLE 2: STORMWATER VOLUME ANALYSIS

Please refer to Appendix B for detailed printouts of the HydroCAD analysis.

2.1.3 STANDARD #3: RECHARGE

Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from predevelopment conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The Project has been designed to fully comply with Standard 3.

Stormwater recharge for the proposed development is provided through infiltration of treated runoff from the proposed driveways and Site roadways, and infiltration of clean runoff from the building roof areas. The Project results in an increase of 15,897 sf of new impervious surfaces for a total of 62,792 sf of total impervious surfaces in the post-development condition. Runoff from all impervious areas on the Site will be directed to new BMPs, including a large infiltration basin which is designed to provide stormwater recharge significantly exceeding the requirements. Additionally 44% of the total suspended solids (TSS) are removed through pre-treatment of the stormwater prior to discharges to the infiltration basin as required within an area with a rapid infiltration rate (greater than 2.4 inches per hour). Calculations for the provided recharge volume and system drawdown time are provided in Appendix C.

Table 3 below summarizes the surface cover type areas for the Project.

Surface Cover Type	Existing	Proposed	Delta		
Impervious Surfaces					
Building	7,675	30,520	+22,845		
Pavement	23,467	32,272	+ 8,805		
Gravel	11,507	0	- 11,507		
Rubble	4,246	0	-4,246		
Total Impervious	46,895	62,792	+15,897		
Open Space	130,558	114,661	-15,897		

TABLE 3: SURFACE COVER TYPE AREAS (SQUARE FEET)

Please refer to Appendix C for computations and supporting information regarding groundwater recharge.

2.1.4 STANDARD #4: WATER QUALITY

Stormwater management systems shall be designed to remove 80% of the average annual postconstruction load of Total Suspended Solids (TSS). This Standard is met when:

- a) Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;
- b) Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
- c) Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The Project has been designed to fully comply with Standard 4.

The proposed stormwater management systems implement a treatment train of BMPs that have been designed to provide a minimum of 80% TSS removal for stormwater runoff from the proposed driveways.

Prior to entering the infiltration basin, the driveway runoff is captured in a series of deep-sump hooded catch basins prior to being discharged into a sediment forebay connecting to the infiltration basin. Roof runoff discharges directly into the infiltration basin with no pretreatment. The infiltration basin has been designed to treat the 1-inch water quality volume as required within an area with a rapid infiltration rate (greater than 2.4 inches per hour). Please refer to Appendix D for computations and supporting information regarding water quality.

2.1.5 STANDARD #5: LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS (LUHPPLS)

For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The Project has been designed to fully comply with Standard 5.

The Project will not generate more than 1,000 vehicle trips per day and therefore is not considered a land use with higher potential pollutant loads (LUHPPL).

2.1.6 STANDARD #6: CRITICAL AREAS

Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site- specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

The Project is not within a critical area and therefore has been designed to fully comply with the Standard 6.

The Project is not located within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area.

2.1.7 STANDARD #7: REDEVELOPMENT AND OTHER PROJECTS SUBJECT TO THE STANDARDS ONLY TO THE MAXIMUM EXTENT PRACTICABLE

A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The Project is a redevelopment and has been designed to fully comply with the Stormwater Management Standards.

Please refer to each Standard for demonstration of compliance and for applicable computations and supporting information.

2.1.8 STANDARD #8: CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL

A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

The Project will comply with Standard 8.

The Project will disturb approximately 3 acres of land is therefore required to obtain coverage under the Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Construction General Permit. As required under the permit, a Stormwater Pollution Prevention Plan (SWPPP) was been developed and is included in Appendix E of this report.

2.1.9 STANDARD #9: OPERATION AND MAINTENANCE PLAN

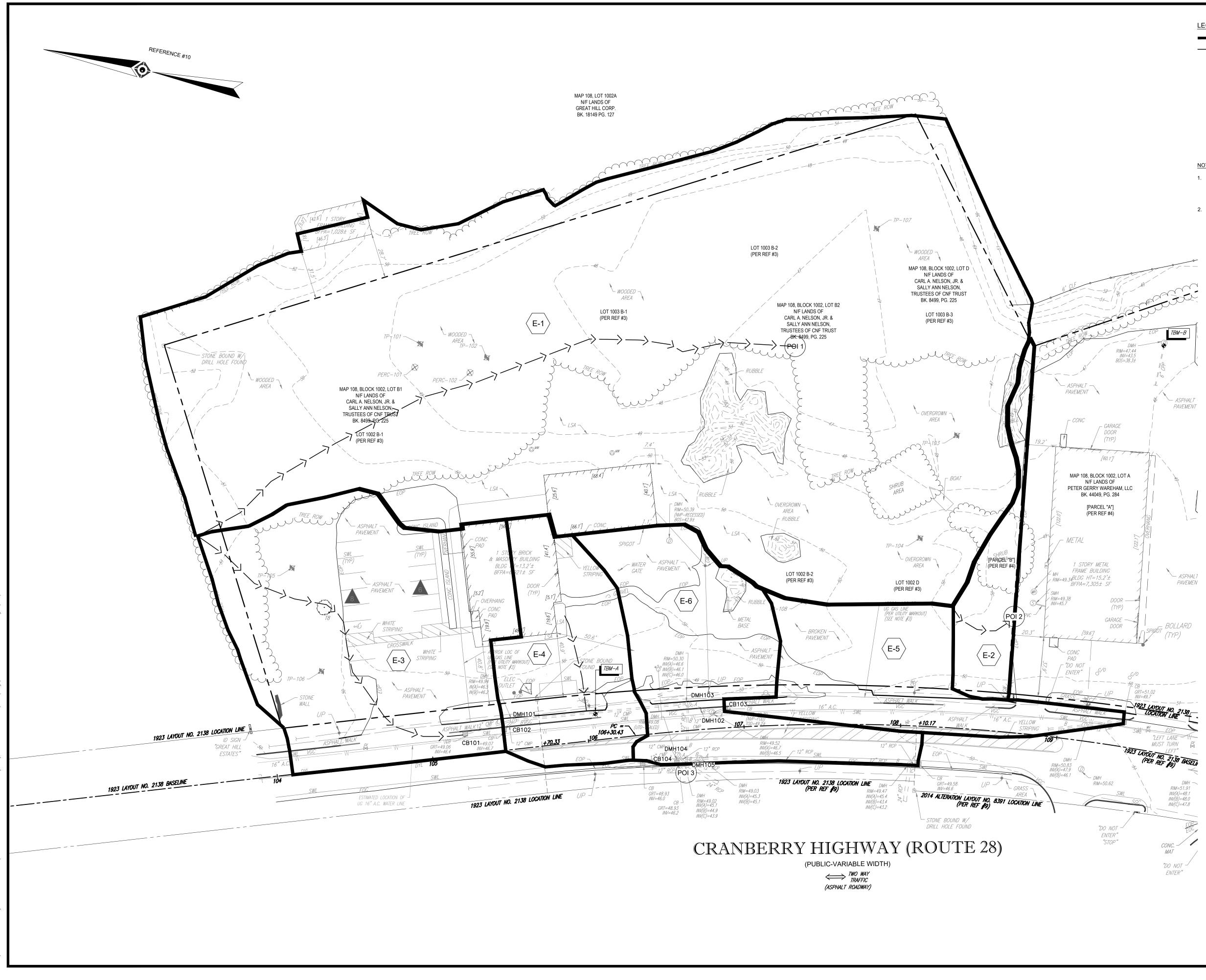
A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

The Project will comply with Standard 9.

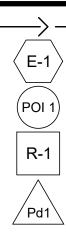
A Stormwater Operation and Maintenance (O&M) Plan has been developed for the Project and is included in Appendix F.

2.1.10 STANDARD #10: PROHIBITION OF ILLICIT DISCHARGE

All illicit discharges to the stormwater management system are prohibited.


The Project will comply with Standard 10 as no illicit discharges to the stormwater management system are proposed.

2.2 EPA NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)

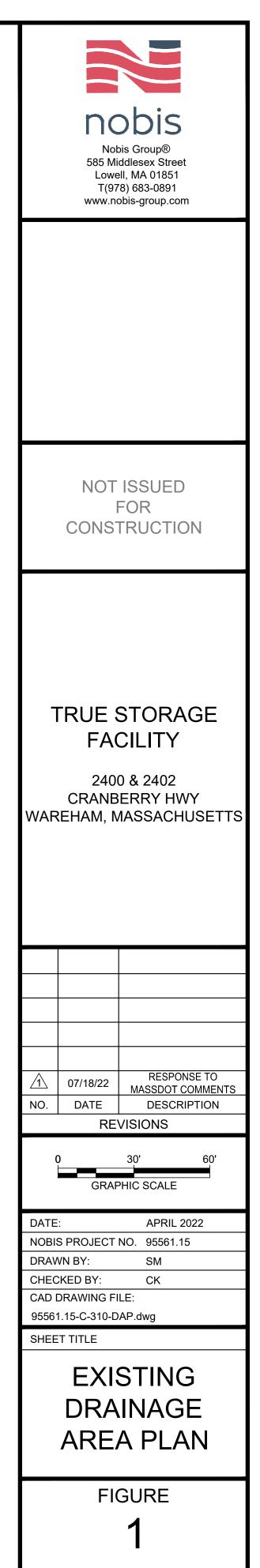

2.2.1 CONSTRUCTION GENERAL PERMIT (CGP)

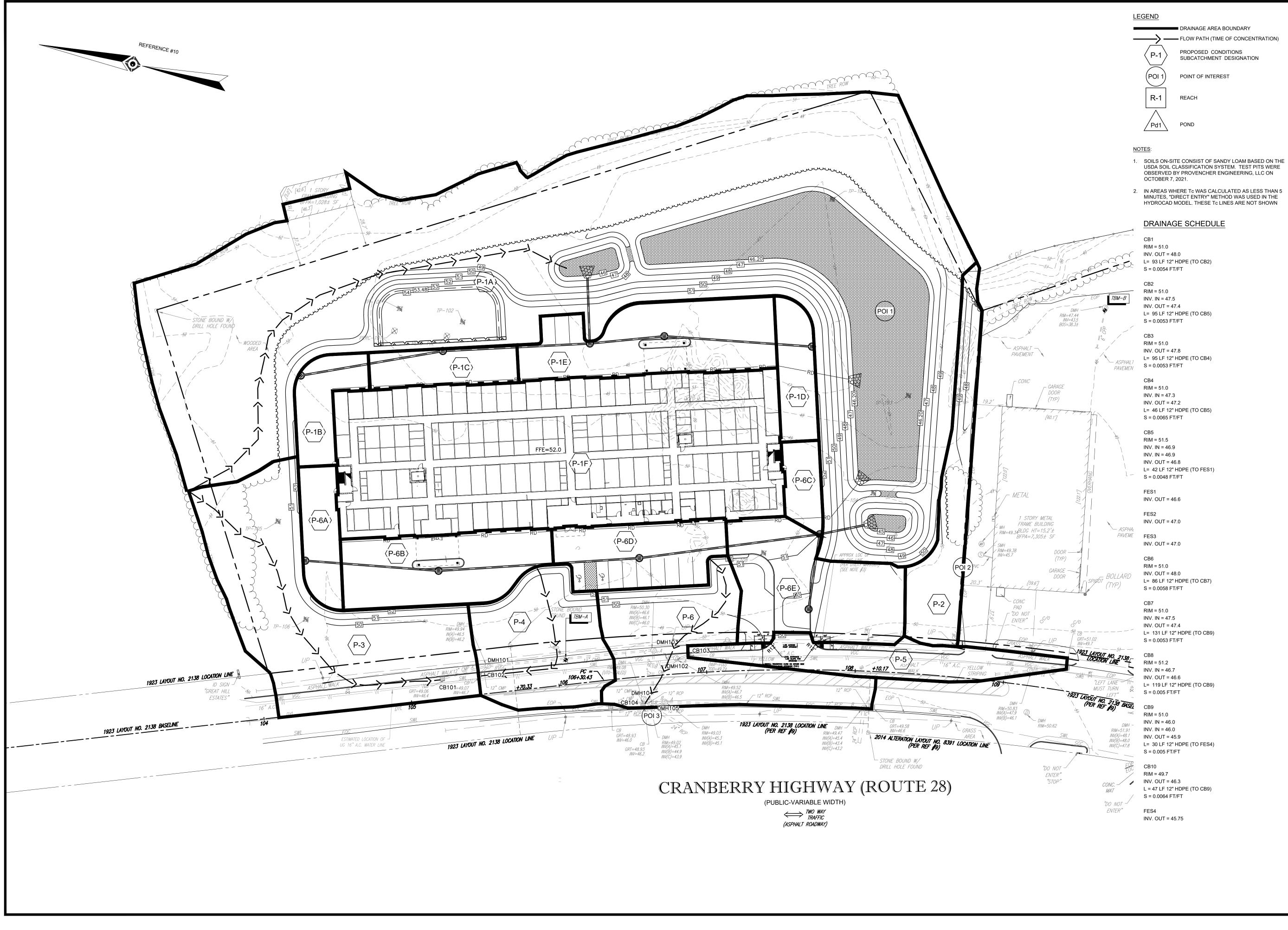
The Project will result in the disturbance of more than one acre of land and thus requires the preparation and implementation of a Stormwater Pollution Prevention Plan (SWPPP) by the site contractor and owner in accordance with the EPA's NPDES General Permit Program for Stormwater Discharges from Construction Sites. The SWPPP is included in Appendix E of this report.

FIGURES

<u>LEGEND</u>

DRAINAGE AREA BOUNDARY — FLOW PATH (TIME OF CONCENTRATION) EXISTING CONDITIONS


SUBCATCHMENT DESIGNATION POINT OF INTEREST


REACH

POND

NOTES:

- 1. SOILS ON-SITE CONSIST OF SANDY LOAM BASED ON THE USDA SOIL CLASSIFICATION SYSTEM. TEST PITS WERE OBSERVED BY PROVENCHER ENGINEERING, LLC ON OCTOBER 7, 2021.
- 2. IN AREAS WHERE To WAS CALCULATED AS LESS THAN 5 MINUTES, "DIRECT ENTRY" METHOD WAS USED IN THE HYDROCAD MODEL. THESE To LINES ARE NOT SHOWN

CB10 FES4

L= 131 LF 12" HDPE (TO CB9) S = 0.0053 FT/FT CB8 RIM = 51.2 INV. IN = 46.7 INV. OUT = 46.6 L= 119 LF 12" HDPE (TO CB9) ^{6ℓ} S = 0.005 FT/FT CB9 RIM = 51.0 INV. IN = 46.0 INV. IN = 46.0

DRAINAGE AREA BOUNDARY FLOW PATH (TIME OF CONCENTRATION)

PROPOSED CONDITIONS

POINT OF INTEREST

OBSERVED BY PROVENCHER ENGINEERING, LLC ON

MINUTES, "DIRECT ENTRY" METHOD WAS USED IN THE HYDROCAD MODEL. THESE TC LINES ARE NOT SHOWN

REACH

POND

DRAINAGE SCHEDULE

L= 93 LF 12" HDPE (TO CB2)

L= 95 LF 12" HDPE (TO CB5)

L= 95 LF 12" HDPE (TO CB4)

L= 46 LF 12" HDPE (TO CB5)

L= 42 LF 12" HDPE (TO FES1)

S = 0.0054 FT/FT

INV. IN = 47.5

INV. OUT = 47.4

S = 0.0053 FT/FT

INV. OUT = 47.8

S = 0.0053 FT/FT

SUBCATCHMENT DESIGNATION

P-1

(POI 1)

R-1

/Pd1

OCTOBER 7, 2021.

NOTES:

CB1 RIM = 51.0 INV. OUT = 48.0

CB2 RIM = 51.0

CB3

CB4

CB5

FES1

FES2

FES3

CB6 RIM = 51.0

CB7

RIM = 51.0

INV. IN = 47.5

INV. OUT = 47.4

RIM = 51.5

INV. IN = 46.9 INV. IN = 46.9

INV. OUT = 46.8

S = 0.0048 FT/FT

INV. OUT = 46.6

INV. OUT = 47.0

INV. OUT = 47.0

INV. OUT = 48.0

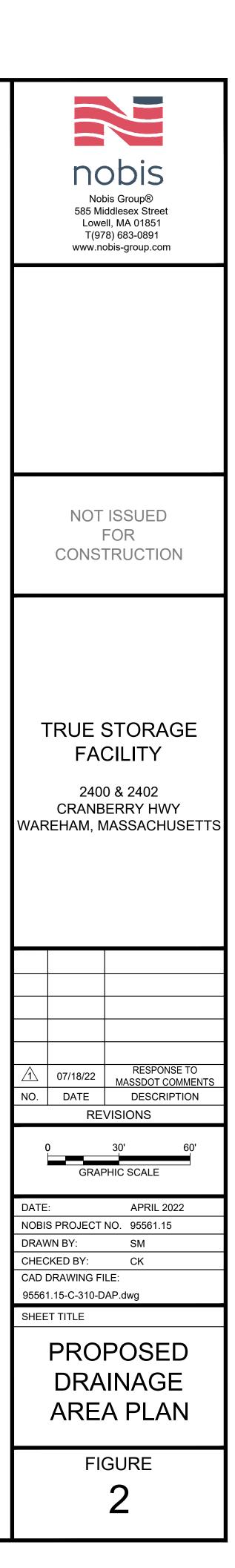
S = 0.0058 FT/FT

L= 86 LF 12" HDPE (TO CB7)

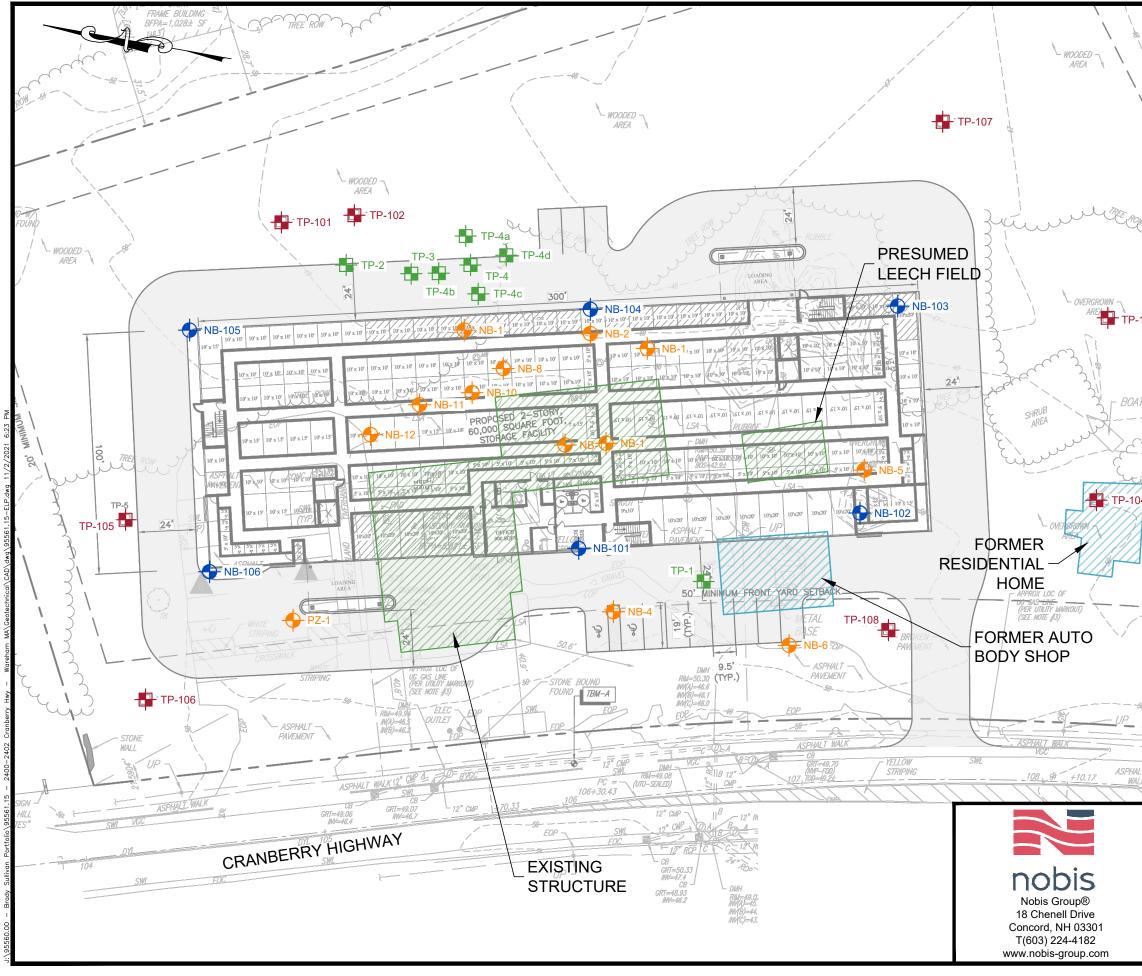
RIM = 51.0

INV. IN = 47.3

INV. OUT = 47.2


S = 0.0065 FT/FT

RIM = 51.0


INV. OUT = 45.9 L= 30 LF 12" HDPE (TO FES4) S = 0.005 FT/FT

RIM = 49.7 INV. OUT = 46.3 L = 47 LF 12" HDPE (TO CB9) S = 0.0064 FT/FT

INV. OUT = 45.75

APPENDIX A – SOIL INFORMATION

	DATED OCT 2. LOCATIONS APPROXIMA	PLAN WAS PREPAI OBER 12, 2021. AND SITE FEATU ATE AND GIVEN FO S ARE BASED ON	RES DEPICTE DR ILLUSTRA	ED ARE
	LEGEND			
U.	- ∲ - NB-101	CONTRACTO	BY NEW EN RS OF DERF VED BY NOBI	LOCATION GLAND BORING RY, NEW HAMPSHIRE S ON OCTOBER 19,
	- T P-101	APPROXIMA OBSERVED E LLC ON OCT	BY PROVENC	HER ENGINEERING,
-103	- T P-1		BY ACV EN	/IRONMENTAL OF TTS AND OBSERVED
47	NB-1	LOCATION P OF STERLING	ERFORMED E G, MASSACH BY NOBIS ON	SEPTEMBER 23,
T.		EXISTING SIT	TE FEATURE	
04		FORMER SIT	E FEATURE	
-50	0 +	4	0'	80'
-			C SCALE	
4L7		(APPRO)	XIMATE)	
/~		FIGU	RE 2	
	EYD	LORATION L		ΝΡΙΔΝ
	240	PROPOSED TF 0 - 2402 CRAN VAREHAM, MA	RUE STOR	AGE GHWAY
	DRAWN BY:	SAK	CHECKED	BY: AJ
	PROJECT NO.	95561.150	DATE:	NOVEMBER 2021

										BOF	RING LOG			g No.:	N : See site pla	1 B-1	
								Pr	oject: 240	0-2402 Cr	anberry Highway						
									ocation: Wa	reham M	۵				Ι.		
			r	nob	SIC						60.15				eptember 23, eptember 23		
	Cont	ractor	r. C	eosearch	Inc			Ri	a Type / Mo	del:	Geoprobe 6620DT					, 2020	
		er:		. Belsky				_	ammer Type								
	Nobi	s Rep	o.: _ A	Epstein					ammer Hoist				Datun	n:			
				Drilling N			Samp		Date	Time		undwater (lattam of Hole (ft) Stabilizatio	n Timo
	Туре			Geopr		Mad	cro-Cor		s Date	Time		Deptition Ca	sing (it.)	Беріп ю в			
GPJ		ID (in		N/A			1.75 x										
-065		Incer		Direct F			Pus		THOLOGY								
RING	Depth (ft.)	Type & No.	Rec	Depth	Blows/	PID (ppm)	Ground Water	Graphic	Stratum		SAMPLE DESCRIPTION (Classification System: M				WEL	DETAIL	NOTES
ND BU	Del		(in.)	(ft.)	6 in.		< ں	Gra	Elev. / Depth (ft.)	S 1: Brou	vn and tan, fine to coan		,	Gravel		Comente	ž
ARCAI	1	S-1	41	0-5		0.1				trace Silt		SE SAND,		e Glavel,		Concrete Road box	
GS//5	2				-												
O LO	2								GRAVELLY							Filter sand	
NBORI	3								SAND								
II ESA	4																
HASE	5								/ 5.0								
I MA/P		S-2	40	5-10		0			, 0.0	S-2: Tan	fine to medium SAND	, trace Silt.	Dry.			Bentonite chips	
KEHAN	6																
- WAF	7																
ΥWΗ	8																
JERRY	•																
CRAN	9																
-2402	10	S-3	55	10-15		0			SILTY SAND	S-3: Tan	fine to coarse SAND,	trace Silt. \	Vet at ²	12".			
2400	11	00									nottling 15-34".	,					
560.1	12															Filter sand	
- J:\95																10-Slot PVC	
16:01	13																
10/2/2(14																
- ig	15								/ 15.0								
2011.	16									Boring te	rminated at 15 feet.						
100																	
LAIE	17																
I EMF	18																
DATA	19																
S GINI																	
- NUBI	20 Soil	Perc	centag	e Non-Se	Dil N	OTES											
-000-	trace little	5	5 - 10) - 20	very fe	ew í			' colle	ected at 1345	5.							
HOLE	some	e 20) - 35 5 - 50	sever	al												
BORE						classificat	ions and s	should be	e considered approx	imate. Stratifical	ion lines are approximate boundaries	s between stratun	ns; transitio	ns may be gradu	ial. F	Page No. <u>1</u>	of <u>1</u>

								Proje	ect: _240		RING LOG			g No.: g Location:	See site p	NB-2 olan	2	
										nahana MA	<u>,</u>							
		r	hob	ois						reham, MA	60.15				ptember 2			
															eptember 2			
	ntracto		Geosearch	, Inc.							Geoprobe 6620DT		Grour	nd Surface	Elev.:			
	ler:		. Belsky							:			Detur					
		JF	A.Epstein Drilling M			Samp		ат		:		undwater (
Тур	e		Geopr			cro-Cor		ers	Date	Time	Depth Below Ground (ft.)				ottom of Hole	e (ft.)	Stabilizat	ion Time
	e ID (ir	1.)	N/A	\		1.75 x	60											
<u>, , , , , , , , , , , , , , , , , , , </u>	/ancen	-	Direct F			Pus												
3—			INFORMAT				1	.ITHC	DLOGY									
Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	PID (ppm)	Ground Water	Graphic		Stratum ev. / Depth (ft.)		SAMPLE DESCRIPTION (Classification System: N				WE	LL DE	TAIL	NOTES
	S-1	32	0-5	-	0.1	-		G	RAVELLY SAND	S-1A (11' Gravel, tr	'): Brown and grey, fine ace Silt, few roots and	e to coarse leaves. Dr	SAND, /.	little fine			ncrete ad box	
	-				0		• • • • • • •	<u> </u>	/ 1.0							1.00		
2										S-1B (20' trace Silt.	'): Orange brown and ta Dry	an, fine to i	nedium	SAND,				
DNIX 3				-							,.					< Filte	er sand	
NB/PS																		
<u>й 4</u> ц																		
5 SHA	S-2 39 5-10 0													≺Ber	ntonite			
AM MA 6	S-2	39	5-10		0			S-2: Tan, fine to coarse SAND, trace Silt. Dry.								chi		
								2										
<u>≷ 7</u> ¦																		
8								SI	LTY SAND									
						-												
CKAN																		
10	S-3	50	10-15		0.1			5 2		S-3: Tan,	fine to coarse SAND,	trace Silt, V	Vet at 1	3".				
										Orange n	nottling 13-38".							
1.0966 12																	er sand	
																- 10-	Slot PV	
5 <u>13</u>																		
14																		
-									/ 15.0									
									, 10.0	Boring te	minated at 15 feet.							
16																		
5 ≝_17																		
19 2						-												
20 20																		
Soil Percentage Non-Soil NOTES: trace 5 - 10 very few 1) NB-2 9-11' little 10 - 20 few							' col	lecte	ed at 0915	j.								
Son	some 20 - 35 several and 35 - 50 numerous																	
ř —					classificat	ions and s	should	be con	sidered approx	imate. Stratificat	on lines are approximate boundaries	s between stratun	ns; transition	ns may be gradu	al.	Page	e No. <u>1</u>	_ of _1

										BOF	ING LOG				NB		
								Р	roject: 240	0-2402 Cr	anberry Highway		Boring	g Location	n: <u>See site plan</u>		
									ocation: Wa	areham M	<u>\</u>				I. C		
			r	nob	IS						60.15				eptember 23, 2 September 23, 3		
	Con	tractor:	Ge	eosearch	, Inc.			_ R	ig Type / Mo	del:	Geoprobe 6620DT				e Elev.:		
		er:		Belsky					lammer Type								
	Nobi	s Rep.:		Epstein					lammer Hoist	t:							
	Туре	9		Drilling N Geopro			Samp		ers Date	Time	Gro Depth Below Ground (ft.)	undwater (Depth of Ca		1	Bottom of Hole (ft.) Stabilization	Time
	Size	ID (in.)		N/A			1.75 x	60									
50.05	Adva	anceme	nt	Direct F	Push		Pusl	h									
רכ קפר	(ft.)	SAM	PLE I	NFORMAT	ION	PID	ind		THOLOGY		SAMPLE DESCRIPTIO		ARKS	1	WELL I	DETAIL	ES
	Depth (ft.)		Rec in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)		(Classification System:						NOTES
RCAIN	1	S-1	35	0-5		0			GRAVELLY		'): Light brown, fine to ı ace Silt. Dry.	medium SA	AND, litt	le fine		oncrete oad box	
A C // 26	-								SAND								
אפ בט	2					0			/ 2.0	S-1B (7")	Black and white, fine arse Gravel, trace Silt.	to coarse S	SAND, s	some		ilter sand	
A/BURI	3					0): Brown, fine to mediu	•	trace S	ilt. Dry.			
С П П П	4																
NHAS	5	S-2 43 5-10 0.1								0 0 T			_		≺B	entonite	
AM MA	6	S-2 43 5-10 0.1								5-2: Tan,	fine to coarse SAND,	trace Slit. L	Jry.		cl	nips	
VAREN	7																
- YWI									• • •								
1 7 7 7	8								SILTY SAND								
CRANB	9								- - - -								
-2402	10	S-3	60	10-15		0			- 	S-3: Tan,	fine to medium SAND	, trace Silt,	Wet at	33".			
15 2400	11									Orange n	nottling 43-60".						
95560.	12															ilter sand)-Slot PVC	
/:r - LU:	13																
91.02/2	14								* • •								
10/	-																
2011.61	15	15							/ 15.0	Boring te	rminated at 15 feet.						
	16	16															
LAIE	17																
A LEMF	18																
	19																
	20																
- NOF	Soil			e Non-So				21	llooted et 00	10					- I		
	trace little some	10 -		very fe few severa	2				llected at 094 completion th		loor concrete slab was	cored. Th	e slab i	s approxir	mately 7" at thi	s location.	
CREAC	and	35 -	50	numero	ous	classifics	ions and -	should	ne considered opposi	vimate Stratificat	on lines are approximate boundarie:	s hetween strat	ne: transitio	ne may be area		ge No. 1 d	of 1
'n	30/ U			97, all based	viðudi	Jacomodi			- sonoidorod app10)	dunudl						<u> </u>	·· _

ſ										BOF	RING LOG				n: <u>See site p</u>	NB-4 lan	
								Pi	roject: 240	0-2402 Cr	anberry Highway						
								Lo	ocation: Wa	areham, M	A				l. Santambar 23		
			Γ	hob)IS						60.15				September 23 September 2		
ŀ	Cont	ractor	:_G	Geosearch	, Inc.			R	ig Type / Mo	del:	Geoprobe 6620DT		Grour	nd Surfac	e Elev.:		
		er:		. Belsky					ammer Type								
	Nobi	s Rep	.: <u>A</u>	.Epstein					ammer Hoist	::							
ŀ	Туре)		Drilling M Geopr			Samp		rs Date	Time	Gro Depth Below Ground (ft.)	undwater (Depth of Ca			Bottom of Hole	(ft.) Stabiliza	ation Time
ŀ		ID (in	.)	N/A	<u>،</u>		1.75 x	60									
0.0L	Adva	ancem	ent	Direct F	Push		Pusl	h	_								
	(u .)	SA	MPLE	INFORMAT	ION		pr 2		THOLOGY						WEI	L DETAIL	S
NIN Da	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	PID (ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)		SAMPLE DESCRIPTION (Classification System: N						NOTES
CANU		S-1	36	0-5		0.2		¢		S-1A (4")	: Asphalt.					Concrete Road box	
VD AR	1					0.2			GRAVELLY SAND	S-1B (18	"): Brown, fine to mediu	ım SAND,	some fi	ne to		Ruau Dux	
200	2								/ 2.0	coarse G	ravel, trace Silt. Dry.					 Filter sand 	
	3																
ESAIB	4	0.2								S-1C (14 Silt. Dry.	"): Orangish brown, fine	e to mediur	m SANI	D, trace			
					-												
	5	S-2 45 5-10 0.2								S-2: Brov	vn and tan, fine to med	ium SAND	, trace \$	Silt. Dry.		Bentonite chips	
EHAM	6				-											·	
	7																
A H	8				-												
REKE	9				-				SILTY SAND								
CRAN	_				-												
0-2402	10	S-3	51	10-15		0.1				S-3: Tan,	fine to coarse SAND,	trace Silt, \	Net at 2	28".			
.15 240	11				-												
099968	12				-											■Filter sand 10-Slot PV	
:r - L0:	13																
91.02/2	14																
וופר	15	5						1998 	/ 15.0	Boring te	rminated at 15 feet.						
	16																
ALEO	17																
	18																
	19																
N D D																	
	20 Soil	Perc	entag	je Non-So	Dil N	OTES	:										
_	trace little	9 5 10	5 - 10) - 20	very fe		1) NB-4	4 4-5' (collec	ted at 1030.								
	some and	e 20) - 35 5 - 50	sever: numero				_									
ź	Soil de	scriptions	s, and lith	ology, are base	d on visual	classificat	ions and s	should b	e considered approx	imate. Stratificat	ion lines are approximate boundaries	s between stratur	ns; transitio	ns may be grad	dual.	Page No	1_ of _1_

		BORING LOG	Boring No.: NB-5						
	Project: 240	0-2402 Cranberry Highway	Boring Location: <u>See site plan</u>						
			Checked by: I. Coles						
nobis	Location: <u>Wa</u>	reham, MA No.: _95560.15	Date Start: <u>September 23, 2020</u>						
			Date Finish: September 23, 2020						
Contractor: <u>Geosearch, Inc.</u> Driller: E. Belsky		del: Geoprobe 6620DT N/A	Ground Surface Elev.:						
Driller: <u>E. Belsky</u> Nobis Rep.: A.Epstein		N/A	_ Datum:						
Drilling Method Sample		Groundwater	Observations						
Type Geoprobe Macro-Core I	_iners Date	Time Depth Below Ground (ft.) Depth of Ca	asing (ft.) Depth to Bottom of Hole (ft.) Stabilization Time						
Size ID (in.) N/A 1.75 x 60	0								
Advancement Direct Push Push									
Top Top SAMPLE INFORMATION purpose Sample Information Type Rec Depth Blows/ PID purpose Op Op No. (in.) (ft.) 6 in. PID purpose		SAMPLE DESCRIPTION AND REM							
	Stratum Elev. / Depth (ft.)	(Classification System: Modified Bur							
⊿ 3-1 30 0-3 0 №	GRAVELLY	S-1A (12"): Light brown, black, and white, SAND, little fine Gravel, trace Silt, few roo	fine to medium ts and leaves.						
	*.t. / 1.0	-Dry. S-1B (26"): Orangish brown and tan, fine t							
		SAND, trace Silt. Dry.							
			◄ Filter sand						
4									
S-2 42 5-10 0		S-2: Orangish brown and tan, fine to medium SAND, trace Silt. Dry.							
			 Bentonite chips 						
7									
8	SILTY SAND								
월 9 - · · · · · · · · · · · · · · · · · ·									
S 10 0 S S-3 41 10-15 0		S-3: Tan, fine to medium SAND, trace Silt	, Wet at 24".						
5 13			Filter sand						
			10-Slot PVC						
	/ 15.0	Boring terminated at 15 feet.							
16		°							
ZSoilPercentageNon-SoilNOTES:Strace5 - 10very few1) NB-5 11-13'	collected at 125	0.							
little 10 - 20 few some 20 - 35 several									
and 35 - 50 numerous Soil descriptions, and lithology, are based on visual classifications and sho	uld be considered approx	ms; transitions may be gradual. Page No. <u>1</u> of <u>1</u>							

											RING LOG			g No.: g Locatior	n: <u>See site p</u>	NB-6 an	
								Pi	roject: 240	0-2402 Cra	anberry Highway						
				nob				Lo	ocation: Wa	reham, MA	Ą				I. eptember 23		
			I	IOL	NS			N	obis Project	No.: <u>9556</u>	0.15				September 2		
ł	Cont	ractor	: _ G	Seosearch	, Inc.			R	ig Type / Mo	del:	Geoprobe 6620DT		Grour	nd Surface	e Elev.:		
		er:		. Belsky					ammer Type								
	Nobi	s Rep	.: <u>A</u>	.Epstein	lothod		Some		ammer Hoist	:		undwater (
ł	Туре)		Drilling M Geopr			Samp		rs Date	Time	Depth Below Ground (ft.)				Bottom of Hole	(ft.) Stabiliza	ation Time
	Size	ID (in	.)	N/A	<u>،</u>		1.75 x	60									
יי סי סי	Adva	ancem	ent	Direct F	Push		Pusl	h									
й Р	(ft.)	SA	MPLE	INFORMAT	ION		nd er		THOLOGY		SAMPLE DESCRIPTION				WEI	L DETAIL	S
BURIN	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	PID (ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)		(Classification System: N						NOTES
CAIND		S-1	40	0-5	-	0.1		¢		S-1A (4")	: Asphalt.					Concrete Road box	
HH C//o	1					0.1			GRAVELLY SAND	S-1B (18'	'): Brown, white, and bl	ack, fine to	coarse	e SAND,			
	2				-				/ 2.0	some fine	e to coarse Gravel, trac	e Silt. Dry.				 Filter sand 	
	3				-	0.1				S-1C (18 Silt. Dry.	"): Orangish brown, fine	e to mediur	n SANI	D, trace			
ESA	4																
TASE	5																
		S-2 40 5-10 0.1								S-2: Brov	vn and tan, fine to med	ium SAND	, trace :	Silt. Dry.		Bentonite chips	
AEHAIV	6																
- WA	7																
Y HWY	8																
NBERK	9				-				SILTY SAND								
Z CKA	10																
00-240	10	S-3	46	10-15	-	0.1				S-3: Tan,	fine to coarse SAND,	trace Silt, \	Vet at 3	30".			
1.15 24	11																
)99966A/:	12															■Filter sand 10-Slot PV	
n - 1.0:0	13																
12120	14																
2																	
۲.I.C	15	5							/ 15.0	Boring te	rminated at 15 feet.						
	16																
	17																
	18																
DALA	19				-												
N D D																	
- NOB	20 Soil		entag	je Non-So		OTES											
Ц	trace little	10	5 - 10) - 20	very fe few		1) NB-6	5 11-1	2' col	lected at 112	20.							
	some and) - 35 5 - 50	sever: numero												_	
2	Soil de	escriptions	s, and lith	ology, are base	d on visual	classificat	ions and s	should b	e considered approx	imate. Stratificat	ion lines are approximate boundaries	s between stratun	ns; transitio	ns may be grad	ual.	Page No	<u>1</u> of <u>1</u>

							Proj	ect: 240		RING LOG		Boring No.: <u>NB-7</u> Boring Location: <u>See site plan</u>				
								ation: Wa		<u>, , , , , , , , , , , , , , , , , , , </u>			ked by:			
			not	SIS						i0.15			Start: <u>Septembe</u> Finish: Septembe			
с	ontra	ictor:	Geosearch	ı, Inc.			Rig	Type / Moc	lel:	Geoprobe 6620DT			nd Surface Elev.:			
			E. Belsky					nmer Type:								
N	obis I	Rep.:	A.Epstein	A a the a al		0.0000		nmer Hoist:			undwater (n:			
Т	уре		Drilling N Geopr			Samp	e Liners	Date	Time	Depth Below Ground (ft.)				Hole (ft.)	Stabilization	Time
		D (in.)	N//	4		1.75 x	60									
	dvan	cement	Direct	Push		Push	<u>ו</u>	-								
J L €		SAMPLE	E INFORMAT	ION	PID	ind er		OLOGY		SAMPI			D REMARKS			ES
	T)	ype Rec No. (in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Ground Water	Graphic m	Stratum Elev. / Depth (ft.)					ied Burmister)			NOTES
HCAIN	S	5-1 19	0-5	_	0.1				S-1: Brow	/n, fine to coarse SANI	D, little fine	Gravel	, trace Silt. Dry.			
10/10				-												
	<u>'</u>															
	3			-				GRAVELLY								
								SAND								
CHAS	_		- 10					S-2A (20"): Brown, fine to medium SAN					0			
AM MA		5-2 39	5-10		0				S-2A (20): Brown, fine to medil	im Sand,	trace fir	ne Gravel, trace S	lit. Dry.		
	,			-				/ 7.0								
				-	0				S-2B (19'	'): Tan, fine to coarse S	SAND, trac	e Silt. D	Dry.			
CHANBI)															
7077 1	_	6-3 50	10-15	-	0				S-3: Tan,	fine to medium SAND	, trace Silt,	Moist a	at 4", Wet at 26".			
1 1	1			-			s	SILTY SAND								
	2															
5-100 1	3															
	4															
- 105				$\left \right $				115.0								
2011.0								/ 15.0	Boring ter	minated at 15 feet.						-
	6															
	7			$\left \right $												
	8			-												
	9															
212	0			$\left \right $												
OLE LUG - NU III SC		Percenta 5 - 10 10 - 20 20 - 35 35 - 50	very fe few sever	ew 2 ral		7 9-10'		ed at 0915 npletion th		loor concrete slab was	cored. Th	e slab i	s approximately 5	" at this	location.	
ž —					classificat	ions and s	hould be co	nsidered approxi	mate. Stratificati	on lines are approximate boundaries	s between stratun	ns; transitio	ns may be gradual.	Pag	je No. <u>1</u> o	of <u>1</u>

)0-2402 Cr	RING LOG		Boring Check	g No.: g Location: <u>See site</u> ked by:	I. Coles	
			r	hob	bis				ocation: <u>Wa</u> obis Project					Start: <u>September 2</u> Finish: <u>September 3</u>		
				Geosearch	, Inc.			_			Geoprobe 6620DT		Grour	nd Surface Elev.:		
				<u>. Belsky</u> .Epstein					ammer Type ammer Hois				Datun	n:		
F				Drilling N	/lethod		Samp					undwater (
•	Туре	9		Geopr			cro-Cor	e Line	rs Date	Time	Depth Below Ground (ft.)				le (ft.) Stabilizatio	on Time
	Size	ID (in	ı.)	N/A	A		1.75 x	60								
ה פיי	Adva	ancem	nent	Direct F	Push		Pusl	h								
רכ אפ רכ	ן (ft.)		MPLE	INFORMAT	ION	PID	und ter		THOLOGY Stratum		SAMPL	E DESCRIPT		D REMARKS		ES
	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Ground Water	Graphic	Elev. / Depth (ft.)		(Classific	cation Systen	n: Modifi	ied Burmister)		NOTES
ARCAIN	1	S-1	40	0-5	-	0			GRAVELLY SAND	S-1A (15 Dry.	'): Light brown, fine to r	medium SA	ND, so	ome fine to coarse G	ravel, trace Silt	-
101/05	0							ÌÌÌ	/ 1.2							_
ר <u>כ</u> ו	2				_	0				S-1B (25	'): Brown, fine to mediu	ım SAND,	trace Si	ilt. Dry.		
	3				_											
	4				-				-							
HASE	5				_											
M MAN	6	S-2	47	5-10		0				S-2: Ligh	t brown and tan, fine to	medium S	AND, ti	race Silt. Dry.		
	0				-											
// - /	7															
АН УЧ –	8								SILTY SAND							
	9															
	10				-											
400-24		S-3	60	10-15		0			- - -	Light brov 26-60".	wn and tan, fine to mec	lium SAND	, trace	Silt, Wet at 25". Ora	nge mottling	
	11				-											
	12															
- 1.0:91	13															
0/2/20	14															
- 109	15								/ 15.0							
11.02 /	16									Boring te	rminated at 15 feet.					
3	17															
MPLA																
	18															
	19															
	20					0775										
3 1	Soil race	9 5	5 - 10	je Non-So very fe	ew	OTES	:									
5	little some	e 20	0 - 20 0 - 35 5 50	few sever	al											
BORE	and Soil de		5 - 50 is, and lith	numero nology, are base		classificat	ions and s	should b	e considered approx	kimate. Stratificat	ion lines are approximate boundaries	s between stratun	ns; transitior	ns may be gradual.	Page No. 1	of <u>1</u>

								Pro	oject: _240		ING LOG		Boring	g Locatio	on: <u>See site</u>			
			r	nob	ois				cation: <u>Wa</u> bis Project I				Date	Start:	September	24, 20)20	
	Con	tractor	r. (.	Geosearch	Inc						Geoprobe 6620DT			-	September		020	
		er:		. Belsky	, 110.				mmer Type:									
	Nob	is Rep	o.: _A	.Epstein					mmer Hoist				Datun	n:				
				Drilling N	lethod		Samp	ler	Data	Time		undwater (- D-#	-1- (4)	Otabilization	T :
	Туре			Geopr	obe	Mad	cro-Core	e Liners	, Date	Time	Depth Below Ground (ft.)	Depth of Ca	sing (π.)		D Bottom of He	ole (π.)	Stabilization	Time
С ¹	Size	ID (in	ı.)	N/A	۱		1.75 x	60	_									
0.000		ancem		Direct F			Pusł											
צואפר	Depth (ft.)		Rec	INFORMAT Depth	ION Blows/	PID	Ground Water		HOLOGY Stratum			E DESCRIPT						NOTES
	Dep	Type & No.	(in.)	(ft.)	6 in.	(ppm)	₽≥	Graphic	Elev. / Depth (ft.)	C 4 A (00"		cation System			-	4	Cilt. four	ž
ARCA.	1	S-1	35	0-5		0			GRAVELLY): Brown, fine to coarso leaves. Dry.	e SAND, s	ome fin	e to coa	irse Gravel,	trace	Slit, few	
101/05									SAND									
ר פר	2					0			/ 2.0	S-1B (15"): Orangish brown, fine	e to mediur	n SANE	D, trace	Silt. Dry.			-
	3																	
E SA	4																	
TAGE	5																	
MAN	-	S-2	38	5-10		0				S-2: Tan,	fine to coarse SAND, t	trace Silt. [Dry.					
EHAIN	6																	
HAN -	7																	
ΥΥΥ	8																	
	9								SILTY SAND									
CRAN	5																	
7-2402	10	S-3	50	10-15		0				S-3: Tan,	fine to coarse SAND, t	trace Silt, V	Vet at 1	18". Ora	nge mottling	g 18-4	6".	
0047 C	11																	
.nocci	12																	
3\:r - I.r	13																	
70 I0:1																		
- 10/2/	14																	
פר	15							123	/ 15.0	Boring tor	minated at 15 feet.							_
	16									Doning tel								
	17																	
MPLA																		
IAIE	18																	
	19																	
שוא פ	20				- -													
פיצר	Soil trace		centag 5 - 10	je Non-So very fe		OTES	:											
	little some	10	0 - 20 0 - 35	few														
NH HAN	and	35	5 - 50	numero	bus	classificat	ions and s	hould be r	considered approvi	mate, Stratificati	on lines are approximate boundaries	s between stratum	s; transition	ns mav he or	adual.	Par	je No. 1 c	of 1
٥	200 0		, iid	- 37, 410 0430			and a			oa aunodu			,			1. 49	<u>,</u> 0	· <u> </u>

			r	nob	ois			Lo	ocation: Wa	0-2402 Cr reham, M/	RING LOG anberry Highway		Boring Check Date	g Locat ked by: Start: _	ion: <u>See site p</u> II September 24September 2	. Cole 1, 202	es	
	Cont	ractor	r:	Geosearch	, Inc.			Ri	g Type / Moo	del:	Geoprobe 6620DT		Grour	nd Surfa	ace Elev.:			
	Drille	er:	E	. Belsky				_ Ha	ammer Type	:	N/A							
	Nobi	s Rep	o.: _A	A.Epstein				_ Ha	ammer Hoist	:	N/A		Datun	n:				
F				Drilling N			Samp	oler	Data	Time		undwater C		1	- D-#	(6)	Otal ilization	T:
Ľ	Туре	9		Geopr	obe	Mac	ro-Cor	e Line	rs Date	Time	Depth Below Ground (ft.)	Depth of Ca	sing (it.)	Depth		(11.)	Stabilization	Time
	Size	ID (in	ı.)	N/A	\		1.75 x	60										
20.00	Adva	ancem	nent	Direct F	Push		Pus	h										
ר פר	(ft.)	SA	MPLE	INFORMAT	ION	PID	und er		THOLOGY		SAMPI	E DESCRIPT		D REMA	RKS			ES
BOAII	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)			cation Systen						NOTES
		S-1	32	0-5		0				S-1: Brov	vn and black, fine to co	arse SAND), little f	ine to c	coarse Gravel,	trace	silt. Dry.	
	1																	
1001	2																	
פר									GRAVELLY SAND									
NDd/	3								0, 110									
	4							, , , ,										
HACE	5								/ 5.0									
MA/M	Ŭ	S-2	40	5-10		0		ĨĨĨ	7 3.0	S-2: Tan,	fine to medium SAND	, trace Silt.	Dry.					-
	6																	
WAR	7																	
- 7 1																		
	8																	
	9																	
חב כא	10																	
100-24		S-3	46	10-15		0			SILTY SAND	S-3: Tan,	fine to coarse SAND,	trace Silt, V	Vet at 2	20".				
77 GL.0	11																	
1000061	12																	
:r - 1.0	13																	
91.02																		
	14																	
- פר	15								/ 15.0									
	16									Boring te	rminated at 15 feet.							
	10																	
PLA IE	17																	
≥	18																	
A A			-															
	19																	
	20				<u> </u>	077												
	Soil race little	e 5 10 e 20	<u>centaç</u> 5 - 10 0 - 20 0 - 35	very fe few sever	ew al	OTES												
Ϋ–	and Soil de		5 - 50 is, and lith	numero nology, are base		classificati	ions and s	should be	e considered approx	mate. Stratificat	ion lines are approximate boundaries	s between stratum	ns; transition	ns may be g	gradual.	Page	e No. 1 o	of <u>1</u>

								Ρ	roject: <u>24(</u>		RING LOG		Boring	g Loca	tion: <u>See site</u>			
			r	hob	vic			Lo	ocation: Wa	areham, M	A				September 2			
			1	IOL	12			Ν	obis Project	No.: 9556	60.15				September			
ľ	Con	tractor	r: _ C	Geosearch	, Inc.			_ R	ig Type / Mo	del:	Geoprobe 6620DT		Grour	nd Surf	face Elev.:			
		er:		. Belsky					ammer Type									
	Nob	is Rep	D.: <u>A</u>	.Epstein	A - 411	1	0		ammer Hois	t:								
	Туре	e		Drilling N Geopr			Samp cro-Cor		rs Date	Time	Depth Below Ground (ft.)	undwater C Depth of Ca		1	to Bottom of Ho	le (ft.)	Stabilization	Time
		ID (in	ı.)	N/A	4		1.75 x	c 60										
0.67J		ancem		Direct F	Push	+	Pus	h										
י רטפ ני	(;)	SA	MPLE	INFORMAT	ION				THOLOGY									S
	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	PID (ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)			E DESCRIPT cation System						NOTES
	_	S-1	34	0-5		0		¢	(11.)	S-1A (28	'): Tan and black, fine t	to coarse S	AND, li	ttle fin	e Gravel, trac	e Silt.	Dry.	
DARC	1						-		GRAVELLY SAND									
1090.	2								/ 2.2									
שואפ	3					0				S-1B (6")	: Orangish brown, fine	to medium	SAND,	trace	Silt. Dry.			
SA/BU							-											
	4						-											
ANPHA:	5	S-2	44	5-10		0				S-2: Orar	ngish brown and tan, fir	ne to mediu		ID tra	ce Silt Dry			
	6	5-2	44	5-10		0				0-2. 014				10, 114	ce ont. Dry.			
VARET	7						-		-									
- 7VV							-											
	8								- - -									
KANBE	9								SILTY SAND									
と い て い た	10																	
2-0042	11	S-3	53	10-15		0	-			S-3: Tan,	fine to coarse SAND,	trace Silt, V	Vet at 2	26".				
CL.00							-											
CCR/:	12																	
16:01 -	13																	
0/2/20	14																	
GUI - 1	15						-		/ 15.0									
2011.6							1	<u>-1-1-</u>	, 10.0	Boring te	rminated at 15 feet.							
2	16																	
PLA IE C	17																	
	18																	
DALA	19																	
N D																		
	20 Soil	Perc	centag	je Non-So	oil N	OTES	:											
LE LUG -	trace little some	e t	5 - 10) - 20) - 35	very fe few sever	ew													
NAEHC CHAR	and	35	5 - 50	numero	ous	1						- hander				Der		of 4
ы	Soil d	escription	s, and lith	ююду, are base	u on visual o	ciassificat	ions and	snouid b	e considered approx	umate. Stratificat	ion lines are approximate boundaries	s perween stratun	is; transition	is may be	yradual.	∣rag	e No. <u>1</u> c	of <u>1</u>

								Pr	roject: _240		RING LOG		Borinę	g No.: g Location: <u>See site</u>			
				nob				Lo	ocation: Wa	ireham, MA	A			ked by: Start: September			
			I	IOL	12			N	obis Project	No.: <u>9556</u>	0.15			Finish: September			
ľ	Con	tractor	: _ C	Seosearch	, Inc.						Geoprobe 6620DT		Grour	nd Surface Elev.:			
		er:		. Belsky					ammer Type								
	NOD	is Rep).: <u> </u>	A.Epstein Drilling N	/ethod		Samp		ammer Hoist	: 		undwater (n:			
ł	Туре	e		Geopr			cro-Cor		rs Date	Time	Depth Below Ground (ft.)	1			ole (ft.)	Stabilization	Time
	Size	ID (in	.)	N/A	4		1.75 x	60									
בר פיי פר	Adva	ancem	nent	Direct F	Push		Pus	h									
פר	(tt.)	SA	MPLE	INFORMAT	ION	PID	ind er		THOLOGY		SAMPI			D REMARKS		I.	ES
BURIN	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)					ied Burmister)			NOTES
CAIND		S-1	35	0-5		0				S-1A (2")	: Asphalt.						\top
HA C//	1					0			GRAVELLY SAND	S-1B: Bro	wn, white, and black, f	fine to coar	se SAN	ID, some fine to coa	arse G	ravel,	
200	2									trace Silt.	Dry.						
	3					0			/ 2.5	S-1C: Ora	angish brown, fine to m	nedium SAI	ND, trac	ce Silt. Dry.			
E SA/B	4																
AGE																	
MANAN	5	S-2	38	5-10		0				S-2A (18'): Orangish brown, fine	e to mediur	n SANE	D, trace Silt. Dry.			
HAM	6																
WAR	7					0				S-2B (20'): Tan, fine to coarse \$	SAND, trac	e Silt. D	Dry.			
- 7 WH	8																
CRANB	9								SILTY SAND								
-2402	10	S-3	46	10-15		0				S-3 [.] Tan	fine to coarse SAND,	trace Silt_\	Vet at 2	21"			
2400-	11	0-0	40	10-13		0				e e. run,			rot at 1	- · ·			
1.0000	12																
- J.S.																	
0.10:0	13																
10/2/2	14																
- 1 19.	15								/ 15.0								
1.1.02	16				-					Boring ter	minated at 15 feet.						
3																	
FLAIL	17																
AIEM	18																
	19																
19000	20																
DZ -	Soil			je Non-So		OTES	:										<u></u>
Ц	trace little	10	5 - 10) - 20) - 35	very fe few sever													
XEHO H	some and	35	5 - 50	numero	ous		-									- Nic - 4	<u>.</u>
ے م	Soil d	and 35 - 50 numerous Soil descriptions, and lithology, are based on visual classifications and							e considered approx	imate. Stratificati	on lines are approximate boundaries	s between stratun	ns; transition	ns may be gradual.	Pag	je No. <u>1</u> o	of <u>1</u>

							Pi	roject: _240		RING LOG			-	 tion: <u>See site p</u>	PZ-1 olan		
								ocation: Wa	rohom M					: <u> </u>			
		ľ	hob	DIS						<u>5</u> 0.15				September 24 September 2			
														· · · ·			
	iller:		Geosearch E. Belsky					ig Type / Mo ammer Type		Geoprobe 6620DT N/A		Grour	nd Sur	face Elev.:			
			A.Epstein					ammer Hois				Datun	n:				
			Drilling N	/lethod		Samp					undwater (
Ту	ре		Geopr	obe	Mad	cro-Cor	e Line	rs Date	Time	Depth Below Ground (ft.)	Depth of Ca	sing (ft.)	Depth	to Bottom of Hole	e (ft.)	Stabilization	Time
Si	ze ID (i	in.)	N/A	A		1.75 x	c 60										
ig Ac	vance	ment	Direct I	Push		Pus	h										
(ft.)	S	SAMPLE	INFORMAT	ION	PID	und ier		THOLOGY		SAMPI	E DESCRIPT			ARKS			ES
Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	(ppm)	Ground Water	Graphic	Stratum Elev. / Depth (ft.)			cation System						NOTES
CANL	S-1	27	0-5		0	-			S-1A (12	'): Brown, fine to coars	e SAND, lit	tle fine	Grave	el, trace Silt. Dry	y.		
1 AK					0	-		/ 1.0	S-1B (15	'): Orangish brown, fine	e to mediur	n SANI), trac	e Silt. Dry.			-
2						-											
2 2 3																	
SAIBU																	
5	S-2	35	5 10		0				S-24 (24	'): Orangish brown, fine	a to mediur	n SANI) trac	e Silt Dry			
MA MA		35	5-10		0				3-2A (24). Orangish brown, nine			J, II AU	e Siit. Dry.			
<u>}</u> 7					0			-	S-2B (11	'): Tan, fine to coarse S	SAND, trac	e Silt. D	Dry.				
8						-		SILTY SAND									
9																	
5 7 7 7	_					-											
10-240	S-3	60	10-15		0				S-3: Tan,	fine to coarse SAND,	trace Silt, V	Vet at 2	22".				
11 ₽						-		-									
12	2																
5 - 20 13																	
								- - -									
14						-											
3 15	;							/ 15.0	Doring to	minated at 15 fact							_
	;								BUTING LE	rminated at 15 feet.							
3																	
	<u> </u>					-											
≥ 4 18	;			-													
19																	
20 20 20 20																	
	<u> </u>	rcenta			OTES	:	<u>I</u>	1									<u> </u>
b litt	le í	5 - 10 10 - 20	few														
soi ar		20 - 35 35 - 50															
So So	l descriptio	ons, and lit	hology, are base	d on visual	classificat	ions and	should b	e considered approx	kimate. Stratificat	ion lines are approximate boundaries	s between stratun	ns; transitio	ns may be	gradual.	Pag	e No. <u>1</u> o	of <u>1</u>

			TE	EST PIT LOG			
				ROJECT Cranberry Highway	TEST PI SHEET FILE NC	1	TP-1 of 1 560.15
	nohi		Wa	ireham, MA	CHKD B	Y	IC
Engineer Contracto Dperator Veather	or	A.Epstein ACV Paul Kling 70's Sunny	Make Model Capacity Reach	GEHL 235 1/4 yd ³ 10 ft	Ground I Datum Time Sta Date	rt1	NA NA 0:45 5/2020
Depth Below Grade (ft)	Strata Change		Subsurface Descr	ription	Excavation Effort	Boulder Qty/Class	PID Field Screening Results
					E		PID 0.4
2'	Fill	Tan, fine to mediu	im SAND, some fine to coa (concrete, plastic, black m	urse Gravel, trace Silt, trace debris uesh). Dry. 3.5 ft	E		
					E		
4'					E		PID 0.0
					E		
6'	Native	Tap and orangis	h-brown fine to course SA	ND, little fine Gravel, trace Silt.	Е		
		Tan and Orangis	Dry. 9.5 ft		E		
8'					E		
					М		
10'			TP terminated at	t 9.5 ft			
12'							
14'							
otes:	Soil sample colled	cted for labortory ar	alysis from 9' bgs at 11:30		▼ Groundwa	S <u>YMBOLS</u> ater Seasonal High	Groundwater
	06		LDER <u>CLASS</u>	PROPORTIONS USED		EXCAVATION	
4ft	9ft		" - 24" A " - 36" B 6" C	0-10% Trace 10-20% Little 20-35% Some 35-50% And		E = Easy M = Mode D = Diffie	erate

			TI	EST PIT LOG			
			P	ROJECT	TEST PI	T NO.	TP-2
					SHEET		of 1
				Cranberry Highway	FILE NC		560.15
	nobi	S	vv a	ureham, MA	CHKD B	Y	IC
ngineer		A.Epstein	Make	GEHL	Ground I	El.	NA
ontract		ACV	Model	235	Datum		NA
perator		Paul Kling	Capacity	1/4 yd ³	Time Sta		11:50
eather		70's Sunny	Reach	10 ft	Date	9/2	5/2020
Depth Below Grade (ft)	Strata Change		Subsurface Desci	ription	Excavation Effort	Boulder Qty/Class	PID Field Screening Results
	Top Soil	Brown fine to me	dium Sand, little fine Grav leaves. 1ft	rel, trace Silt, numerous roots and	E		PID 0.2
2'	Fill				Е		PID 0.1
_		Tan fine to	medium SAND little fine	Gravel, trace Silt. Dry. 4.5 ft	Е		
4'			incurum ornico, inche rine		E		
					E		PID 0.0
6'					E		F1D 0.0
-	Native				Е		
8'		Tan and orai	ngish brown fine to course	SAND, trace Silt. Dry. 9.5 ft	Е		
					E		
10'			TP teriminated a	.t 9.5 ft			
12'							
14'							
otes:	Soil sample collec	ted for labortory an	alysis from 9' collected at	12:25	▼ Groundwa	<u>SYMBOLS</u> ater l Seasonal High	Groundwater
			LDER <u>CLASS</u>	PROPORTIONS USED		EXCAVATION	EFFORT
[10ft	24"	- 24" A - 36" B	0-10% Trace 10-20% Little		E = Easy M = Mode	erate
4ft		>36	5" C	20-35% Some 35-50% And		D = Diffi	cult

			TI	EST PIT LOG			
			2400-2402	ROJECT Cranberry Highway areham, MA	TEST PI SHEET FILE NC CHKD B	1). 95	TP-3 of 1 560.15 IC
Engineer Contract Operator Weather	r	A.Epstein ACV Paul Kling 70's Sunny	Make Model Capacity Reach	GEHL 235 1/4 yd ³ 10 ft	Ground I Datum Time Sta Date	.rt1	NA NA 2:40 5/2020
Depth Below Grade (ft)	Strata Change		Subsurface Desc	ription	Excavation Effort	Boulder Qty/Class	PID Field Screening Results
2'	Fill	_	rown fine to medium SAN . Little roots and leaves. Tr	D, little fine to coarse Gravel, trace race plastic wire. 3 ft	E E E		PID 0.3
4' 6' 8'	Native	Tan and orangish	brown fine to course SANI 9 ft	D, little fine Gravel, trace Silt. Dry.	E E E M M		PID 0.0
10'			TP teriminated	at 9 ft			
14' Jotes:))	Soil sample collee	cted for labortory ar	alysis from 9' collected at	13:10	▼ Groundwa	<u>SYMBOLS</u> ater l Seasonal High	Groundwater
4ft	10ft	12	<u>LDER CLASS</u> " - 24" A " - 36" B 6" C	PROPORTIONS USED 0-10% Trace 10-20% Little 20-35% Some 35-50% And		EXCAVATION E = Easy M = Mode D = Diffi	erate

			7	FEST PIT LOG				
				PROJECT 2 Cranberry Highway	TEST PI SHEET FILE NO	1	TP-4 of 1 560.15	
				Vareham, MA	- CHKD E		IC	
	nobi	S	V		- CHKD E			
ngineer	r	A.Epstein	Make	GEHL	Ground	El.	NA	
ontract	cor	ACV	Model	235	Datum		NA	
perator		Paul Kling	Capacity	$1/4 \text{ yd}^3$	Time Sta	irt î	13:30	
Veather		70's Sunny	Reach	10 ft	Date	9/2	5/2020	
Depth Below Grade (ft)	Strata Change		Subsurface De	scription	Excavation Effort	Boulder Qty/Class	PID Field Screening Results	
	Top Soil	Brown fine to me	dium Sand, little fine Gr and leaves	avel, trace Silt, trace organics (roots). 1ft	Е		PID 0.4	
	Fill				E		PID 0.2	
2'		Light brown fine		fine to coarse Gravel, trace Silt. Dry.				
			3.5 ft		E			
4'					М		PID 0.5	
	F III	Orangish-brown	, fine to coarse SAND, so (glass, metal, plastic, v	ome fine to coarse Gravel, some Fill wires) Dry. 5.5 ft	М			
6'					М		PID 0.0	
	Native				М			
8'		Ta	an fine to course SAND,	trace Silt. Dry. 9.5 ft	Е			
					E			
10'			TP teriminated	l at 9.5 ft	-			
12'								
14'								
otes:	Soil sample collec	ted for labortory an	alysis from 5' collected a		<u>WATER</u> ▼ Groundw	SYMBOLS ater		
	Soil sample collec	cted for labortory an	alysis from 9' collected a	it 14:05		d Seasonal High	Groundwater	
			ted approximately 10 fee the additional test pit lo	t from TP-4 to determine extent of ocations.				
		BOU	LDER <u>CLASS</u>	PROPORTIONS USED		EXCAVATION		
1	10ft		" - 24" A	0-10% Trace		E = Easy		
5ft		24' >30	" - 36" B 6" C	10-20% Little 20-35% Some 35-50% And		M = Mod D = Diffi		

			Т	EST PIT LOG			
				PROJECT Cranberry Highway	TEST PI SHEET FILE NO	1	TP-4A of <u>1</u> 560.15
	nohi		W	areham, MA	CHKD B	Y	IC
Engineer Contract Operator Veather	r	A.Epstein ACV Paul Kling 70's Sunny	Make Model Capacity Reach	GEHL 235 1/4 yd ³ 10 ft	Ground H Datum Time Sta Date	rt 1	NA NA 3:30 5/2020
Depth Below Grade (ft)	Strata Change		Subsurface Desc		Excavation Effort	Boulder Qty/Class	PID Field Screening Results
	Top Soil	Brown fine to me	edium Sand, little fine Grav and leaves).	vel, trace Silt, trace organics (roots 1ft	E		PID 0.0
2'		Light brown fine		ne to coarse Gravel, trace Silt. Dry.	E E M		PID 0.0
6'	Native	Т	an fine to course SAND, th	race Silt. Dry. 7.0 ft	M M M		PID 0.0
8' 10'							
12'							
14' Notes:))	No debris was end	countered. No labor	atory samples collected.		▼ Groundwa	S <u>YMBOLS</u> ater Seasonal High	Groundwater
5ft	10ft	12	CLASS " - 24" A " - 36" B 6" C	<u>PROPORTIONS USED</u> 0-10% Trace 10-20% Little 20-35% Some 35-50% And		EXCAVATION E = Easy M = Mode D = Diffie	erate

			Т	EST PIT LOG			
				PROJECT Cranberry Highway	TEST PI SHEET FILE NO	1	TP-4B of <u>1</u> 560.15
	nohi		W	areham, MA	CHKD B	Y	IC
Engineer Contract Operator Veather	r	A.Epstein ACV Paul Kling 70's Sunny	Make Model Capacity Reach	GEHL 235 1/4 yd ³ 10 ft	Ground E Datum Time Sta Date	rt 1	NA NA 3:30 5/2020
Depth Below Grade (ft)	Strata Change		Subsurface Desc		Excavation Effort	Boulder Qty/Class	PID Field Screening Results
	Top Soil	Brown fine to me	edium Sand, little fine Grav and leaves).	vel, trace Silt, trace organics (roots 1ft	E		PID 0.0
2'		Light brown fine		ne to coarse Gravel, trace Silt. Dry.	E E M		PID 0.0
6'	Native	т	an fine to course SAND, tr	race Silt. Dry. 7.0 ft	M M M		PID 0.0
8' 10'							
12'							
14' Notes:))	No debris was enc	countered. No labor	atory samples collected.		WATER S ▼ Groundwa ⊽ Estimated		Groundwater
5ft	10ft	12	CLASS " - 24" A " - 36" B 6" C	<u>PROPORTIONS USED</u> 0-10% Trace 10-20% Little 20-35% Some 35-50% And		EXCAVATION E = Easy M = Mode D = Diffi	erate

			Т	EST PIT LOG			
			2400-2402	P ROJECT 2 Cranberry Highway Vareham, MA	TEST PI SHEET FILE NO CHKD B	1 95	TP_4C of 1 560.15 IC
	nobi	S	v		Спкр р	1	
Engineer Contract Operator Veather	r	A.Epstein ACV Paul Kling 70's Sunny	Make Model Capacity Reach	GEHL 235 1/4 yd ³ 10 ft	Ground E Datum Time Sta Date	rt 1	NA NA 3:30 5/2020
Depth Below Grade (ft)	Strata Change		Subsurface Desc		Excavation Effort	Boulder Qty/Class	PID Field Screening Results
	Top Soil	Brown fine to me	edium Sand, little fine Gra and leaves).	vel, trace Silt, trace organics (roots 1ft	E		PID 0.0
2'		Light brown fine		ine to coarse Gravel, trace Silt. Dry.	E E M		
4' 6'	Native				M M M		PID 0.0 PID 0.0
8'		Т	an fine to course SAND, t	race Silt. Dry. 7.0 ft	М		110 0.0
10'							
12'							
14' Notes: .) 2) 3)	No debris was end	countered. No labor	atory samples collected.		WATER S ▼ Groundwa ⊽ Estimated		Groundwater
5ft	10ft	12	<u>LDER CLASS</u> " - 24" A " - 36" B 6" C	<u>PROPORTIONS USED</u> 0-10% Trace 10-20% Little 20-35% Some 35-50% And		EXCAVATION E = Easy M = Mode D = Diffie	erate

			Т	EST PIT LOG			
			2400-2402	PROJECT Cranberry Highway	TEST PI SHEET FILE NO	1 95	560.15
	nohi	S	W	areham, MA	CHKD B	Y	IC
Engineer Contract Operator Veather	r	A.Epstein ACV Paul Kling 70's Sunny	Make Model Capacity Reach	GEHL 235 1/4 yd ³ 10 ft	Ground E Datum Time Sta Date	rt1	NA NA 3:30 5/2020
Depth Below Grade (ft)	Strata Change		Subsurface Desc		Excavation Effort	Boulder Qty/Class	PID Field Screening Results
	Top Soil	Brown fine to me	edium Sand, little fine Grav and leaves).	vel, trace Silt, trace organics (roots 1ft	Е		PID 0.0
2'		Light brown fine	to medium SAND, little fi 3.5 ft	ne to coarse Gravel, trace Silt. Dry.	E E		
4'	Native				M M M		PID 0.0 PID 0.0
6'		Т	an fine to course SAND, th	race Silt. Dry. 7.0 ft	M		
8'							
12'							
14' Totes:))	No debris was end	countered. No labor	atory samples collected.		WATER S ▼ Groundwa ⊽ Estimated		Groundwater
5ft	10ft	12	<u>LDER CLASS</u> " - 24" A " - 36" B 6" C	<u>PROPORTIONS USED</u> 0-10% Trace 10-20% Little 20-35% Some 35-50% And		EXCAVATION E = Easy M = Mode D = Diffie	erate

C. On-Site Review:

Deep Observation Hole Number:

TP-103 (10/7/2021)

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Red	oximorphic Feat	ures	Soil Texture		ragments /olume	Soil Structure	Soil	Other
Depth (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-3	А	10YR3/2				Sandy loam			Massive	Loose	
3-12	В	10YR4/6				Sandy loam			Massive	Loose	
12-96	С	10YR5/4	60 in	10YR5/8	20	Sand			Granular	Loose	Medium sand

Additional Notes:

Observed Groundwater: weeping at 72", standing at 72" (Seasonal High GW Mottles at 60" all around test pit)

No Bedrock Observed. Permeability test conducted at 54"

C. On-Site Review:

Deep Observation Hole Number:

TP-104 (10/7/2021)

Donth (in)	Soil Horizon/	Soil Matrix: Color-	Red	loximorphic Feat	ures	Soil Texture	Coarse F % by \	ragments /olume		Soil Consistence	Other
Depth (in.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-12	1C1	10YR3/2				Sandy loam			Massive	Friable	Unsuitable Fill
12-24	1C2	10YR5/4				Sandy loam			Massive	Friable	Unsuitable Fill
24-26	А	10YR3/2				Sandy loam			Massive	Friable	
26-36	Bw	10YR4/6				Sandy loam			Massive	Friable	
36-96	2C1	10YR5/4	66 in	10YR5/8	20	Sand			Granular	Loose	Medium sand

Additional Notes:

Observed Groundwater: weeping at 78", standing at 78" (Seasonal High GW Mottles at 66" all around test pit)

No Bedrock Observed. Permeability test conducted at 66"

C. On-Site Review:

Deep Observation Hole Number:

TP-105 (10/7/2021)

Depth (in.)	Soil Horizon/	// Soil Matrix: Color Moist (Munsell)	Red	oximorphic Feat	ures	Soil Texture		ragments /olume		Soil Consistence	Other
Depth (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-8	1C1	10YR3/2				Sandy loam			Massive	Friable	Unsuitable Fill
8-36	1C2	10YR4/4				Sandy loam			Massive	Friable	Unsuitable Fill
36-52	А	10YR2/2				Sandy loam			Massive	Friable	
52-58	Bw	10YR4/3				Sandy loam			Massive	Friable	Fine to Medium
58-96	2C1	10YR5/4	60 in	10YR5/8	20	Sand			Granular	Loose	Medium sand

Additional Notes:

Observed Groundwater: weeping at 84", standing at 84" (Seasonal High GW Mottles at 60" all around test pit)

No Bedrock Observed. Permeability test conducted at 66"

C. On-Site Review:

Deep Observation Hole Number:

TP-106 (10/7/2021)

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	Red	loximorphic Feat	ures	Soil Texture		ragments /olume		Soil Consistence	Other
Depth (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-8	1C1	10YR3/2				Sandy loam			Massive	Friable	Unsuitable Fill
8-24	1C2	10YR4/4				Sandy loam			Massive	Friable	Unsuitable Fill
24-30	А	10YR2/2				Sandy loam			Massive	Friable	
30-40	Bw	10YR4/3				Sandy loam			Massive	Friable	Fine to Medium
40-96	2C1	10YR5/4	60 in	10YR5/8	20	Sand			Granular	Loose	Medium sand

Additional Notes:

Observed Groundwater: weeping at 84", standing at 84" (Seasonal High GW Mottles at 60" all around test pit)

No Bedrock Observed.

C. On-Site Review:

Deep Observation Hole Number:

TP-107 (10/7/2021)

Depth (in.)	Soil Horizon/	Soil Matrix: Color Moist (Munsell)	Red	oximorphic Feat	ures	Soil Texture		ragments /olume	Soil Structure	Soil	Other
Depth (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-4	А	10YR3/2				Sandy loam			Massive	Loose	
4-12	В	10YR4/6				Sandy loam			Massive	Loose	
12-96	С	10YR5/4	36 in	10YR5/8	20	Sand			Granular	Loose	Medium sand

Additional Notes:

Observed Groundwater: weeping at 54", standing at 54" (Seasonal High GW Mottles at 36" all around test pit)

No Bedrock Observed. Permeability test conducted at 36"

C. On-Site Review:

Deep Observation Hole Number:

TP-108 (10/7/2021)

Donth (in)	Soil Horizon/	Soil Matrix: Color-	Red	oximorphic Feat	ures	Soil Texture		ragments /olume		Soil Consistence	Other
Depth (in.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones		(Moist)	Other
0-24	1C1	10YR5/4				Sandy loam			Massive	Very Friable	Unsuitable Fill
24-30	А	10YR3/2				Sandy loam			Massive	Friable	
30-40	Bw	10YR4/6				Sandy loam			Massive	Loose	
40-120	2C1	10YR5/4	108 in	10YR6/8	20	Sand			Granular	Loose	Medium sand

Additional Notes:

Observed Groundwater: weeping at 118", standing at 118" (Seasonal High GW Mottles 108" all around test pit)

No Bedrock Observed.

							Proje	ect: <u>True S</u>		ING LOG			g No.: g Location: <u>See Exp</u> l	NB-101 loration Locatior	<u> </u>
2													ked by: K	. Stanway	
0.69.0		r	not	Dis						ranberry Highway, Wa	areham, MA	Date	Start: October 19		
								s Project No					Finish: October 1		
'n	ontracto				ng Co	ontrac				Track / B-53 Mobile	9	Grour	nd Surface Elev.:	(+/-) 50	
ō	iller:		V. Hoeckle	e				mer Type: _ mer Hoist: _		Automatic Hammer		Dotup	NA	00 D	
		p <u> </u>	S. Kurtzer Drilling N	/lethod		Sam					undwater C			VD 88	
Σ Σ	ре		Casi				Spoon	Date		Depth Below Ground (ft.)	Depth of Ca		Depth to Bottom of Ho		
Si	ze ID (i	n.)	4			1-3	3/8	. ¥ 10/19/21	09:30	8.8	9		9.2	10 mi	'n
	vancer	nent	Drive and	d Wash	1	40-lb H	lammer	-							
	S	AMPLE	INFORMAT	ION			HOLOGY								NOTES
Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev. / Dept	th			DN AND REMARKS Modified Burmister)				
							(ft.) 49.8 / 0.2 ASPHALT	2-inches	of asph	alt.	/				
	S-1	10	0.5-2	7 7				S-1: Med (FILL).	dium der	ise, light brown, fine to	SAND, little fine Gravel, little Silt. Moist.				
≶ 2				6											
	S-2	6	2-4	9 7			FILL	S-2: Meo Silt. Mois		ise, light brown to dark).	e to coa	arse SAND, little fine	e Gravel, little		
				9											
<u></u> 4	S-3	13	4-6	9 9		\times	46.0 / 4.0		dium der	nse, tan, fine to mediur	tle Silt	Moist		_	
⁷⁰⁺⁷⁻⁰ 5			+0	6						,					
047-0				4											
															1
	_			-											
8															
AN PC				-	Ţ										
	S-4	8	9-11	3				S-4: Med	dium der	nse, tan, fine to mediur	m SAND, tr	ace Silt	. Faint redoximorphi	ic staining. Wet.	
2 10 A 10)			5 5											
1 [/]				5											
n. 12	2			-			CAND								
R): C - L							SAND								
1/	S-5	15	14-16	8				S-5: Mer	dium der	nse, tan, fine to mediur	n SAND tr	ace Silt	. Seam of fine to co	arse sand	
- 		13	14-10	8				around 1	4.5 feet	Faint redoximorphic s	staining. We	et.			
107 107	.			10 10											
3															
	'			$\left \right $				Drill rig chatter begins at 16.8 feet.							
18															
				-											
2 CIN	S-6	13	19-21	11				S-6: Meo Wet.	dium der	ise, gray brown, fine to	o coarse SA	ND, litt	tle fine to coarse Gra	avel, trace Silt.	
20 21 21 21		centag	ge Non-S	11 oil N	OTES	<u> </u> S:									
	се	5 - 10 0 - 20	very fe	ew 1			roduced 1	to borehole o	during dr	ive and wash process	at 6 feet.				
j so	ne 2	0 - 20 0 - 35 5 - 50	sever	al											
ž —				are based on visual classifications and should be considered approximate. Stratification lines are approximate boundaries between stratums; transitions may be gradual. Page No. 1 of								of <u>2</u>			

				_					BOR	ING LOG			g No.: NB- 1		_
							Proje	ect: True S	Storage F	acility		Boring Plan	g Location: <u>See Explorati</u>	on Location	-
2													ked by: K. Sta	nway	-
GS.GPJ		r	hob	nic						ranberry Highway, Wa	areham, MA		Start: October 19, 202		-
NG LO		1	IUL	15			Nobi	s Project No	.: 9556	1.15		Date F	inish: October 19, 20	21	
by Co	ontracto	or:N	lew Engla	nd Bori	ng Co	ontrac	tors Rig 1	Type / Model	:	Track / B-53 Mobile	e	Groun	nd Surface Elev.:(+/-)	50	_
6	iller:		V. Hoeckle	Э						Automatic Hammer					
	bis Re	p.: _S	6. Kurtzer					mer Hoist: _					n: NAVD 8	38	_
∑ ⊈ Ty	ne		Drilling N Casi		+	Sam Split-S		Date	Time		Depth of Cas		Itions Depth to Bottom of Hole (ft.)	Stabilization Tim	ne
2	ze ID (ii	n)	4	-		1-3	-	. ¥ 10/19/21	09:30	8.8	9		9.2	10 min	
	vancer		Drive and				lammer								
Ē —			INFORMAT			1	HOLOGY	<u> </u>							_
Depth (ft.)	Туре	Rec	Depth	Blows/	Ground Water	Graphic	Stratum Elev. / Dept	h			ESCRIPTION on System: M			UCHES NO	101 ES
≩ 	& No.	(in.)	(ft.)	6 in.	-0	Gr	(ft.)			-					_
NEHAN 21				10											
₹ 22				-											
23				-			SAND								
24	_							0.7.1/						0.11	
2047-25	S-7	6	24-25.4	5 8				S-7: Ver Wet.	y dense,	gray brown, fine to co	arse SAND	, some	fine to coarse Gravel, tr	ace Silt.	
- 2400				50/5"			24.6 / 25.4		rminate	d at 25.4 feet.					2
<u>6 26</u>				-				bonng te	minate	d al 20.4 leel.				2	۲
27 27															
				-											
29				-											
AUY SULL															
[#] 31															
2000				-											
996):r -															
66:33				$\left \right $											
34															
- - - - - - - - - - - - - - - - - - -				$\left \right $											
2011.															
36				$\left \right $											
0 ≝ 37															
				$\left \right $											
AIA															
39 39				$\left \right $											
2 2 2 2 2 3 40				1	07-										_
ž So b tra	се	<u>centac</u> 5 - 10	very fe	ew 2	OTES 2) Boi		ackfilled w	/ith drilling s	poils upo	n completion and pav	ement resto	ored wit	h cold patch asphalt.		
litt	ne 2	0 - 20 0 - 35	few sever	al				_	-	-			-		
ar Soi		5 - 50	numero		classific	ations an	d should be cor	nsidered approxima	te. Stratificatio	on lines are approximate boundarie	s between stratum	s; transition	ns may be gradual.	geNo. 2 of 2	2

Γ										BOR			Boring	J No.:		NB-10)2	
								Proje	ect: True S	Storage	-acility		-	J Locatio	on: <u>See Ex</u>	ploratio	n Location	
									<u></u>	Storage	dointy		Plan Chock	rod by:		K Stor		
, S N			r	nob	ic			Loca	ition: 2400	- 2402 C	ranberry Highway, Wa	ireham, MA			October			
e LCG			1	IOL	NS			Nobi	s Project No	.: 9556	1.15				October			
	Contr	actor	: <u>N</u>	ew Engla	nd Bori	ng Co	ontract	tors Rig	Type / Model	l:	Track / B-53 Mobile)	Groun	d Surfa	ce Elev.:	(+/-) :	50	
01.10	Driller	r:	W	/. Hoeckle	e			_ Ham	mer Type: _		Automatic Hammer							
208/20	Nobis	s Rep	.: <u>S</u>	. Kurtzer				_ Ham	mer Hoist: _						N	IAVD 88	3	
				Drilling N			Sam		Date	Time	Gro Depth Below Ground (ft.)	undwater C			Bottom of H	Hole (ft)	Stabilization	Time
2	Гуре		,	Casir	ng		Split-S		¥ 10/19/21	11:00	9.3	9	g ()	Doptille	10	1010 (111)	10 mir	
Ĭ		ID (in		4			1-3											
Ę		ncem		Drive and		1	-	lammer HOLOGY										
Ц С Ц	Depth (ft.)	Туре	Rec	Depth	Blows/	Ground Water	Graphic	Stratum Elev. / Dep				ESCRIPTION n System: M						NOTES
אא אוא		& No. S-1	(in.)	(ft.)	6 in.	<u>ر</u> م	Gra	(ft.)		3"): 1 000	e, brown, fine to coars			,		little Silf	t Moist	ž
EHAIV	1	3-1	18	0-2	4 5			FILL	(FILL).). L003		e oand, iit		to coars	se Olavel,		. Moist.	
ARV	_				4		XX	48.5 / 1.5	S 1D /F"		, dark gray brown to or	ange fine	o modi			It Maia	•	
- 	2	S-2	17	2-4	3					<i>'</i>	ge to tan, fine to medi	-				IL. IVIOIS	ι.	
22	3				2													
ANBI	4				4													
402 0		S-3	15	4-6	6				S-3: Mee	dium der	nse, tan, fine to coarse	SAND, tra	ce Silt.	Moist.				
7-00-2	5				5 5													
- 61.	6				7													1
OCCA	7																	1
22	8																	
	9	S 4	8	0.11		Ţ			S 4: Mo	dium dor	nse, tan, fine to mediur	n SAND tr	nco Silt	Eaint r	odovimorn	bio stai	ning Wot	
Y SULL	10	S-4	0	9-11	4 5	<u> </u>			0-4. Met			n Sand, u		. i aint i	edoximorp	nic star	ning. wet.	
BKAU					6 6			SAND										
- 00.0	11							0/110										
	12																	
- AC:2	13																	
1 1 7 17	14																	
<u>-</u>		S-5	6	14-16	4				S-5: Mee	dium der	nse, tan, fine to coarse	SAND, tra	ce Silt.	Wet.				
ם. בי	15				3													
	16				6													
20	17				-													
MPLA																		
H H	18				-				Drill rig o	chatter b	egins at 17.5 feet.							
	19								0.04.(0)			G				- 4		
פוט פ	20	S-6	20	19-21	9 9				5-6A (9"): iviediu	m dense, gray brown,	ine to med	ium SA	טאו, soi	ne Slit. W	el.		
	Soil		centag			OTES		na de se d		d	in a second second to a	-+ 0 f- : 1						
Ц Ц	race little	10	5 - 10) - 20	very fe) wa	ier int	roauced	io porenole (auring dr	ive and wash process	al 6 feet.						
ž I	ome and) - 35 5 - 50	sever: numero														
	Soil des	scriptions	s, and litho	ology, are base	d on visual	classifica	ations and	I should be co	nsidered approxima	te. Stratificati	on lines are approximate boundaries	s between stratum	s; transitior	is may be gr	adual.	Pag	e No. <u>1</u> c	of <u>2</u>

							Proje	ect: <u>True S</u>		ING LOG		Boring <u>Plan</u>	g Location: <u>See Expl</u>		tion
0.0		-	nob	lic			Loca	tion: 2400	- 2402 C	ranberry Highway, Wa	areham, MA		ked by: <u>K</u> Start: <u>October 19</u>		
		1	IOL	NS			Nobi	s Project No	.: 9556	1.15			Finish: October 19		
Con	tracto	r:N	lew Engla	nd Bori	ng Co	ontract	ors Rig 1	ype / Model	:	Track / B-53 Mobile	е	Groun	d Surface Elev.:	(+/-) 50	
0	er:		V. Hoeckle	9						Automatic Hammer					
Nob	is Rep	o.: <u>S</u>	6. Kurtzer					mer Hoist: _					n: <u>NA'</u>	VD 88	
Typ	e		Drilling N Casi		+	Sam Split-S		Date	Time	Gro Depth Below Ground (ft.)	Depth of Cas			e (ft.) Stabiliza	ation Time
2	e ID (ir	1)	4			1-3		. ¥ 10/19/21	11:00	9.3	9		10	10) min
	ancem	-	Drive and		1	40-lb H									
ć —			INFORMAT			LITI	HOLOGY								S
Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev. / Dept	h			ESCRIPTION on System: M				NOTES
		. /		12		0	(ft.)	S-6B (11	"): Medi	um dense, tan, fine to	coarse SA	ND, trad	ce Silt. Wet.		
1 21				12			SAND								
≥ 22							28.0 / 22.0	,							
23						0									
						0									
24	S-7	12	24-25.8	15		° O	SAND ANE GRAVEL		nse, tan,	fine to coarse SAND,	some fine t	o coars	e Gravel, little Silt. V	Vet.	
25				12 22) 									
26				-22 -50/3"/		Ø	24.2 / 25.8		rminate	d at 25.8 feet.					2
27								Doning to		a at 20.0 100t.					
28															
29															
30															
31															
00.00															
32															
33															
34															
35															
36															
37															
38															
39															
200															
40 Soi		centag	je Non-So		OTES										I
trac	e 1(5 - 10 0 - 20	very fe		2) Bor	ing ba	ckfilled w	/ith drilling s	ooils upo	n completion.					
som and		0 - 35 5 - 50	sever numero												
Soil c	lescription	is, and lith	ology, are base	d on visual	classific	ations and	should be cor	sidered approximation	te. Stratificatio	on lines are approximate boundarie	s between stratum	s; transition	ns may be gradual.	Page No.	2 of 2

										BOR	ING LOG				on: <u>See Ex</u>	NB-1	03 on Location	
								Proje	ect: <u>True</u>	Storage	Facility		Plan					
GPJ								Loca		- 2402 (ranberry Highway, Wa	areham MA			0.1.1			
S LOGS			r	not	SIS				s Project No				Date		October October			
SORIN	Cont	ractor	:_N	ew Engla	nd Bori	ng Co	ntrac	tors Rig 1	Гуре / Mode	I:	Track / B-53 Mobile	9	Grour	d Surfa	ce Elev.:	(+/-)	47	
61.151	Drille	er:	V	/. Hoeckl	е			Ham	mer Type: _		Automatic Hammer							
S/955	Nobi	s Rep	.: <u>S</u>	. Kurtzer					mer Hoist: _					ו:	N	IAVD 8	8	
ALION	Туре		_	Drilling N Casi			Sam	ipler Spoon	Date	Time	Gro Depth Below Ground (ft.)	Undwater C			Bottom of H	Hole (ft.)	Stabilization -	Time
XPLOR		, ID (in)	4 Casi			•	3/8	₹ 10/19/21	12:00	5.7	out			6		while samp	
		ancem		Drive and		14		lammer										
ECHN				NFORMAT			LIT	HOLOGY										S
A/GEOI	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev. / Dept (ft.)	th			ESCRIPTION on System: M						NOTES
AM M		S-1	22	0-2	1			46.8 / 0.2 TOPSOIL	/ Q=1A (2		, dark brown, fine to co						ſ	-
AREH	1				3		<u>_{</u> }+	SUBSOIL 46.0 / 1.0		-	e, dark orangish browr e, brown to tan, fine to					oist.		-
× - ∕.	2				6													
КҮ НV	3	S-2	22	2-4	4				S-2: Me	dium der	nse, tan, fine to mediur	n SAND, tr	ace Silt	. Moist.				
NBER					6													
2 CKP	4	S-3	20	4-6	6 8				S-3: Me	dium der	nse, gray brown, fine to	o coarse SA	ND, tra	ace fine	Gravel, tra	ace Silt.	Moist to	
00-240	5				6				wet.									
15 - 24	6				7	Ţ												
15561.	-				_													1
	7					-		SAND										
1 NOKIF	8				-			0, 110										
VANF	9																	
SULL	10	S-4	12	9-11	3				S-4: Me	dium der	ise, gray brown, fine to	o medium S	and, t	race Silt	. Wet.			
3RAUY					7													
- 00.0	11				9													
1:\9556	12																	
2:59 - J	13																	
2/21 1.	14							33.0 / 14.0										
11/		S-5	16	14-16	7			55.07 14.0		f, gray b	rown, SILT. Wet.							1
11.GU	15				6 7													
1 / 20	16				8			SILT										
VIE OC	17																	
EMPL/	18							29.0 / 18.0										
AIAI								23.07 10.0		chatter b	egins at approximately	18 feet.						1
2 GINI L	19	S-6	13	19-21	10		。 () Ø	SAND AND GRAVEL		dium der	nse, gray brown, fine to	o coarse SA	ND an	d fine to	coarse Gi	ravel, s	ome Silt.	
NOBIS	20 Soil	Perc	entag	e Non-S	12 oil N	OTES	\cap											
- 00 רו	trace little	5	5 - 10) - 20	very fe	ew ′			roduced f	to borehole	during dr	ive and wash process	at 6 feet.						
HOLE	some and	e 20) - 20) - 35 5 - 50	sever	al													
BORE						classifica	tions and	d should be cor	nsidered approxima	te. Stratificati	on lines are approximate boundarie	s between stratum	s; transitior	ns may be gr	adual.	Pag	je No. <u>1</u> o	f <u>2</u>

Γ										BOR	ING LOG			g No.:			
			-					Proj	ect: <u>True S</u>	Storage F	acility		Plan	J Location: <u>See</u>		DITLOCATION	
C J													Check	ked by:	K. Sta	nway	
5.00			r	nob	ois						ranberry Highway, Wa	areham, MA	Date	Start: <u>Octob</u>			
								Nob	is Project No	.: 9556	1.15		Date I	Finish: Octob	per 19, 202	21	
						ng Co	ontrac				Track / B-53 Mobile		Grour	d Surface Elev	.: (+/-)	47	
0	Driller			/. Hoeckle . Kurtzer)						Automatic Hammer		Datur			0	
	NODIS	кер.		Drilling N	lethod		Sam	⊓an npler	nmer Hoist: _			undwater C		1:	NAVD 8	0	
	уре			Casir				Spoon	Date	Time	Depth Below Ground (ft.)	Depth of Cas	sing (ft.)	Depth to Bottom	of Hole (ft.)		
	Size II	D (in.)	4			1-:	3/8	₹ 10/19/21	12:00	5.7	out		6		while samp	oling
	dvan	-		Drive and	Wash	1	140-lb H	lammer	-								
É				INFORMAT				HOLOGY									S
	Depth (ft.)	ype No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev. / Dep (ft.)	th			ESCRIPTION on System: M					NOTES
					11 11		ه ر د	SAND AN									
	21				-			GRAVEL 25.2 / 21.									
	22							20.2721.		t into pos	sible rock or boulder f	from approx	imatel	/ 21.8 to 24 fee	t.		
	23				-			ROCK									
	24							23.0 / 24.		rminata	d at 24 feet.						2
z40Z	25								Boring te	minale	at 24 leet.						
- 2400	26				-												
	27																
	28																
	29																
SULLIV	30																
					-												
- 00.00	31				-												
- J. (200)	32																
AC:71	33																
	34																
	35																
	36																
	37																
	38																
A A																	
	39																
5	10 Soil	Perce	entag	e Non-So	ji N	OTES	 S:										
b trace 5 - 10 very few 2) Boring backfi little 10 - 20 few								ackfilled v	vith drilling s	ooils upo	n completion.						
s	ome and	20	- 35 - 50	severa													
	Soil desc	criptions,	, and lithe			classific	ations an	d should be co	nsidered approximat	e. Stratificatio	on lines are approximate boundaries	s between stratum	s; transitio	ns may be gradual.	Pag	je No. <u>2</u> o	f <u>2</u>

ſ										BOR	ING LOG		-) No.: Location: See E:			
								Proje	ect: True S	itorage F	acility		Plan	20021011. <u>000 L.</u>	Apioratic	In Location	
2														ed by:	K. Star	nway	
50.0			r	not	nis						ranberry Highway, Wa	areham, MA	Date S	Start: October	19, 202	1	
רר			1		15			Nobi	s Project No.	: 9556	1.15		Date F	inish: October	[.] 19, 202	21	
R D B C R	Contr	ractor	: <u>N</u>	ew Engla	nd Bori	ng Co	ontract	tors Rig ⁻	Type / Model		Track / B-53 Mobile	9	Groun	d Surface Elev.:	(+/-)	48.5	
ō		r:		/. Hoeckle	e						Automatic Hammer		_			_	
	Nobis	s Rep	.: <u>S</u>	. Kurtzer					mer Hoist: _						NAVD 8	8	
0	Туре			Drilling N Casi			Sam Split-S	•	Date	Time	Depth Below Ground (ft.)	Depth of Ca			Hole (ft.)	Stabilization	Time
2		ID (in	<u>,</u>	4	-		1-3		. ¥ 10/19/21	14:50	6.5	out		22.5		5 min	
		ncem		Drive and				lammer									
Ę –				NFORMAT			-	HOLOGY									
	Depth (ft.)	Туре	Rec	Depth	Blows/	Ground Water	Graphic	Stratum Elev. / Dep	th			ESCRIPTION on System: M					NOTES
		& Ño.	(in.)	(ft.)	6 in.	0-	Ca G XXXX	(ft.)		· 1 0050	dark brown, fine to co	-			wol little	Silt	z
EHAIV	1	S-1	18	0-2	3 2			FILL 47.5 / 1.0	Moist. (F	ILL).					ivei, inde	, ont.	
NAN -	_				3			SUBSOIL		: Loose	orangish brown, fine	to medium	SAND,	little Silt. Moist.			
	2	S-2	16	2-4	2 3			46.5 / 2.0	S-2: Loo		fine to medium SAND	, trace fine	Gravel,	trace Silt. Faint re	edoximo	rphic	-
	3				2				staining.	Moist.							
KANBI	4				4												
		S-3	16	4-6	7				S-3: Loo	se, tan, t	fine to medium SAND	, trace Silt.	Faint re	doximorphic stair	ning. Mo	ist.	
-10-Z	5				4 5												
- 01.	6				5												1
10006	7				-	Ţ											1
	8				-			SAND									
	9												0.11				
SULL	10	S-4	13	9-11	2				5-4: Loo	se, gray	brown, fine to mediun	n SAND, tra	ce Slit.	wet.			
					4												
- 00.	11				6												
nacce	12																
- AC	13																
71.17																	
7/11-	14	S-5	12	14-16	6		0 U	34.5 / 14.0	S-5: Mec	lium der	se, gray brown, fine to	o coarse SA	ND, so	me fine to coarse	Gravel,	trace Silt.	-
	15				9		° ()		Wet.								
1 201	16				10 7		Ø										
3	_						0										
	17				-			SAND ANI GRAVEL	0								
_	18						<i>•</i> • O										
NAIA	19				-		• ()										
Z Z Z		S-6	12	19-21	11		0		S-6: Med	lium der	se, tan, fine to coarse	GRAVEL a	and fine	to coarse Sand,	trace Si	t. Wet.	
	20 Soil	Perc	entag	e Non-S	7 oil N	OTES	<u>, O</u> S:										
g t	race little	5	5 - 10) - 20	very fe	ew ´			roduced	to borehole d	uring dri	ve and wash process	at 6 feet.					
js	and	20) - 20) - 35 5 - 50	sever	al												
ř–						classifica	ations and	d should be co	nsidered approximat	e. Stratificatio	on lines are approximate boundarie	s between stratum	s; transitior	s may be gradual.	Pag	e No. <u>1</u> o	of <u>2</u>

									BOR	ING LOG			·	-104	
							Proje	ect: True S	Storage F	acility		Boring Plan	Location: See Explora	ation Location	—
2													xed by: K. S	tanway	
69.67		r	not	nis						ranberry Highway, W	areham, MA	Date S	Start: October 19, 2	021	
NG LO		1		15			Nobi	s Project No	.: 9556	1.15		Date F	inish: October 19, 2	2021	
Cor	ntracto	r:N	lew Engla	nd Bori	ng Co	ontracto	ors Rig ⁻	Гуре / Model	:	Track / B-53 Mobil	е	Groun	d Surface Elev.:(+,	/-) 48.5	
0	er:		V. Hoeckle	e			_			Automatic Hammer					
Not	ois Rep	o.: _S ──⊤	. Kurtzer	A - 411		0		mer Hoist: _					n: <u>NAVE</u>	0 88	
∑ ≹ Typ	e		Drilling N Casi			Samp Split-Sp		Date	Time		oundwater C		Depth to Bottom of Hole (i	ft.) Stabilization	Time
2	e ID (ir)	4	-		1-3/		₹ 10/19/21	14:50	6.5	out		22.5	5 min	
	ancem	-	Drive and			140-lb Ha									
É 🗕 🗕			INFORMAT			-	IOLOGY								
Depth (ft.)	Type & No.	Rec	Depth	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev. / Dep	th			DESCRIPTION on System: M				NOTES
	0x 110.	(in.)	(ft.)	ып. 9		ë	(ft.)								+
21				21		• (SAND ANI GRAVEL	2							
22				$\left \right $		0	26.7 / 21.8	3		- <u></u>			01.01.00.54		
						×,	ROCK 26.0 / 22.5	5		sible rock or boulder	from approx	imately	/ 21.8 to 22.5 feet.		
23				-				Boring te	erminate	d at 22.5 feet.					2
24															
25															
- 2400				-											
26				-											
27															
28															
29 30															
30 1				-											
⁶ 31															
32				-											
2.															
8 33				$\left \right $											
34															
35															
]											
36															
37															
1 38															
39															
40 2 So	Por	centag	e Non-S		OTE	<u> </u>									
trac	e t	5 - 10	very fe	ew 2			kfilled v	vith drilling s	poils upo	n completion.					
som	e 20	0 - 20 0 - 35	few sever	al											
and Soil		5 - 50 is, and lith	ology, are base		classific	ations and	should be co	nsidered approxima	te. Stratificatio	on lines are approximate boundari	es between stratum	s; transitior	is may be gradual.	age No. 2 o	of 2

Γ				_					BOR	ING LOG		-		NB-105	
							Proje	ect: True S	Storage I	Facility		-	Location: See Expl	loration Location	on
_									5			Plan Check	ed by: K	Stanway	
		r	nob	vic			Loca	tion: 2400	- 2402 C	ranberry Highway, Wa	areham, MA		itart: October 20		
		1	IOL	12			Nobi	s Project No	.: 9556	1.15			inish: October 2		
Co	ntracto	r: _ N	lew Engla	nd Bori	ng Co	ontract	tors Rig 1	Гуре / Model	:	Track / B-53 Mobile	9	Ground	d Surface Elev.:	(+/-) 50	
Dri	ller:	۷	V. Hoeckle	e						Automatic Hammer					
No	bis Rep	o.:	. Kurtzer					mer Hoist: _						VD 88	
			Drilling N Casi			Sam Split-S	•	Date	Time	Gro Depth Below Ground (ft.)	Depth of Ca			le (ft.) Stabilizati	tion Time
Ty	e ID (ir		4	ig		1-3		¥ 10/20/21 ¥ 10/20/21	09:45 09:55	6.8 6.6	24		28.5 28.5	5 n 15 r	nin
	vancem		4 Drive and	Weeh	1		lammer	¥ 10/20/21	09.55	0.0	out		20.3	151	
[INFORMAT			-	HOLOGY								
Depth (ft.)	Туре	Rec	Depth	Blows/	Ground Water	Graphic	Stratum Elev. / Dept	th			ESCRIPTION on System: M				NOTES
Ŭ	& No. S-1	(in.) 13	(ft.) 0-2	6 in. 3	0	<u>نا ایر ایر</u>	(ft.)): Loose	, brown, SILT, some fi	ne to coars	e Sand.	several root fibers.	Moist.	
		.0		5			49.5 / 0.5			e, brown, fine to coars					
2				3	4		FILL	(1122).							
	S-2	15	2-4	1	2 2			S-2A (6"): Very l	oose, dark brown and	gray, fine to	mediur	m SAND, little Silt. I	Moist. (FILL).	
3				2		***	47.0 / 3.0): Very le	oose, brown to tan, fin	e to mediun	n SAND	, trace Silt. Moist.		
4				1											
5	S-3	12	4-6	2 3				S-3: L00	se, tan,	fine to medium SAND	, trace Slit.	woist.			
- 2400				5											
6				5	_										1
7					Ţ										
8															
9 10	S-4	9	9-11	2				S-4: Loo	se, tan,	fine to medium SAND	, trace Silt.	Faint ree	doximorphic stainin	g. Wet.	
10				3 4											
11				4 5											
12							SAND								
<u>8 13</u>				-											
14	-							0.5.11							
15	S-5	13	14-16	5 6				S-5: Med	aium der	ise, gray brown, fine to	o medium S	AND, tr	ace Siit. Wet.		
				9											
16				9											
17															
18															
19	S-6	24	19-21	14			20.0/15): Dense	, tan, fine to medium \$	SAND, trace	e Silt. W	/et.		
20 20 20		centag	e Non-Se	14 Dil N	OTES		30.2 / 19.8	5							
tra	ce !	5 - 10	very fe	ew 1			roduced	to borehole c	during dr	ive and wash process	at 6 feet.				
litt sor	ne 20	0 - 20 0 - 35 5 - 50	few	al											
an Soi	_	5 - 50 is, and lith	numero ology, are base		classifica	itions and	I should be co	nsidered approximat	te. Stratificati	on lines are approximate boundarie	s between stratum	s; transitions	s may be gradual.	Page No. 1	_ of _2

				_					BOR	ING LOG			No.:			
							Proje	ect: True S	Storage I	acility		-	Location: <u>See Exp</u>	loratio	n Location	
_				-			,			,		<u>Plan</u> Check	ed by: K	Stan	wav	
55.GPJ		r	hob	vic			Loca	tion: <u>2400</u>	- 2402 C	ranberry Highway, Wa	reham, MA		Start: October 20			
10 FOG		1	IOL	12			Nobi	s Project No	.: 9556	1.15			inish: October 2			
Cor	ntracto	r:N	lew Engla	nd Bori	ng Co	ontract	ors Rig⊺	Гуре / Model	:	Track / B-53 Mobile)	Groun	d Surface Elev.:	(+/-) 5	50	
ō	ler:		V. Hoeckle	9						Automatic Hammer						
Not	ois Rep	o.:	6. Kurtzer				_ Ham	mer Hoist: _		Automatic		Datum	n:NA	VD 88	3	
			Drilling N		-	Sam		Date	Time	Gro Depth Below Ground (ft.)	undwater C			le (ft)	Stabilization	Time
Typ			Casir	ng	+	Split-S	-	₹ 10/20/21	09:45	6.8	24		28.5		5 min	
	e ID (ir		4			1-3		¥ 10/20/21	09:55	6.6	out		28.5		15 min	1
Ξ.	ancer		Drive and			140-lb H	ammer HOLOGY	 								
Depth (ft.)	Туре	Rec	Depth	Blows/	Ground Water	Graphic	Stratum	*h		SAMPLE DE (Classification	ESCRIPTION					NOTES
	& No.	(in.)	(ft.)	6 in. 24	< ں	Gra	Elev. / Dept (ft.)). Dense	, tan, fine to coarse SA			,	Silt W	et	ź
21				29		° (e, tan, fine to coarse S						
22				-		Ø										
						• O										
23							SAND AND									
24		_				0 0	GRAVEL					c		0.		
25	S-7	7	24-25.8	6 7		• ()		S-7: Med	lum der	se, tan, fine to coarse	SAND, sor	ne fine	to coarse Gravel, tr	ace SI	it. wet.	
- 2400				10		Ø										
26				<u>14/3"</u> /		0 0										
27							23.2 / 26.8		into pos	ssible rock or boulder f	rom approx	imatel	26.8 to 28.5 feet.			-
28				-			ROCK		·			,				
							21.5 / 28.5		rminata	d at 20 E faat						
29				-				Bonny te	minale	d at 28.5 feet.						2
30 30																
5 - 31																
32				-												
<u>8</u> 33																
34																
35																
1102																
36																
37																
38																
39																
39 0																
40 So	il Pero	centag	je Non-So	j Dil N	OTE	 S:										
trac	e t	5 - 10 0 - 20	very fe				ckfilled v	vith drilling sp	ooils upo	n completion.						
som	ie 20	0 - 20 0 - 35 5 - 50	sever													
ž —			numero nology, are base		classific	ations and	should be co	nsidered approximat	e. Stratificati	on lines are approximate boundaries	s between stratum	s; transitior	s may be gradual.	Page	e No. <u>2</u> o	of <u>2</u>

ſ													-	y No.: y Location: <u>See Exp</u>	NB-106 loration Loc	ation
								Proje	ect: <u>True S</u>	Storage F	acility		<u>Plan</u>	ed by:k	(Stopwov	
5 0					in			Loca	tion: 2400	- 2402 C	ranberry Highway, Wa	reham, MA		Start: October 20		
e LOG			ſ	not	JIS			Nobi	s Project No	.: 9556	1.15			Finish: October 2		
	Cont	ractor	: N	ew Engla	and Bori	ng Co	ontrac	tors Rig 1	Type / Model	:	Track / B-53 Mobile	;	Groun	d Surface Elev.:	(+/-) 50	
п С	Drille	r:		/. Hoeckl							Automatic Hammer					
0006	Nobis	s Rep	.: <u>S</u>	. Kurtzer					mer Hoist:				Datum	n: NA	VD 88	
NO NO				Drilling I	Nethod		San	npler				undwater C				
INAL	Туре			Cas	ing		Split-	Spoon	Date ▼ 10/20/21	Time 11:30	Depth Below Ground (ft.) 8.4	Depth of Cas 24	sing (ft.)	Depth to Bottom of Ho 26		zation Time 5 min
EAPL	Size	ID (in	.)	4			1-	3/8	+ 10/20/21	11.50	0.4	24		20		5 11111
	Adva	ncem	ient	Drive and	d Wash	1	40-lb l	Hammer	-							
		SA	MPLE	INFORMA	ΓΙΟΝ		LIT	THOLOGY								ω
	Depth (ft.)	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	Ground Water	Graphic	Stratum Elev. / Dept	h			ESCRIPTION n System: M				NOTES
M MA			. ,	. ,				(ft.) 49.8 / 0.2 ∖ ASPHALT	2-inches	of aspha	alt.					
	1	S-1	7	0.5-2	8					dium der	se, brown, fine to coa	rse SAND,	little fin	e to coarse Gravel,	little Silt. M	oist.
- WA	2				11 8			FILL	(1122).							
× ₩		S-2	18	2-4	9			47.5/2.5			n dense, brown, fine t	o coarse S/	AND, lit	tle fine to coarse G	ravel, little S	Silt.
Ϋ́Υ	3				5				Moist. (F S-2B (12		um dense, orangish br	own, fine to	mediu	m SAND, little Silt.	Moist.	
CAINBE	4				8				(,		,				
רא מר		S-3	16	4-6	7				S-3: Me	dium der	se, tan, fine to mediur	n SAND, tra	ace Silt	. Moist.		
10-24	5				6											
0 - 24(6				7											
1.100																1
68/01	7				-											
	8				-											
						Ţ										
LIVA -	9	S-4	10	9-11	3				S-4 [·] Me	dium der	se, gray brown, fine to	o medium S	AND t	race Silt. Wet		
	10	0 +	10	011	6			SAND			oo, g.c., z.o,o		,			
RAD					8			OAND								
- 00.0	11				7											
10CCR	12															
- PC	13				+											
	10															
7/7/	14	<u> </u>	11	14.40					S-5. Ma	tium dan	se, gray brown, fine to	medium 9		race Silt Wet		
- -	15	S-5 14 14-16 3 15 4							3-3. IVIEC		se, gray brown, nne ll		, נו			
					6											
	16				7											
	17															
-MPL	10				-		$\overline{}$	32.5 / 17.5		hatter h	egins at 17.5 feet.					
¥	18				-		o ()		Diming c		syllis at 17.5 leet.					
	19						\circ	SAND AND GRAVEL		P	en ander bener der bei			1 f		
500	20	S-6	14	19-21	11		<u>ہ</u> 0		S-6: Med Wet.	aum den	se, gray brown, fine to	coarse SA	ano ano	a line to coarse Gra	vei, trace S	nt.
	Soil		centag		oil N	OTES										
	trace little		5 - 10) - 20	very f		1) Wa	iter in	troduced t	to borehole o	during dri	ve and wash process	at 6 feet.				
	some and	20) - 35 5 - 50	sever	ral											
н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н						classifica	ations an	d should be cor	nsidered approxima	te. Stratificatio	on lines are approximate boundarie	s between stratum	s; transition	s may be gradual.	Page No.	<u>1</u> of <u>2</u>

									BOR	ING LOG		-) No.: Location: See Ex			
							Proje	ect: <u>True S</u>	Storage F	acility		Plan				
CP3							Loca	tion: 2400	- 2402 C	ranberry Highway, Wa	areham. MA		ed by:			
LOG		r	hob	S				s Project No		· · · · · ·			Start: <u>October 2</u> Finish: October			
Cor	tracto	r: N	lew Engla	nd Bori	na Co	ontract	ors Ria 1	vpe / Model	:	Track / B-53 Mobile	9		d Surface Elev.:			
	er:		V. Hoeckle							Automatic Hammer						
0			6. Kurtzer							Automatic		Datum	1: <u> </u>	AVD 88	3	
			Drilling N	lethod		Sam	oler	-			oundwater C				-	
5 Typ	е		Casir	ng		Split-S	poon	Date ▼ 10/20/21	Time 11:30	Depth Below Ground (ft.) 8.4	Depth of Ca 24		Depth to Bottom of F 26	lole (ft.)	Stabilization 5 min	
Size	e ID (ir	ı.)	4			1-3	8									
ć —	ancem		Drive and		1	40-lb H										
Depth (ft.)					Ground Water		HOLOGY Stratum	_			ESCRIPTION					NOTES
È	Type & No.	Rec (in.)	Depth (ft.)	Blows/ 6 in.	ΞŠ	Graphic	Elev. / Dept (ft.)	h		(Classificatio	on System: M	odified E	surmister)			N N
21				12		° (
22						Ø										
23						° (SAND AND)								
						Ø	GRAVEL									
24	S-7							S-7: Der	nse, gray	brown, fine to coarse	SAND, son	ne fine	to coarse Gravel, t	trace Si	lt. Wet.	
25		18 26														
¹ / ₂							24.2 / 25.8		rminato	d at 25.8 feet.						
27								Doning te	enninates	a al 20.0 leel.						2
28																
29																
30 30																
31																
32																
33																
34																
35																
36																
37 81																
<u>38</u> ≤																
39																
5 6 40																
Soi trac	e t	centag 5 - 10 0 - 20	je Non-So very fe few		OTES 2) Bor		ckfilled v	ith drilling s	poils upo	n completion and pav	ement resto	ored wit	h cold patch aspha	alt.		
some 20 - 35 several and 35 - 50 numerous																
ž —					classific	ations and	should be co	nsidered approxima	te. Stratificatio	on lines are approximate boundarie	s between stratum	is; transitior	is may be gradual.	Pag	e No. <u>2</u> o	f <u>2</u>

PROVENCHER ENGINEERING, LLC

Donald A. Provencher, PE 6 Wasserman Heights Merrimack, NH 03054

Phone / fax: (603) 883-4444 E-mail: Don@Provencher.com ProvencherEngineering.com

TO:	Cassandra Koutalidis, Nobis Group
FROM:	Donald A. Provencher, P.E.
DATE:	October 20, 2021
REFERENCE:	Permeability Testing – Proposed Potential Stormwater Infiltration Areas <u>Proposed True Storage Facility, Wareham, Massachusetts</u> Project No. PE384.01

Permeability Test Results:

Permeability testing was conducted in the unsaturated zone (above the water table) at the above site to assess the hydraulic conductivity (permeability) of the site to facilitate the design of proposed potential stormwater infiltration systems. Four test sites were evaluated using Constant and Falling Head tests, conducted in the same test apparatus. A Constant Head test was conducted first to achieve a steady-state flow condition, followed by a Falling Head test using the basic Time Lag method.

Test results indicate very permeable soils in the eastern portion of the site, with favorable approximate hydraulic conductivities ranging between 27 and 41 feet per day at TP-103, 104, and 107; and poor (low) conductivity in the extreme western portion of the site of less than 2 feet per day at TP-105.

Permeability Test Set-up:

A test pit was first excavated to identify the receiving layer for the proposed infiltration system. A perc shelf was then excavated at one end of the test pit within the "C"-Horizon receiving layer parent material. The permeability test set-up was configured by first hand-excavating with a perc shovel, an approximate 6 inch diameter hole approximately 18 inches deep in the perc shelf within the parent material. A 3.00-inch inside diameter x 2.66-foot long open-ended PVC test pipe was used at each test location. The test pipe was inserted vertically into the hand-excavated holes, and bentonite clay pellets were placed around the outside of the bottom of the pipes. The pellets were wetted to allow expansion of the clay pellets in an effort to develop a water-tight seal between the outside of the pipe casing and the surrounding soil. After approximately 10 - 15 minutes of wetting, the outside of the test pipe was backfilled and compacted with low-permeable topsoil and subsoil ("A" & "B" horizon soil) to achieve a better seal around the test pipe. Water was introduced inside the pipe and held steady at the top of the pipe for an approximate 10 minute pre-soak.

The above test conditions are representative of "Case C" (flush bottom in uniform soil) for a constant head test, as presented by "Soil Mechanics" text book by T. William Lambe & Robert V. Whitman, Massachusetts Institute of Technology, 1969 (see attached).

Cassandra Koutalidis Nobis Group October 20, 2021 Page 2

Constant Head Permeability Test:

After the presoak, while maintaining the test pipe filled with water to the top of the pipe, oneeighth or one-half gallon volumes of water were introduced into the pipe, while measuring the time to apply each known volume of water into the pipe. Consecutive test trials were employed until a steady-state inflow rate was achieved between two consecutive test trials, while maintaining the test pipe at full height head (Hc). Please refer to the attached calculations.

Falling Head Permeability Test:

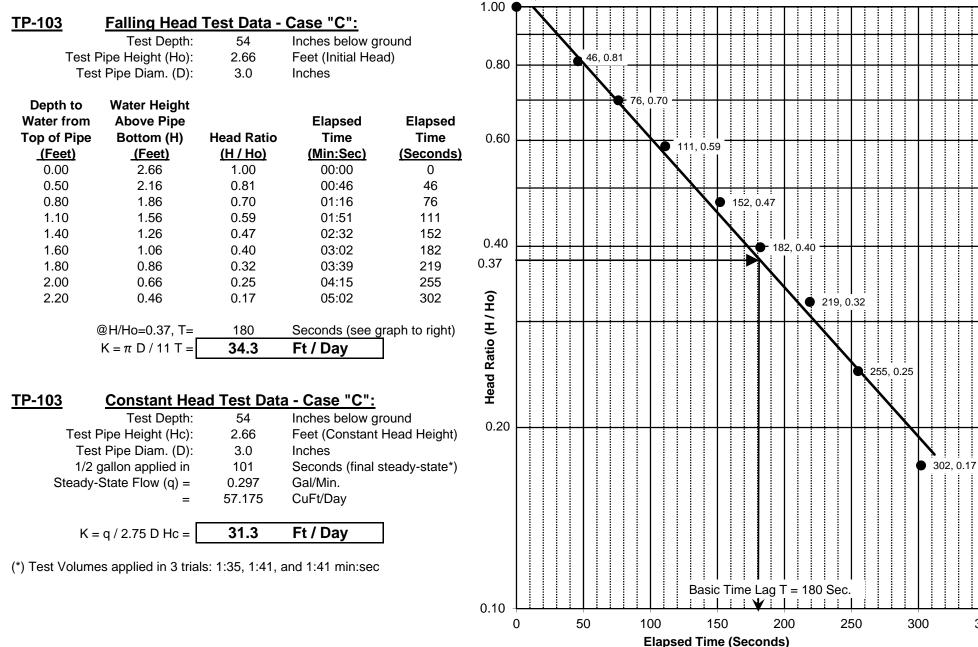
After the constant head test was completed, a falling head test was conducted at each test location by filling the test pipe full of water to an initial head Ho (top of the test pipe). Then, the water level was allowed to drop on its own (falling head) without addition of any more water. Successive drops in water level inside the pipe were timed, and the time and water level drop data was recorded.

The depths to water levels were input into a spreadsheet and were converted to height above the bottom of the test pipe (H), and each reading's height versus the initial head (H / Ho) was computed (i.e. head ratio). Please refer to the attached spreadsheet data table. Elapsed time versus head ratio was plotted, with head ratio on the vertical log scale. Initial head at full pipe is Ho, so the initial maximum H/Ho is 1.00. A straight best-fit line (linear regression) was calculated in the spreadsheet and drawn through the data points.

From these graphs, the "Basic Time Lag" method was used in conjunction with the "Case C" equations indicated in the "Soil Mechanics" text book reference, and time values t at H/Ho = 0.37 were selected from the graph as the basic Time Lag "T" valves, and were substituted into the basic time lag equation. Please refer to the attached calculations.

Conclusions:

Both constant and falling head test methods where conducted at each test location, and results between the two test methods yielded consistent results at each test location. We recommend using an average of the conductivity values for each test location in the table below. The following table summarizes the observed and average conductivities.


	Hydraulic Conductivity "K" (Feet / Day)									
Test Site	Constant Head	Falling Head	Average							
TP-103	31.3	34.3	32.8							
TP-104	27.5	29.8	28.6							
TP-105	1.9	1.8	1.8							
TP-107	41.5	38.1	39.8							

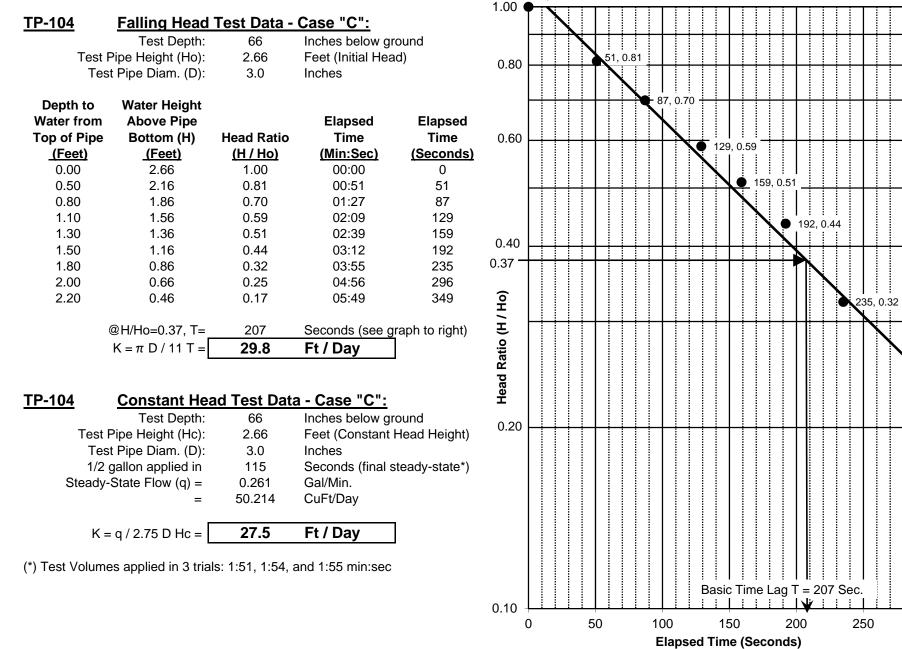
PE384MM001

<u>Proposed True Storage Facility</u> Wareham, Massachusetts

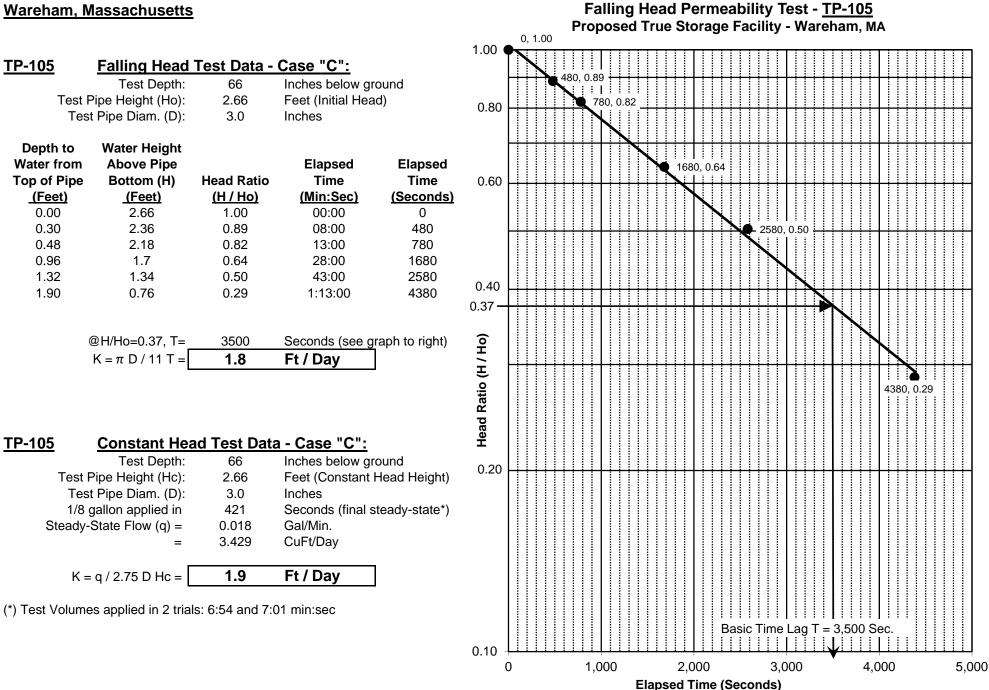
Falling Head Permeability Test - <u>TP-103</u> Proposed True Storage Facility - Wareham, MA

350

Proposed True Storage Facility Wareham, Massachusetts


Falling Head Permeability Test - TP-104 Proposed True Storage Facility - Wareham, MA 0, 1.00 51, 0.81

296, 0.25


349, 0.17

300

350

<u>Proposed True Storage Facility</u> Wareham, Massachusetts

Proposed True Storage Facility Wareham, Massachusetts

Falling Head Permeability Test - TP-107 Proposed True Storage Facility - Wareham, MA

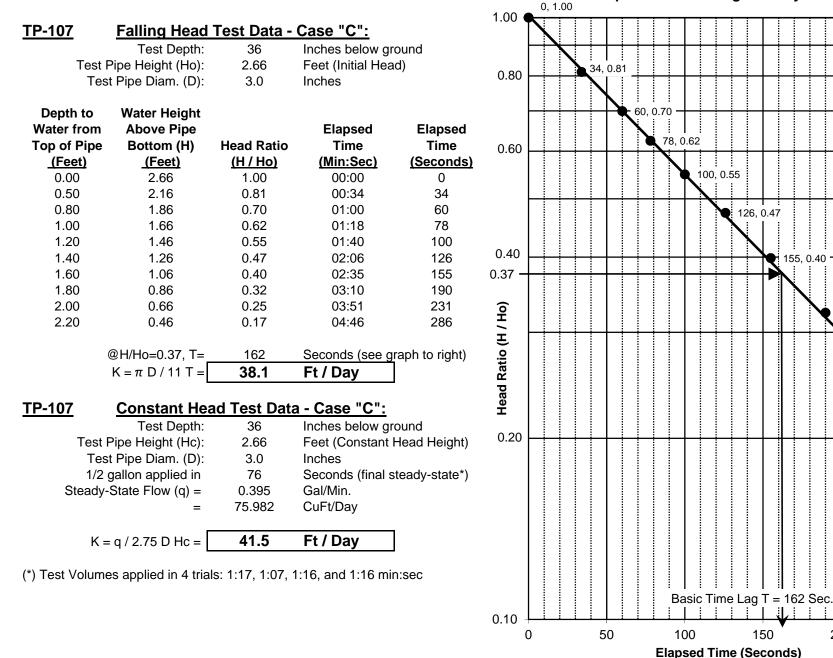
1

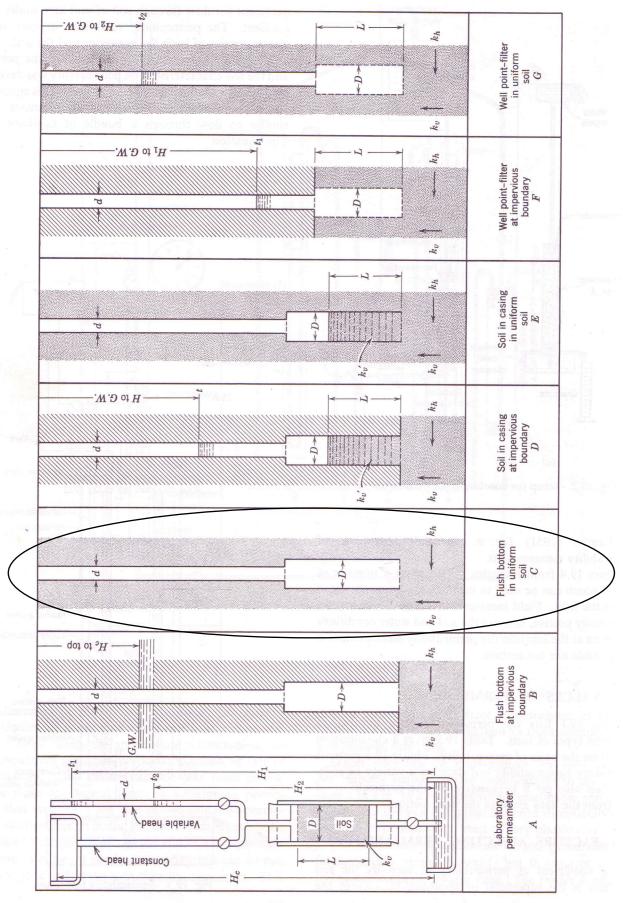
126, 0.47

150

200

155. 0.40


190, 0.32


231, 0.25

286, 0.17

250

300

284 PART IV SOIL WITH WATER—NO FLOW OR STEADY FLOW

Source: "Soil Mechanics" text book by T. William Lambe & Robert V. Whitman, Massachusetts Institute of Technology, 1969

		the Darpy U				a harright and so the		
Notation	D = Diam, intake, sample (cm) d = Diameter, standpipe (cm) L = Length, intake, sample (cm)	$H_e = Constant piez, head(cm)H_1 = Piez, head for t = t_1(cm)H_2 = Piez, head for t = t_2(cm)$	q = Flow of water (cm3/sec) t = Time (sec) T = Basic time lag (sec) $k_v' = \text{Vert. perm. casing (cm/sec)}$	m. m. m.	$k_m = \sqrt{k_n} \cdot k_v m = \sqrt{k_n/k_v}$ $\ln = \log_e = 2.3 \log_{10}$ H_0	(alcos. 301) H head (102. 503le)	$\begin{array}{c c} \hline \\ \hline \\ \hline \\ \hline \\ 0.0 \\ H_0 \\ \hline \\ $	
Basic Time Lag	$k_v = \frac{d^2 \cdot L}{D^2 \cdot T}$ $k_v = \frac{L}{T} \text{ for } d = D$	$k_m = \frac{\pi d^2}{8 \cdot D \cdot T}$ $k_m = \frac{\pi \cdot D}{8 \cdot T} \text{ for } d = D$	$k_m = \frac{\pi \cdot d^2}{11 \cdot D \cdot T}$ $k_m = \frac{\pi \cdot D}{11 \cdot T} \text{ for } d = D$	$\begin{aligned} k_v' &= \frac{d^2 \cdot \left(\frac{\pi}{8}, \frac{k_v'}{k_v} \cdot \frac{D}{m}\right) + L}{D^2 \cdot T} \\ k_v &= \frac{\pi}{8} \cdot \frac{D}{m} + L \\ k_v &= \frac{\pi}{T} \text{for} \frac{ k_v' = k_v}{ d = D} \end{aligned}$	$\begin{aligned} k_v' &= \frac{d^2 \cdot \left(\frac{\pi}{11} \cdot \frac{k_v'}{k_v} \cdot \frac{D}{m} + L\right)}{D^2 \cdot T} \\ k_v' &= \frac{\pi}{11} \cdot \frac{D}{m} + L \\ \text{for } \left(k_v' = k_v\right) \\ \end{aligned}$	$k_{h} = \frac{d^{2} \cdot \ln \left[\frac{2mL}{D} + \sqrt{1 + \left(\frac{2mL}{D}\right)^{2}}\right]}{8 \cdot L \cdot T}$ $k_{h} = \frac{d^{2} \cdot \ln \left(\frac{4mL}{D}\right)}{8 \cdot L \cdot T} \text{for} \frac{2mL}{D} > 4$	$k_{h} = \frac{d^{2} \cdot \ln\left[\frac{mL}{D} + \sqrt{1 + \left(\frac{mL}{D}\right)^{2}}\right]}{8 \cdot L \cdot T}$ $k_{h} = \frac{d^{2} \cdot \ln\left(\frac{2mL}{D}\right)}{8 \cdot L \cdot T} \text{for } \frac{mL}{D} > 4$	
, Variable Head	$k_v = \frac{d^2 \cdot L}{D^2 \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2}$ $k_v = \frac{L}{t_2 - t_1} \ln \frac{H_1}{H_2} \text{ for } d = D$	$k_m = \frac{\pi \cdot d^2}{8 \cdot D \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2}$ $k_m = \frac{\pi \cdot D}{8 \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2} \text{ for } d = D$	$k_m = \frac{\pi \cdot d^2}{11 \cdot D \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2}$ $k_m = \frac{\pi \cdot D}{11 \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2} \text{ for } d = D$	$k_{v}^{i} = \frac{d^{2} \cdot \left(\frac{\pi}{8} \cdot \frac{k_{v}^{i}}{k_{v}} \cdot \frac{D}{m} + L\right)}{D^{2} \cdot (t_{2} - t_{1})} \ln \frac{H_{1}}{H_{2}}$ $k_{v} = \frac{\pi}{8} \cdot \frac{D}{m} + \frac{1}{t_{2} - t_{1}} \ln \frac{H_{1}}{H_{2}} \text{ for } \left(\frac{k_{v}^{i}}{d} = k_{v}\right)$	$k_v' = \frac{d^2 \cdot \left(\frac{\pi}{11} \cdot \frac{k_v'}{k_v} \cdot \frac{D}{m} + L\right)}{D^2 \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2}$ $k_v = \frac{\pi}{t_2 - t_1} \ln \frac{H_1}{H_2} \ln \frac{H_1}{H_2} \text{for} \begin{cases} k_v' = k_v \\ d = D \end{cases}$	$k_h = \frac{d^2 \cdot \ln \left[\frac{2mL}{D} + \sqrt{1 + \left(\frac{2mL}{D}\right)^2}\right]}{8 \cdot L \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2}$ $k_h = \frac{d^2 \cdot \ln \left(\frac{4mL}{D}\right)}{8 \cdot L \cdot (t_2 - t_1)} \ln \frac{H_1}{H_2} \text{for} \frac{2mL}{D} > 4$	$k_{h} = \frac{d^{2} \cdot \ln\left[\frac{mL}{D} + \sqrt{1 + \left(\frac{mL}{D}\right)^{2}}\right]}{8 \cdot L \cdot (t_{2} - t_{1})} \ln \frac{H_{1}}{H_{2}}$ $k_{h} = \frac{d^{2} \cdot \ln\left(\frac{2mL}{D}\right)}{8 \cdot L \cdot (t_{2} - t_{1})} \ln \frac{H_{1}}{H_{2}} \text{for} \frac{mL}{D} > 4$	SNOILdWnSSE
Constant Head	$k_v = \frac{4 \cdot q \cdot L}{\pi \cdot D^2 \cdot H_c}$	$k_v = \frac{4 \cdot q \cdot L}{\pi \cdot D^2 \cdot H_c}$ $k_m = \frac{q}{2 \cdot D \cdot H_c}$		$k_v' = \frac{4 \cdot q\left(\frac{\pi}{8} \cdot \frac{k_v'}{k_v} \cdot \frac{D}{m} + L\right)}{\pi \cdot D^2 \cdot H_c}$	$k_{v'} = \frac{4 \cdot q \cdot \left(\frac{\pi}{11} \cdot \frac{k_{v}}{k_{v}} \cdot \frac{D}{m} + L\right)}{\pi \cdot D^{2} \cdot H_{c}}$	$k_{h} = \frac{q \cdot \ln\left[\frac{2mL}{D} + \sqrt{1 + \left(\frac{2mL}{D}\right)^{2}}\right]}{2 \cdot \pi \cdot L \cdot H_{c}}$	$k_{\hbar} = \frac{q \cdot \ln\left[\frac{mL}{D} + \sqrt{1 + \left(\frac{mL^2}{D}\right)}\right]}{2 \cdot \pi \cdot L \cdot H_c}$	
Case	The second	В	U	Q	E	E.	U	

Fig. 19.4 Formulas for determination of permeability (From Hvorslev, 1951).

Soil at intake, infinite depth, and directional isotropy (k_v and k_h constant). No disturbance, segregation, swelling, or consolidation of soil. No sedimentation or leakage. No air or gas in soil, well point, or pipe. Hydraulic losses in pipes, well point, or filter negligible.

APPENDIX B – HYDROCAD ANALYSIS

Extreme Precipitation Tables

Northeast Regional Climate Center

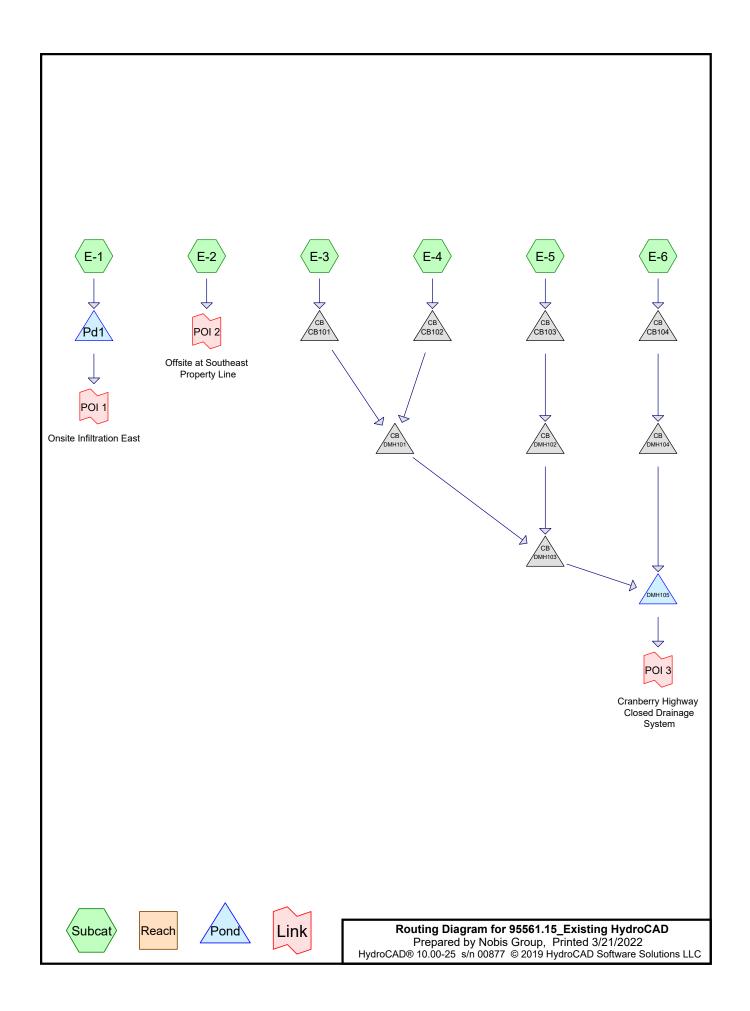
Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	Massachusetts
Location	
Longitude	70.745 degrees West
Latitude	41.784 degrees North
Elevation	0 feet
Date/Time	Thu, 09 Dec 2021 10:30:39 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.44	0.55	0.72	0.89	1.13	1yr	0.77	1.10	1.32	1.69	2.17	2.80	3.14	1yr	2.48	3.02	3.48	4.18	4.83	1yr
2yr	0.36	0.56	0.69	0.91	1.15	1.45	2yr	0.99	1.36	1.68	2.11	2.66	3.35	3.71	2yr	2.97	3.57	4.08	4.83	5.49	2yr
5yr	0.43	0.67	0.84	1.13	1.45	1.84	5yr	1.25	1.72	2.14	2.68	3.35	4.18	4.67	5yr	3.70	4.49	5.11	5.98	6.72	5yr
10yr	0.50	0.78	0.98	1.34	1.74	2.22	10yr	1.50	2.06	2.58	3.23	4.00	<mark>4.94</mark>	5.56	10yr	4.37	5.35	6.06	7.03	7.83	10yr
25yr	0.59	0.94	1.19	1.65	2.20	2.83	25yr	1.90	2.62	3.30	4.11	5.06	6.16	7.00	25yr	5.45	6.73	7.59	8.71	9.59	25yr
50yr	0.68	1.09	1.40	1.96	2.63	3.41	50yr	2.27	3.14	3.97	4.93	6.02	7.28	8.34	50yr	6.45	8.02	9.00	10.25	11.18	50yr
100yr	0.78	1.27	1.63	2.32	3.16	4.10	100yr	2.72	3.76	4.78	5.91	7.18	8.62	9.94	100yr	7.63	9.56	10.69	12.06	13.05	100yr
200yr	0.90	1.47	1.91	2.74	3.78	4.94	200yr	3.27	4.51	5.75	7.09	8.57	10.20	11.85	200yr	9.03	11.40	12.69	14.20	15.23	200yr
500yr	1.11	1.82	2.37	3.44	4.82	6.30	500yr	4.16	5.74	7.33	9.00	10.80	12.75	14.96	500yr	11.29	14.39	15.93	17.64	18.69	500yr

Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.24	0.38	0.46	0.62	0.76	0.90	1yr	0.66	0.88	1.06	1.45	1.93	2.32	2.89	1yr	2.06	2.78	2.81	3.54	4.50	1yr
2yr	0.35	0.54	0.66	0.89	1.10	1.34	2yr	0.95	1.31	1.57	2.07	2.62	3.28	3.64	2yr	2.90	3.50	3.98	4.73	5.39	2yr
5yr	0.40	0.61	0.76	1.04	1.32	1.59	5yr	1.14	1.56	1.85	2.44	3.08	3.95	4.41	5yr	3.49	4.24	4.85	5.69	6.40	5yr
10yr	0.44	0.67	0.83	1.16	1.50	1.82	10yr	1.30	1.78	2.08	2.76	3.46	4.54	5.08	10yr	4.02	4.89	5.53	6.52	7.30	10yr
25yr	0.50	0.75	0.94	1.34	1.76	2.17	25yr	1.52	2.12	2.40	3.23	4.03	5.47	6.13	25yr	4.84	5.90	6.55	7.82	8.68	25yr
50yr	0.55	0.83	1.04	1.49	2.01	2.46	50yr	1.73	2.41	2.65	3.64	4.49	6.29	7.06	50yr	5.57	6.79	7.41	8.95	9.91	50yr
100yr	0.61	0.92	1.15	1.66	2.28	2.79	100yr	1.97	2.73	2.94	4.11	5.02	7.24	8.15	100yr	6.41	7.84	8.46	10.28	11.33	100yr
200yr	0.67	1.01	1.27	1.84	2.57	3.18	200yr	2.22	3.11	3.24	4.61	5.60	8.35	9.40	200yr	7.39	9.04	9.69	11.81	12.96	200yr
500yr	0.77	1.14	1.47	2.13	3.03	3.76	500yr	2.61	3.67	3.68	5.39	6.45	10.08	11.36	500yr	8.92	10.93	11.60	14.21	15.51	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.32	0.49	0.60	0.80	0.99	1.22	1yr	0.85	1.19	1.45	1.94	2.44	3.03	3.38	1yr	2.68	3.25	3.75	4.48	5.11	1yr
2yr	0.38	0.58	0.72	0.97	1.20	1.45	2yr	1.04	1.42	1.70	2.23	2.82	3.43	3.82	2yr	3.03	3.67	4.27	4.96	5.60	2yr
5yr	0.48	0.74	0.92	1.26	1.60	1.94	5yr	1.38	1.89	2.24	2.89	3.57	4.42	4.93	5yr	3.91	4.74	5.35	6.29	7.04	5yr
10yr	0.58	0.90	1.11	1.55	2.00	2.42	10yr	1.73	2.37	2.76	3.52	4.31	5.36	6.00	10yr	4.75	5.77	6.45	7.55	8.37	10yr
25yr	0.76	1.16	1.45	2.06	2.71	3.26	25yr	2.34	3.19	3.72	4.62	5.54	6.93	7.77	25yr	6.13	7.48	8.29	9.62	10.52	25yr
50yr	0.93	1.42	1.77	2.54	3.42	4.10	50yr	2.95	4.01	4.64	5.66	6.72	8.40	9.48	50yr	7.44	9.12	10.02	11.55	12.51	50yr
100yr	1.15	1.74	2.18	3.15	4.32	5.14	100yr	3.73	5.03	5.81	6.93	8.18	10.20	11.56	100yr	9.03	11.12	12.35	13.87	14.89	100yr
200yr	1.41	2.13	2.70	3.90	5.44	6.46	200yr	4.70	6.31	7.27	8.52	9.94	12.38	14.11	200yr	10.96	13.56	14.98	16.66	17.71	200yr
500yr	1.87	2.79	3.59	5.21	7.41	8.73	500yr	6.39	8.54	9.84	11.22	12.92	16.01	18.36	500yr	14.17	17.66	19.29	21.22	22.26	500yr

Existing Conditions

95561.15_Existing HydroCAD Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
41,686	61	>75% Grass cover, Good, HSG B (E-1, E-2, E-3, E-4, E-5, E-6)
11,507	96	Gravel surface, HSG B (E-1, E-2, E-4, E-5, E-6)
38,989	98	Paved parking, HSG B (E-1, E-3, E-4, E-5, E-6)
7,675	98	Roofs, HSG B (E-1, E-3, E-4)
4,246	96	Rubble, HSG B (E-1, E-2, E-6)
88,872	55	Woods, Good, HSG B (E-1, E-2, E-3)
192,975	70	TOTAL AREA

95561.15_Existing HydroCAD Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
192,975	HSG B	E-1, E-2, E-3, E-4, E-5, E-6
0	HSG C	
0	HSG D	
0	Other	
192,975		TOTAL AREA

95561.15_Existing HydroCAD Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Printed 3/21/2022 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Su
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Nu
0	41,686	0	0	0	41,686	>75% Grass cover, Good	-
0	11,507	0	0	0	11,507	Gravel surface	
0	38,989	0	0	0	38,989	Paved parking	
0	7,675	0	0	0	7,675	Roofs	
0	4,246	0	0	0	4,246	Rubble	
0	88,872	0	0	0	88,872	Woods, Good	
0	192,975	0	0	0	192,975	TOTAL AREA	

Ground Covers (all nodes)

95561.15_Existing HydroCAD Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	CB101	46.40	46.50	29.0	-0.0034	0.011	12.0	0.0	0.0
2	CB102	49.70	49.50	6.0	0.0333	0.011	12.0	0.0	0.0
3	CB103	46.90	46.70	6.0	0.0333	0.011	12.0	0.0	0.0
4	CB104	46.20	46.10	2.0	0.0500	0.011	12.0	0.0	0.0
5	DMH101	46.20	46.00	109.0	0.0018	0.011	12.0	0.0	0.0
6	DMH102	46.50	46.60	13.0	-0.0077	0.011	12.0	0.0	0.0
7	DMH103	46.10	44.90	36.0	0.0333	0.011	12.0	0.0	0.0
8	DMH104	45.30	45.10	5.0	0.0400	0.011	12.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentE-1:	Runoff Area=123,196 sf 3.61% Impervious Runoff Depth=0.47" Flow Length=416' Tc=37.3 min CN=60 Runoff=0.54 cfs 4,808 cf
SubcatchmentE-2:	Runoff Area=4,645 sf 0.00% Impervious Runoff Depth=0.67" Tc=6.0 min CN=65 Runoff=0.07 cfs 261 cf
SubcatchmentE-3:	Runoff Area=27,238 sf 56.92% Impervious Runoff Depth=1.59" Flow Length=233' Tc=30.6 min CN=81 Runoff=0.65 cfs 3,604 cf
SubcatchmentE-4:	Runoff Area=11,276 sf 88.54% Impervious Runoff Depth=2.69" Tc=6.0 min CN=94 Runoff=0.76 cfs 2,527 cf
SubcatchmentE-5:	Runoff Area=11,404 sf 45.90% Impervious Runoff Depth=2.69" Tc=6.0 min CN=94 Runoff=0.77 cfs 2,556 cf
SubcatchmentE-6:	Runoff Area=15,216 sf 75.53% Impervious Runoff Depth=2.79" Tc=6.0 min CN=95 Runoff=1.05 cfs 3,540 cf
Pond CB101:	Peak Elev=47.05' Inflow=0.65 cfs 3,604 cf 12.0" Round Culvert n=0.011 L=29.0' S=-0.0034 '/' Outflow=0.65 cfs 3,604 cf
Pond CB102:	Peak Elev=50.14' Inflow=0.76 cfs 2,527 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.76 cfs 2,527 cf
Pond CB103:	Peak Elev=47.35' Inflow=0.77 cfs 2,556 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.77 cfs 2,556 cf
Pond CB104:	Peak Elev=46.78' Inflow=1.05 cfs 3,540 cf 12.0" Round Culvert n=0.011 L=2.0' S=0.0500 '/' Outflow=1.05 cfs 3,540 cf
Pond DMH101:	Peak Elev=47.02' Inflow=1.01 cfs 6,132 cf 12.0" Round Culvert n=0.011 L=109.0' S=0.0018 '/' Outflow=1.01 cfs 6,132 cf
Pond DMH102:	Peak Elev=47.09' Inflow=0.77 cfs 2,556 cf 12.0" Round Culvert n=0.011 L=13.0' S=-0.0077 '/' Outflow=0.77 cfs 2,556 cf
Pond DMH103:	Peak Elev=46.83' Inflow=1.78 cfs 8,688 cf 12.0" Round Culvert n=0.011 L=36.0' S=0.0333 '/' Outflow=1.78 cfs 8,688 cf
Pond DMH104:	Peak Elev=45.83' Inflow=1.05 cfs 3,540 cf 12.0" Round Culvert n=0.011 L=5.0' S=0.0400 '/' Outflow=1.05 cfs 3,540 cf
Pond DMH105:	Inflow=2.83 cfs 12,228 cf Primary=2.83 cfs 12,228 cf
Pond Pd1:	Peak Elev=46.69' Storage=479 cf Inflow=0.54 cfs 4,808 cf Outflow=0.41 cfs 4,808 cf

95561.15_Existing HydroCAD Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LL	Type III 24-hr 2 yr Rainfall=3.35" Printed 3/21/2022 C Page 7
Link POI 1: Onsite Infiltration East	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property Line	Inflow=0.07 cfs 261 cf Primary=0.07 cfs 261 cf
Link POI 3: Cranberry Highway Closed Drainage System	Inflow=2.83 cfs 12,228 cf Primary=2.83 cfs 12,228 cf

Total Runoff Area = 192,975 sf Runoff Volume = 17,297 cf Average Runoff Depth = 1.08" 75.82% Pervious = 146,311 sf 24.18% Impervious = 46,664 sf

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentE-1:	Runoff Area=123,196 sf 3.61% Impervious Runoff Depth=1.27" Flow Length=416' Tc=37.3 min CN=60 Runoff=1.91 cfs 12,999 cf
SubcatchmentE-2:	Runoff Area=4,645 sf 0.00% Impervious Runoff Depth=1.61" Tc=6.0 min CN=65 Runoff=0.19 cfs 625 cf
SubcatchmentE-3:	Runoff Area=27,238 sf 56.92% Impervious Runoff Depth=2.93" Flow Length=233' Tc=30.6 min CN=81 Runoff=1.20 cfs 6,656 cf
SubcatchmentE-4:	Runoff Area=11,276 sf 88.54% Impervious Runoff Depth=4.25" Tc=6.0 min CN=94 Runoff=1.17 cfs 3,992 cf
SubcatchmentE-5:	Runoff Area=11,404 sf 45.90% Impervious Runoff Depth=4.25" Tc=6.0 min CN=94 Runoff=1.19 cfs 4,038 cf
SubcatchmentE-6:	Runoff Area=15,216 sf 75.53% Impervious Runoff Depth=4.36" Tc=6.0 min CN=95 Runoff=1.60 cfs 5,529 cf
Pond CB101:	Peak Elev=47.45' Inflow=1.20 cfs 6,656 cf 12.0" Round Culvert n=0.011 L=29.0' S=-0.0034 '/' Outflow=1.20 cfs 6,656 cf
Pond CB102:	Peak Elev=50.27' Inflow=1.17 cfs 3,992 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=1.17 cfs 3,992 cf
Pond CB103:	Peak Elev=47.51' Inflow=1.19 cfs 4,038 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=1.19 cfs 4,038 cf
Pond CB104:	Peak Elev=46.96' Inflow=1.60 cfs 5,529 cf 12.0" Round Culvert n=0.011 L=2.0' S=0.0500 '/' Outflow=1.60 cfs 5,529 cf
Pond DMH101:	Peak Elev=47.41' Inflow=1.69 cfs 10,648 cf 12.0" Round Culvert n=0.011 L=109.0' S=0.0018 '/' Outflow=1.69 cfs 10,648 cf
Pond DMH102:	Peak Elev=47.30' Inflow=1.19 cfs 4,038 cf 12.0" Round Culvert n=0.011 L=13.0' S=-0.0077 '/' Outflow=1.19 cfs 4,038 cf
Pond DMH103:	Peak Elev=47.17' Inflow=2.86 cfs 14,686 cf 12.0" Round Culvert n=0.011 L=36.0' S=0.0333 '/' Outflow=2.86 cfs 14,686 cf
Pond DMH104:	Peak Elev=46.00' Inflow=1.60 cfs 5,529 cf 12.0" Round Culvert n=0.011 L=5.0' S=0.0400 '/' Outflow=1.60 cfs 5,529 cf
Pond DMH105:	Inflow=4.46 cfs 20,215 cf Primary=4.46 cfs 20,215 cf
Pond Pd1:	Peak Elev=46.96' Storage=2,029 cf Inflow=1.91 cfs 12,999 cf Outflow=1.26 cfs 12,999 cf

95561.15_Existing HydroCAD Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions L	Type III 24-hr 10 yr Rainfall=4.94" Printed 3/21/2022 LC Page 9
Link POI 1: Onsite Infiltration East	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property Line	Inflow=0.19 cfs 625 cf Primary=0.19 cfs 625 cf
Link POI 3: Cranberry Highway Closed Drainage System	Inflow=4.46 cfs 20,215 cf Primary=4.46 cfs 20,215 cf

Total Runoff Area = 192,975 sf Runoff Volume = 33,839 cf Average Runoff Depth = 2.10" 75.82% Pervious = 146,311 sf 24.18% Impervious = 46,664 sf

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Page 10

SubcatchmentE-1:	Runoff Area=123,196 sf 3.61% Impervious Runoff Depth=2.03" Flow Length=416' Tc=37.3 min CN=60 Runoff=3.24 cfs 20,810 cf
SubcatchmentE-2:	Runoff Area=4,645 sf 0.00% Impervious Runoff Depth=2.47" Tc=6.0 min CN=65 Runoff=0.30 cfs 955 cf
SubcatchmentE-3:	Runoff Area=27,238 sf 56.92% Impervious Runoff Depth=4.03" Flow Length=233' Tc=30.6 min CN=81 Runoff=1.65 cfs 9,147 cf
SubcatchmentE-4:	Runoff Area=11,276 sf 88.54% Impervious Runoff Depth=5.46" Tc=6.0 min CN=94 Runoff=1.48 cfs 5,126 cf
SubcatchmentE-5:	Runoff Area=11,404 sf 45.90% Impervious Runoff Depth=5.46" Tc=6.0 min CN=94 Runoff=1.50 cfs 5,184 cf
SubcatchmentE-6:	Runoff Area=15,216 sf 75.53% Impervious Runoff Depth=5.57" Tc=6.0 min CN=95 Runoff=2.02 cfs 7,063 cf
Pond CB101:	Peak Elev=48.07' Inflow=1.65 cfs 9,147 cf 12.0" Round Culvert n=0.011 L=29.0' S=-0.0034 '/' Outflow=1.65 cfs 9,147 cf
Pond CB102:	Peak Elev=50.36' Inflow=1.48 cfs 5,126 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=1.48 cfs 5,126 cf
Pond CB103:	Peak Elev=47.74' Inflow=1.50 cfs 5,184 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=1.50 cfs 5,184 cf
Pond CB104:	Peak Elev=47.08' Inflow=2.02 cfs 7,063 cf 12.0" Round Culvert n=0.011 L=2.0' S=0.0500 '/' Outflow=2.02 cfs 7,063 cf
Pond DMH101:	Peak Elev=47.99' Inflow=2.22 cfs 14,273 cf 12.0" Round Culvert n=0.011 L=109.0' S=0.0018 '/' Outflow=2.22 cfs 14,273 cf
Pond DMH102:	Peak Elev=47.66' Inflow=1.50 cfs 5,184 cf 12.0" Round Culvert n=0.011 L=13.0' S=-0.0077 '/' Outflow=1.50 cfs 5,184 cf
Pond DMH103:	Peak Elev=47.56' Inflow=3.70 cfs 19,457 cf 12.0" Round Culvert n=0.011 L=36.0' S=0.0333 '/' Outflow=3.70 cfs 19,457 cf
Pond DMH104:	Peak Elev=46.11' Inflow=2.02 cfs 7,063 cf 12.0" Round Culvert n=0.011 L=5.0' S=0.0400 '/' Outflow=2.02 cfs 7,063 cf
Pond DMH105:	Inflow=5.72 cfs 26,521 cf Primary=5.72 cfs 26,521 cf
Pond Pd1:	Peak Elev=47.12' Storage=3,729 cf Inflow=3.24 cfs 20,810 cf Outflow=2.08 cfs 20,810 cf

95561.15_Existing HydroCAD Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions L	Type III 24-hr 25 yr Rainfall=6.16" Printed 3/21/2022 LC Page 11
Link POI 1: Onsite Infiltration East	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property Line	Inflow=0.30 cfs 955 cf Primary=0.30 cfs 955 cf
Link POI 3: Cranberry Highway Closed Drainage System	Inflow=5.72 cfs 26,521 cf Primary=5.72 cfs 26,521 cf

Total Runoff Area = 192,975 sf Runoff Volume = 48,286 cf Average Runoff Depth = 3.00" 75.82% Pervious = 146,311 sf 24.18% Impervious = 46,664 sf

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Page 12

SubcatchmentE-1:	Runoff Area=123,196 sf 3.61% Impervious Runoff Depth=3.81" Flow Length=416' Tc=37.3 min CN=60 Runoff=6.35 cfs 39,066 cf
SubcatchmentE-2:	Runoff Area=4,645 sf 0.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=65 Runoff=0.54 cfs 1,704 cf
SubcatchmentE-3:	Runoff Area=27,238 sf 56.92% Impervious Runoff Depth=6.33" Flow Length=233' Tc=30.6 min CN=81 Runoff=2.55 cfs 14,367 cf
SubcatchmentE-4:	Runoff Area=11,276 sf 88.54% Impervious Runoff Depth=7.90" Tc=6.0 min CN=94 Runoff=2.11 cfs 7,422 cf
SubcatchmentE-5:	Runoff Area=11,404 sf 45.90% Impervious Runoff Depth=7.90" Tc=6.0 min CN=94 Runoff=2.13 cfs 7,506 cf
SubcatchmentE-6:	Runoff Area=15,216 sf 75.53% Impervious Runoff Depth=8.02" Tc=6.0 min CN=95 Runoff=2.86 cfs 10,168 cf
Pond CB101:	Peak Elev=49.82' Inflow=2.55 cfs 14,367 cf 12.0" Round Culvert n=0.011 L=29.0' S=-0.0034 '/' Outflow=2.55 cfs 14,367 cf
Pond CB102:	Peak Elev=50.54' Inflow=2.11 cfs 7,422 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=2.11 cfs 7,422 cf
Pond CB103:	Peak Elev=48.97' Inflow=2.13 cfs 7,506 cf 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=2.13 cfs 7,506 cf
Pond CB104:	Peak Elev=47.33' Inflow=2.86 cfs 10,168 cf 12.0" Round Culvert n=0.011 L=2.0' S=0.0500 '/' Outflow=2.86 cfs 10,168 cf
Pond DMH101:	Peak Elev=49.61' Inflow=3.29 cfs 21,789 cf 12.0" Round Culvert n=0.011 L=109.0' S=0.0018 '/' Outflow=3.29 cfs 21,789 cf
Pond DMH102:	Peak Elev=48.85' Inflow=2.13 cfs 7,506 cf 12.0" Round Culvert n=0.011 L=13.0' S=-0.0077 '/' Outflow=2.13 cfs 7,506 cf
Pond DMH103:	Peak Elev=48.64' Inflow=5.40 cfs 29,295 cf 12.0" Round Culvert n=0.011 L=36.0' S=0.0333 '/' Outflow=5.40 cfs 29,295 cf
Pond DMH104:	Peak Elev=46.37' Inflow=2.86 cfs 10,168 cf 12.0" Round Culvert n=0.011 L=5.0' S=0.0400 '/' Outflow=2.86 cfs 10,168 cf
Pond DMH105:	Inflow=8.25 cfs 39,463 cf Primary=8.25 cfs 39,463 cf
Pond Pd1:	Peak Elev=47.37' Storage=8,092 cf Inflow=6.35 cfs 39,066 cf Outflow=3.79 cfs 39,066 cf

95561.15_Existing HydroCAD Prepared by Nobis Group	Type III 24-hr 100 yr Rainfall=8.62" Printed 3/21/2022
HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions	
Link POI 1: Onsite Infiltration East	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property Line	Inflow=0.54 cfs 1,704 cf

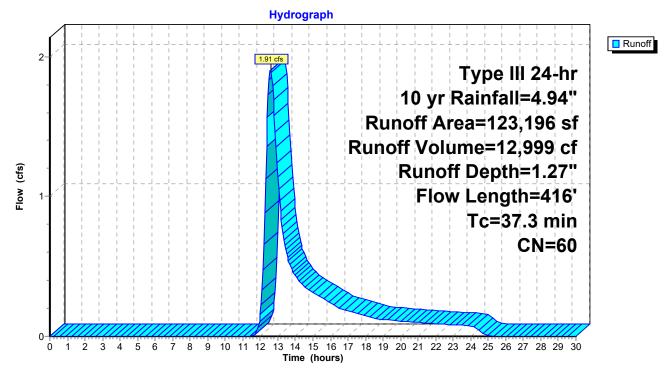
Inflow=0.54 cfs 1,704 cf Primary=0.54 cfs 1,704 cf

Inflow=8.25 cfs 39,463 cf Primary=8.25 cfs 39,463 cf

Link POI 3: Cranberry Highway Closed Drainage System

Total Runoff Area = 192,975 sf Runoff Volume = 80,233 cf Average Runoff Depth = 4.99" 75.82% Pervious = 146,311 sf 24.18% Impervious = 46,664 sf

Summary for Subcatchment E-1:

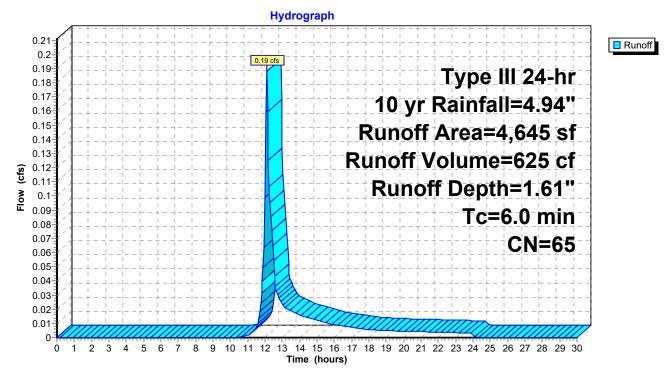

Runoff 1.91 cfs @ 12.58 hrs, Volume= 12,999 cf, Depth= 1.27" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"

_	A	rea (sf)	CN [Description		
		84,532	55 V	Voods, Go	od, HSG B	
		3,249	98 F	Roofs, HSC	βB	
1,200 98 Paved parking, HSG B			3			
*		3,560	96 F	Rubble, HS	GΒ	
		3,322	96 (Gravel surfa	ace, HSG E	3
_		27,333	61 >	>75% Gras	s cover, Go	bod, HSG B
123,196 60 Weighted Average						
118,747 96.39% Pervious Area			96.39% Pei	vious Area	l	
		4,449 3.61% Impervious Area			ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	27.7	100	0.0100	0.06		Sheet Flow, Woods, 100', 1%
						Woods: Light underbrush n= 0.400 P2= 3.35"
	9.6	316	0.0120	0.55		Shallow Concentrated Flow, Woods, 316', 1.2%
_						Woodland Kv= 5.0 fps
	~ ~ ~					

37.3 416 Total

Subcatchment E-1:


Summary for Subcatchment E-2:

Runoff = 0.19 cfs @ 12.10 hrs, Volume= 625 cf, Depth= 1.61"

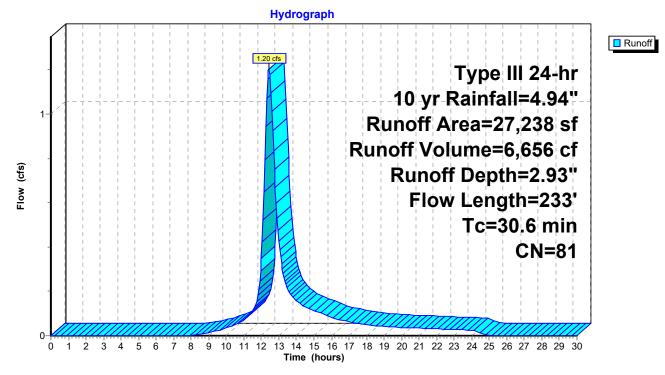
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"

	Area (sf)	CN	Description		
	923	55	Woods, Go	od, HSG B	3
	379	96	Gravel surfa	ace, HSG E	В
*	363	96	Rubble, HS	G B	
	2,980	61	>75% Gras	s cover, Go	lood, HSG B
	4,645	65	Weighted A	verage	
	4,645		100.00% Pe	ervious Are	ea
To (min	5	Slop (ft/f		Capacity (cfs)	•
6.0)				Direct Entry,

Subcatchment E-2:

Summary for Subcatchment E-3:

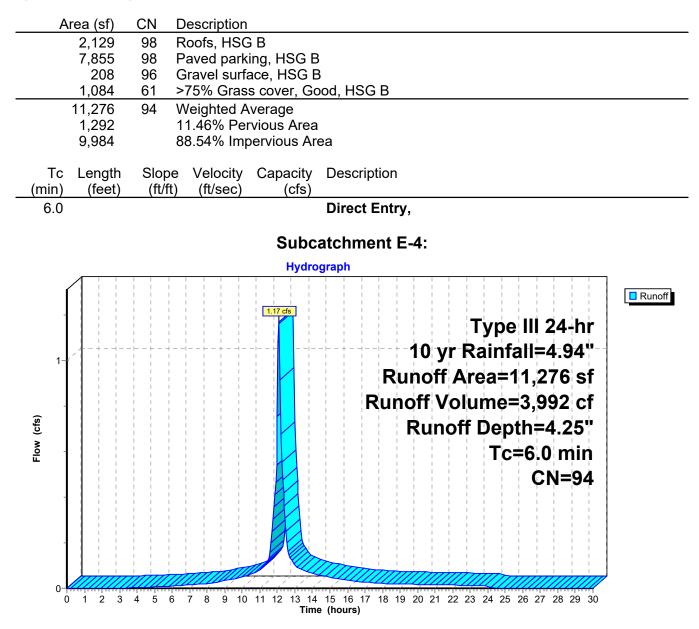
Runoff = 1.20 cfs @ 12.42 hrs, Volume= 6,656 cf, Depth= 2.93"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"

A	rea (sf)	CN D	escription		
	3,417	55 V	loods, Go	od, HSG B	
	2,297	98 R	oofs, HSG	ЭB	
	13,207	98 P	aved park	ing, HSG E	3
	8,317	61 >	75% Ġras	s cover, Go	bod, HSG B
	27,238	81 W	Veighted A	verage	
	11,734	4	3.08% Pei	vious Area	
	15,504	5	6.92% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
22.7	55	0.0050	0.04		Sheet Flow, Woods, 55', 0.5%
					Woods: Light underbrush n= 0.400 P2= 3.35"
6.0	45	0.0130	0.12		Sheet Flow, Grass, 45', 1.3%
					Grass: Short n= 0.150 P2= 3.35"
0.2	12	0.0200	0.99		Shallow Concentrated Flow, Grass, 12', 2%
					Short Grass Pasture Kv= 7.0 fps
0.6	34	0.0020	0.91		Shallow Concentrated Flow, Pavement, 34', 0.2%
					Paved Kv= 20.3 fps
0.6	21	0.0080	0.63		Shallow Concentrated Flow, Grass, 21', 0.8%
					Short Grass Pasture Kv= 7.0 fps
0.5	66	0.0100	2.03		Shallow Concentrated Flow, Pavement, 66', 1%
					Paved Kv= 20.3 fps
30.6	233	Total			

95561.15_Existing HydroCAD

Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC


Subcatchment E-3:

Summary for Subcatchment E-4:

Runoff = 1.17 cfs @ 12.09 hrs, Volume= 3,992 cf, Depth= 4.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"

Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Summary for Subcatchment E-5:

Runoff = 1.19 cfs @ 12.09 hrs, Volume= 4,038 cf, Depth= 4.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"

Area (sf)	CN Description		
5,235	98 Paved parkin		
5,182 987	96 Gravel surfac 61 >75% Grass		
11,404	94 Weighted Av		
6,169	54.10% Perv	vious Area	
5,235	45.90% Impe	ervious Are	ea
Tc Length		Capacity	Description
(min) (feet)	(ft/ft) (ft/sec)	(cfs)	
6.0			Direct Entry,
		Subca	atchment E-5:
		Hydro	graph
E	4 5 6 7 8 9 10 1		Type III 24-hr 10 yr Rainfall=4.94" Runoff Area=11,404 sf Runoff Volume=4,038 cf Runoff Depth=4.25" Tc=6.0 min CN=94

Summary for Subcatchment E-6:

Runoff = 1.60 cfs @ 12.09 hrs, Volume= 5,529 cf, Depth= 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"

Area (sf)	CN Description
11,492	98 Paved parking, HSG B
* 323 2,416	96 Rubble, HSG B 96 Gravel surface, HSG B
2,410	61 >75% Grass cover, Good, HSG B
15,216	95 Weighted Average
3,724	24.47% Pervious Area
11,492	75.53% Impervious Area
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry,
	Outbactshow and E. Ou
	Subcatchment E-6:
Elow (cts)	Type III 24-hr 10 yr Rainfall=4.94" Runoff Area=15,216 sf Runoff Volume=5,529 cf Runoff Depth=4.36" Tc=6.0 min CN=95
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

0


Summary for Pond CB101:

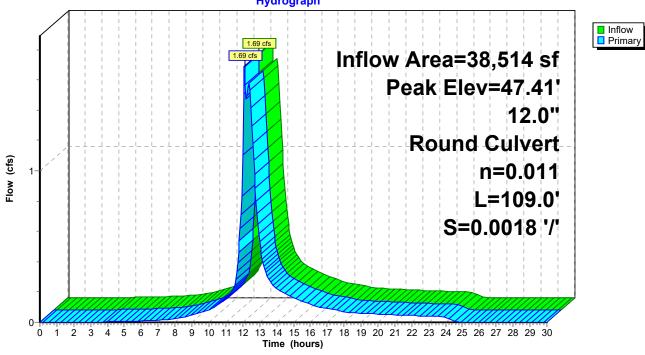
Inflow Area = 27,238 sf, 56.92% Impervious, Inflow Depth = 2.93" for 10 yr event Inflow = 1.20 cfs @ 12.42 hrs, Volume= 6,656 cf Outflow = 1.20 cfs @ 12.42 hrs, Volume= 6,656 cf, Atten= 0%, Lag= 0.0 min Primary = 1.20 cfs @ 12.42 hrs, Volume= 6,656 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.45' @ 12.19 hrs Flood Elev= 49.06'
Device Routing Invert Outlet Devices
#1 Primary 46.50' 12.0'' Round Culvert L= 29.0' Ke= 0.500 Inlet / Outlet Invert= 46.40' / 46.50' S= -0.0034 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf
Primary OutFlow Max=1.27 cfs @ 12.42 hrs HW=47.34' TW=47.19' (Dynamic Tailwater) 1=Culvert (Outlet Controls 1.27 cfs @ 2.15 fps)
Pond CB101:
Hydrograph
(%) (%) (%) (%) (%) (%) (%) (%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Summary for Pond CB102:

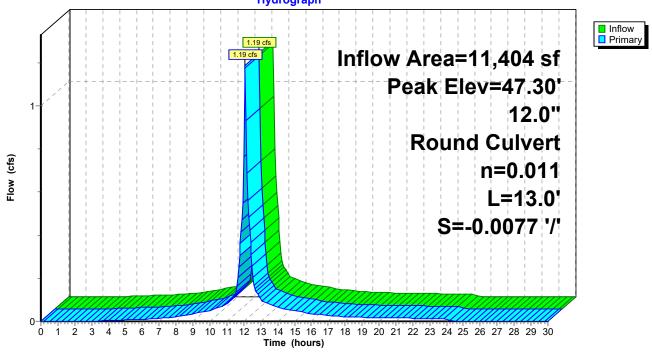
flow Area = 11,276 sf, 88.54% Impervious, Inflow Depth = 4.25" for 10 yr event flow = 1.17 cfs @ 12.09 hrs, Volume= 3,992 cf utflow = 1.17 cfs @ 12.09 hrs, Volume= 3,992 cf, Atten= 0%, Lag= 0.0 min imary = 1.17 cfs @ 12.09 hrs, Volume= 3,992 cf					
outing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs eak Elev= 50.27' @ 12.09 hrs ood Elev= 49.07'					
evice Routing Invert Outlet Devices					
#1 Primary 49.70' 12.0" Round Culvert L= 6.0' Ke= 0.500 Inlet / Outlet Invert= 49.70' / 49.50' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf					
Primary OutFlow Max=1.14 cfs @ 12.09 hrs HW=50.26' TW=47.31' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.14 cfs @ 3.64 fps)					
Pond CB102:					
Hydrograph					

Summary for Pond CB103:


Inflow Area = 11,404 sf, 45.90% Impervious, Inflow Depth = 4.25" for 10 yr event Inflow = 1.19 cfs @ 12.09 hrs, Volume= 4,038 cf Outflow = 1.19 cfs @ 12.09 hrs, Volume= 4,038 cf, Atten= 0%, Lag= 0.0 min Primary = 1.19 cfs @ 12.09 hrs, Volume= 4,038 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.51' @ 12.11 hrs Flood Elev= 49.70'
Device Routing Invert Outlet Devices
#1 Primary 46.90' 12.0" Round Culvert L= 6.0' Ke= 0.500 Inlet / Outlet Invert= 46.90' / 46.70' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf
Primary OutFlow Max=1.03 cfs @ 12.09 hrs HW=47.49' TW=47.25' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.03 cfs @ 3.07 fps)
Pond CB103:
Hydrograph
Inflow Area=11,404 sf
Peak Elev=47.51 12.0" Round Culvert
^{କ୍ଷ} ଜୁନ୍ମ L=6.0'
S=0.0333 '/'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

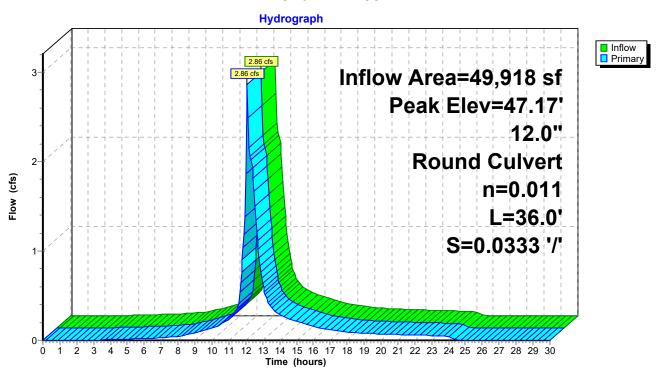
Summary for Pond CB104:

Inflow Area =15,216 sf, 75.53% Impervious, Inflow Depth = 4.36" for 10 yr eventInflow =1.60 cfs @ 12.09 hrs, Volume=5,529 cfOutflow =1.60 cfs @ 12.09 hrs, Volume=5,529 cf, Atten= 0%, Lag= 0.0 minPrimary =1.60 cfs @ 12.09 hrs, Volume=5,529 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.96' @ 12.09 hrs Flood Elev= 48.93'
Device Routing Invert Outlet Devices
#1 Primary 46.20' 12.0" Round Culvert L= 2.0' Ke= 0.500 Inlet / Outlet Invert= 46.20' / 46.10' S= 0.0500 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf
Primary OutFlow Max=1.56 cfs @ 12.09 hrs HW=46.94' TW=45.98' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.56 cfs @ 3.46 fps)
Pond CB104:
Hydrograph
(g) 1 (g) 1 (g
E L=2.0' S=0.0500 '/' 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time (hours)


Summary for Pond DMH101:

Inflow Area =38,514 sf, 66.18% Impervious, Inflow Depth =3.32" for 10 yr eventInflow =1.69 cfs @12.10 hrs, Volume=10,648 cfOutflow =1.69 cfs @12.10 hrs, Volume=10,648 cf, Atten= 0%, Lag= 0.0 minPrimary =1.69 cfs @12.10 hrs, Volume=10,648 cf				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.41' @ 12.14 hrs Flood Elev= 49.94'				
Device Routing Invert Outlet Devices				
 #1 Primary 46.20' 12.0" Round Culvert L= 109.0' Ke= 0.500 Inlet / Outlet Invert= 46.20' / 46.00' S= 0.0018 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf Primary OutFlow Max=1.41 cfs @ 12.10 hrs HW=47.36' TW=47.16' (Dynamic Tailwater) 				
└──1=Culvert (Outlet Controls 1.41 cfs @ 1.95 fps)				
Pond DMH101:				
Inflow Area=38,514 sf	1			

Summary for Pond DMH102:


Inflow Area = Inflow = Outflow = Primary =	11,404 sf, 45.90% Impervious, Inflow Depth = 4.25" for 10 yr event1.19 cfs @ 12.09 hrs, Volume=4,038 cf1.19 cfs @ 12.09 hrs, Volume=4,038 cf, Atten= 0%, Lag= 0.0 min1.19 cfs @ 12.09 hrs, Volume=4,038 cf				
Peak Elev= 47.30	Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.30' @ 12.13 hrs Flood Elev= 49.52'				
Device Routing	Invert Outlet Devices				
#1 Primary	46.60' 12.0" Round Culvert L= 13.0' Ke= 0.500 Inlet / Outlet Invert= 46.50' / 46.60' S= -0.0077 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf				
Primary OutFlow Max=0.85 cfs @ 12.09 hrs HW=47.25' TW=47.14' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.85 cfs @ 1.56 fps)					
Pond DMH102:					
Hydrograph					

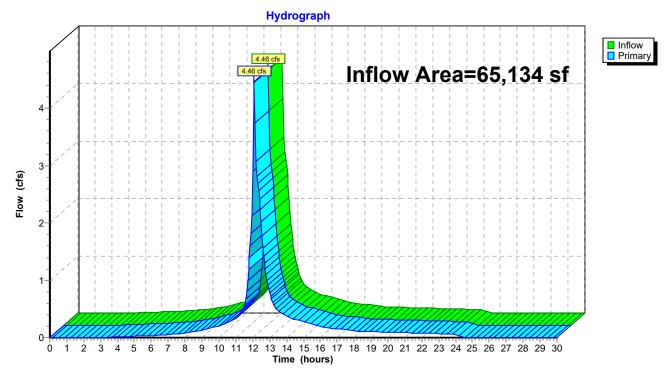
Summary for Pond DMH103:

Inflow Area = 49,918 sf, 61.55% Impervious, Inflow Depth = 3.53" for 10 yr event Inflow 2.86 cfs @ 12.10 hrs, Volume= 14.686 cf = Outflow 2.86 cfs @ 12.10 hrs, Volume= 14,686 cf, Atten= 0%, Lag= 0.0 min = Primary = 2.86 cfs @ 12.10 hrs, Volume= 14,686 cf Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.17' @ 12.10 hrs Flood Elev= 50.30' Device Routing Invert Outlet Devices 12.0" Round Culvert L= 36.0' Ke= 0.500 #1 Primary 46.10' Inlet / Outlet Invert= 46.10' / 44.90' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=2.84 cfs @ 12.10 hrs HW=47.16' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.84 cfs @ 3.61 fps)

Pond DMH103:

Summary for Pond DMH104:


Inflow Area =15,216 sf, 75.53% Impervious, Inflow Depth = $4.36"$ for 10 yr eventInflow =1.60 cfs @ 12.09 hrs, Volume=5,529 cfOutflow =1.60 cfs @ 12.09 hrs, Volume=5,529 cf, Atten= 0%, Lag= 0.0 minPrimary =1.60 cfs @ 12.09 hrs, Volume=5,529 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.00' @ 12.09 hrs Flood Elev= 49.08'
Device Routing Invert Outlet Devices
#1 Primary 45.30' 12.0'' Round Culvert L= 5.0' Ke= 0.500 Inlet / Outlet Invert= 45.30' / 45.10' S= 0.0400 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf
Primary OutFlow Max=1.56 cfs @ 12.09 hrs HW=45.98' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 1.56 cfs @ 3.85 fps)
Pond DMH104:
Hydrograph
(s) (s) (s) (s) (s) (s) (s) (s)

Time (hours) Time (hours) Time (hours) Time (hours) Time (hours) Time (hours) Time (hours)

Summary for Pond DMH105:

Inflow Are	a =	65,134 sf, 64.81% Impervious, Inflow Depth = 3.72" for 10 yr event	
Inflow	=	4.46 cfs @ 12.09 hrs, Volume= 20,215 cf	
Primary	=	4.46 cfs @ 12.09 hrs, Volume= 20,215 cf, Atten= 0%, Lag= 0.0 mir	n

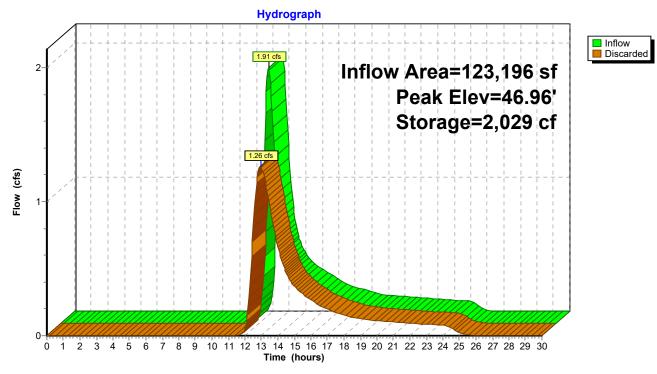
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Pond DMH105:

Summary for Pond Pd1:

Inflow Area =	123,196 sf, 3.61% Impervious,	Inflow Depth = 1.27" for 10 yr event
Inflow =	1.91 cfs @ 12.58 hrs, Volume=	12,999 cf
Outflow =	1.26 cfs @ 12.94 hrs, Volume=	12,999 cf, Atten= 34%, Lag= 21.5 min
Discarded =	1.26 cfs @ 12.94 hrs, Volume=	12,999 cf

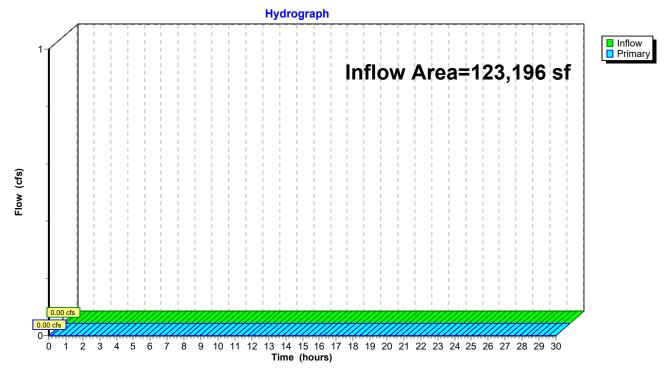
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.96' @ 12.94 hrs Surf.Area= 8,411 sf Storage= 2,029 cf


Plug-Flow detention time= 21.3 min calculated for 12,999 cf (100% of inflow) Center-of-Mass det. time= 21.2 min (926.5 - 905.3)

Volume	Invert	Avail.S	torage	Storage Description	on		
#1	46.50'	11	,412 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevation (feet)	Sur	f.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
46.50 47.00 47.50		1,440 9,376 8,312	159.0 562.0 963.0	0 2,415 8,997	0 2,415 11,412	1,440 24,563 73,228	
	outing iscarded	Inve 46.50)' 7.82	et Devices 5 in/hr Exfiltration uded Surface area		ea above 46.50'	
					.,		

Discarded OutFlow Max=1.26 cfs @ 12.94 hrs HW=46.96' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.26 cfs)

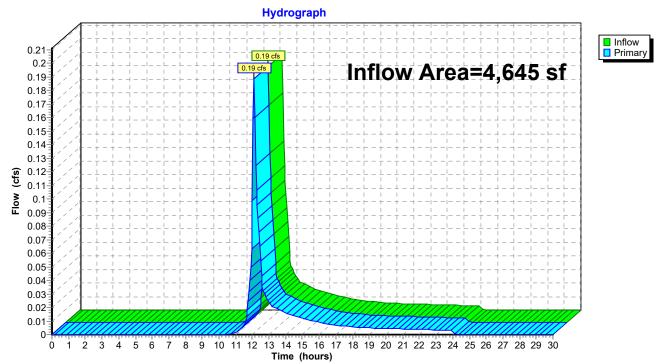
95561.15_Existing HydroCADTyPrepared by Nobis GroupHydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC



Summary for Link POI 1: Onsite Infiltration East

Inflow Are	a =	123,196 sf,	3.61% Impervious,	Inflow Depth = 0.00"	for 10 yr event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atter	n= 0%, Lag= 0.0 min

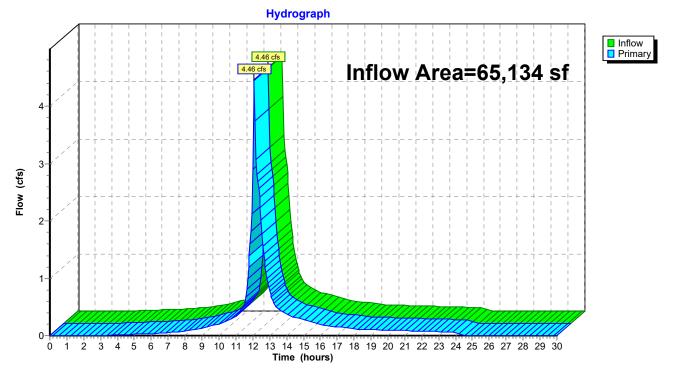
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link POI 1: Onsite Infiltration East

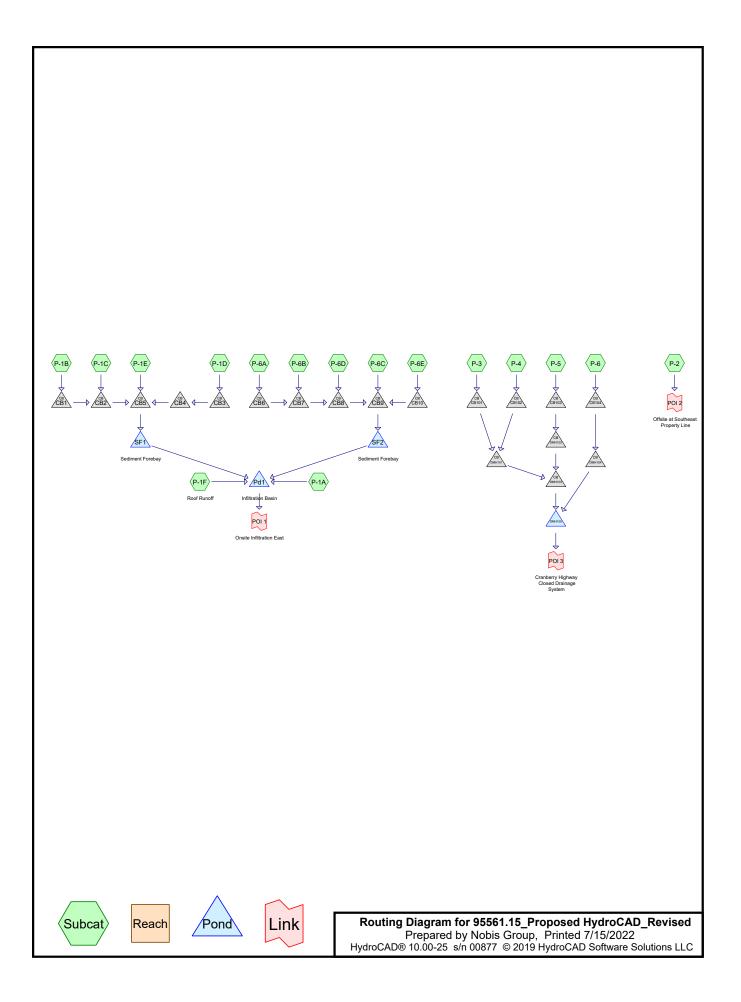
Summary for Link POI 2: Offsite at Southeast Property Line

Inflow Are	a =	4,645 sf,	0.00% Impervious,	Inflow Depth = 1.61"	for 10 yr event
Inflow	=	0.19 cfs @ 1	12.10 hrs, Volume=	625 cf	
Primary	=	0.19 cfs @ 1	12.10 hrs, Volume=	625 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link POI 2: Offsite at Southeast Property Line

Summary for Link POI 3: Cranberry Highway Closed Drainage System


Inflow Area	a =	65,134 sf, 64.81% Impervious, Inflow Depth = 3.72" for 10 yr event
Inflow	=	4.46 cfs @ 12.09 hrs, Volume= 20,215 cf
Primary	=	4.46 cfs @ 12.09 hrs, Volume= 20,215 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link POI 3: Cranberry Highway Closed Drainage System

Proposed Conditions

95561.15_Proposed HydroCAD_Revised Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

	Area	CN	Description
	(sq-ft)		(subcatchment-numbers)
	72,000	61	>75% Grass cover, Good, HSG B (P-1A, P-1E, P-2, P-3, P-4, P-5, P-6, P-6B, P-6E)
	47,794	98	Paved parking, HSG B (P-1B, P-1C, P-1D, P-1E, P-3, P-4, P-5, P-6, P-6A, P-6B, P-6C, P-6D, P-6E)
	30,520	98	Roofs, HSG B (P-1A, P-1F)
	42,661	55	Woods, Good, HSG B (P-1A, P-2, P-3)
1	92,975	75	TOTAL AREA

95561.15_Proposed HydroCAD_Revised Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
192,975	HSG B	P-1A, P-1B, P-1C, P-1D, P-1E, P-1F, P-2, P-3, P-4, P-5, P-6, P-6A, P-6B, P-6C, P-6D, P-6E
0	HSG C	
0	HSG D	
0	Other	
192,975		TOTAL AREA

95561.15_Proposed HydroCAD_Revised Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Printed 7/15/2022 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Su
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Nu
0	72,000	0	0	0	72,000	>75% Grass	
						cover, Good	
C	47,794	0	0	0	47,794	Paved parking	
C	30,520	0	0	0	30,520	Roofs	
C	42,661	0	0	0	42,661	Woods, Good	
C	192,975	0	0	0	192,975	TOTAL AREA	

Ground Covers (all nodes)

95561.15_Proposed HydroCAD_Revised Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Printed 7/15/2022 Page 5

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	CB1	48.00	47.50	93.0	0.0054	0.011	12.0	0.0	0.0
2	CB10	46.30	46.00	47.0	0.0064	0.011	12.0	0.0	0.0
3	CB101	46.40	46.50	29.0	-0.0034	0.011	12.0	0.0	0.0
4	CB102	49.70	49.50	6.0	0.0333	0.011	12.0	0.0	0.0
5	CB103	46.90	46.70	6.0	0.0333	0.011	12.0	0.0	0.0
6	CB104	46.20	46.10	2.0	0.0500	0.011	12.0	0.0	0.0
7	CB2	47.40	46.90	95.0	0.0053	0.011	12.0	0.0	0.0
8	CB3	47.80	47.30	96.0	0.0052	0.011	12.0	0.0	0.0
9	CB4	47.20	46.90	46.0	0.0065	0.011	12.0	0.0	0.0
10	CB5	46.80	46.60	42.0	0.0048	0.011	12.0	0.0	0.0
11	CB6	48.00	47.50	86.0	0.0058	0.011	12.0	0.0	0.0
12	CB7	47.40	46.70	131.0	0.0053	0.011	12.0	0.0	0.0
13	CB8	46.60	46.00	119.0	0.0050	0.011	12.0	0.0	0.0
14	CB9	45.90	45.75	30.0	0.0050	0.011	12.0	0.0	0.0
15	DMH101	46.20	46.00	109.0	0.0018	0.011	12.0	0.0	0.0
16	DMH102	46.50	46.60	13.0	-0.0077	0.011	12.0	0.0	0.0
17	DMH103	46.10	44.90	36.0	0.0333	0.011	12.0	0.0	0.0
18	DMH104	45.30	45.10	5.0	0.0400	0.011	12.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A:	Runoff Area=83,866 sf 0.62% Impervious Runoff Depth=0.40" Flow Length=347' Tc=27.5 min CN=58 Runoff=0.32 cfs 2,764 cf
SubcatchmentP-1B:	Runoff Area=2,421 sf 100.00% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=0.18 cfs 629 cf
SubcatchmentP-1C:	Runoff Area=2,478 sf 100.00% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=0.18 cfs 644 cf
SubcatchmentP-1D:	Runoff Area=2,367 sf 100.00% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=0.17 cfs 615 cf
SubcatchmentP-1E:	Runoff Area=7,526 sf 97.81% Impervious Runoff Depth=3.01" Tc=6.0 min CN=97 Runoff=0.54 cfs 1,885 cf
SubcatchmentP-1F: Roof Runoff	Runoff Area=30,000 sf 100.00% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=2.19 cfs 7,792 cf
SubcatchmentP-2:	Runoff Area=5,227 sf 0.00% Impervious Runoff Depth=0.47" Tc=6.0 min CN=60 Runoff=0.04 cfs 204 cf
SubcatchmentP-3:	Runoff Area=15,280 sf 18.69% Impervious Runoff Depth=0.77" Flow Length=237' Tc=31.5 min CN=67 Runoff=0.15 cfs 977 cf
SubcatchmentP-4:	Runoff Area=7,214 sf 39.20% Impervious Runoff Depth=1.26" Tc=6.0 min CN=76 Runoff=0.23 cfs 756 cf
SubcatchmentP-5:	Runoff Area=4,858 sf 99.28% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=0.35 cfs 1,262 cf
SubcatchmentP-6:	Runoff Area=9,409 sf 56.68% Impervious Runoff Depth=1.66" Flow Length=123' Tc=7.2 min CN=82 Runoff=0.40 cfs 1,301 cf
SubcatchmentP-6A:	Runoff Area=2,359 sf 100.00% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=0.17 cfs 613 cf
SubcatchmentP-6B:	Runoff Area=6,232 sf 97.35% Impervious Runoff Depth=3.01" Tc=6.0 min CN=97 Runoff=0.45 cfs 1,561 cf
SubcatchmentP-6C:	Runoff Area=1,457 sf 100.00% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=0.11 cfs 378 cf
SubcatchmentP-6D:	Runoff Area=4,650 sf 100.00% Impervious Runoff Depth=3.12" Tc=6.0 min CN=98 Runoff=0.34 cfs 1,208 cf
SubcatchmentP-6E:	Runoff Area=7,631 sf 36.61% Impervious Runoff Depth=1.20" Tc=6.0 min CN=75 Runoff=0.23 cfs 761 cf

95561.15 <u></u>	Proposed HydroCAD_I	Revised

Prepared by Nobis Group HvdroCAD® 10.00-25 s/n 00877 © 2019 HvdroCAD Software Solutions LLC

HydroCAD® 10.00-25 s/n 00	77 © 2019 HydroCAD Software Solutions LLC Page	<u>ge 7</u>
Pond CB1:	Peak Elev=48.24' Inflow=0.18 cfs 62 12.0" Round Culvert n=0.011 L=93.0' S=0.0054 '/' Outflow=0.18 cfs 62	
Pond CB10:	Peak Elev=47.66' Inflow=0.23 cfs 76 12.0" Round Culvert n=0.011 L=47.0' S=0.0064 '/' Outflow=0.23 cfs 76	
Pond CB101:	Peak Elev=46.69' Inflow=0.15 cfs 97 12.0" Round Culvert n=0.011 L=29.0' S=-0.0034 '/' Outflow=0.15 cfs 97	
Pond CB102:	Peak Elev=49.94' Inflow=0.23 cfs 75 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.23 cfs 75	
Pond CB103:	Peak Elev=47.19' Inflow=0.35 cfs 1,26 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.35 cfs 1,26	
Pond CB104:	Peak Elev=46.52' Inflow=0.40 cfs 1,30 12.0" Round Culvert n=0.011 L=2.0' S=0.0500 '/' Outflow=0.40 cfs 1,30	
Pond CB2:	Peak Elev=47.92' Inflow=0.36 cfs 1,27 12.0" Round Culvert n=0.011 L=95.0' S=0.0053 '/' Outflow=0.36 cfs 1,27	
Pond CB3:	Peak Elev=48.06' Inflow=0.17 cfs 61 12.0" Round Culvert n=0.011 L=96.0' S=0.0052 '/' Outflow=0.17 cfs 61	
Pond CB4:	Peak Elev=47.85' Inflow=0.17 cfs 61 12.0" Round Culvert n=0.011 L=46.0' S=0.0065 '/' Outflow=0.17 cfs 61	
Pond CB5:	Peak Elev=47.84' Inflow=1.07 cfs 3,77 12.0" Round Culvert n=0.011 L=42.0' S=0.0048 '/' Outflow=1.07 cfs 3,77	
Pond CB6:	Peak Elev=48.23' Inflow=0.17 cfs 61 12.0" Round Culvert n=0.011 L=86.0' S=0.0058 '/' Outflow=0.17 cfs 61	
Pond CB7:	Peak Elev=47.88' Inflow=0.62 cfs 2,17 12.0" Round Culvert n=0.011 L=131.0' S=0.0053 '/' Outflow=0.62 cfs 2,17	
Pond CB8:	Peak Elev=47.69' Inflow=0.96 cfs 3,38 12.0" Round Culvert n=0.011 L=119.0' S=0.0050 '/' Outflow=0.96 cfs 3,38	
Pond CB9:	Peak Elev=47.66' Inflow=1.30 cfs 4,52 12.0" Round Culvert n=0.011 L=30.0' S=0.0050 '/' Outflow=1.30 cfs 4,52	
Pond DMH101:	Peak Elev=46.62' Inflow=0.26 cfs 1,73 12.0" Round Culvert n=0.011 L=109.0' S=0.0018 '/' Outflow=0.26 cfs 1,73	
Pond DMH102:	Peak Elev=46.90' Inflow=0.35 cfs 1,26 12.0" Round Culvert n=0.011 L=13.0' S=-0.0077 '/' Outflow=0.35 cfs 1,26	
Pond DMH103:	Peak Elev=46.49' Inflow=0.61 cfs 2,99 12.0" Round Culvert n=0.011 L=36.0' S=0.0333 '/' Outflow=0.61 cfs 2,99	

95561.15_Proposed HydroCAD_Rev Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroC	Printed 7/15/2022
Pond DMH104: 12.0" Round	Peak Elev=45.61' Inflow=0.40 cfs 1,301 cf Culvert n=0.011 L=5.0' S=0.0400 '/' Outflow=0.40 cfs 1,301 cf
Pond DMH105:	Inflow=1.01 cfs 4,296 cf Primary=1.01 cfs 4,296 cf
Pond Pd1: Infiltration Basin	Peak Elev=46.84' Storage=8,618 cf Inflow=3.79 cfs 15,810 cf Outflow=0.28 cfs 13,212 cf
Pond SF1: Sediment Forebay	Peak Elev=47.77' Storage=1,387 cf Inflow=1.07 cfs 3,772 cf Outflow=1.02 cfs 2,537 cf
Pond SF2: Sediment Forebay	Peak Elev=47.63' Storage=1,971 cf Inflow=1.30 cfs 4,521 cf Outflow=1.09 cfs 2,716 cf
Link POI 1: Onsite Infiltration East	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property Li	ine Inflow=0.04 cfs 204 cf Primary=0.04 cfs 204 cf
Link POI 3: Cranberry Highway Closed Drai	inage System Inflow=1.01 cfs 4,296 cf Primary=1.01 cfs 4,296 cf

Total Runoff Area = 192,975 sf Runoff Volume = 23,350 cf Average Runoff Depth = 1.45" 59.42% Pervious = 114,661 sf 40.58% Impervious = 78,314 sf

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A:	Runoff Area=83,866 sf 0.62% Impervious Runoff Depth=1.14" Flow Length=347' Tc=27.5 min CN=58 Runoff=1.30 cfs 7,939 cf
SubcatchmentP-1B:	Runoff Area=2,421 sf 100.00% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=0.26 cfs 949 cf
SubcatchmentP-1C:	Runoff Area=2,478 sf 100.00% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=0.27 cfs 971 cf
SubcatchmentP-1D:	Runoff Area=2,367 sf 100.00% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=0.26 cfs 928 cf
SubcatchmentP-1E:	Runoff Area=7,526 sf 97.81% Impervious Runoff Depth=4.59" Tc=6.0 min CN=97 Runoff=0.81 cfs 2,877 cf
SubcatchmentP-1F: Roof Runoff	Runoff Area=30,000 sf 100.00% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=3.25 cfs 11,758 cf
SubcatchmentP-2:	Runoff Area=5,227 sf 0.00% Impervious Runoff Depth=1.27" Tc=6.0 min CN=60 Runoff=0.16 cfs 552 cf
SubcatchmentP-3:	Runoff Area=15,280 sf 18.69% Impervious Runoff Depth=1.76" Flow Length=237' Tc=31.5 min CN=67 Runoff=0.38 cfs 2,243 cf
SubcatchmentP-4:	Runoff Area=7,214 sf 39.20% Impervious Runoff Depth=2.49" Tc=6.0 min CN=76 Runoff=0.47 cfs 1,495 cf
SubcatchmentP-5:	Runoff Area=4,858 sf 99.28% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=0.53 cfs 1,904 cf
SubcatchmentP-6:	Runoff Area=9,409 sf 56.68% Impervious Runoff Depth=3.03" Flow Length=123' Tc=7.2 min CN=82 Runoff=0.72 cfs 2,372 cf
SubcatchmentP-6A:	Runoff Area=2,359 sf 100.00% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=0.26 cfs 925 cf
SubcatchmentP-6B:	Runoff Area=6,232 sf 97.35% Impervious Runoff Depth=4.59" Tc=6.0 min CN=97 Runoff=0.67 cfs 2,382 cf
SubcatchmentP-6C:	Runoff Area=1,457 sf 100.00% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=0.16 cfs 571 cf
SubcatchmentP-6D:	Runoff Area=4,650 sf 100.00% Impervious Runoff Depth=4.70" Tc=6.0 min CN=98 Runoff=0.50 cfs 1,823 cf
SubcatchmentP-6E:	Runoff Area=7,631 sf 36.61% Impervious Runoff Depth=2.40" Tc=6.0 min CN=75 Runoff=0.48 cfs 1,527 cf

95561.15_Proposed Prepared by Nobis Gro	d HydroCAD_Revised	Type III 24-hr 10 yr Rainfall=4.94' Printed 7/15/2022
	00877 © 2019 HydroCAD Software Solutions L	
Dand CD4	r	Peak Elev=48.31' Inflow=0.26 cfs 949 cf
Pond CB1:		0' S=0.0054 '/' Outflow=0.26 cfs 949 cf
	_	
Pond CB10:		ak Elev=47.97' Inflow=0.48 cfs 1,527 cf S=0.0064 '/' Outflow=0.48 cfs 1,525 cf
Pond CB101:		ak Elev=46.85' Inflow=0.38 cfs 2,243 cf S=-0.0034 '/' Outflow=0.38 cfs 2,243 cf
		30.0034 / Outliow-0.36 CIS 2,243 CI
Pond CB102:		ak Elev=50.04' Inflow=0.47 cfs 1,495 cf
	12.0" Round Culvert n=0.011 L=6.0'	S=0.0333 '/' Outflow=0.47 cfs 1,495 cf
Pond CB103:	Pe	ak Elev=47.26' Inflow=0.53 cfs 1,904 cf
	12.0" Round Culvert n=0.011 L=6.0'	S=0.0333 '/' Outflow=0.53 cfs 1,904 cf
Pond CB104:	Pe	ak Elev=46.66' Inflow=0.72 cfs 2,372 cf
		S=0.0500 '/' Outflow=0.72 cfs 2,372 cf
Pond CB2:	Da	ak Elev=48.04' Inflow=0.53 cfs 1,920 cf
		S=0.0053 '/' Outflow=0.53 cfs 1,920 cf
David OD2:	r	Peak Elev=48.12' Inflow=0.26 cfs 928 cf
Pond CB3:		0' S=0.0052 '/' Outflow=0.26 cfs 928 cf
Pond CB4:		Peak Elev=47.97' Inflow=0.26 cfs 928 cf 0' S=0.0065 '/' Outflow=0.26 cfs 928 cf
Pond CB5:		ak Elev=47.96' Inflow=1.60 cfs 5,725 cf
	12.0 Round Cuivent n=0.011 L=42.0	S=0.0048 '/' Outflow=1.60 cfs 5,725 cf
Pond CB6:		Peak Elev=48.33' Inflow=0.26 cfs 925 cf
	12.0" Round Culvert n=0.011 L=86.	0' S=0.0058 '/' Outflow=0.26 cfs 925 cf
Pond CB7:	Pe	ak Elev=48.22' Inflow=0.93 cfs 3,307 cf
	12.0" Round Culvert n=0.011 L=131.0'	S=0.0053 '/' Outflow=0.93 cfs 3,307 cf
Pond CB8:	Pe	ak Elev=48.11' Inflow=1.43 cfs 5,129 cf
	12.0" Round Culvert n=0.011 L=119.0'	· · · · · · · · · · · · · · · · · · ·
Pond CB9:	Da	ak Elev=47.96' Inflow=2.07 cfs 7,226 cf
		S=0.0050 '/' Outflow=2.07 cfs 7,226 cf
David DMU404	5	
Pond DMH101:	Pe '12.0" Round Culvert_n=0.011 L=109.0	ak Elev=46.81' Inflow=0.60 cfs 3,737 cf S=0.0018 '/' Outflow=0.60 cfs 3,737 cf
Pond DMH102:		ak Elev=46.99' Inflow=0.53 cfs 1,904 cf S=-0.0077 '/' Outflow=0.53 cfs 1,904 cf
		G0.00777 Outlow-0.05 CIS 1,904 CI
Pond DMH103:		ak Elev=46.65' Inflow=1.12 cfs 5,641 cf
	12.0" Round Culvert n=0.011 L=36.0'	S=0.0333 '/' Outflow=1.12 cfs 5,641 cf

95561.15_Proposed HydroCAD_Re Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 Hydro		be III 24-hr 10 yr Rainfall=4.94" Printed 7/15/2022 Page 11
Pond DMH104: 12.0" Roun		ev=45.73' Inflow=0.72 cfs 2,372 cf .0400 '/' Outflow=0.72 cfs 2,372 cf
Pond DMH105:		Inflow=1.84 cfs 8,014 cf Primary=1.84 cfs 8,014 cf
Pond Pd1: Infiltration Basin	Peak Elev=47.27' Storage=1	5,290 cf Inflow=7.04 cfs 29,608 cf Outflow=0.77 cfs 25,470 cf
Pond SF1: Sediment Forebay	Peak Elev=47.81' Storage	=1,436 cf Inflow=1.60 cfs 5,725 cf Outflow=1.53 cfs 4,490 cf
Pond SF2: Sediment Forebay	Peak Elev=47.69' Storage	=2,054 cf Inflow=2.07 cfs 7,226 cf Outflow=1.99 cfs 5,421 cf
Link POI 1: Onsite Infiltration East		Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property L	Line	Inflow=0.16 cfs 552 cf Primary=0.16 cfs 552 cf
Link POI 3: Cranberry Highway Closed Dra	ainage System	Inflow=1.84 cfs 8,014 cf Primary=1.84 cfs 8,014 cf

Total Runoff Area = 192,975 sf Runoff Volume = 41,214 cf Average Runoff Depth = 2.56" 59.42% Pervious = 114,661 sf 40.58% Impervious = 78,314 sf

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentP-1A:	Runoff Area=83,866 sf 0.62% Impervious Runoff Depth=1.86" Flow Length=347' Tc=27.5 min CN=58 Runoff=2.29 cfs 12,980 cf
SubcatchmentP-1B:	Runoff Area=2,421 sf 100.00% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=0.33 cfs 1,195 cf
SubcatchmentP-1C:	Runoff Area=2,478 sf 100.00% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=0.34 cfs 1,223 cf
SubcatchmentP-1D:	Runoff Area=2,367 sf 100.00% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=0.32 cfs 1,168 cf
SubcatchmentP-1E:	Runoff Area=7,526 sf 97.81% Impervious Runoff Depth=5.80" Tc=6.0 min CN=97 Runoff=1.01 cfs 3,640 cf
SubcatchmentP-1F: Roof Runoff	Runoff Area=30,000 sf 100.00% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=4.06 cfs 14,804 cf
SubcatchmentP-2:	Runoff Area=5,227 sf 0.00% Impervious Runoff Depth=2.03" Tc=6.0 min CN=60 Runoff=0.27 cfs 883 cf
SubcatchmentP-3:	Runoff Area=15,280 sf 18.69% Impervious Runoff Depth=2.65" Flow Length=237' Tc=31.5 min CN=67 Runoff=0.59 cfs 3,376 cf
SubcatchmentP-4:	Runoff Area=7,214 sf 39.20% Impervious Runoff Depth=3.52" Tc=6.0 min CN=76 Runoff=0.67 cfs 2,115 cf
SubcatchmentP-5:	Runoff Area=4,858 sf 99.28% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=0.66 cfs 2,397 cf
SubcatchmentP-6:	Runoff Area=9,409 sf 56.68% Impervious Runoff Depth=4.13" Flow Length=123' Tc=7.2 min CN=82 Runoff=0.98 cfs 3,242 cf
SubcatchmentP-6A:	Runoff Area=2,359 sf 100.00% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=0.32 cfs 1,164 cf
SubcatchmentP-6B:	Runoff Area=6,232 sf 97.35% Impervious Runoff Depth=5.80" Tc=6.0 min CN=97 Runoff=0.84 cfs 3,014 cf
SubcatchmentP-6C:	Runoff Area=1,457 sf 100.00% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=0.20 cfs 719 cf
SubcatchmentP-6D:	Runoff Area=4,650 sf 100.00% Impervious Runoff Depth=5.92" Tc=6.0 min CN=98 Runoff=0.63 cfs 2,295 cf
SubcatchmentP-6E:	Runoff Area=7,631 sf 36.61% Impervious Runoff Depth=3.42" Tc=6.0 min CN=75 Runoff=0.69 cfs 2,174 cf

95561.15_Proposed Prepared by Nobis Grou		Type III 24-hr 25 yr R Printe	ainfall=6.16" ed_7/15/2022
	0877 © 2019 HydroCAD Software Solution	ns LLC	Page 13
Pond CB1:	12.0" Round Culvert n=0.011 L=93	Peak Elev=48.36' Inflow=0.33 3.0' S=0.0054 '/' Outflow=0.33	
Pond CB10:	12.0" Round Culvert n=0.011 L=47	Peak Elev=48.21' Inflow=0.69 7.0' S=0.0064 '/' Outflow=0.69	
Pond CB101:	12.0" Round Culvert n=0.011 L=29	Peak Elev=46.99' Inflow=0.59 .0' S=-0.0034 '/' Outflow=0.59	
Pond CB102:	12.0" Round Culvert n=0.011 L=6	Peak Elev=50.11' Inflow=0.67 5.0' S=0.0333 '/' Outflow=0.67	
Pond CB103:	12.0" Round Culvert n=0.011 L=6	Peak Elev=47.31' Inflow=0.66 5.0' S=0.0333 '/' Outflow=0.66	,
Pond CB104:	12.0" Round Culvert n=0.011 L=2	Peak Elev=46.76' Inflow=0.98 2.0' S=0.0500 '/' Outflow=0.98	,
Pond CB2:	12.0" Round Culvert n=0.011 L=95	Peak Elev=48.16' Inflow=0.66 5.0' S=0.0053 '/' Outflow=0.66	
Pond CB3:	12.0" Round Culvert n=0.011 L=96	Peak Elev=48.18' Inflow=0.32 5.0' S=0.0052 '/' Outflow=0.32	
Pond CB4:	12.0" Round Culvert n=0.011 L=46	Peak Elev=48.09' Inflow=0.32 6.0' S=0.0065 '/' Outflow=0.32	
Pond CB5:	12.0" Round Culvert n=0.011 L=42	Peak Elev=48.08' Inflow=2.00 2.0' S=0.0048 '/' Outflow=2.00	,
Pond CB6:	12.0" Round Culvert n=0.011 L=86	Peak Elev=48.53' Inflow=0.32 6.0' S=0.0058 '/' Outflow=0.32	,
Pond CB7:	12.0" Round Culvert n=0.011 L=131	Peak Elev=48.51' Inflow=1.16 1.0' S=0.0053 '/' Outflow=1.16	
Pond CB8:	12.0" Round Culvert n=0.011 L=119	Peak Elev=48.43' Inflow=1.79 9.0' S=0.0050 '/' Outflow=1.79	
Pond CB9:	12.0" Round Culvert n=0.011 L=30	Peak Elev=48.19' Inflow=2.67).0' S=0.0050 '/' Outflow=2.67	
Pond DMH101:	12.0" Round Culvert n=0.011 L=109	Peak Elev=46.95' Inflow=0.88 9.0' S=0.0018 '/' Outflow=0.88	
Pond DMH102:	12.0" Round Culvert n=0.011 L=13	Peak Elev=47.05' Inflow=0.66 .0' S=-0.0077 '/' Outflow=0.66	
Pond DMH103:	12.0" Round Culvert n=0.011 L=36	Peak Elev=46.76' Inflow=1.53 5.0' S=0.0333 '/' Outflow=1.53	

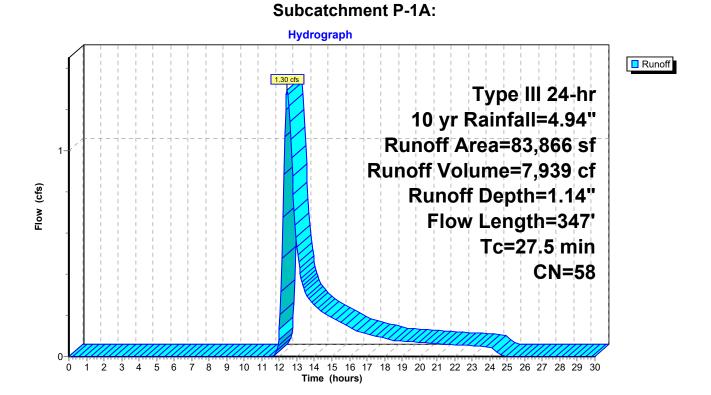
95561.15_Proposed HydroCAD_Re Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 Hydro		Type III 24-hr 25 yr Rainfall=6.16" Printed 7/15/2022 C Page 14
Pond DMH104: 12.0" Roun		Elev=45.81' Inflow=0.98 cfs 3,242 cf =0.0400 '/' Outflow=0.98 cfs 3,242 cf
Pond DMH105:		Inflow=2.52 cfs 11,130 cf Primary=2.52 cfs 11,130 cf
Pond Pd1: Infiltration Basin	Peak Elev=47.55' Storage	e=20,796 cf Inflow=9.29 cfs 41,335 cf Outflow=1.27 cfs 36,497 cf
Pond SF1: Sediment Forebay	Peak Elev=47.83' Stor	age=1,471 cf Inflow=2.00 cfs 7,226 cf Outflow=1.93 cfs 5,991 cf
Pond SF2: Sediment Forebay	Peak Elev=47.72' Stor	age=2,103 cf Inflow=2.67 cfs 9,365 cf Outflow=2.60 cfs 7,560 cf
Link POI 1: Onsite Infiltration East		Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property L	_ine	Inflow=0.27 cfs 883 cf Primary=0.27 cfs 883 cf
Link POI 3: Cranberry Highway Closed Dra	ainage System	Inflow=2.52 cfs 11,130 cf Primary=2.52 cfs 11,130 cf

Total Runoff Area = 192,975 sf Runoff Volume = 56,389 cf Average Runoff Depth = 3.51" 59.42% Pervious = 114,661 sf 40.58% Impervious = 78,314 sf

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

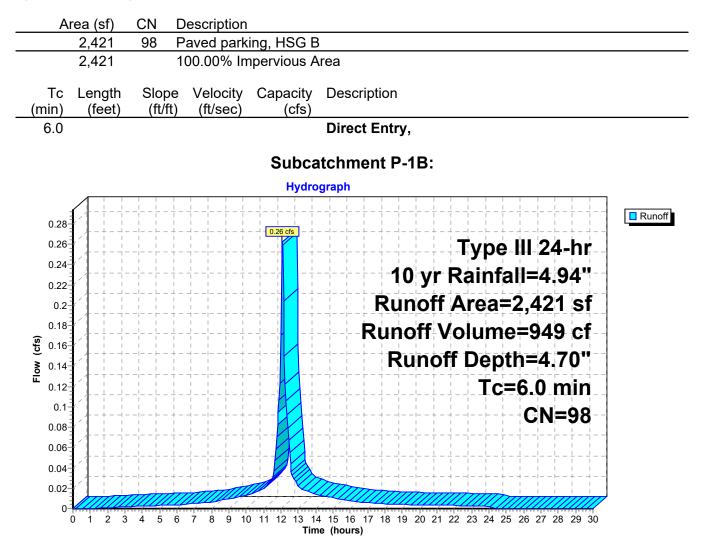
SubcatchmentP-1A:	Runoff Area=83,866 sf 0.62% Impervious Runoff Depth=3.57" Flow Length=347' Tc=27.5 min CN=58 Runoff=4.64 cfs 24,940 cf
SubcatchmentP-1B:	Runoff Area=2,421 sf 100.00% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=0.46 cfs 1,691 cf
SubcatchmentP-1C:	Runoff Area=2,478 sf 100.00% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=0.47 cfs 1,730 cf
SubcatchmentP-1D:	Runoff Area=2,367 sf 100.00% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=0.45 cfs 1,653 cf
SubcatchmentP-1E:	Runoff Area=7,526 sf 97.81% Impervious Runoff Depth=8.26" Tc=6.0 min CN=97 Runoff=1.42 cfs 5,180 cf
SubcatchmentP-1F: Roof Runoff	Runoff Area=30,000 sf 100.00% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=5.69 cfs 20,950 cf
SubcatchmentP-2:	Runoff Area=5,227 sf 0.00% Impervious Runoff Depth=3.81" Tc=6.0 min CN=60 Runoff=0.52 cfs 1,657 cf
SubcatchmentP-3:	Runoff Area=15,280 sf 18.69% Impervious Runoff Depth=4.64" Flow Length=237' Tc=31.5 min CN=67 Runoff=1.05 cfs 5,910 cf
SubcatchmentP-4:	Runoff Area=7,214 sf 39.20% Impervious Runoff Depth=5.73" Tc=6.0 min CN=76 Runoff=1.08 cfs 3,442 cf
SubcatchmentP-5:	Runoff Area=4,858 sf 99.28% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=0.92 cfs 3,392 cf
SubcatchmentP-6:	Runoff Area=9,409 sf 56.68% Impervious Runoff Depth=6.45" Flow Length=123' Tc=7.2 min CN=82 Runoff=1.51 cfs 5,058 cf
SubcatchmentP-6A:	Runoff Area=2,359 sf 100.00% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=0.45 cfs 1,647 cf
SubcatchmentP-6B:	Runoff Area=6,232 sf 97.35% Impervious Runoff Depth=8.26" Tc=6.0 min CN=97 Runoff=1.18 cfs 4,290 cf
SubcatchmentP-6C:	Runoff Area=1,457 sf 100.00% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=0.28 cfs 1,017 cf
SubcatchmentP-6D:	Runoff Area=4,650 sf 100.00% Impervious Runoff Depth=8.38" Tc=6.0 min CN=98 Runoff=0.88 cfs 3,247 cf
SubcatchmentP-6E:	Runoff Area=7,631 sf 36.61% Impervious Runoff Depth=5.60" Tc=6.0 min CN=75 Runoff=1.12 cfs 3,564 cf

95561.15_Proposed H Prepared by Nobis Grou		Type III 24-hr 100 yr Rainfall=8.62" Printed 7/15/2022
	9 877 © 2019 HydroCAD Software Solution	
Pond CB1:		Peak Elev=48.52' Inflow=0.46 cfs 1,691 cf
	12.0" Round Culvert n=0.011 L=93	3.0' S=0.0054 '/' Outflow=0.46 cfs 1,691 cf
Pond CB10:		Peak Elev=48.87' Inflow=1.12 cfs 3,564 cf
		'.0' S=0.0064 '/' Outflow=1.12 cfs 3,564 cf
Pond CB101:		Peak Elev=47.28' Inflow=1.05 cfs 5,910 cf
	12.0" Round Culvert n=0.011 L=29.	.0' S=-0.0034 '/' Outflow=1.05 cfs 5,910 cf
5 105400		
Pond CB102:		Peak Elev=50.24' Inflow=1.08 cfs 3,442 cf .0' S=0.0333 '/' Outflow=1.08 cfs 3,442 cf
		5.0 3-0.03337 Outilow-1.08 CIS 5,442 CI
Pond CB103:		Peak Elev=47.41' Inflow=0.92 cfs 3,392 cf
		5.0' S=0.0333 '/' Outflow=0.92 cfs 3,392 cf
Pond CB104:		Peak Elev=46.93' Inflow=1.51 cfs 5,058 cf
	12.0" Round Culvert n=0.011 L=2	2.0' S=0.0500 '/' Outflow=1.51 cfs 5,058 cf
Pond CB2:		Peak Elev=48.46' Inflow=0.93 cfs 3,421 cf
Pond CB2:		5.0' S=0.0053 '/' Outflow=0.93 cfs 3,421 cf
Pond CB3:		Peak Elev=48.43' Inflow=0.45 cfs 1,653 cf
	12.0" Round Culvert n=0.011 L=96	6.0' S=0.0052 '/' Outflow=0.45 cfs 1,653 cf
Pond CB4:		Peak Elev=48.40' Inflow=0.45 cfs 1,653 cf
	12.0 Round Cuivent h=0.011 L=46	5.0' S=0.0065 '/' Outflow=0.45 cfs 1,653 cf
Pond CB5:	P	Peak Elev=48.39' Inflow=2.80 cfs 10,254 cf
		0' S=0.0048 '/' Outflow=2.80 cfs 10,254 cf
Pond CB6:		Peak Elev=49.46' Inflow=0.45 cfs 1,647 cf
	12.0" Round Culvert n=0.011 L=86	5.0' S=0.0058 '/' Outflow=0.45 cfs 1,647 cf
Pond CB7:		Peak Elev=49.46' Inflow=1.63 cfs 5,937 cf
		.0' S=0.0053 '/' Outflow=1.63 cfs 5,937 cf
Pond CB8:		Peak Elev=49.31' Inflow=2.51 cfs 9,184 cf
	12.0" Round Culvert n=0.011 L=119	0.0' S=0.0050 '/' Outflow=2.51 cfs 9,184 cf
David OD0:		Deals Elevie 40.041 Jufferrie 2.00 efc. 40.765 ef
Pond CB9:		Peak Elev=48.81' Inflow=3.90 cfs 13,765 cf 0' S=0.0050 '/' Outflow=3.90 cfs 13,765 cf
		0 3-0.0030 / Outilow-3.90 cls 13,703 cl
Pond DMH101:		Peak Elev=47.24' Inflow=1.50 cfs 9,351 cf
		0.0' S=0.0018 '/' Outflow=1.50 cfs 9,351 cf
Pond DMH102:		Peak Elev=47.15' Inflow=0.92 cfs 3,392 cf
	12.0" Round Culvert n=0.011 L=13.	.0' S=-0.0077 '/' Outflow=0.92 cfs 3,392 cf
Pond DMH103:		Peak Elev=47.00' Inflow=2.41 cfs 12,744 cf
		0' S=0.0333 '/' Outflow=2.41 cfs 12,744 cf
		C C C.0000 / Cullow-2.+1005 12,744 0

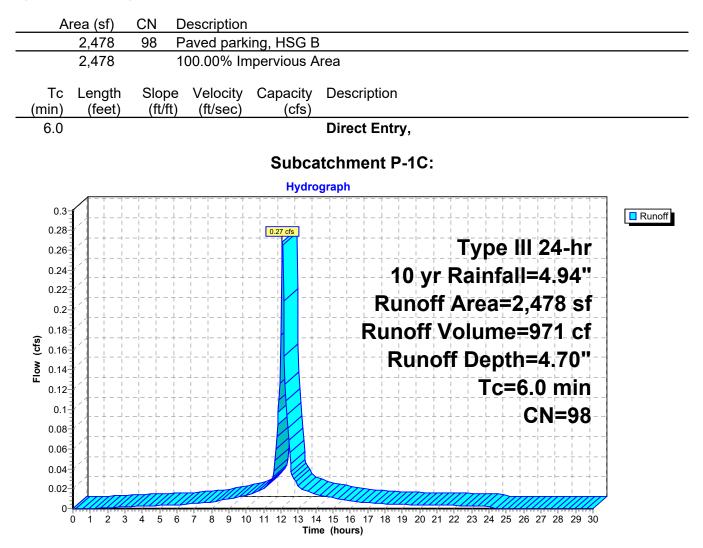

95561.15_Proposed HydroCAD_R Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 Hyd		III 24-hr 100 yr Rainfall=8.62" Printed 7/15/2022 Page 17
Pond DMH104: 12.0" Rou		v=45.97' Inflow=1.51 cfs 5,058 cf 0400 '/' Outflow=1.51 cfs 5,058 cf
Pond DMH105:		Inflow=3.92 cfs 17,801 cf Primary=3.92 cfs 17,801 cf
Pond Pd1: Infiltration Basin	Peak Elev=48.05' Storage=32,4	463 cf Inflow=14.09 cfs 66,869 cf Outflow=2.25 cfs 61,053 cf
Pond SF1: Sediment Forebay	Peak Elev=48.05' Storage=1	,701 cf Inflow=2.80 cfs 10,254 cf Outflow=2.73 cfs 9,019 cf
Pond SF2: Sediment Forebay	Peak Elev=48.05' Storage=2	2,509 cf Inflow=3.90 cfs 13,765 cf Outflow=3.82 cfs 11,961 cf
Link POI 1: Onsite Infiltration East		Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POI 2: Offsite at Southeast Property	Inflow=0.52 cfs 1,657 cf Primary=0.52 cfs 1,657 cf	
Link POI 3: Cranberry Highway Closed D	Inflow=3.92 cfs 17,801 cf Primary=3.92 cfs 17,801 cf	

Total Runoff Area = 192,975 sf Runoff Volume = 89,368 cf Average Runoff Depth = 5.56" 59.42% Pervious = 114,661 sf 40.58% Impervious = 78,314 sf

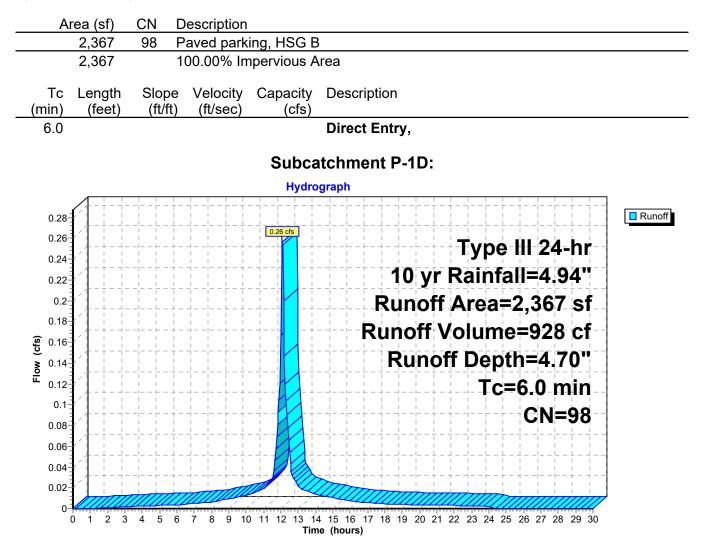
Summary for Subcatchment P-1A:


Runoff = 1.30 cfs @ 12.45 hrs, Volume= 7,939 cf, Depth= 1.14"

_	A	rea (sf)	CN E	Description							
		38,610	55 V	55 Woods, Good, HSG B							
		520	98 F	Roofs, HSC	βB						
_		44,736	61 >	-75% Gras	s cover, Go	bod, HSG B					
		83,866	58 V	Veighted A	verage						
		83,346	ç	9.38% Per	vious Area						
		520	C).62% Impe	ervious Are	а					
	_										
	Тс	Length	Slope	,	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	21.0	100	0.0200	0.08		Sheet Flow, Woods, 100', 2%					
						Woods: Light underbrush n= 0.400 P2= 3.35"					
	5.0	150	0.0100	0.50		Shallow Concentrated Flow, Woods, 150', 1%					
						Woodland Kv= 5.0 fps					
	1.5	97	0.0230	1.06		Shallow Concentrated Flow, Grass, 97', 2.3%					
_						Short Grass Pasture Kv= 7.0 fps					
	27.5	347	Total								


Summary for Subcatchment P-1B:

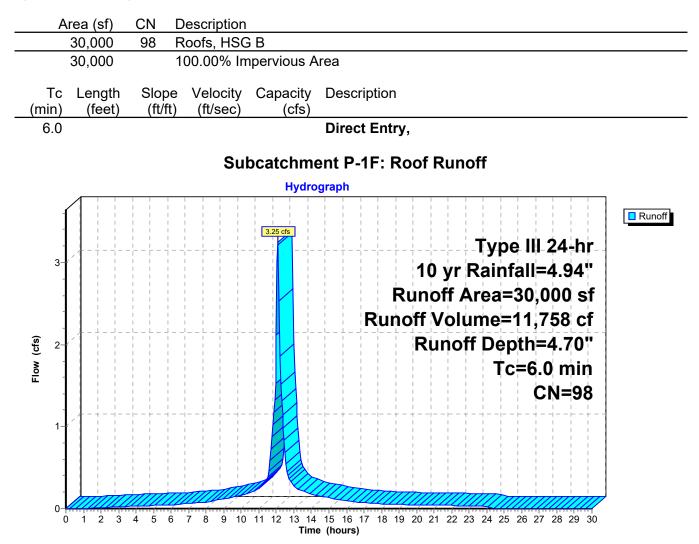
Runoff = 0.26 cfs @ 12.09 hrs, Volume= 949 cf, Depth= 4.70"


Summary for Subcatchment P-1C:

Runoff = 0.27 cfs @ 12.09 hrs, Volume= 971 cf, Depth= 4.70"

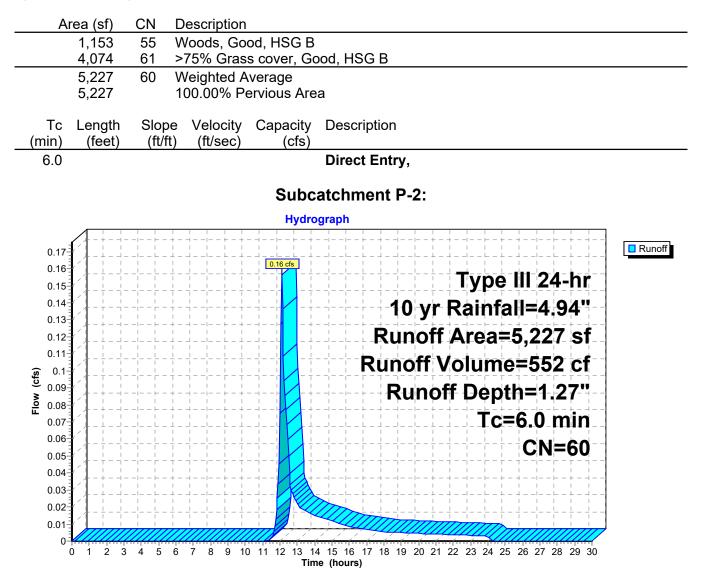
Summary for Subcatchment P-1D:

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 928 cf, Depth= 4.70"


Summary for Subcatchment P-1E:

Runoff = 0.81 cfs @ 12.09 hrs, Volume= 2,877 cf, Depth= 4.59"

A	rea (sf)	CN [Description					
7,361 98 Paved parking, HSG B								
	165				ood, HSG B			
	7,526		Neighted A					
	165		2.19% Perv					
	7,361	Ç	97.81% Imp	pervious Ar	rea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			
				Subca	atchment P-1E:			
				Hydro	ograph			
0.9			+-+-+-	+-+-++++++++				
0.85				0.81 cfs _ ⊥				
0.8					Type III 24-hr			
0.75		·						
0.7		i i - i - i	+ - + -	i i i i	10 yr Rainfall=4.94"			
0.65		+ -	+ - + -		Runoff Area=7,526 sf			
0.6	= 21	+ - 			Runoff Volume=2,877 cf			
0.55 (2) 0.5	H 2 1 1 1 1							
(cl) 0.5 0.45 0.4	F 21 1 1	· _'			Runoff Depth=4.59"			
0.4	= _1				Tc=6.0 min			
0.35		· -			CN=97-			
0.3		· -i + - + -	+ - + ·					
0.25			+ - + -					
0.2								
0.15	1 Z I I I I							
0.1	= 21 - 7 - 7	$-\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$						
0.05								
0	0 1 2 3	4 5 6	7 8 9 10) 11 12 13 1	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30			


Summary for Subcatchment P-1F: Roof Runoff

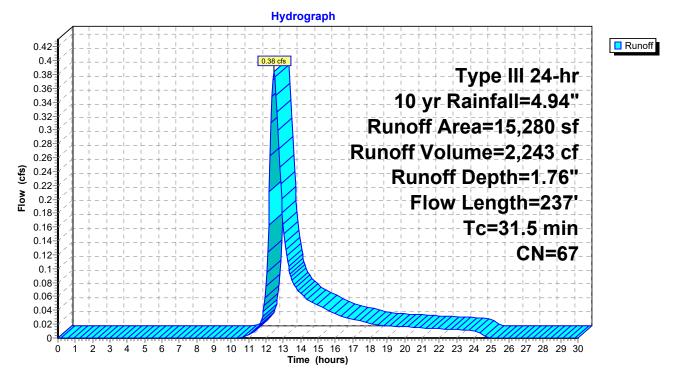
Runoff = 3.25 cfs @ 12.09 hrs, Volume= 11,758 cf, Depth= 4.70"

Summary for Subcatchment P-2:

Runoff = 0.16 cfs @ 12.10 hrs, Volume= 552 cf, Depth= 1.27"

Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Summary for Subcatchment P-3:


Runoff = 0.38 cfs @ 12.47 hrs, Volume= 2,243 cf, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"

A	rea (sf)	CN E	Description						
	2,898	55 V	55 Woods, Good, HSG B						
	2,856			ing, HSG B					
	9,526	61 >	75% Gras	s cover, Go	ood, HSG B				
	15,280		Veighted A						
	12,424	8	1.31% Per	vious Area					
	2,856	1	8.69% Imp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
22.7	55	0.0050	0.04		Sheet Flow, Woods, 55', 0.5%				
					Woods: Light underbrush n= 0.400 P2= 3.35"				
6.7	45	0.0100	0.11		Sheet Flow, Grass, 45', 1%				
					Grass: Short n= 0.150 P2= 3.35"				
1.5	72	0.0130	0.80		Shallow Concentrated Flow, Grass, 72', 1.3%				
					Short Grass Pasture Kv= 7.0 fps				
0.6	65	0.0080	1.82		Shallow Concentrated Flow, Pavement, 65', 0.8%				
					Paved Kv= 20.3 fps				

31.5 237 Total

Subcatchment P-3:

HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

Summary for Subcatchment P-4:

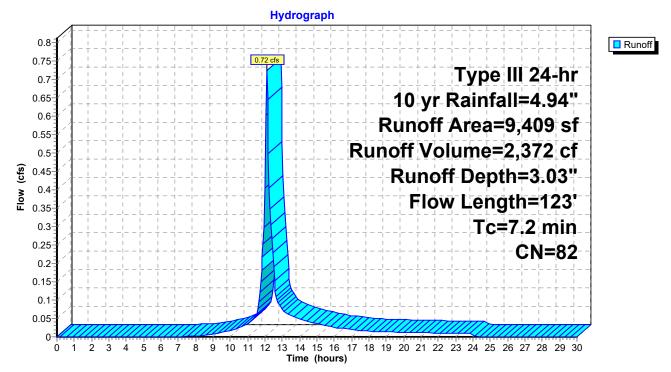
Runoff = 0.47 cfs @ 12.09 hrs, Volume= 1,495 cf, Depth= 2.49"

A	rea (sf)		Description			
	2,828			ing, HSG E		
	4,386 7,214		Veighted A		bod, HSG B	
	4,386	-		rvious Area	l	
	2,828	3	9.20% Imp	pervious Ar	ea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	
				Subc	atchment P-4:	
				Hydro	ograph	
0.52 0.5 0.48 0.44 0.42 0.4 0.38 0.36 0.34 0.32 0.28 0.28 0.22 0.22 0.22 0.22 0.22 0.2					Type III 24-hr 10 yr Rainfall=4.94" Runoff Area=7,214 sf Runoff Volume=1,495 cf Runoff Depth=2.49" Tc=6.0 min CN=76	Runo

Summary for Subcatchment P-5:

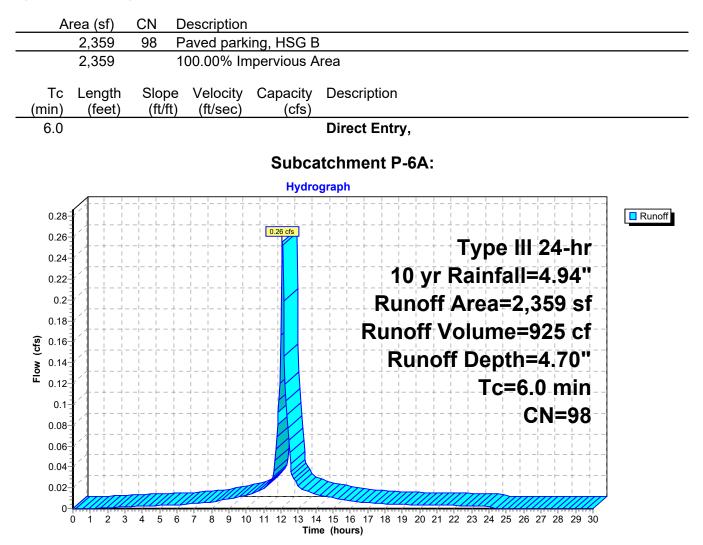
Runoff = 0.53 cfs @ 12.09 hrs, Volume= 1,904 cf, Depth= 4.70"

	Area (sf)	CN E	Description							
	4,823			ing, HSG E						
	35 61 >75% Grass cover, Good, HSG B 4,858 98 Weighted Average									
	4,858 35		veignted A 0.72% Perv							
	4,823	-		pervious Ar	ea					
Tc		Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry					
6.0					Direct Entry,					
				Subc	atchment P-5:					
					ograph					
0.5										
		¦ ¦ + -	·	<mark>0.53 cfs</mark> 	Type III 24-hr					
0.	5									
0.4	5				10 yr Rainfall=4.94"					
0.4					Runoff Area=4,858 sf					
0.3	5	$ \frac{1}{1} \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	$-\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1}$		Runoff Volume=1,904 cf					
cts)		+ -	+-+		Runoff Depth=4.70"					
Flow (cfs)	3-	 - + -								
ت _{0.2}	5				Tc=6.0 min					
0.	2									
0.1		+ - 	$\begin{array}{cccc} & & & \\ & & \\ & - \end{array} = \begin{array}{cccc} & & \\ & - \end{array} = \begin{array}{cccc} & & \\ & - \end{array} = \begin{array}{cccc} & & \\ & - \end{array} = \begin{array}{ccccc} & & \\ & - \end{array} = \begin{array}{ccccc} & & \\ & - \end{array} = \begin{array}{cccccc} & & \\ & - \end{array} = \begin{array}{ccccccc} & & \\ & - \end{array} = \begin{array}{ccccccccccccccccccccccccccccccccccc$							
	x+									
0.	1- *	! <u>-</u> - <u>-</u> -								
0.0	5									
	0		minninni	<u> </u>						
	0 1 2 3	3 4 5 6	7 8 9 1		4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ne (hours)					


Summary for Subcatchment P-6:

Runoff = 0.72 cfs @ 12.11 hrs, Volume= 2,372 cf, Depth= 3.03"

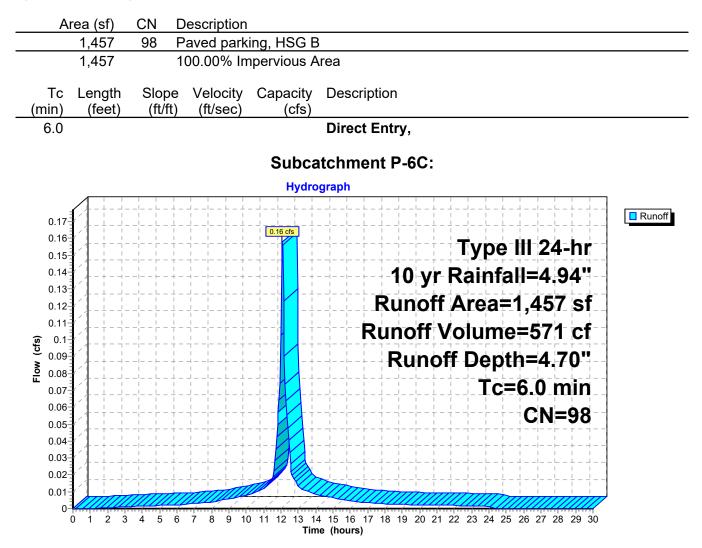
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=4.94"


_	A	rea (sf)	CN [CN Description						
		5,333	98 F	98 Paved parking, HSG B						
		4,076	61 >	>75% Ġras	s cover, Go	bod, HSG B				
		9,409	82 \	Neighted A	verage					
		4,076	4	13.32% Pe	rvious Area					
		5,333	Ę	56.68% Imp	pervious Ar	ea				
	_				• •	— • • •				
	Tc	Length	Slope		Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.8	80	0.0300	0.20		Sheet Flow, Grass, 80', 3%				
						Grass: Short n= 0.150 P2= 3.35"				
	0.3	20	0.0200	1.02		Sheet Flow, Pavement, 20', 2%				
						Smooth surfaces n= 0.011 P2= 3.35"				
	0.1	23	0.0200	2.87		Shallow Concentrated Flow, Pavement, 23', 2%				
						Paved Kv= 20.3 fps				
	7.2	123	Total							

Subcatchment P-6:

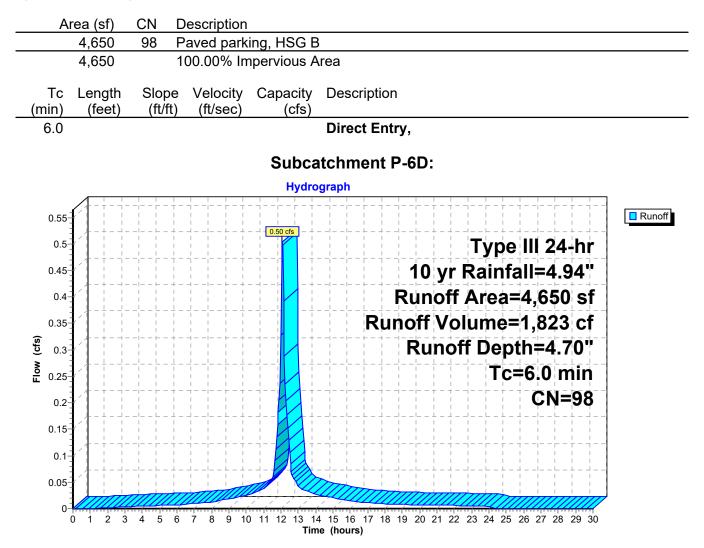
Summary for Subcatchment P-6A:

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 925 cf, Depth= 4.70"


Summary for Subcatchment P-6B:

Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,382 cf, Depth= 4.59"

A	rea (sf)	CN E	Description							
	6,067			ing, HSG E						
	165 61 >75% Grass cover, Good, HSG B									
	6,232 165		Veighted A 2.65% Perv							
	6,067			bervious Ar	rea					
	·									
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u> 6.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry,					
0.0					Direct Entry,					
				Subca	atchment P-6B:					
				Hvdro	ograph					
0.75			· · · · · · · · ·							
0.7					'''''''''''''					
0.65		+ -			Type III 24-hr					
0.6				+	10 yr Rainfall=4.94"					
0.55		+ - 	· - + - + · 							
0.5		F T - 	· · · · · · · · · · ·		Runoff Area=6,232 sf					
0.45					Runoff Volume=2,382 cf					
(classification) 0.4					Runoff Depth=4.59"					
0.35		 + -			Tc=6.0 min					
0.3					CN=97					
0.25		!								
0.2		 - + -								
0.15										
0.1	 /, - +	+ -								
0.05										
0	0 1 2 3	4 5 6	7 8 9 10) 11 12 13 1	<u>Augustus and and and and and and and and and and</u>					

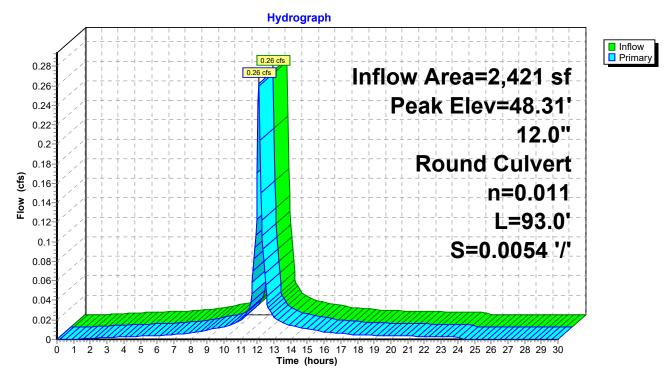

Summary for Subcatchment P-6C:

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 571 cf, Depth= 4.70"

Summary for Subcatchment P-6D:

Runoff = 0.50 cfs @ 12.09 hrs, Volume= 1,823 cf, Depth= 4.70"

Summary for Subcatchment P-6E:

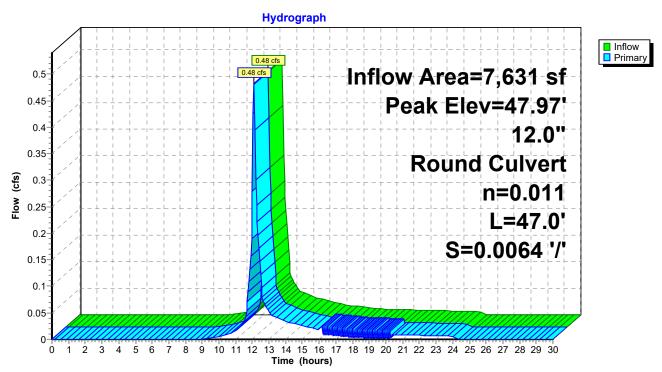

Runoff = 0.48 cfs @ 12.09 hrs, Volume= 1,527 cf, Depth= 2.40"

Ar	rea (sf)		Description		
	2,794 4,837			ing, HSG E	3 ood, HSG B
	7,631 4,837 2,794	75 V 6	Veighted A 3.39% Pei		à
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,
				Subca	atchment P-6E:
				Hydro	ograph
-					
0.5				0.48 cfs	
0.45					Type III-24-hr
0.4					10 yr Rainfall=4.94"
0.35			$\begin{array}{cccc} -1 & -1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -$		Runoff Area=7,631 sf
(2 0.3					Runoff Volume=1,527 cf
(s) 0.3 NO 0.25			$-\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$		Runoff Depth=2.40"
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Tc=6.0 min
0.2		 - + -			CN=75
0.15					
0.1					
0.05					

Summary for Pond CB1:

Inflow A	Inflow Area = 2,421 sf,100.00% Impervious, Inflow Depth = 4.70" for 10 yr event									
Inflow	=	0.26 cfs @ 12	2.09 hrs, Volume=	949 cf	-					
Outflow	=	0.26 cfs @ 12	2.09 hrs, Volume=	949 cf, Atter	n= 0%, Lag= 0.0 min					
Primary	=	0.26 cfs @ 12	2.09 hrs, Volume=	949 cf						
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.31' @ 12.10 hrs Flood Elev= 51.00'										
Device	Routing	Invert	Outlet Devices							
#1	Primary	48.00'	48.00' 12.0'' Round Culvert L= 93.0' Ke= 0.500 Inlet / Outlet Invert= 48.00' / 47.50' S= 0.0054 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf							
.					· - · · · ·					

Primary OutFlow Max=0.23 cfs @ 12.09 hrs HW=48.30' TW=48.02' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.23 cfs @ 1.72 fps)

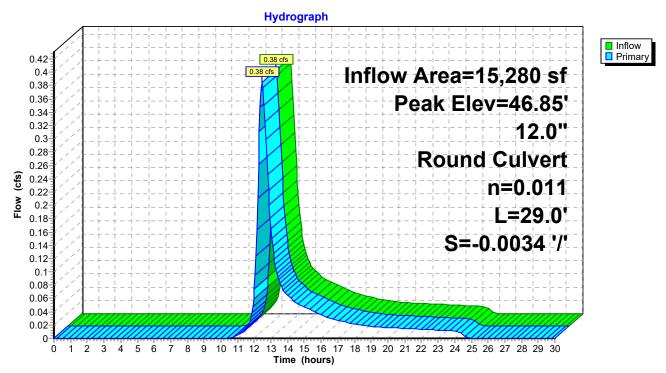


Pond CB1:

Summary for Pond CB10:

Inflow A	rea =	7,631 sf, 3	6.61% Impervious, Inflow Depth = 2.40" 1	or 10 yr event
Inflow	=	0.48 cfs @ 12	2.09 hrs, Volume= 1,527 cf	
Outflow	=	0.48 cfs @ 12	2.09 hrs, Volume= 1,525 cf, Atten=	: 0%, Lag= 0.0 min
Primary	=	0.48 cfs @ 12	2.09 hrs, Volume= 1,525 cf	-
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.97' @ 12.15 hrs Flood Elev= 49.70'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	46.30'	12.0" Round Culvert L= 47.0' Ke= 0.500 Inlet / Outlet Invert= 46.30' / 46.00' S= 0.00 n= 0.011, Flow Area= 0.79 sf	

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=47.88' TW=47.95' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.00 cfs)

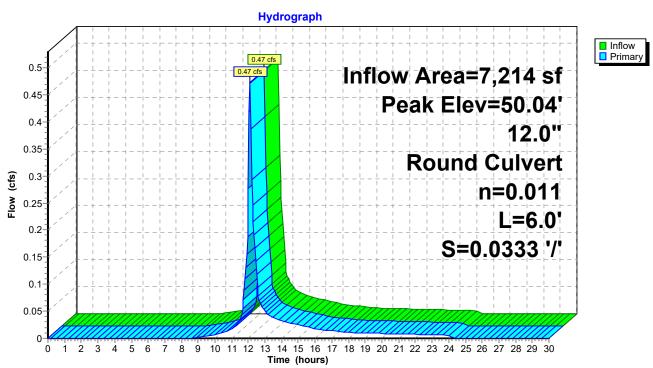


Pond CB10:

Summary for Pond CB101:

Inflow A Inflow Outflow Primary	= =	0.38 cfs @ 12 0.38 cfs @ 12	8.69% Impervious, Inflow Depth = 1.76" for 10 yr event 2.47 hrs, Volume= 2,243 cf 2.47 hrs, Volume= 2,243 cf, Atten= 0%, Lag= 0.0 r 2.47 hrs, Volume= 2,243 cf	nin
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.85' @ 12.44 hrs Flood Elev= 49.06'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	46.50'	12.0" Round Culvert L= 29.0' Ke= 0.500 Inlet / Outlet Invert= 46.40' / 46.50' S= -0.0034 '/' Cc= 0.90 n= 0.011, Flow Area= 0.79 sf	00

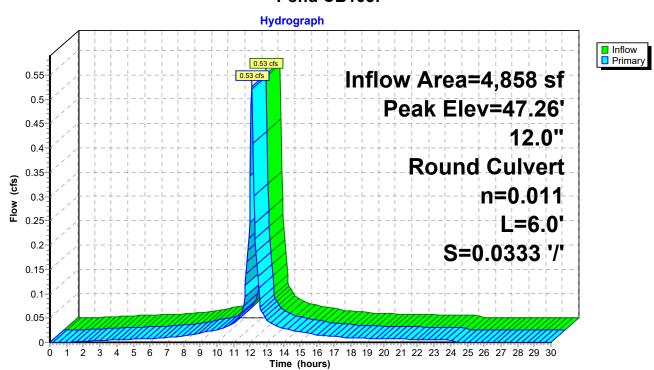
Primary OutFlow Max=0.40 cfs @ 12.47 hrs HW=46.85' TW=46.73' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.40 cfs @ 1.72 fps)



Pond CB101:

Summary for Pond CB102:

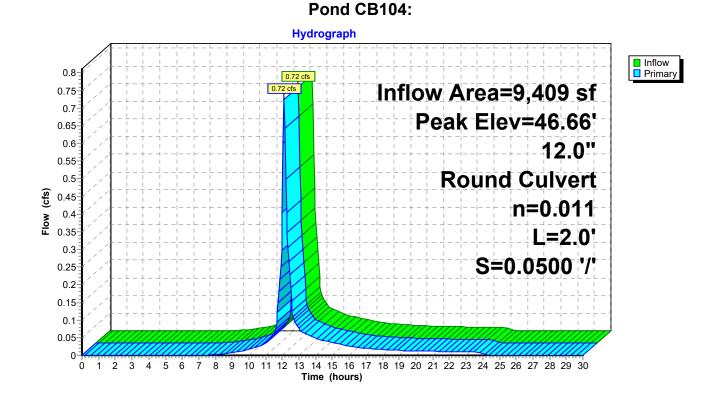
Inflow A Inflow Outflow Primary	= =	0.47 cfs @ 12 0.47 cfs @ 12	39.20% Impervious, Inflow Depth = 2.49" for 10 yr event 2.09 hrs, Volume= 1,495 cf 2.09 hrs, Volume= 1,495 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 1,495 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 50.04' @ 12.09 hrs Flood Elev= 49.07'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	49.70'	12.0" Round Culvert L= 6.0' Ke= 0.500 Inlet / Outlet Invert= 49.70' / 49.50' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf	


Primary OutFlow Max=0.47 cfs @ 12.09 hrs HW=50.04' TW=46.80' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.47 cfs @ 1.98 fps)

Pond CB102:

Summary for Pond CB103:

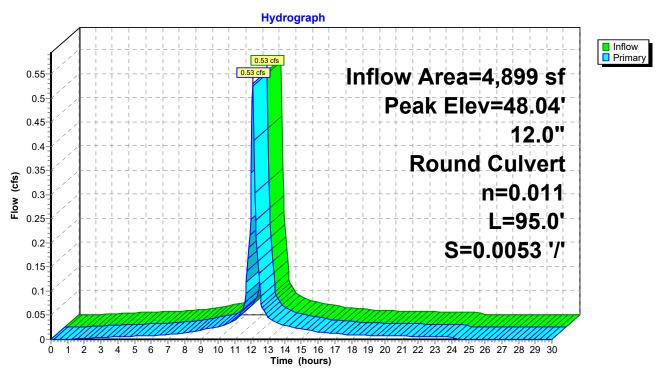
Inflow Area = Inflow = Outflow = Primary =	0.53 cfs @ 12 0.53 cfs @ 12	99.28% Impervious, Inflow Depth = 4.70" for 10 yr event 2.09 hrs, Volume= 1,904 cf 2.09 hrs, Volume= 1,904 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 1,904 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.26' @ 12.09 hrs Flood Elev= 49.70'			
Device Routing	Invert	Outlet Devices	
#1 Primary	46.90'	12.0" Round Culvert L= 6.0' Ke= 0.500 Inlet / Outlet Invert= 46.90' / 46.70' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf	
Primary OutFlow Max=0.51 cfs @ 12.09 hrs HW=47.26' TW=46.98' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.51 cfs @ 2.03 fps)			



Pond CB103:

Summary for Pond CB104:

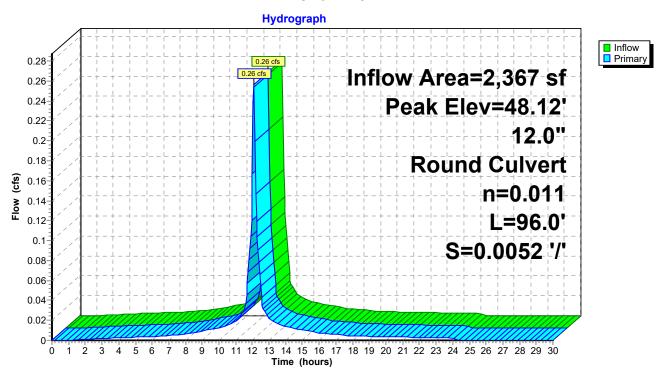
Inflow A Inflow Outflow Primary	= =	0.72 cfs @ 12 0.72 cfs @ 12	56.68% Impervious, Inflow Depth = 3.03" for 10 yr event 2.11 hrs, Volume= 2,372 cf 2.11 hrs, Volume= 2,372 cf, Atten= 0%, Lag= 0.0 min 2.11 hrs, Volume= 2,372 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.66' @ 12.11 hrs Flood Elev= 48.93'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	46.20'	12.0" Round Culvert L= 2.0' Ke= 0.500 Inlet / Outlet Invert= 46.20' / 46.10' S= 0.0500 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf	


Primary OutFlow Max=0.71 cfs @ 12.11 hrs HW=46.66' TW=45.73' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.71 cfs @ 2.98 fps)

Summary for Pond CB2:

Inflow A	rea =	4,899 sf,10	00.00% Impervious, Inflow Depth = 4.70" for 10 yr event
Inflow	=	0.53 cfs @ 12	2.09 hrs, Volume= 1,920 cf
Outflow	=	0.53 cfs @ 12	2.09 hrs, Volume= 1,920 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.53 cfs @ 12	2.09 hrs, Volume= 1,920 cf
Peak El		@ 12.13 hrs	Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Outlet Devices
#1	Primary	47.40'	12.0" Round Culvert L= 95.0' Ke= 0.500 Inlet / Outlet Invert= 47.40' / 46.90' S= 0.0053 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.38 cfs @ 12.09 hrs HW=48.02' TW=47.95' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.38 cfs @ 1.07 fps)



Pond CB2:

Summary for Pond CB3:

Inflow Ar	rea =	2,367 sf,10	0.00% Impervious,	Inflow Depth = 4.70" for 10 yr event
Inflow	=	0.26 cfs @ 12	2.09 hrs, Volume=	928 cf
Outflow	=	0.26 cfs @ 12	2.09 hrs, Volume=	928 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.26 cfs @ 12	2.09 hrs, Volume=	928 cf
Peak Ele Flood El	ev= 48.12' ev= 51.00	@ 12.11 hrs	·	0.00 hrs, dt= 0.05 hrs
Device	Routing	Invert	Outlet Devices	
#1	Primary	47.80'		vert L= 96.0' Ke= 0.500 t= 47.80' / 47.30' S= 0.0052 '/' Cc= 0.900 rea= 0.79 sf

Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=48.12' TW=47.90' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.22 cfs @ 1.50 fps)

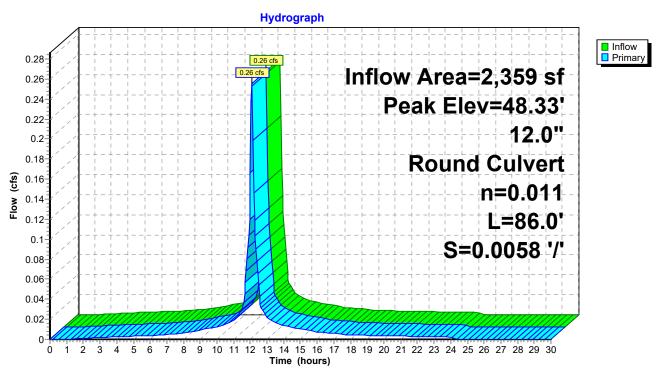


Pond CB3:

Summary for Pond CB4:

Inflow A	rea =	2,367 sf,10	0.00% Impervious,	Inflow Depth = 4.70" for 10 yr event
Inflow	=	0.26 cfs @ 12	2.09 hrs, Volume=	928 cf
Outflow	=	0.26 cfs @ 12	2.09 hrs, Volume=	928 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.26 cfs @ 12	2.09 hrs, Volume=	928 cf
Peak El		@ 12.15 hrs	Time Span= 0.00-30	0.00 hrs, dt= 0.05 hrs
Device	Routing	Invert	Outlet Devices	
#1	Primary	47.20'		vert L= 46.0' Ke= 0.500 t= 47.20' / 46.90' S= 0.0065 '/' Cc= 0.900 rea= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=47.90' TW=47.95' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.00 cfs)



Summary for Pond CB5:

Summary for Pond CB6:

2,359 sf,100.00% Imperviou	s, Inflow Depth = 4.70" for 10 yr event
0.26 cfs @ 12.09 hrs, Volume	= 925 cf
0.26 cfs @ 12.09 hrs, Volume	= 925 cf, Atten= 0%, Lag= 0.0 min
0.26 cfs @ 12.09 hrs, Volume	= 925 cf
tor-Ind method, Time Span= 0.00 ' @ 12.12 hrs '	-30.00 hrs, dt= 0.05 hrs
Invert Outlet Devices	
Inlet / Outlet Inv	ulvert L= 86.0' Ke= 0.500 ert= 48.00' / 47.50' S= 0.0058 '/' Cc= 0.900 Area= 0.79 sf
•	0.26 cfs @ 12.09 hrs, Volume 0.26 cfs @ 12.09 hrs, Volume 0.26 cfs @ 12.09 hrs, Volume tor-Ind method, Time Span= 0.00 @ 12.12 hrs ' <u>Invert Outlet Devices</u> 48.00' 12.0'' Round C

Primary OutFlow Max=0.20 cfs @ 12.09 hrs HW=48.32' TW=48.13' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.20 cfs @ 1.44 fps)

Pond CB6:

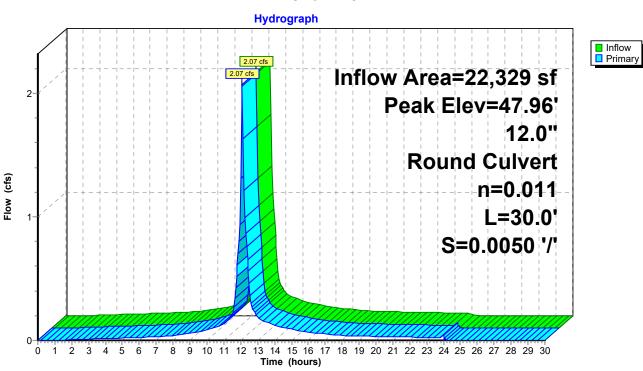
0-

Summary for Pond CB7:

Inflow Area = 8,591 sf, 98.08% Impervious, Inflow Depth = 4.62" for 10 yr event Inflow = 0.93 cfs @ 12.09 hrs, Volume= 3,307 cf Outflow = 0.93 cfs @ 12.09 hrs, Volume= 3,307 cf, Atten= 0%, Lag= 0.0 min Primary = 0.93 cfs @ 12.09 hrs, Volume= 3,307 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.22' @ 12.15 hrs Flood Elev= 51.00'
Device Routing Invert Outlet Devices
#1 Primary 47.40' 12.0" Round Culvert L= 131.0' Ke= 0.500 Inlet / Outlet Invert= 47.40' / 46.70' S= 0.0053 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf
Primary OutFlow Max=0.53 cfs @ 12.09 hrs HW=48.13' TW=48.04' (Dynamic Tailwater) [▲] 1=Culvert (Outlet Controls 0.53 cfs @ 1.21 fps)
Pond CB7:
Hydrograph
(The grant of the second secon

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

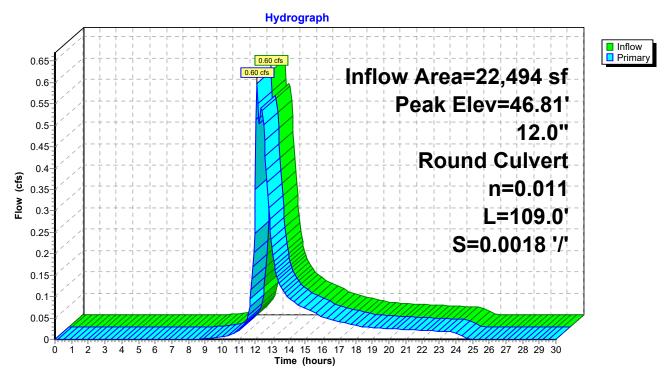
0


Summary for Pond CB8:

Inflow Area =13,241 sf, 98.75% ImpervioInflow =1.43 cfs @12.09 hrs, VolumOutflow =1.43 cfs @12.09 hrs, VolumPrimary =1.43 cfs @12.09 hrs, Volum	e= 5,129 cf, Atten= 0%, Lag= 0.0 min
Routing by Dyn-Stor-Ind method, Time Span= 0.0 Peak Elev= 48.11' @ 12.12 hrs Flood Elev= 51.20')-30.00 hrs, dt= 0.05 hrs
Device Routing Invert Outlet Devices	
,	Culvert L= 119.0' Ke= 0.500 vert= 46.60' / 46.00' S= 0.0050 '/' Cc= 0.900 v Area= 0.79 sf
Primary OutFlow Max=0.99 cfs @ 12.09 hrs HW 1=Culvert (Outlet Controls 0.99 cfs @ 1.26 fps	
Po	nd CB8:
Hydrogra	ph
1 1	Inflow Area=13,241 sf Peak Elev=48.11' 12.0"
Flow (cfs)	Round Culvert n=0.011
LINE LINE LINE LINE LINE LINE LINE LINE	L=119.0'
	S=0.0050 '/'

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

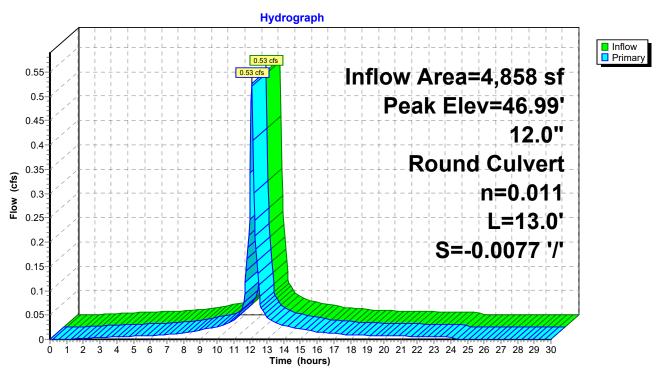
Summary for Pond CB9:


Inflow Area = Inflow = Outflow = Primary =	22,329 sf, 77.60% Impervious, Inflow Depth = 3.88" for 10 yr event2.07 cfs @ 12.09 hrs, Volume=7,226 cf2.07 cfs @ 12.09 hrs, Volume=7,226 cf, Atten= 0%, Lag= 0.0 min2.07 cfs @ 12.09 hrs, Volume=7,226 cf					
Peak Elev= 47.96	Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.96' @ 12.10 hrs Flood Elev= 51.00'					
Device Routing	Invert Outlet Devices					
#1 Primary	45.90' 12.0" Round Culvert L= 30.0' Ke= 0.500 Inlet / Outlet Invert= 45.90' / 45.75' S= 0.0050 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf					
Primary OutFlow Max=1.92 cfs @ 12.09 hrs HW=47.94' TW=47.68' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.92 cfs @ 2.44 fps)						
	Pond CB9:					
Hydrograph						
2-	2.07 cfs 2.07 c					

Summary for Pond DMH101:

Inflow A			· · · ·	Inflow Depth = 1.99" for 10 yr event
Inflow	=	0.60 cfs @ 12	2.11 hrs, Volume=	3,737 cf
Outflow	=	0.60 cfs @ 12	2.11 hrs, Volume=	3,737 cf, Atten= 0%, Lag= 0.0 min
Primary		0.60 cfs @ 12	2.11 hrs, Volume=	3,737 cf
Peak El		@ 12.13 hrs	Time Span= 0.00-3(0.00 hrs, dt= 0.05 hrs
Device	Routing	Invert	Outlet Devices	
#1	Primary	46.20'		vert L= 109.0' Ke= 0.500 t= 46.20' / 46.00' S= 0.0018 '/' Cc= 0.900 rea= 0.79 sf

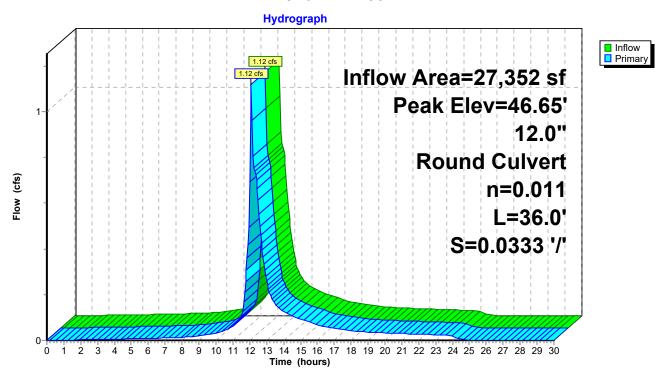
Primary OutFlow Max=0.55 cfs @ 12.11 hrs HW=46.81' TW=46.64' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.55 cfs @ 1.59 fps)



Pond DMH101:

Summary for Pond DMH102:

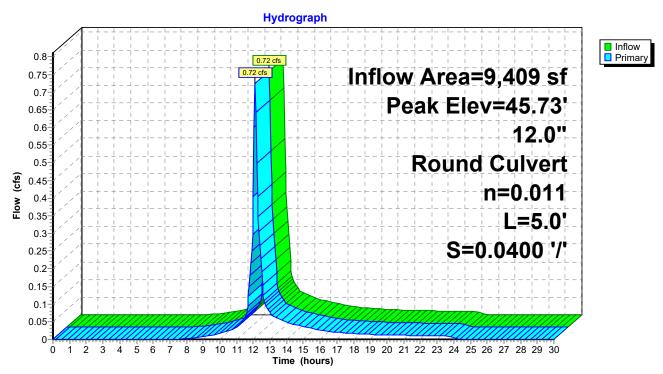
Inflow A	rea =	4,858 sf, 9	99.28% Impervious, Inflow Depth = 4.70" for 10 yr event
Inflow	=	0.53 cfs @ 12	2.09 hrs, Volume= 1,904 cf
Outflow	=	0.53 cfs @ 12	2.09 hrs, Volume= 1,904 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.53 cfs @ 12	2.09 hrs, Volume= 1,904 cf
Peak El		@ 12.09 hrs	Time Span= 0.00-30.00 hrs, dt= 0.05 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	46.60'	12.0" Round Culvert L= 13.0' Ke= 0.500 Inlet / Outlet Invert= 46.50' / 46.60' S= -0.0077 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf


Primary OutFlow Max=0.51 cfs @ 12.09 hrs HW=46.98' TW=46.64' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.51 cfs @ 2.02 fps)

Pond DMH102:

Summary for Pond DMH103:

Inflow Area = Inflow = Outflow = Primary =	1.12 cfs @ 1 1.12 cfs @ 1	38.41% Impervious, Inflow Depth = 2.48" for 10 yr event 2.10 hrs, Volume= 5,641 cf 2.10 hrs, Volume= 5,641 cf, Atten= 0%, Lag= 0.0 min 2.10 hrs, Volume= 5,641 cf				
Peak Elev= 46.	Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.65' @ 12.10 hrs					
Flood Elev= 50	30'					
Device Routir	n Invert	Outlet Devices				
#1 Prima		12.0" Round Culvert L= 36.0' Ke= 0.500 Inlet / Outlet Invert= 46.10' / 44.90' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf				

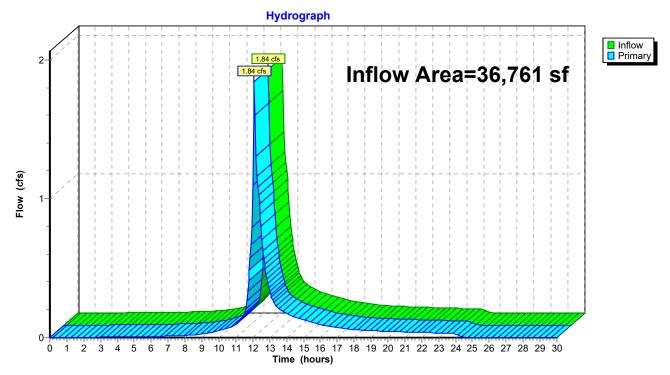


Pond DMH103:

Summary for Pond DMH104:

Inflow A Inflow Outflow Primary	= =	9,409 sf, 56.68% Impervious, Inflow Depth = 3.03" for 10 yr event 0.72 cfs @ 12.11 hrs, Volume= 2,372 cf 0.72 cfs @ 12.11 hrs, Volume= 2,372 cf, Atten= 0%, Lag= 0.0 mir 0.72 cfs @ 12.11 hrs, Volume= 2,372 cf	1
Peak El		r-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs ⊉ 12.11 hrs	
Device	Routing	Invert Outlet Devices	
#1	Primary	45.30' 12.0" Round Culvert L= 5.0' Ke= 0.500 Inlet / Outlet Invert= 45.30' / 45.10' S= 0.0400 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf	

Primary OutFlow Max=0.71 cfs @ 12.11 hrs HW=45.73' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.71 cfs @ 2.23 fps)



Pond DMH104:

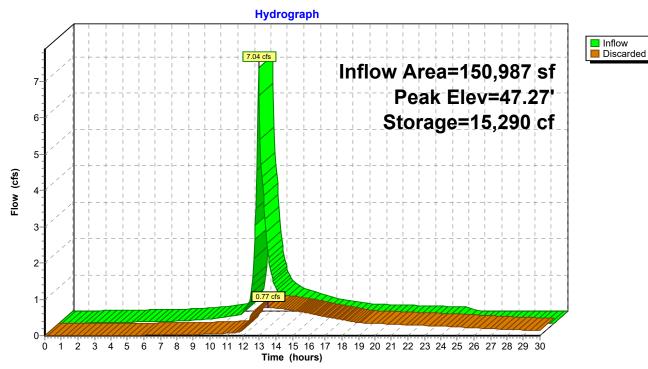
Summary for Pond DMH105:

Inflow Are	a =	36,761 sf, 43.09% Impervious, Inflow Depth = 2.62" for 10 yr event
Inflow	=	1.84 cfs @ 12.10 hrs, Volume= 8,014 cf
Primary	=	1.84 cfs $\overline{@}$ 12.10 hrs, Volume= 8,014 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Pond DMH105:

Summary for Pond Pd1: Infiltration Basin


Inflow Area =	150,987 sf, 41.38% Impervious,	Inflow Depth = 2.35" for 10 yr event
Inflow =	7.04 cfs @ 12.10 hrs, Volume=	29,608 cf
Outflow =	0.77 cfs @ 13.53 hrs, Volume=	25,470 cf, Atten= 89%, Lag= 85.6 min
Discarded =	0.77 cfs @ 13.53 hrs, Volume=	25,470 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.27' @ 13.53 hrs Surf.Area= 17,512 sf Storage= 15,290 cf

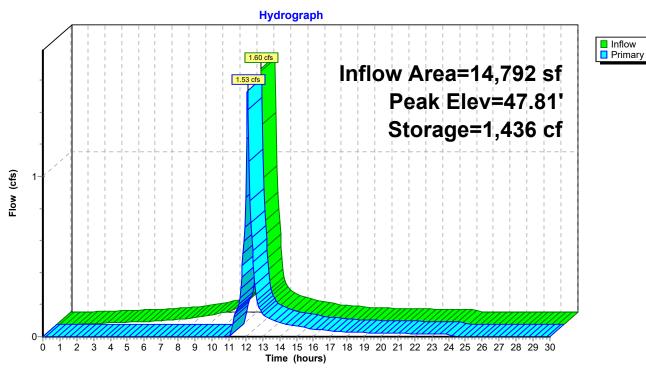
Plug-Flow detention time= 341.9 min calculated for 25,470 cf (86% of inflow) Center-of-Mass det. time= 277.1 min (1,095.2 - 818.1)

Volume	Invert	Avai	I.Storage	Storage Description				
#1	46.20'	(66,021 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)		
Elevation (feet)		ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
46.20)	12,660	674.0	0	0	12,660		
47.00)	14,853	695.0	10,994	10,994	15,012		
48.00)	25,991	840.0	20,164	31,158	32,741		
49.00)	44,565	1,275.0	34,863	66,021	105,962		
Device	Routing	In	vert Outle	et Devices				
#1	Discarded	46		5 in/hr Exfiltratior uded Surface area		ea above 46.20'		

Discarded OutFlow Max=0.77 cfs @ 13.53 hrs HW=47.27' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.77 cfs)

Pond Pd1: Infiltration Basin

Summary for Pond SF1: Sediment Forebay


Inflow Area =	14,792 sf, 98.88% Impervious,	Inflow Depth = 4.64" for 10 yr event
Inflow =	1.60 cfs @ 12.09 hrs, Volume=	5,725 cf
Outflow =	1.53 cfs @ 12.11 hrs, Volume=	4,490 cf, Atten= 4%, Lag= 1.5 min
Primary =	1.53 cfs @ 12.11 hrs, Volume=	4,490 cf

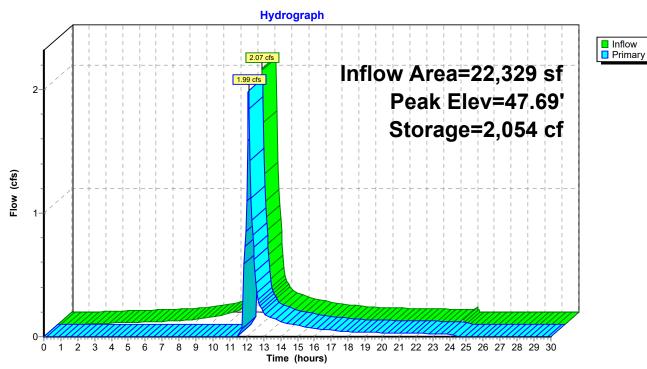
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.81' @ 12.11 hrs Surf.Area= 1,320 sf Storage= 1,436 cf

Plug-Flow detention time= 150.7 min calculated for 4,490 cf (78% of inflow) Center-of-Mass det. time= 70.8 min (823.0 - 752.1)

Volume	Inve	rt Avail.	Storage	Storage Description				
#1	46.2	0'	1,701 cf	Custom Stage D)ata (Irregular)List	ed below (Recalc)		
Elevation (feet 46.20 47.00 48.00	:) O O	Surf.Area (sq-ft) 519 880 1,438	Perim. (feet) 101.0 125.0 154.0	Inc.Store (cubic-feet) 0 553 1,148	Cum.Store (cubic-feet) 0 553 1,701	Wet.Area <u>(sq-ft)</u> 519 960 1,619		
	Routing Primary	,	rert Outle 65' 10.0 Head 2.50 Coet	<u>et Devices</u> ' long x 3.0' brea d (feet) 0.20 0.40 3.00 3.50 4.00	dth Broad-Creste 0.60 0.80 1.00 4.50 2.58 2.68 2.67 2.0	d Rectangular Weir 1.20 1.40 1.60 1.80 2.00 65 2.64 2.64 2.68 2.68		

Primary OutFlow Max=1.50 cfs @ 12.11 hrs HW=47.81' TW=46.76' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir**(Weir Controls 1.50 cfs @ 0.96 fps)

Pond SF1: Sediment Forebay

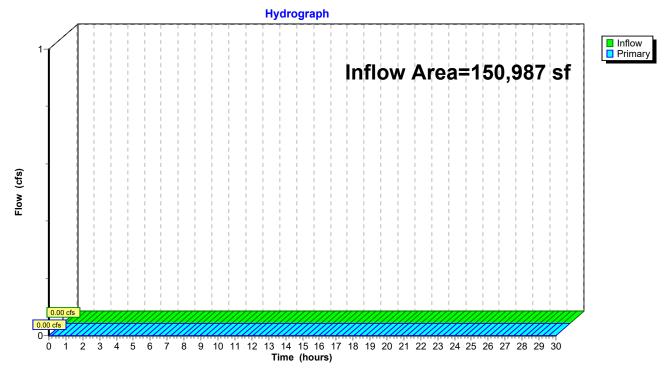

Summary for Pond SF2: Sediment Forebay

Inflow Area =	22,329 sf, 77.60% Impervious,	Inflow Depth = 3.88" for 10 yr event
Inflow =	2.07 cfs @ 12.09 hrs, Volume=	7,226 cf
Outflow =	1.99 cfs @ 12.11 hrs, Volume=	5,421 cf, Atten= 4%, Lag= 1.4 min
Primary =	1.99 cfs @ 12.11 hrs, Volume=	5,421 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.69' @ 12.11 hrs Surf.Area= 1,374 sf Storage= 2,054 cf

Plug-Flow detention time= 159.3 min calculated for 5,412 cf (75% of inflow) Center-of-Mass det. time= 72.3 min (841.5 - 769.2)

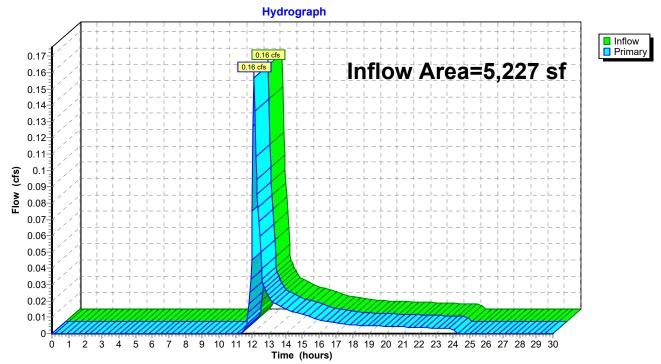
Invert	Avail.	Storage	age Storage Description				
45.00'		2,509 cf	Custom Stage D)ata (Irregular) List	ed below (Recalc)		
(1	<u>sq-ft)</u> 275 601 1,025	Perim. (feet) 66.0 93.0 118.0 144.0	Inc.Store (cubic-feet) 0 428 804 1,278	Cum.Store (cubic-feet) 0 428 1,231 2,509	Wet.Area (sq-ft) 275 626 1,059 1,616		
uting mary	Inve	ert Outle 50' 10.0 Head 2.50 Coef	et Devices ' long x 3.0' brea d (feet) 0.20 0.40 3.00 3.50 4.00 f. (English) 2.44 2	dth Broad-Creste 0.60 0.80 1.00 4.50 2.58 2.68 2.67 2.	ed Rectangular Weir 1.20 1.40 1.60 1.80 2.0	0	
	45.00' Surf (, , , , ,	45.00' 2 Surf.Area (sq-ft) 275 601 1,025 1,549 uting Inve	45.00' 2,509 cf Surf.Area Perim. (sq-ft) (feet) 275 66.0 601 93.0 1,025 118.0 1,549 144.0 uting Invert Outle mary 47.50' 10.0 Head 2.50 Coef	45.00' 2,509 cf Custom Stage D Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 275 66.0 0 601 93.0 428 1,025 118.0 804 1,549 144.0 1,278 uting Invert Outlet Devices mary 47.50' 10.0' long x 3.0' breat Head (feet) 0.20 0.40 2.50 3.00 3.50 4.00	45.00' 2,509 cf Custom Stage Data (Irregular)List Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 275 66.0 0 0 601 93.0 428 428 1,025 118.0 804 1,231 1,549 144.0 1,278 2,509 uting Invert Outlet Devices 10.0' long x 3.0' breadth Broad-Crester Head (feet) 0.20 0.40 0.60 0.80 1.00	45.00' 2,509 cf Custom Stage Data (Irregular)Listed below (Recalc) Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 275 66.0 0 0 275 601 93.0 428 428 626 1,025 118.0 804 1,231 1,059 1,549 144.0 1,278 2,509 1,616 uting Invert Outlet Devices 10.0' long x 3.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.80 2.0 2.50 3.00 3.50 4.00 4.50 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.68 2.68	


Pond SF2: Sediment Forebay

Summary for Link POI 1: Onsite Infiltration East

Inflow Area	a =	150,987 sf,	41.38% Impervious,	Inflow Depth = 0.00"	for 10 yr event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atter	n= 0%, Lag= 0.0 min

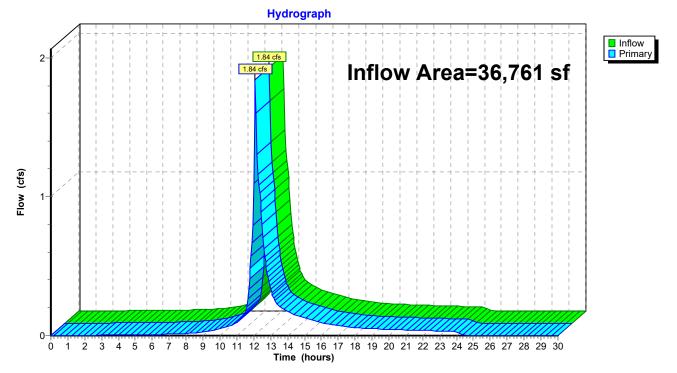
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link POI 1: Onsite Infiltration East

Summary for Link POI 2: Offsite at Southeast Property Line

Inflow Area	a =	5,227 sf,	0.00% Impervious,	Inflow Depth = 1.27"	for 10 yr event
Inflow	=	0.16 cfs @ 1	12.10 hrs, Volume=	552 cf	
Primary	=	0.16 cfs @ 1	12.10 hrs, Volume=	552 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link POI 2: Offsite at Southeast Property Line

Summary for Link POI 3: Cranberry Highway Closed Drainage System

Inflow Are	a =	36,761 sf, 43.09% Impervious, Inflow Depth = 2.62" for 10 yr event
Inflow	=	1.84 cfs @ 12.10 hrs, Volume= 8,014 cf
Primary	=	1.84 cfs @ 12.10 hrs, Volume= 8,014 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link POI 3: Cranberry Highway Closed Drainage System

APPENDIX C – RECHARGE VOLUME & DRAWDOWN CALCULATIONS

RECHARGE VOLUME CALCULATIONS

Methodology:

MA Department of Environmental Protection (DEP) Stormwater Management (Vol. 3, Ch.1)

Design Criteria:

Provided:

The required recharge volume equals a depth of runoff corresponding to the soil type times the impervious areas covering that soil type at the post-development site. Subsurface investigations determined that the majority of the site consisted of Hydrologic Group B soils within the first foot below the ground surface.

Based on the Site Hydrologic Soil Group:

Hydrologic Soil Group	Soil Texture	Target Depth Factor
Α	Sand	0.60 inches
В	Loam	0.35 inches
С	Silt Loam	0.25 inches
D	Clay	0.10 inches

Recharge Volume			Target Depth	
Required:	Impervious Area	(sf)	(in)	Volume Required (cf)
	62,792		0.35	1,831

Recharge Volume Infiltration Basin

Outlet elevation @ stone weir/spillway	Area of System (sf)	Total Volume (cf)
47.50	20,035	19,683

Total Provided Recharge Volume =

19,683 cf > 1,831 cf

DRAWDOWN TIME CALCULATIONS

Required Drawdown Time:	Maximum of 72 K from Dynamic			6.875 in/	′hr
Subsurface Chambers	s (CH1)				
Area of System= 100-year Peak Elevati	on=	20,035 sf 47.50	Volume=	19,683 cf	
Drawdown Time=		19,683 cf * 12" / 1.7 hours	6.88 in < 72 hours	/hr /	20,035 sf

Prepared by Nobis Group HydroCAD® 10.00-25 s/n 00877 © 2019 HydroCAD Software Solutions LLC

ElevationSurfaceStorage (eq.1)(cubi-feet) (sq.ft)(cubi-feet) (cubi-feet) 46.25 12.792636 48.85 41.462 59.570 46.30 12.9251.279 48.90 42.484 61.669 46.35 13.0381.929 48.95 43.518 63.319 46.45 13.3273.248 48.65 44.655 66.021 46.65 13.4623.918 46.65 66.021 46.65 13.8725.968 46.75 44.149 7.369 46.65 14.4288.000 44.665 66.021 47.00 14.5699.522 46.95 14.711 0.254 47.00 14.853 10.994 47.05 15.336 11.748 47.00 14.853 10.994 47.45 77.352 48.97 47.50 20.35 91.683 41.662 47.80 47.45 17.48 7.356 47.50 20.35 47.50 20.359 90.699 47.60 21.164 47.45 21.164 21.743 22.816 47.80 23.516 26.209 47.45 47.80 23.516 26.209 47.80 23.931 31.158 48.00 25.991 31.158 48.00 25.991 31.158 48.00 25.991 31.158 48.00 30.926 41.275 48.00 30.926 41.275 48.00 30.923 47.80 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Elevation	Surface	Storage	Elevation	Surface	Storage
46.25 12.792 6.36 48.85 41.462 59.570 46.30 12.925 1.279 48.90 42.484 61.669 46.35 13.058 1.929 48.95 43.518 63.819 46.40 13.192 2.585 49.00 44.565 66.021 46.45 13.327 3.248 49.00 44.565 66.021 46.55 13.462 3.918 46.60 13.735 5.277 46.65 13.735 5.277 46.65 46.70 14.010 6.665 46.75 14.149 7.369 7.369 46.86 14.228 8.080 48.80 14.228 8.080 46.85 14.428 8.077 46.90 14.569 9.522 46.95 14.711 10.254 47.700 14.853 10.994 47.00 14.853 10.994 47.05 15.336 11.748 47.10 15.827 12.527 47.45 10.462 47.99 47.55 20.566 20.899 47.65 21.746 20.899 47.55 20.566 20.899 47.65 21.744 22.825 47.85 24.123 27.400 47.85 24.123 27.400 47.85 24.123 27.400 47.85 24.123 27.400 47.85 24.123 27.400 47.85 42.64 35.876 48.00 25.991 31.158 48.05 36.621 47.85 </td <td>(feet)</td> <td>(sq-ft)</td> <td>(cubic-feet)</td> <td>(feet)</td> <td>(sq-ft)</td> <td>(cubic-feet)</td>	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.20	12,660	0	48.80	40,452	57,522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.25	12,792	636	48.85	41,462	59,570
46.3513,0581,929 48.95 $43,518$ $63,819$ 46.40 $13,192$ $2,585$ 49.00 $44,565$ $66,021$ 46.45 $13,327$ $3,248$ 49.00 $44,565$ $66,021$ 46.55 $13,598$ $4,594$ 46.60 $13,735$ $5,277$ 46.65 $13,872$ $5,968$ 47.00 $14,010$ $6,665$ 46.75 $14,149$ $7,369$ 46.80 $14,288$ $8,080$ 46.85 $14,288$ $8,080$ 46.85 $14,428$ $8,797$ 46.95 $14,711$ $10,254$ 47.00 $14,853$ $10,994$ 47.00 $14,853$ $10,994$ 47.00 $14,853$ $10,994$ 47.00 $16,833$ $11,748$ 47.10 $15,827$ $12,527$ 47.15 $16,326$ $13,331$ 47.25 $17,347$ $15,015$ 47.35 $18,399$ $16,802$ 47.45 $16,482$ $78,995$ 47.45 $16,482$ $78,995$ 47.45 $16,482$ $78,995$ 47.50 $20,3596$ $20,899$ 47.60 $21,164$ $21,743$ 47.85 $24,123$ $27,400$ 47.85 $24,123$ $27,400$ 47.85 $24,123$ $27,400$ 47.85 $24,123$ $27,400$ 47.85 $24,123$ $27,400$ 47.85 $23,516$ $26,209$ 47.85 $23,516$ $26,209$ 47.85 $23,666$	46.30	12,925	1,279	48.90		61,669
46.40 13,192 2,585 49.00 44,565 66,021 46.45 13,327 3,248 49.00 44,565 66,021 46.50 13,462 3,918 4550 46.65 13,775 5,277 46.65 13,872 5,968 46.70 14,010 6,665 46.75 14,149 7,369 46.80 14,288 8,080 46.80 14,288 8,080 9,522 46.95 14,711 10,254 47.00 14,853 10,994 47.05 15,336 11,748 47.10 15,827 12,527 47.15 16,326 13,331 47.20 16,833 14,160 47.25 17,347 15,015 47.30 17,869 15,895 47.35 18,939 16,802 47.60 21,164 21,743 24.44 47.65 21,164 21,743 47.65 21,164 21,743 27.400 47.85 24,123 27.400 47.85 24,123 27.400 47.85 24,123 27.400 47.						
46.4513.3273.248 46.50 13.4623.918 46.50 13.5984.594 46.60 13.7355.277 46.65 13.8725.968 46.70 14.0106.665 46.75 14.1497.369 46.80 14.2888.080 46.85 14.4288.797 46.90 14.5699.522 46.95 14.71110.254 47.00 14.85310.994 47.05 15.33611.748 47.10 15.82712.527 47.15 16.32613.331 47.20 16.83314.160 47.25 17.34715.015 47.30 17.86915.895 47.40 19.93717.735 47.45 19.48218.893 47.65 21.74122.816 47.75 20.03519.683 47.65 21.74122.816 47.70 24.73828.621 47.90 24.73828.621 47.95 25.36129.874 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 48.05 26.80132.477 $48.$						
46.5013.4623.918 46.55 13.598 4.594 46.60 13.7355.277 46.65 13.8725.968 46.70 14.010 6.665 46.75 14.1497.369 46.80 14.2888.080 48.85 14.4288.080 48.85 14.4288.080 46.95 14.71110.254 47.00 14.85310.994 47.05 15.33611.748 47.10 15.82712.527 47.15 16.32613.331 47.20 16.83314.160 47.25 17.34715.015 47.30 17.86915.895 47.30 17.86915.895 47.45 16.42218.993 47.60 21.16421.743 47.65 21.74122.816 47.70 22.32523.917 47.85 26.36129.874 48.00 25.99131.158 40.55 26.80132.477 48.10 27.62433.838 48.15 28.46035.240 48.20 29.30836.684 48.25 30.16831.118 48.45 33.73344.558 48.55 35.55142.824 48.60 36.53849.827 48.60 36.53849.827 48.65 37.49851.678 48.70 38.47053.577					,	,-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
46.80 14.288 $8,080$ 46.85 14.428 $8,797$ 46.90 14.569 $9,522$ 46.95 14.711 10.254 47.00 14.853 10.994 47.05 15.336 11.748 47.10 15.827 12.527 47.15 16.326 13.331 47.20 16.833 14.160 47.25 17.347 15.015 47.30 17.869 15.895 47.35 18.399 16.802 47.46 19.4827 18.895 47.50 20.035 19.683 47.55 20.596 20.899 47.60 21.164 21.743 47.65 21.741 22.816 47.70 22.325 23.917 47.75 22.916 25.048 47.80 23.516 26.209 47.85 24.123 27.400 47.90 24.738 28.621 47.95 25.361 29.874 48.00 25.991 31.158 48.15 28.460 35.240 48.25 30.168 36.171 48.35 31.926 41.275 48.45 33.733 44.588 48.55 35.591 48.024 48.65 37.498 51.678 48.65 37.498 51.678 48.70 38.470 53.577						
46.85 14.428 8.797 46.90 14.569 9.522 46.95 14.711 10.254 47.00 14.853 10.994 47.05 15.336 11.748 47.10 15.827 12.527 47.15 16.326 13.331 47.20 16.833 14.160 47.25 17.347 15.015 47.30 17.869 15.895 47.35 18.399 16.802 47.46 16.482 18.695 47.45 16.482 18.695 47.60 21.164 21.743 47.65 21.741 22.816 47.75 22.325 23.917 47.75 22.325 23.917 47.75 22.356 20.699 47.85 24.123 27.400 47.90 24.738 28.621 47.95 25.361 29.874 48.00 25.991 31.158 48.05 26.801 32.477 48.10 27.624 33.838 48.15 34.656 41.275 48.40 32.823 42.894 48.45 33.733 44.558 48.55 34.656 46.267 48.65 37.498 51.678 48.70 38.470 53.577						
46.90 $14,569$ $9,522$ 46.95 $14,711$ $10,254$ 47.00 $14,853$ $10,994$ 47.05 $15,336$ $11,748$ 47.10 $15,827$ $12,527$ 47.15 $16,326$ $13,331$ 47.20 $16,833$ $14,160$ 47.25 $17,347$ $15,015$ 47.30 $17,869$ $15,895$ 47.35 $18,399$ $16,802$ 47.40 $18,937$ $17,735$ 47.50 $20,035$ $19,663$ 47.55 $20,596$ $20,899$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.25 $30,168$ $38,171$ 48.35 $31,926$ $41,275$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
46.95 $14,711$ $10,254$ 47.00 $14,853$ $10,994$ 47.05 $15,336$ $11,748$ 47.10 $15,827$ $12,527$ 47.15 $16,326$ $13,331$ 47.20 $16,833$ $14,160$ 47.25 $17,347$ $15,015$ 47.30 $17,869$ $15,895$ 47.35 $18,399$ $16,802$ 47.45 $19,482$ $18,695$ 47.50 $20,035$ $19,683$ 47.55 $22,526$ $20,699$ 47.66 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $33,1041$ $39,701$ 48.35 $31,041$ $39,701$ 48.35 $31,926$ $41,275$ 48.45 $33,733$ $44,558$ 48.55 $35,591$ $48,024$ 48.66 $36,538$ $49,827$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
47.15 $16,326$ $13,331$ 47.20 $16,833$ $14,160$ 47.25 $17,347$ $15,015$ 47.30 $17,869$ $15,895$ 47.35 $18,399$ $16,802$ 47.40 $18,937$ $17,735$ 47.45 $10,462$ $18,995$ 47.50 $20,035$ $19,683$ 47.55 $20,596$ $20,699$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.15 $28,460$ $35,240$ 48.25 $30,168$ $38,171$ 48.35 $31,926$ $41,275$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
47.20 $16,833$ $14,160$ 47.25 $17,347$ $15,015$ 47.30 $17,869$ $15,895$ 47.35 $18,399$ $16,802$ 47.40 $18,937$ $17,735$ 47.45 $19,462$ $86,995$ 47.50 $20,035$ $19,683$ 47.55 $22,596$ $20,899$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.60 $36,538$ $49,827$ 48.70 $38,470$ $53,577$						
47.25 $17,347$ $15,015$ 47.30 $17,869$ $15,895$ 47.35 $18,399$ $16,802$ 47.40 $18,937$ $17,735$ 47.45 $10,462$ $18,695$ 47.50 $20,035$ $19,683$ 47.55 $20,596$ $30,699$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.25 $30,168$ $38,171$ 48.35 $31,926$ $41,275$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.60 $36,538$ $49,827$ 48.70 $38,470$ $53,577$						
47.30 $17,869$ $15,895$ 47.35 $18,399$ $16,802$ 47.40 $18,937$ $17,735$ 47.45 $10,482$ $18,695$ 47.50 $20,035$ $19,683$ 47.55 $20,596$ $30,699$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.45 $33,733$ $44,558$ 48.55 $35,591$ $48,024$ 48.60 $36,538$ $49,827$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
47.35 $18,399$ $16,802$ 47.40 $18,937$ $17,735$ 47.45 $19,482$ $18,995$ 47.50 $20,035$ $19,683$ 47.55 $20,596$ $20,6999$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
47.40 $18,937$ $17,735$ 47.45 $19,462$ $18,995$ 47.50 $20,035$ $19,683$ 47.55 $20,596$ $20,699$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.30 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.55 $35,591$ $49,024$ 48.60 $36,538$ $49,827$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
47.45 $10,482$ $18,695$ 47.50 $20,035$ $19,683$ 47.55 $20,596$ $10,699$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
47.55 $20,596$ $20,699$ 47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.25 $30,168$ $38,171$ 48.30 $31,041$ $39,701$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
47.60 $21,164$ $21,743$ 47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.30 $31,041$ $39,701$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$				1		
47.65 $21,741$ $22,816$ 47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.36 $31,041$ $39,701$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.60 $36,538$ $49,827$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$				ľ		
47.70 $22,325$ $23,917$ 47.75 $22,916$ $25,048$ 47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.30 $31,041$ $39,701$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.50 $34,656$ $46,267$ 48.50 $34,656$ $46,267$ 48.60 $36,538$ $49,827$ 48.60 $36,538$ $49,827$ 48.70 $38,470$ $53,577$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
47.80 $23,516$ $26,209$ 47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.30 $31,041$ $39,701$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.60 $36,538$ $49,827$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
47.85 $24,123$ $27,400$ 47.90 $24,738$ $28,621$ 47.95 $25,361$ $29,874$ 48.00 $25,991$ $31,158$ 48.05 $26,801$ $32,477$ 48.10 $27,624$ $33,838$ 48.15 $28,460$ $35,240$ 48.20 $29,308$ $36,684$ 48.25 $30,168$ $38,171$ 48.30 $31,041$ $39,701$ 48.35 $31,926$ $41,275$ 48.40 $32,823$ $42,894$ 48.45 $33,733$ $44,558$ 48.50 $34,656$ $46,267$ 48.55 $35,591$ $48,024$ 48.60 $36,538$ $49,827$ 48.65 $37,498$ $51,678$ 48.70 $38,470$ $53,577$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
48.25 30,168 38,171 48.30 31,041 39,701 48.35 31,926 41,275 48.40 32,823 42,894 48.45 33,733 44,558 48.50 34,656 46,267 48.55 35,591 48,024 48.60 36,538 49,827 48.65 37,498 51,678 48.70 38,470 53,577						
48.30 31,041 39,701 48.35 31,926 41,275 48.40 32,823 42,894 48.45 33,733 44,558 48.50 34,656 46,267 48.55 35,591 48,024 48.60 36,538 49,827 48.65 37,498 51,678 48.70 38,470 53,577						
48.35 31,926 41,275 48.40 32,823 42,894 48.45 33,733 44,558 48.50 34,656 46,267 48.55 35,591 48,024 48.60 36,538 49,827 48.65 37,498 51,678 48.70 38,470 53,577						
48.40 32,823 42,894 48.45 33,733 44,558 48.50 34,656 46,267 48.55 35,591 48,024 48.60 36,538 49,827 48.65 37,498 51,678 48.70 38,470 53,577						
48.45 33,733 44,558 48.50 34,656 46,267 48.55 35,591 48,024 48.60 36,538 49,827 48.65 37,498 51,678 48.70 38,470 53,577						
48.50 34,656 46,267 48.55 35,591 48,024 48.60 36,538 49,827 48.65 37,498 51,678 48.70 38,470 53,577						
48.5535,59148,02448.6036,53849,82748.6537,49851,67848.7038,47053,577						
48.60 36,538 49,827 48.65 37,498 51,678 48.70 38,470 53,577						
48.65 37,498 51,678 48.70 38,470 53,577						
48.70 38,470 53,577						
48.75 39,455 55,525						
I	48.75	39,455	55,525			
				I		

Stage-Area-Storage for Pond Pd1: Infiltration Basin

APPENDIX D – WATER QUALITY & TSS REMOVAL CALCULATIONS

WATER QUALITY VOLUME CALCULATIONS

Stormwater runoff volumes to be treated for water quality are based on the following calculations:

1" runoff x total impervious area of post-development site for infiltration rates greater than 2.4 in/hr and 1/2" runoff x total impervious area of post-development site for all other discharges

Calculate the peak discharge rates and volumes of Stormwater fo the existing and proposed development conditions on site using the SCS TR-55 and TR-20 methods:

WQV = 1/2" or 1" x Total Impervious Developed Acres on Site (sf) / 12" = cf

1 "x 0.5 "x	62,792 0	/ 12" = / 12" =	5,233 cf required 0 cf required 5,233 total cf required
Infiltration Basin (Pd1) Volume =			19,683 cf
Total Water Quality Volume Provided =			19,683 cf

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location:	Infiltration Basin			
	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
heet	Deep Sump and Hooded Catch Basin	0.25	1.00	0.25	0.75
moval Worksheet	Sediment Forebay	0.25	0.75	0.19	0.56
	Infiltration Basin	0.80	0.56	0.45	0.11
TSS Re Calculation		0.00	0.11	0.00	0.11
Cal		0.00	0.11	0.00	0.11
		Total T	SS Removal =	89%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Project:	2400, 2402, & 2406 Cranberry Highway			
	Prepared By:			*Equals remaining load from	n previous BMP (E)
	a 155 Calculation Sheet	3/25/2022		which enters the BMP	
must be used	if Proprietary BMP Proposed				

1. From MassDEP Stormwater Handbook Vol. 1

APPENDIX E – STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

STORMWATER POLLUTION PREVENTION PLAN

TRUE STORAGE FACILITY 2400 & 2402 CRANBERRY HIGHWAY WAREHAM, MASSACHUSETTS

FOR

TRUE STORAGE, LLC 670 NORTH COMMERCIAL SUITE 212 MANCHESTER, NEW HAMPSHIRE

BY NOBIS GROUP®

(800) 394-4182

Nobis Project No. 095561.150

Date: April 5, 2022

www.nobis-group.com

TABLE OF CONTENTS TRUE STORAGE FACILITY 2400 & 2402 CRANBERRY HIGHWAY WAREHAM, MASSACHUSETTS

SECTION	PAGE
SECTION 1: C	ONTACT INFORMATION / RESPONSIBLE PARTIES
1.1	Operator(s) / Subcontractor(s)1
1.2	Stormwater Team2
SECTION 2: S	ITE EVALUATION, ASSESSMENT, AND PLANNING4
2.1	Project/Site Information4
2.2	Discharge Information5
2.3	Nature of the Construction Activity7
2.4	Sequence and Estimated Dates of Construction Activities9
2.5	Authorized Non-Storm Water Discharges
2.6	Site Maps
SECTION 3: D	OCUMENTATION OF COMPLIANCE WITH OTHER FEDERAL
REQUI	REMENTS
3.1	Endangered Species Protection12
3.2	Historic Property Screening Process17
3.3	Safe Drinking Water Act Underground Injection Control
	Requirements
SECTION 4: E	ROSION AND SEDIMENT CONTROLS
4.1	Erosion and Sediment Control Best Management Practices
	(BMP's)
4.2	Natural Buffers or Equivalent Sediment Controls
4.3	Perimeter Controls
4.4	Sediment Track-Out23
4.5	Stockpiles or Land Clearing Debris Piles Comprised of
	Sediment or Soil24
4.6	Minimize Dust25
4.7	Minimize the Disturbance of Steep Slopes
4.8	Topsoil26
4.9	Soil Compaction27
4.10	Storm Drain Inlets28
4.11	Constructed Site Drainage Feature / Conveyance Channels28
4.12	Sediment Basins29
4.13	Chemical Treatment29
4.14	Dewatering Practices

TABLE OF CONTENTS TRUE STORAGE FACILITY 2400 & 2402 CRANBERRY HIGHWAY WAREHAM, MASSACHUSETTS

SECTION		PAGE
4.1	15 Other S	Stormwater Controls
4.1	16 Site St	abilization
SECTION	5: POLLUTI	ON PREVENTION CONTROLS
5.1	1 Potent	ial Sources of Pollution33
5.2	2 Spill Pr	revention and Response
5.3	3 Fueling	g and Maintenance of Equipment or Vehicles
5.4	4 Washiı	ng of Equipment and Vehicles34
5.8	5 Storag	e, Handling, and Disposal of Building Products,
	Materi	als, and Wastes35
	5.5.1	Building Materials and Building Products
	5.5.2	Pesticides, Herbicides, Insecticides, Fertilizers, and
		Landscape Materials35
	5.5.3	Diesel Fuel, Oil, Hydraulic Fluids, Other Petroleum
		Products, and Other Chemicals
	5.5.4	Hazardous or Toxic Waste37
	5.5.5	Construction and Domestic Waste
	5.5.6	Sanitary Waste
5.0	6 Washii	ng of Applicators and Containers used for Paint,
	Concre	ete or Other Materials
5.7	7 Fertiliz	ers
5.8	8 Other I	Pollution Prevention Practices40
SECTION	6: INSPECT	ION AND CORRECTIVE ACTION
6.1	1 Inspec	tion Personnel and Procedures
6.2	2 Correc	tive Action44
6.3	3 Delega	tion of Authority46
SECTION	7: TURBIDI	TY BENCHMARK MONITORING FOR DEWATERING
DI	SCHARGES	46
SECTION	8: CERTIFIC	CATIONS AND NOTIFICATION

TABLE OF CONTENTS (CONT.) TRUE STORAGE FACILITY 2400 & 2402 CRANBERRY HIGHWAY WAREHAM, MASSACHUSETTS

APPENDICES

- A Site Maps
- B Copy of 2022 CGP
- C NOI and EPA Authorization Email
- D Site Inspection Form and Dewatering Inspection Form (if applicable)
- **E** Corrective Action Log
- F SWPPP Amendment Log
- G Subcontractor Certifications/Agreements
- H Grading and Stabilization Activities Log
- I Training Documentation
- J Delegation of Authority
- **K** Endangered Species Documentation
- L Historic Preservation Documentation
- M Rainfall Gauge Recording
- N Turbidity Meter Manual and Manufacturer's Instructions
- O Structural BMP Specifications for the Mass. Stormwater Handbook

SECTION 1: CONTACT INFORMATION / RESPONSIBLE PARTIES

1.1 Operator(s) / Subcontractor(s)

Operator(s):

Insert Company or Organization Name: Insert Name: Insert Address: Insert City, State, Zip Code: Insert Telephone Number: Insert Fax/Email: Insert area of control (if more than one operator at site):

[Repeat as necessary.]

Subcontractor(s):

Insert Company or Organization Name: Insert Name: Insert Address: Insert City, State, Zip Code: Insert Telephone Number: Insert Fax/Email: Insert area of control (if more than one operator at site):

[Repeat as necessary.]

Emergency 24-Hr. Contact:

Organization:	
Jame:	
Celephone Number:	

1.2 Stormwater Team

Name and/or Position, and Contact	Responsibilities	I Have Completed Training Required by CGP Part 6.2	I Have Read the CGP and Understand the Applicable Requirements
Insert Name of Responsible Person Insert Position Insert Telephone Number Insert Email	Insert Responsibility	□ Yes □ No	☐ Yes Date: Click here to enter a date.
Insert Name of Responsible Person Insert Position Insert Telephone Number Insert Email	Insert Responsibility	□ Yes □ No	□ Yes Date: Click here to enter a date.
Insert Name of Responsible Person Insert Position Insert Telephone Number Insert Email	Insert Responsibility	□ Yes □ No	☐ Yes Date: Click here to enter a date.

Stormwater Team

[Insert or delete rows as necessary.]

Stormwater Team	Members who	Conduct Inspe	ctions Pursuant to CGP Part 4
Name and/or Position	Training(s)	Date	If Training is a Non-EPA Training,
and Contact	Received	Training(s)	Confirm that it Satisfies the Minimum
		Completed	Elements of CGP Part 6.3.b
Insert Name of Responsible Person Insert Position	Insert Title of Training Received	Date: Click here to enter a date.	 Principles and practices of erosion and sediment control and pollution prevention practices at construction
Insert Telephone Number Insert Email			sites Proper installation and maintenance of erosion and sediment controls and pollution prevention practices used at construction sites Performance of inspections, including the proper completion of required reports and documentation, consistent with the requirements of Part 4
Insert Name of Responsible Person Insert Position Insert Telephone Number Insert Email	Insert Title of Training Received	Date: Click here to enter a date.	 Principles and practices of erosion and sediment control and pollution prevention practices at construction sites Proper installation and maintenance of erosion and sediment controls and pollution prevention practices used at construction sites Performance of inspections, including the proper completion of required reports and documentation, consistent with the requirements of Part 4
Insert Name of Responsible Person Insert Position Insert Telephone Number Insert Email	Insert Title of Training Received	Date: Click here to enter a date.	 Principles and practices of erosion and sediment control and pollution prevention practices at construction sites Proper installation and maintenance of erosion and sediment controls and pollution prevention practices used at construction sites Performance of inspections, including the proper completion of required reports and documentation, consistent with the requirements of Part 4

Stormwater Team Members Who Conduct Inspections Pursuant to CGP Part 4

[Insert or delete rows as necessary.]

SECTION 2: SITE EVALUATION, ASSESSMENT, AND PLANNING

2.1 Project/Site Information

Project Name and Address

Project/Site Name: True Storage Facility Project Street/Location: 2400 & 2402 Cranberry Highway City: Wareham State: Massachusetts ZIP Code: 02571 County or Similar Subdivision: Plymouth

Project Latitude/Longitude

Latitude:	Longitude:
41º 47' 1.57' N	-70º 44' 42.40'' W
(degrees, minutes, seconds)	(degrees, minutes, seconds)

Method for determining latitude/longitude:

USGS topographic map (specify scale: ____)

EPA Web	GPS
site	

Other (please specify): <u>Google Maps</u>

Horizontal Reference Datum:

NAD 27

NAD 83 or WGS 84

Unknown

Additional Project Information

Is the project/site located on Indian coun	try	lands,	or located	on a proper	ty of religious or
cultural significance to an Indian tribe?		Yes	No No		

If yes, provide the name of the Indian tribe associated with the area of Indian country (including the name of Indian reservation if applicable), or if not in Indian country, provide the name of the Indian tribe associated with the property:

2.2 Discharge Information

Does your project	t/site	discharge storm water into a Municipal Separate Storm Sewer System
(MS4)? Yes		No

Are there any surface waters that are located within 50 feet of your construction

disturbances?

For each point of discharge, provide a point of discharge ID (a unique 3-digit ID, e.g. 001, 002), the name of the first receiving water that receives stormwater directly from the point of discharge and/or from the MS4 that the point of discharge discharges to, and the following receiving water information, if applicable:

Point of Discharge ID	Name of receiving water that receives stormwater discharge:	Is the receiving water impaired (on the CWA 303(d) list)?	If yes, list the pollutants that are causing the impairment:	Has a TMDL been completed for this receiving waterbody?	If yes, list TMDL Name and ID:	Pollutant(s) for which there is a TMDL:	Is this receiving water designated as a Tier 2, Tier 2.5, or Tier 3 water?	If yes, specify which Tier (2, 2.5, or 3)?
[001]	Wetland Complex/Stream as tributary to Horseshoe Pond	□Yes ⊠No		🗆 Yes 🛛 No			□Yes ⊠No	
[002]		□ Yes □ No		□ Yes □ No			□ Yes □ No	
[003]		□ Yes □ No		□ Yes □ No			□ Yes □ No	
[004]		□ Yes □ No		□ Yes □ No			□ Yes □ No	
[005]		□ Yes □ No		□ Yes □ No			□ Yes □ No	
[006]		□ Yes □ No		□ Yes □ No			□ Yes □ No	

[Include additional rows or delete as necessary.]

2.3 Nature of the Construction Activity

General Description of Project

The Owner/Applicant is proposing to develop an existing parcel of land located at 2400 & 2402 Cranberry Highway in Wareham, Massachusetts (the "Site"). The subject properties are identified by the Town of Wareham Assessor's office as Tax Map 108 Lots 1002.B1, 1002.B2, 1002.D, 1003.B1, 1003.B2, and 1003.B3. The Site currently consists of a 6,900 square foot one-story building that was used as a Buick Dealership showroom and garage and most recently as Wareham Pharmacy. The northern portion of the building was used as the auto showroom/pharmacy retail area. The southern portion of the building is a three-bay garage. A former auto body shop was located to the south of the standing structure. This was demolished and little evidence of the structure is left. A residential house was historically located on the southern portion of 2402 Cranberry Highway, this structure was demolished, and no apparent evidence of the structure remains.

The Applicant proposes to develop the Site in order to construct a 60,000 square foot storage facility. As proposed, the Project includes the demolition of the former auto showroom/pharmacy, three-bay garage and the existing pavement parking and driveways including the closer of three driveways to Cranberry Highway. The new development will include the construction of the storage facility building, new parking and drive aisles, landscape improvements, and utility and stormwater management improvements to support the development.

The Site is a 3-acre parcel of land located at 2400 & 2402 Cranberry Highway (MA Route 28) in Wareham, Massachusetts bounded by commercial and residential properties. Great Hill Drive and the Great Hill Estates Mobile Home Park are located immediately north and east of the Site. A vacant building is located immediately southeast of the Site. Across Cranberry Highway, wooded land and a truck repair shop are located to the southwest and west of the subject property.

A portion of the Site lies within a surface watershed to a wetland complex and stream that is connected to Horseshoe Pond. The surface water runoff is collected along Cranberry Highway and piped to the wetland complex southwest of the site. The north and eastern portions of the Site drain to a low point and infiltrate into the ground surface.

Existing topography from the central portion of the Site slopes from the building(s) at approximately elevation 50.7 to Cranberry Highway to the south and west to approximately elevation 49.5 to 50.0. Existing topography along the north and east of the Site ranges from approximately elevation 52.5 at the North corner adjacent to Great Hill Drive to elevation 46.5 at the eastern low point of the Site.

Based on available information and field observations, there are no known wetland resource areas or associated buffers located on, or within 100-ft of the Site. According to the Natural Resources Conservation Service (NRCS) Web Soil Survey, 90% of the Site is classified as Urban land (#602B) and 10% of the Site is classified as Montauk fine sandy loam and Montauk-Urban land complex (#301B and #636B). Montauk soils refer to well drained soils formed in lodgment or flow till, in upland hills and moraines.

Nobis Group and Provencher Engineering, LLC coordinated and observed numerous test borings and test pits throughout 2020 and 2021 to document soil conditions. The general subsurface soil conditions encountered in the test borings and test pits consisted of a surficial layer of topsoil and/or fill (up to 7 feet thick) underlain by natural sand/gravel with a rapid infiltration rate. Groundwater was generally observed 5 to 9 below existing ground.

Under existing conditions, the Site is mostly developed to the south and west and undeveloped woods to the north and east. The developed portion of the Site is abandoned/vacant. Previous uses most recently were a car showroom and garage and retail pharmacy. The existing pavement is deteriorating with vegetation coming up through the cracks in the pavement. Runoff from the developed portion of the Site appears to flow overland, untreated to Cranberry Highway. Runoff from the undeveloped portion of the Site appears to flow overland and infiltrate at a low point in the woods.

In the proposed condition, previously untreated runoff from the Site will be directed to new control measures to provide the required water quality treatment and stormwater recharge. The proposed Site layout will result in improved infiltration and groundwater recharge.

The Project work and details, along with enhancements to the drainage infrastructure, are depicted in the plan set "True Storage Facility, 2400 & 2402 Cranberry Highway, Wareham, Massachusetts" in **Appendix A**.

The primary Best Management Practices (BMP) 'measures' work is anticipated to primarily involve: 1) toe or perimeter control silt fence or sediment logs for control of sediment at all toe of slope and top of ditch/swale areas and the protection of areas adjacent to wetlands, as necessary; 2) temporary stabilization of bare slope soils, followed by or current with, prompt permanent stabilization of slopes and prompt construction and stabilization of other vegetated areas; 3) treatment as necessary of any dewatering discharge; 4) drainage activity phasing such as maintaining flow in existing features until re-route/replacement feature are complete and stabilized; 7) prompt permanent stabilization of contructed stormwater controls and 8)

095561.150 True Storage Facility Monitoring of the weather forecast daily. Refer to **Appendix O** for detailed descriptions of the above listed BMP's and refer to **Appendix A** for construction details depicting standard construction of these BMP's.

2.4 Sequence and Estimated Dates of Construction Activities

The Contractor shall prepare a written schedule (including dates) of when interim and permanent grading and stabilization/erosion control measures will be or have been implemented, and include it in **SWPPP Appendix H**. This work should begin at the start of construction and finish once the site has been stabilized. The following sequence of construction activities identifies the proposed soil erosion and sediment control and storm water management measures that are to be implemented prior to and during construction during any given project phase:

- 1. Construct temporary erosion and sediment control measures prior to any earth moving operations. Inspect erosion and sediment control measures weekly and within 24 hours of any significant rainfall event (1/2" of rain or more). Perform any needed maintenance and stabilization as needed.
- 2. Disturbances of areas shall be minimized. No disturbed area shall be left unstabilized for longer than two weeks during the growing season. Areas which will not be permanently seeded within two weeks of disturbance shall be temporarily seeded and mulched. All areas shall be stabilized with seed mulch and tackifier within 72 hours of achieving finished grade and prior to the end of the growing season.
- 3. Perform demolition of existing site features as shown on the demolition plan in SWPPP Appendix A.
- 4. Perform clearing and grubbing to limits shown on site plan in SWPPP Appendix A.
- 5. Excavate and grade, then install loam, seed, and erosion control matting to stabilize detention ponds and other stormwater controls, as needed.
- 6. Remove and temporarily stockpile loam and topsoil for reuse, if needed, on site. Seed and/or mulch stockpiles and encircle with silt fence.
- 7. Conduct all underground utility structure and piping installation, backfill, and compact.

- 8. Construct building foundation.
- 9. Place and compact new gravel courses in the parking, loading, sidewalk, and gravel access drive areas.
- 10. Place, grade, and stabilize disturbed areas with temporary seeding and mulching.
- 11. Begin construction of building and remaining site work.
- 12. Place pavement courses, sidewalks, and curbing.
- 13. All cut and fill slopes shall be stabilized, loamed, seeded, and mulched.
- 14. Complete permanent seeding and landscaping in accordance with the landscape design and details.
- 15. Sweep completed pavement and clean out catch basins and drainage pipes during construction close-out procedures. Properly dispose of collected sediment and debris.
- 16. Remove temporary erosion control measures and properly dispose of following construction and once full ground cover has been established.
- 17. Refer to this SWPPP and the plan set in SWPPP Appendix A for additional details relative to the required construction sequence and erosion and sediment control BMPs. Maintenance of all erosion control components shall be an ongoing practice and in strict accordance with the approved plan.

Phase I

Insert General Description of Phase	
• Estimated Start Date of Construction Activities	• Insert Estimated Date
for this Phase	
• Estimated End Date of Construction Activities for	• Insert Estimated Date
this Phase	
• Estimated Date(s) of Application of Stabilization	• Insert Estimated Date
Measures for Areas of the Site Required to be	• [Add additional dates as necessary]
Stabilized	
• Estimated Date(s) when Stormwater Controls will	• Insert Estimated Date
be Removed	• [Add additional dates as necessary]

Phase II

Insert General Description of Phase	
• Estimated Start Date of Construction Activities	• Insert Estimated Date
for this Phase	
• Estimated End Date of Construction Activities for	• Insert Estimated Date
this Phase	
• Estimated Date(s) of Application of Stabilization	• Insert Estimated Date
Measures for Areas of the Site Required to be	• [Add additional dates as necessary]
Stabilized	
• Estimated Date(s) when Stormwater Controls will	• Insert Estimated Date
be Removed	• [Add additional dates as necessary]

[Repeat as needed.]

2.5 Authorized Non-Storm Water Discharges

List of Allowable Non-Storm Water Discharges Present at the Site

Authorized Non-Storm Water Discharge	Will or May Likely Occur at Your Site?
• Discharges from emergency fire-fighting activities	• 🛛 YES 🗌 NO
• Fire hydrant flushing	• 🛛 YES 🗌 NO
• Landscape irrigation	• YES 🕅 NO
• Waters used to wash vehicles and equipment	• 🛛 YES 🗌 NO
• Water used to control dust	• 🛛 YES 🗌 NO
• Potable water including uncontaminated water line flushings	• Xes no
• External building washdown (soaps/solvents are not used and external surfaces do not contain hazardous substances)	• XES NO
Pavement wash waters	• 🛛 YES 🗌 NO

• Uncontaminated air conditioning or compressor condensate	• YES NO
• Uncontaminated, non-turbid discharges of groundwater or spring water	• 🛛 YES 🗌 NO
• Foundation or footing drains	• YES NO
• Uncontaminated construction dewatering water	• YES NO

The Contractor shall identify the likely locations of these allowable non-storm water discharges on the site map or erosion control plan.

2.6 Site Maps

Refer to **SWPPP Appendix A** for Site Plans. The Site Plans include the requirements of CGP Part 7.2.4.

SECTION 3: DOCUMENTATION OF COMPLIANCE WITH OTHER FEDERAL REQUIREMENTS

3.1 Endangered Species Protection

Eligibility Criterion

Following the process outlined in Appendix D of the 2022 CGP, under which criterion are you eligible for coverage under this permit?

□ **Criterion** A: <u>No ESA-listed species and/or designated critical habitat present in action area</u>. Using the process outlined in Appendix D of the CGP, you certify that ESA-listed species and designated critical habitat(s) under the jurisdiction of the USFWS or NMFS are not likely to occur in your site's "action area" as defined in Appendix A of the CGP. *Please Note: NMFS' jurisdiction includes ESA-listed marine and estuarine species that spawn in inland rivers*.

□ Check to confirm you have provided documentation in your SWPPP as required by CGP Appendix D (Note: reliance on State resources is not acceptable; see CGP Appendix D). Documentation: Insert Text Here

Following the process outlined in Appendix D of the 2022 CGP, under which criterion are you eligible for coverage under this permit?

□ Criterion B: Eligibility requirements met by another operator under the 2022 CGP. The construction site's discharges and discharge-related activities were already addressed in another operator's valid certification of eligibility for your "action area" under eligibility Criterion A, C, D, E, or F of the 2022 CGP and you have confirmed that no additional ESA-listed species and/or designated critical habitat under the jurisdiction of USFWS and/or NMFS not considered in the that certification may be present or located in the "action area." To certify your eligibility under this criterion, there must be no lapse of NPDES permit coverage in the other CGP operator's certification. By certifying eligibility under this criterion, you agree to comply with any conditions upon which the other CGP operator's certification of authorization under this permit and list any measures that you must comply with. If your certification is based on another 2022 CGP operator's certification under criterion C, you must provide EPA with the relevant supporting information required of existing dischargers in Criterion C.

□ Check to confirm you have provided documentation in your SWPPP as required by CGP Appendix D.

Documentation: Insert Text Here

Following the process outlined in Appendix D of the 2022 CGP, under which criterion are you eligible for coverage under this permit?

Criterion C: Discharges not likely to result in any short- or long-term adverse effects to ESA-listed species and/or designated critical habitat. ESA-listed species and/or designated critical habitat(s) under the jurisdiction of the USFWS and/or NMFS are likely to occur in or near your site's "action area," and you certify to EPA that your site's discharges and dischargerelated activities are not likely to result in any short- or long-term adverse effects to ESA-listed threatened or endangered species and/or designated critical habitat. This certification may include consideration of any stormwater controls and/or management practices you will adopt to ensure that your discharges and discharge-related activities are not likely to result in any short- or long-term adverse effects to ESA-listed species and/or designated critical habitat. To certify your eligibility under this criterion, indicate 1) the ESA-listed species and/or designated habitat located in your "action area" using the process outlined in Appendix D of this permit; 2) the distance between the site and the listed species and/or designated critical habitat in the action area (in miles); and 3) a rationale describing specifically how short- or long-term adverse effects to ESA-listed species will be avoided from the discharges and discharge-related activities. (Note: You must include a copy of your site map from your SWPPP showing the upland and in-water extent of your "action area" with your NOI.)

⊠ Check to confirm you have provided documentation in your SWPPP as required by CGP Appendix D.

Documentation: Verification checks of USFWS and NMFS ESA-listed species and designated critical habitat(s).

Following the process outlined in Appendix D of the 2022 CGP, under which criterion are you eligible for coverage under this permit?

Criterion D: Coordination with USFWS and/or NMFS has successfully concluded. Coordination between you and the USFWS and/or NMFS has concluded. The coordination must have addressed the effects of your site's discharges and discharge-related activities on ESA-listed species and/or designated critical habitat under the jurisdiction of USFWS and/or NMFS, and resulted in a written confirmation from USFWS and/or NMFS that the effects of your site's discharges and discharge-related activities are not likely to result in any short- or long-term adverse effects. By certifying eligibility under this criterion, you agree to comply with any conditions you must meet for your site's discharges and discharge-related activities to not likely result in any short- or long-term adverse effects. You must include copies of the correspondence with the participating agencies in your SWPPP and this NOI.

□ Check to confirm you have provided documentation in your SWPPP as required by CGP Appendix D.

Documentation: Insert Text Here

□ **Criterion E**: ESA Section 7 consultation has successfully concluded. Consultation between a Federal agency and the USFWS and/or NMFS under section 7 of the ESA has concluded. Consultations can be either formal or informal, and would have occurred only as a result of a separate Federal action (e.g., during application for an individual wastewater discharge permit or the issuance of a wetlands dredge and fill permit), and the consultation must have addressed the effects of your construction activity's discharges and discharge-related activities on all ESA-listed threatened or endangered species and all designated critical habitat under the jurisdiction of each Service, as appropriate, in your action area. The result of this consultation must be either:

- i. A biological opinion currently in effect that determined that the action in question (taking into account the effects of your facility's discharges and discharge-related activities) is likely to adversely affect, but is not likely to jeopardize the continued existence of listed species or result in the destruction or adverse modification of critical habitat. The biological opinion must have included the effects of your facility's discharges and discharge-related activities on all the listed species and designated critical habitat in your action area under the jurisdiction of each Service, as appropriate. To be eligible under (i), any reasonable and prudent measures specified in the incidental take statement must be implemented;
- ii. Written concurrence (e.g., letter of concurrence) from the applicable Service(s) with a determination that your facility's discharges and discharge-related activities are not likely to adversely affect ESA-listed species and/or designated critical habitat. The concurrence letter must have included the effects of your facility's discharges and discharge-related activities on all the ESA-listed species and/or designated critical habitat on your species list(s) acquired from USFWS and/or NMFS as part of this worksheet.

The consultation does not warrant reinitiation under 50 CFR §402.16; or, if reinitiation of consultation is required (e.g., due to a new species listing, critical habitat designation, or new information), the Federal action agency has reinitiated the consultation and the result of the consultation is consistent with the statements above. (Note: you must include any reinitiation documentation from the Services or consulting Federal agency with your NOI.)

 Check to confirm you have provided documentation in your SWPPP as required by CGP Appendix D.
 Documentation: Insert Text Here

Following the process outlined in Appendix D of the 2022 CGP, under which criterion are you eligible for coverage under this permit?

 \boxtimes **Criterion F**: Issuance of section 10 permit. Potential take is authorized through the issuance of a permit under section 10 of the ESA by the USFWS and/or NMFS, and this authorization addresses the effects of the site's discharges and discharge-related activities on ESA-listed species and designated critical habitat. You must include copies of the correspondence between yourself and the participating agencies in your SWPPP and your NOI.

□ Check to confirm you have provided documentation in your SWPPP as required by CGP Appendix D.

Documentation: Insert Text Here

3.2 Historic Property Screening Process

Appendix E, Step 1

Do you plan on installing any stormwater controls that require subsurface earth disturbance, including, but not limited to, any of the following stormwater controls at your site? Check all that apply below, and proceed to Appendix E, Step 2.

	Dike
	Berm
\square	Catch Basin
\square	Pond
	Constructed Site Drainage Feature (e.g., ditch, trench, perimeter drain, swale, etc.)
\square	Culvert
	Channel
	Other type of ground-disturbing storm water control:

Appendix E, Step 2

If you answered yes in Step 1, have prior surveys or evaluations conducted on the site already determined that historic properties do not exist, or have prior disturbances at the site have precluded the existence of historic properties? XES NO

If yes, no further documentation is required for Section 3.2 of the Template and you may provide the prior documentation in your SWPPP.

095561.150 True Storage Facility Refer to **SWPPP Appendix L** for Phase I and Phase II Environmental Site Assessments performed on the Site by Nobis Group in November of 2020.

If no, proceed to Appendix E, Step 3.

Appendix E, Step 3

If you answered no in Step 2, have you determined that your installation of	subsurfac	e earth-
disturbing stormwater controls will have no effect on historic properties?	YES	NO

If yes, provide documentation of the basis for your determination.

If no, proceed to Appendix E, Step 4.

Appendix E, Steps 4 and 5

If you answered no in Step 3, did the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Office (THPO), or other tribal representative (whichever applies) respond to you within 15 calendar days to indicate their views as to the likelihood that historic properties are potentially present on your site and may be impacted by the installation of stormwater controls that require subsurface earth disturbance?

• If yes, describe the nature of their response:

□ Written indication that no historic properties will be affected by the installation of stormwater controls.

- □ Written indication that adverse effects to historic properties from the installation of stormwater controls can be mitigated by agreed upon actions.
- □ No agreement has been reached regarding measures to mitigate effects to historic properties from the installation of stormwater controls.
- \Box Other:
- If no, no further documentation is required for Section 3.2 of the Template.

3.3 Safe Drinking Water Act Underground Injection Control Requirements

Do you plan to install any of the following controls? Check all that apply below.

- Infiltration trenches (if stormwater is directed to any bored, drilled, driven shaft or dug hole that is deeper than its widest surface dimension, or has a subsurface fluid distribution system)
- □ Commercially manufactured pre-cast or pre-built proprietary subsurface detention vaults, chambers, or other devices designed to capture and infiltrate stormwater flow
- Drywells, seepage pits, or improved sinkholes (if stormwater is directed to any bored, drilled, driven shaft or dug hole that is deeper than its widest surface dimension, or has a subsurface fluid distribution system)

SECTION 4: EROSION AND SEDIMENT CONTROLS

4.1 Erosion and Sediment Control Best Management Practices (BMP's)

The Stormwater Pollution Prevention Plan (SWPPP or "Plan"), including erosion control measures, has been prepared by Nobis Group to provide the Contractor and the Owner with information and procedures to be used during construction of this project ("Site", or "Project"), such that significant erosion and sedimentation to adjacent land, including 'resources' and environmentally sensitive areas (wetlands, surface waters, aquifers) does not occur. Related work/activity includes the protection of project surroundings and groundwater from pollutants. The Plan has been prepared to meet the CGP requirements as applicable.

The Contractor is responsible for 'means and methods' and timely actions to achieve adequate implementation of this Plan. This Plan is to be used in conjunction with the attachments as provided herewith, with any necessary permits, and/or as further directed by the Engineer. It should be noted that all specific lawful engineering/construction requirements of the Project Plans take precedence over the engineering or BMP aspects of this document. The environmental permits (as applicable) also take precedence over this document.

"Best Management Practices (BMPs) for controlling nonpoint sources of pollution are the methods, measures, practices, or a combination of practices determined to be the most effective and practicable means (including technological, economic, and institutional considerations) to control nonpoint pollutants at levels compatible with environmental quality goals. As used in this document, BMPs are synonymous with erosion control measures."

All erosion control measures depicted in this Plan and/or in the Project Contract Documents are to be maintained, as necessary but also as practicable, throughout construction and until the areas have been permanently stabilized. Installation of other erosion control devices, beyond those referenced herein may be required to prevent transport of sediments from localized disturbed areas. Additional erosion and sedimentation control methods or devices may be deemed to be necessary in the field by the Contractor or Engineer. If necessary, work on construction activities related to land clearing may be suspended during the development of further erosion and sedimentation control plan measures.

Prior to selecting control methods, it is necessary to first discern which erosion processes are the primary operators for a given area. (e.g., raindrop/splash erosion, runoff erosion, mass wasting, or channel erosion). It is then possible to choose the appropriate controls for the applicable erosion processes.

The selection of appropriate BMPs is based on several factors, such as, but not limited to:

- Amount of runoff (flow);
- Ground slope (velocity);
- Existing and proposed groundcover (erosion);
- Type and sequence of construction activities;
- Soil type.

The successful implementation of this SWPPP depends largely on selecting a combination of sediment and erosion control measures that minimize the opportunities for erosion to occur, limit the timeframe within which erosion can occur, and achieve maximum pollutant removal.

The selection and implementation of erosion and sediment control BMPs is a process that matches the unique characteristics and problems posed by this specific site, at specific times within the construction process, with the BMPs for erosion control. The following sections highlight the key erosion and sediment control BMPs that the Contractor shall implement throughout the construction process as necessary.

For a detailed overview of the Erosion and Sediment Control measures for this project see **SWPPP Appendix A**.

4.2 Natural Buffers or Equivalent Sediment Controls

Buffer Compliance Alternatives

Are there any surface waters within 50 feet of your project's earth disturbances?

YES 🕅 NO

Check the compliance alternative that you have chosen:

I will provide and maintain a 50-foot undisturbed natural buffer.

] I will provide and maintain an undisturbed natural buffer that is less than 50 feet and is supplemented by additional BMP erosion and sediment controls, which in combination achieves the sediment load reduction equivalent to a 50-foot undisturbed natural buffer. The additional BMP protection will consist of:

- Further limit of disturbance area
- Double-row silt fence installation (or silt fence paired with a single row of organic sediment log/sock) shall be used for embankment disturbance (down slope of disturbance yielding sheet flow runoff), or for protection of headwall areas
- Within 50' of wetlands or streams, using stone cover or matted vegetated slopes for slope reconstruction
- Within 100' or flow to wetland or streams, protecting swales with pinned matting or suitable stone

It is infeasible to provide and maintain an undisturbed natural buffer of any size, therefore I will implement erosion and sediment controls that achieve the sediment load reduction equivalent to a 50-foot undisturbed natural buffer.

I qualify for one of the exceptions in Part 2.2.1.b. (If you have checked this box, provide information on the applicable buffer exception that applies, below.)

Buffer Exceptions

Which of the following exceptions to the buffer requirements applies to your site?

There is no discharge of stormwater to waters of the U.S. through the area between the disturbed portions of the site and any waters of the U.S. located within 50 feet of the site.

095561.150 True Storage Facility No natural buffer exists due to preexisting development disturbances (e.g., structures, impervious surfaces) that occurred prior to the initiation of planning for this project.

For "linear construction sites" (defined in CGP Appendix A), site constraints (e.g., limited right-of-way) make it infeasible to meet any of the CGP Part 2.2.1.a compliance alternatives, provided that, to the extent feasible, you limit disturbances within 50 feet of the receiving water.

The project qualifies as "small residential lot" construction (defined in Appendix A as "a lot being developed for residential purposes that will disturb less than 1 acre of land, but is part of a larger residential project that will ultimately disturb greater than or equal to 1 acre") (see CGP Appendix F, Part F.3.2).

Buffer disturbances are authorized under a CWA Section 404 permit.

Buffer disturbances will occur for the construction of a water-dependent structure or water access area (e.g., pier, boat ramp, and trail).

4.3 Perimeter Controls

General

• Install sediment controls along any perimeter area of the site that will receive pollutant discharges. Installation of perimeter controls must be completed prior to the commencement of earth- disturbing activities.

Specific Perimeter Controls

Silt Fencing		
Description: Silt fence shall be placed to trap sediment transported by runoff prior to		
entering the drainage system and/or leaving the property. It shall be embedded in the		
	existing ground and shall remain in place until the area has been permanently stabilized.	
	vill be replaced as determined by periodic field inspections.	
Installation	At initiation of construction activities.	
Maintenance	Silt fencing will be inspected weekly and after any rainfall. Inspection shall	
Requirements	be in compliance with the inspection schedule specified in CGP Part 4 and	
	maintained routinely throughout the duration of the project. Minimum	
	maintenance and key items to check shall include sediment build up and	
	broken stakes. In accordance with the CGP Part 2.2.3.c, the contractor	

	must remove sediment before it has accumulated to one-half of the above- ground height of any perimeter control.
Design	Refer to silt fence detail and location included in the Erosion and Sediment
Specifications	Control Plans in SWPPP Appendix A.

Compost Filter Socks

Description: Filter socks are used in support of silt fence and shall be placed to trap sediment transported by runoff prior to entering the wetlands onsite. It shall be staked in front of the silt

fence and shall remain in place until the area has been permanently stabilized. The filter sock support will be replaced as determined by periodic field inspections.

Installation	At initiation of construction activities.
Maintenance	Filter socks will be inspected weekly and after any rainfall. Inspection shall
Requirements	be in compliance with the inspection schedule specified in CGP Part 4 and
	maintained routinely throughout the duration of the project. Minimum
	maintenance and key items to check shall include sediment build up and
	broken stakes. In accordance with the CGP Part 2.2.3.c, the contractor must
	remove sediment before it has accumulated to one-half of the above-ground
	height of any perimeter control.
Design	Refer to sediment log detail and location included in the
Specifications	Erosion and Sediment Control Plans in SWPPP Appendix A.

4.4 Sediment Track-Out

General

• Install a temporary matting designed specifically to control sediment track at the access point to the area of site modifications being completed.

Specific Track-Out Controls

Gravel and Construction Entrance/Exit

Description: A temporary crushed-stone construction entrance/exit will be constructed to prevent tracking of sediments from the area of proposed work. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving this project site.

Installation At initiation of construction activities

Maintenance	The exit shall be maintained which shall prevent tracking or flowing of
Requirements	sediment into public rights-of-way. This may require periodic top dressing
	with additional stone as conditions demand. It may also require repair or
	clean out of any measures used to trap sediment.
	Where sediment has been tracked-out from the site onto paved roads,
	sidewalks, or other paved areas outside of your site, remove the deposited
	sediment by the end of the same business day in which the track-out
	occurs or by the end of the next business day if track-out occurs on a non-
	business day. Remove the track-out by sweeping, shoveling, or vacuuming
	these surfaces, or by using other similarly effective means of sediment
	removal. Hosing or sweeping tracked-out sediment into any stormwater
	conveyance, storm drain inlet, or water of the U.S is prohibited.
	The stabilized construction exit shall be removed prior to final finished
	materials being stabilized.
Design	Refer to "Tracking Control Pad/Construction Entrance" detail and
Specifications	location included in the Erosion and Sediment Control Plans in SWPPP
	Appendix A.

4.5 Stockpiles or Land Clearing Debris Piles Comprised of Sediment or Soil

General

Any areas of exposed soil or stockpiles that will remain inactive for more than 14 days will be temporarily stabilized with vegetative or non-vegetative stabilization practices. The installation of stabilization measures will be completed as soon as practical, but no later than seven (7) calendar days after stabilization has been initiated. Silt fence shall be installed as a sediment barrier along all downgradient perimeter areas of the stockpiles to trap sediment transported by runoff prior to entering the drainage system and/or leaving the property. Piles shall be located outside of any natural buffers and away from any stormwater conveyances, drain inlets, and areas where stormwater flow is concentrated.

Specific Stockpile Controls

Stabilization of Stockpile

Description: Stabilization of open surfaces will be implemented within 14 days after grading or construction activities have temporarily or permanently ceased, unless there is sufficient snow cover to prohibit implementation. Vegetative slope stabilization will be used to minimize erosion on slops of 3:1 or flatter. Annual grasses, such as annual rye, will be used to ensure rapid germination and production of root mass. Permanent stabilization will be completed with the planting of perennial grasses or legumes. Establishment of temporary and permanent cover may be established hydro seeding or sodding. A suitable topsoil, good seedbed preparation, and adequate lime, fertilizer and water will be provided for effective establishment of these vegetative stabilization methods. Mulch will also be used after permanent seeding to protect soil from the impact of falling rain and to increase the capacity of the soil to absorb water.

Installation	As needed during construction
Maintenance	Hosing down or sweeping soil or sediment accumulated on pavement or other
Requirements	impervious surfaces into any stormwater conveyance, storm drain inlet, or water of the U.S. is prohibited.
Design Specifications	Refer to details included in the Erosion and Sediment Control Plans in SWPPP Appendix A.

4.6 Minimize Dust

General

• When necessary during grading operations, larger areas of exposed soil will be wetted to prevent wind borne transport of fine-grained soils.

Specific Dust Controls

Soil Wetting	
	pray down areas with water as necessary during grading operations to
prevent dust mi	igration. Enough water shall be applied to wet the upper 0.5 inch of soil. The
water will be ap	oplied as a fine spray to prevent erosion.
Installation	As needed during construction.
Maintenance	Large areas of exposed soils will routinely be inspected to determine if soil
Requirements	wetting is required. Inspect daily during dry period of earthwork to ensure
	dust is not settling in or near the project site. Clean up any transported
	sediment and take necessary measures to prevent future dust accumulation
Design Specifications	

4.7 Minimize the Disturbance of Steep Slopes

General

CGP Appendix A defines steep slopes as "where a state, Tribal, local government, or industry technical manuals (e.g. stormwater bmp manual) has defined what is to be considered a "steep slope", this permit's definition automatically adopts that definition. Where no such definition exists, steep slopes are automatically defined as those that are 15 percent or greater in grade". According to the Massachusetts Department of Environmental Protection (MassDEP) 310 CMR 15, a steep slope is defined as a slope greater than 3:1, horizontal to vertical.

Specific Steep Slope Controls

Erosion Control	Blanket
Description: Erosion control blankets will be utilized during grading operations where bare	
earth that is steeper than 3:1 will be exposed. It shall be stapled with an overlap and remain in	
place until the area has been permanently stabilized with vegetation. The erosion control	
blanket will be	replaced or repaired as determined by periodic field inspections.
Installation	Once grading operations expose slopes greater than 3:1.
Maintenance	Erosion control blankets will be inspected weekly and after any rainfall.
Requirements	Inspection shall be in compliance with the inspection schedule specified in
	CGP Part 4 and maintained routinely throughout the duration of the project.
	Minimum maintenance and key items to check shall include torn or missing
	blanket or missing staples. Additionally, the slope under the blanket should be
	inspected for any erosion to ensure adequacy of installation.
Design	Refer to details and location included in the Erosion and Sediment Control
Specifications	Plans in SWPPP Appendix A.

4.8 Topsoil

General

Native topsoil shall be preserved on the site to the greatest extent feasible. Native soil
helps to maintain the soil structure and provides a growing medium for vegetative
stabilization measures. Better vegetative stabilization reduces erosion rates of the
underlying soil and also increases the infiltrative capacity of the soil, thereby reducing the
amount of sediment transported to downslope sediment and perimeter controls. Topsoil

can be preserved by stockpiling the native topsoil on the site for later use (e.g., for vegetative stabilization), or by limiting disturbance and removal of the topsoil and associated vegetation.

Specific Topsoil Controls

Not Applicable	
Description:	
Installation	
Maintenance	
Requirements	
Design Specifications	
Specifications	

4.9 Soil Compaction

General

- To allow for final vegetative stabilization the Contractor must either restrict vehicle and equipment use in these locations to avoid soil compaction; or prior to seeding or planting areas of exposed soil that have been compacted, use techniques that condition the soils to support vegetative growth, if necessary and feasible.
- Rough slope surfaces are preferred because they aid the establishment of vegetation, improve water infiltration, and decrease runoff velocity. Graded areas with smooth, hard surfaces may be initially attractive, but such surfaces increase the potential for erosion. A rough, loose soil surface gives a mulching effect that provides more favorable moisture conditions than hard, smooth surfaces; this aids seed germination. Refer to SWPPP Appendix M for surface roughening details.
- In areas where final vegetative stabilization will occur or where infiltration practices will be installed soil compaction should be avoided when feasible.

Specific Topsoil Controls

Not Applicable	
Description:	
Installation	
Maintenance	
Requirements	
Design Specifications	
Specifications	

4.10 Storm Drain Inlets

General

• Prior to any earth-disturbing activities, inlet protection measures will be installed that remove sediment from discharges prior to entry into any storm drain inlet that carries stormwater flowfrom the site to a water of the U.S.

Specific Storm Drain Inlet Controls

Silt Sack	
Description: Siltsack sediment traps will be installed at the inlets of existing and	
proposed catch	basins throughout the site. Catch basin grates will be placed over siltsack.
Installation	At initiation of construction activities and as needed during construction.
Maintenance	Clean, or remove and replace the protection measures as sediment
Requirements	accumulates, the filter becomes clogged, and/or performance is
	compromised. Where there is evidence of sediment accumulation adjacent
	to the inlet protection measure, remove the deposited sediment by the end
	of the same business day in which it is found or by the end of the following
	business day if removal by the same business day is not feasible.
Design	Refer to "Siltsack" detail and location included in the Erosion and Sediment
Specifications	Control Plans in Appendix A.

4.11 Constructed Site Drainage Feature / Conveyance Channels

General

 Conveyance channels are used to direct water to provided stormwater control structures. Conveyance channels will be needed to route stormwater to temporary sediment basins during construction.

Specific Conveyance Channel Controls

Temporary Diversion Swale		
Description: Temporary diversion swales will be installed to convey stormwater runoff to		
provided tempo	provided temporary sediment basins. Check dams will be installed at specified points within	
the swales to co	ontrol runoff flow rates.	
Installation	At initiation of construction activities and as needed during construction.	
Maintenance	Temporary diversion swales will be inspected weekly and after any rainfall.	
Requirements	Inspection shall be in compliance with the inspection schedule specified in	
	CGP Part 4 and maintained routinely throughout the duration of the	
	project. Minimum maintenance and key items to check shall include	
	sediment build up and berm stability. In accordance with the CGP Part	

	2.2.3.a, the contractor must remove sediment before it has accumulated to one-half of the above-ground height of any perimeter control.
Design Specifications	Refer to temporary diversion swale detail and location included in the Erosion and Sediment Control Plans in SWPPP Appendix A.

4.12 Sediment Basins

General

• Sediment basins are used to capture runoff during rain events. The basins are used for larger drainage areas that exist during construction which are more susceptible to sediment washout.

Specific Sediment Basin Controls

Temporary Sediment Basin		
Description: Sediment basins will be utilized to capture excess sediment in run off.		
	Sediment basins will be used in areas collecting drainage of 1 acre or more. The site will	
	f multiple temporary sediment basins.	
Installation	At initiation of construction activities and as needed during construction.	
Maintenance	Sediment Basins will be inspected weekly and after any rainfall. Inspection	
Requirements	shall be in compliance with the inspection schedule specified in CGP Part	
	4.3 and maintained routinely throughout the duration of the project.	
	Minimum maintenance and key items to check shall include sediment	
	build up and berm stability.	
Design	Refer to "MassDEP's Stormwater Handbook" in SWPPP Appendix O for	
Specifications	design details and CGP Part 2.2.12.	

4.13 Chemical Treatment

Soil Types

• List all the soil types (including soil types expected to be found in fill material) that are expected to be exposed during construction in areas of the project that will drain to chemical treatment systems: **Not Applicable**

Treatment Chemicals

- List all treatment chemicals that will be used at the site and explain why these chemicals are suited to the soil characteristics: **Not Applicable**
- Describe the dosage of all treatment chemicals you will use at the site or the methodology you will use to determine dosage: **Not Applicable**

- Provide information from any applicable Safety Data Sheets (SDS): Not Applicable
- Describe how each of the chemicals will stored: Not Applicable
- Include references to applicable state or local requirements affecting the use of treatment chemicals, and copies of applicable manufacturer's specifications regarding the use of your specific treatment chemicals and/or chemical treatment systems: Not Applicable

Special Controls for Cationic Treatment Chemicals (if applicable)

• If the applicable EPA Regional Office authorized you to use cationic treatment chemicals, include the official EPA authorization letter or other communication, and identify the specific controls and implementation procedures designed to ensure that your use of cationic treatment chemicals will not lead to an exceedance of water quality standards: **Not Applicable**

Schematic Drawings of Stormwater Controls/Chemical Treatment Systems

 Provide schematic drawings of any chemically-enhanced stormwater controls or chemical treatment systems to be used for application of treatment chemicals: Not Applicable

Training

• Describe the training that personnel who handle and apply chemicals have received prior to permit coverage, or will receive prior to the use of treatment chemicals: **Not Applicable**

4.14 Dewatering Practices

General

• Dewatering is the act of draining rainwater and/or groundwater from building foundations, vaults, and trenches.

Specific Dewatering Practices

Dewatering Filter Bag

Description: Dewatering filter bags will be placed on relatively flat terrain, free of brush and stumps, to avoid ruptures and punctures. The contractor will use a ten-foot by ten-foot geotextile filter bag on any dewatering hoses. A maximum of one six-inch discharge hose will be allowed per filter bag. **Installation** As needed during construction.

Maintenance	With backwash water, either haul it away for disposal or return it to the
Requirements	beginning of the treatment process; and replace and clean the filter media
	used in dewatering devices when the pressure differential equals or
	exceeds
	the manufacturer's specifications.
Design	
Specifications	

4.15 Other Stormwater Controls

General

• No other stormwater controls are proposed at this time.

Specific Stormwater Control Practices

Not Applicable	
Description:	
Installation	
Maintenance	
Requirements	
Design Specifications	
Specifications	

4.16 Site Stabilization

Total Amount of Land Disturbance Occurring at Any One Time

Five Acres or less

More than Five Acres

Seeding

 \boxtimes Vegetative \square Non-Vegetative

□ *Temporary* ⊠*Permanent*

Description:

Desemption			
 Since sto 	Since stormwater runoff from the site discharges to a water that is identified as		
Tier 2 for	Tier 2 for antidegradation purposes, stabilization of open surfaces will be		
impleme	nted within 7 days after grading or construction activities have		
tempora	rily or permanently ceased, unless there is sufficient snow cover to		
prohibit	implementation. Vegetative slope stabilization will be used to minimize		
erosion o	erosion on slops of 3:1 or flatter. Annual grasses, such as annual rye, will be used		
to ensure	to ensure rapid germination and production of root mass. Permanent stabilization		
will be co	will be completed with the planting of perennial grasses or legumes.		
Establish	Establishment of temporary and permanent cover may be established by hydro		
seeding o	seeding or sodding. A suitable topsoil, good seedbed preparation, and		
	e lime, fertilizer and water will be provided for effective establishment of getative stabilization methods.		
Installation	As needed during construction. Seed will be applied by October 15 in any calendar year.		
Completion Prior to completion of construction.			
Maintenance	Contractor will inspect vegetated areas after rain events until		
Requirements	growth of vegetation has established correctly.		
Design Specifications			

Mulching

 \boxtimes Vegetative \square Non-Vegetative \square Temporary \boxtimes Permanent

Description:

• When construction will be temporarily or permanently ceased, mulching shall occur immediately over seeding, as required, for erosion control while vegetation is being established. Mulch will be used after permanent seeding to protect soil from the impact

of falling rain and to increase the capacity of the soil to absorb water.

Installation	As needed during construction.
Completion	Prior to completion of construction.
Maintenance	Periodic inspections shall occur once a week and after every rainstorm 0.25
Requirements	inches or greater.
Design	
Specifications	

SECTION 5: POLLUTION PREVENTION CONTROLS

5.1 **Potential Sources of Pollution**

Pollutant-Generating Activity	Pollutants or Pollutant Constituents (that could be discharged if exposed to storm water)
Clearing, grading and excavation	Sediment
Paving operations	Trash, debris, solids
Concrete washout and waste	Heavy metals, pH, & debris
Structure construction/painting/cleaning	Nutrients, pH, trash, debris & solids, other toxic chemicals
Dewatering Operations	Nutrients, sediment
Drilling and blasting operations	Sediment, pH, trash, debris & solids
Landscaping Operations	Pesticides & herbicides, sediment, nutrients, trash, debris & solids
Material delivery, storage & use during the construction process	Nutrients, heavy metals, pH, pesticides & herbicides, oil & grease, trash, debris & solids, other toxic chemicals
Solid waste (trash and other debris)	Trash, debris & solids
Spills	Nutrients, heavy metals, pH, pesticides & herbicides, oil & grease, trash, debris & solids, other chemicals
Vehicle equipment fueling and maintenance	Oil & grease, other toxic chemicals
Vehicle equipment use and storage	Oil & grease, other toxic chemicals

Construction Site Pollutants

5.2 **Spill Prevention and Response**

A spill kit with containment berms and absorbent materials will be maintained onsite at all times during construction and the contractor will train employees in appropriate containment and cleanup procedures.

The following agencies should be contacted in case of a spill: Wareham Fire Department - (508) 295-2973 Hingham Board of Health - (508) 291-3100 ext. 3197 095561.150 33 **True Storage Facility**

Hingham Police Department - (508) 295-1212 MassDEP Southeast Region - (508) 946-2700

5.3 Fueling and Maintenance of Equipment or Vehicles

General

The contractor will provide an effective means of eliminating the discharge of spilled or leaked chemicals, including fuel, from the area where these activities will take place. This will be accomplished by ensuring all refueling and maintenance of equipment and vehicles will occur on a paved surface. Additionally, a spill kit with containment berms and absorbent materials will be present during the refueling of any equipment.

Specific Pollution Prevention Practices

Spill Kit	
Description: A spill kit will be maintained and kept onsite.	
Installation	At initiation of construction activities.
Maintenance	The spill kit will be refurbished after each use and inspected weekly.
Requirements	1 1 7
Design Specifications	
Specifications	

5.4 Washing of Equipment and Vehicles

General

 As listed in CGP 2.3.2, the contractor must provide an effective means of minimizing discharge of pollutants from equipment and vehicle washing, wheel wash water, and other types of washing. Washing activities from vehicle and wheel washing will be located away from stormwater inlets. Concrete trucks will not be allowed to wash out or discharge surplus concrete or drum wash water on the site. Soaps, detergents, or solvents that are stored onsite in designated storage areas will be covered with plastic sheeting to prevent these materials from coming into contact with rainwater.

Specific Pollution Prevention Practices

Washing of Equipment and Vehicles		
Description: W	Description: Washing activities from vehicle and wheel washing will be located away from	
	stormwater inlets. Soaps, detergents, or solvents that are stored onsite in designated storage	
areas will be co	areas will be covered with plastic sheeting to prevent these materials from coming into	
contact with ra	contact with rainwater.	
Installation	At initiation of construction activities.	
Maintenance	Contractor to inspect plastic sheeting for punctures to ensure rainwater is	
Requirements	not coming in contact with the containers.	
Design		
Specifications		

5.5 Storage, Handling, and Disposal of Building Products, Materials, and Wastes

5.5.1 Building Materials and Building Products

General

- In accordance with CGP Part 2.3.3.a, the contractor will:
 - Provide either a cover (e.g., plastic sheeting, temporary roofs) to minimize the exposure of these containers to precipitation and to stormwater or a similarly effective means designed to minimize the discharge of pollutants from these areas.

Specific Pollution Prevention Practices

Plastic Sheeting Cover	
Description: Building products that are stored onsite in designated storage areas will be covered with plastic sheeting to prevent these materials from coming into contact with rainwater.	
Installation	At initiation of construction activities.
Maintenance	Contractor to inspect plastic sheeting for punctures to ensure rainwater is
Requirements	not coming in contact with the containers.
Design	
Specifications	

5.5.2 Pesticides, Herbicides, Insecticides, Fertilizers, and Landscape Materials

General

- In accordance with CGP Part 2.3.3.b, the contractor will:
 - In storage areas, provide either a cover (e.g., plastic sheeting, temporary roofs) to minimize the exposure of these containers to precipitation and to

stormwater or a similarly effective means designed to minimize the discharge of pollutants from these areas; and

• Comply with all application and disposal requirements included on the registered pesticide, herbicide, insecticide, and fertilizer label.

Specific Pollution Prevention Practices

Plastic Sheeting Cover		
	Description: Fertilizers and landscape materials will be covered with plastic sheeting to	
	prevent these materials from coming into contact with rainwater.	
Installation	At initiation of construction activities.	
Maintenance	Contractor to inspect plastic sheeting for punctures to ensure rainwater is not coming in contact with the containers.	
Requirements	not coming in contact with the containers.	
	The contractor will comply with all application and disposal requirements included on the registered fertilizer label.	
Design		
Specifications		

5.5.3 Diesel Fuel, Oil, Hydraulic Fluids, Other Petroleum Products, and Other Chemicals

General

- In accordance with CGP Part 2.3.3.c, the contractor will:
 - Store chemicals in water-tight containers, and provide either a cover (e.g., plastic sheeting, temporary roofs) to minimize the exposure of these containers to precipitation and to stormwater or a similarly effective means designed to minimize the discharge of pollutants from these areas (e.g., having a spill kit available on site and ensuring personnel are available to respond expeditiously in the event of a leak or spill), or provide secondary containment (e.g., spill berms, decks, spill containment pallets); and
 - Clean up spills immediately, using dry clean-up methods where possible, and dispose of used materials properly. It is prohibited to clean surfaces or spills by hosing the area down. Eliminate the source of the spill to prevent a discharge or a furtherance of an ongoing discharge.

Specific Pollution Prevention Practices

Water-tight Containers for Chemicals	
Description: Chemicals will be stored in water-tight containers and covered with plastic	
sheeting to prevent these containers from coming into contact with rainwater.	
Installation	At initiation of construction activities.

Maintenance	Contractor to inspect plastic sheeting for punctures to ensure rainwater is
Requirements	not coming in contact with the containers.
Design	
Specifications	

5.5.4 Hazardous or Toxic Waste

General

- In accordance with CGP Part 2.3.3.d, the contractor will:
 - Separate hazardous or toxic waste from construction and domestic waste;
 - Store waste in sealed containers, which are constructed of suitable materials to prevent leakage and corrosion, and which are labeled in accordance with applicable Resource Conservation and Recovery Act (RCRA) requirements and all other applicable federal, state, tribal, or local requirements;
 - Store all outside containers within appropriately-sized secondary containment (e.g., spill berms, decks, spill containment pallets) to prevent spills from being discharged, or provide a similarly effective means designed to prevent the discharge of pollutants from these areas (e.g., storing chemicals in covered area or having a spill kit available on site);
 - Dispose of hazardous or toxic waste in accordance with the manufacturer's recommended method of disposal and in compliance with federal, state, tribal, and local requirements; and
 - Clean up spills immediately, using dry clean-up methods, and dispose of used materials properly. It is prohibited to clean surfaces or spills by hosing the area down. Eliminate the source of the spill to prevent a discharge or a furtherance of an ongoing discharge.
 - Follow all other federal, state, tribal, and local requirements regarding hazardous or toxic waste.

Specific Pollution Prevention Practices

Sealed Containers for Hazardous Waste Material		
Description: All hazardous waste materials will be stored in sealed containers and		
disposed in the manner specified by local and state regulation, or by the manufacturer.		
Installation	At initiation of construction activities.	
Maintenance	Site personnel will be instructed of manufacturer, local, and state	
Requirements	regulations	
	for handling of hazardous waste materials. The site construction supervisor will be responsible for seeing that the procedures are followed.	
Design		
Specifications		

5.5.5 Construction and Domestic Waste

General

• The contractor will provide waste containers (e.g., dumpster or trash receptacle).

Specific Pollution Prevention Practices

Waste Containers	
Description: The contractor will provide waste containers (e.g., dumpster or trash	
receptacle) of sufficient size and number to contain construction and domestic wastes. Daily	
loose trash removal will prevent litter, construction debris, and construction chemicals	
exposed to stormwater from becoming a pollutant source for stormwater discharges.	
Installation	At initiation of construction activities.
Maintenance	Waste container lids shall be closed when not in use and at the end of the
Requirements	business day for those containers that are actively used throughout the day. For waste containers that do not have lids, contractor shall provide a cover or similarly effective means to minimize the discharge of the pollutants. The short-term storage will be removed weekly to appropriate off-site
	locations. Daily removal will be mandated for debris that may become windborne.
	On business days, clean up and dispose of waste in designated waste containers.
	Clean up immediately if containers overflow.
Design	
Specifications	

5.5.6 Sanitary Waste

General

• The contractor will install portable toilets within the project site.

Specific Pollution Prevention Practices

Portable Toilets

Description: Portable toilets will be positioned so that they are secure and will not be tipped or knocked over and located away from waters of the U.S. and stormwater inlets or conveyances. All sanitary waste will be collected from the portable units by a licensed contractor as required and disposed of in compliance with state and local regulations. **Installation** At initiation of construction activities.

Maintenance	The units will be services by the provider of the portable toilet.
Requirements	
Design	
Specifications	

5.6 Washing of Applicators and Containers used for Paint, Concrete or Other Materials

General

 The contractor will provide an effective means of eliminating the discharge of water from the washout and cleanout of stucco, paint, concrete, form release oils, curing compounds, and other construction materials by using a leak-proof washout pit to handle washout and cleanout wastes. The washout pits will be located in designated areas and located as far away from stormwater inlets as possible.

Specific Pollution Prevention Practices

Leak-proof Wa	Leak-proof Washout Pits				
	Description: Leak-proof washout pits will be used to handle washout and cleanout of				
wastes. These p	bits will be located in designated areas as indicated on the Erosion and				
Sedimentation	Plan.				
Installation	At initiation of construction activities.				
Maintenance	The cleanout pit will be inspected weekly to ensure that no overflows have				
Requirements	or can occur. The contractor will remove accumulation from the pit as				
Requirements	necessary in accordance with the CGP Part 2.3.4.				
Design					
Specifications					

5.7 Fertilizers

General

- As included in CGP Part 2.3.5, the contractor must follow the requirements below when applying fertilizer products:
 - Apply at a rate and in amounts consistent with manufacturer's specifications, or document departures from the manufacturer specifications where appropriate in Part 7.2.6.b.ix;
 - Apply at the appropriate time of year for your location, and preferably timed to coincide as closely as possible to the period of maximum vegetation uptake and growth;
 - Avoid applying before heavy rains that could cause excess nutrients to be discharged;
 - Never apply to frozen ground;

095561.150 True Storage Facility

- \circ $\;$ Never apply to stormwater conveyance channels; and
- Follow all other federal, state, tribal, and local requirements regarding fertilizer application.

Specific Pollution Prevention Practices

Slow-Release F	Slow-Release Fertilizers				
Description: T	Description: The use of slow-release fertilizers in the landscaped areas will minimize				
discharges of fe	discharges of fertilizers containing nitrogen or phosphorus that could enter the stormwater				
	er use will be reduced once the proposed landscaping is established.				
Installation	As needed for the establishment of landscaped areas.				
Maintenance	None.				
Requirements					
Design					
Specifications					

5.8 Other Pollution Prevention Practices

General

 Pavement sweeping may be performed daily or as needed, when track-out has occurred. The sweeping program will remove sediments and contaminants directly from paved surfaces before the release into stormwater runoff. Pavement sweeping has been demonstrated to be an effective initial treatment for reducing pollutant loading into stormwater.

Specific Pollution Prevention Practices

Pavement Swe	Pavement Sweeping				
Description: Pavement sweeping will minimize the release of sediments and contaminants from					
paved surfaces	into the stormwater runoff.				
Installation	As needed to remove contaminant directly from paved surfaces.				
Maintenance	None.				
Requirements					
Design					
Specifications					

SECTION 6: INSPECTION AND CORRECTIVE ACTION

6.1 Inspection Personnel and Procedures

Personnel Responsible for Inspections

Inspections are to be performed by "qualified personnel" as defined in Part 4.1 of the Permit. For projects that receive coverage under the 2022 GCP on or after February 17, 2023, to be considered a qualified person under Part 4.1 for conducting inspections under Part 4, you must, at a minimum, either:

- Have completed the EPA construction inspection course developed for this permit and have passed the exam; or
- Hold a current valid construction inspection certification or license from a program that, at a minimum, covers the following:
 - Principles and practices of erosion and sediment control and pollution prevention practices at construction sites;
 - Proper installation and maintenance of erosion and sediment controls and pollution prevention practices used at construction sites; and
 - Performance of inspections, including the proper completion of required reports and documentation, consistent with the requirements of Part 4.

For projects that receive coverage under this permit prior to February 17, 2023, any personnel conducting site inspections pursuant to Part 4 on your site must, at a minimum, be a person knowledgeable in the principles and practice of erosion and sediment controls and pollution prevention, who possesses the appropriate skills and training to assess conditions at the construction site that could impact stormwater quality, and the appropriate skills and training to assess the effectiveness of any stormwater controls selected and installed to meet the requirements of this permit.

Inspections shall include all areas of the site disturbed by construction activity and areas used for materials storage that are exposed to precipitation based on CGP Part 4.5. The Inspector must look for evidence of, or the potential for, pollutants entering the system, inspect the BMPs installed as part of the Plan, inspect the site egress points for tracking, and inspect material, waste, borrow, or equipment storage and maintenance areas. If, in the course of the inspection, the inspector identifies an eroded area or an area impacted by sedimentation, additional erosion and sedimentation controls will be implemented, the discharge will be documented, and the SWPPP will be revised to include these changes.

Site Inspection Frequency

Select the inspection frequency(ies) that applies, based on CGP Parts 4.2, 4.3, or 4.4.

Standard Frequency:

- $\hfill\square$ Every 7 calendar days
- $\hfill\square$ Every 14 calendar days and within 24 hours of either:
 - A storm event that produces 0.25 inches or more of rain within a 24-hour period (including when there are multiple, smaller storms that alone produce less than 0.25 inches but together produce 0.25 inches or more in 24 hours), or
 - A storm event that produces 0.25 inches or more of rain within a 24-hour period on the first day of a storm and continues to produce 0.25 inches or more of rain on subsequent days (you conduct an inspection within 24 hours of the first day of the storm and within 24 hours after the last day of the storm that produces 0.25 inches or more of rain (i.e., only two inspections would be required for such a storm event)), or
 - A discharge caused by snowmelt from a storm event that produces 3.25 inches or more of snow within a 24-hour period.

Increased Frequency (if applicable):

For areas of sites discharging to sediment or nutrient-impaired waters or to waters designated as Tier 2, Tier 2.5, or Tier 3

- $\hfill\square$ Every 7 days and within 24 hours of either:
 - A storm event that produces 0.25 inches or more of rain within a 24-hour period, or
 - A discharge caused by snowmelt from a storm event that produces 3.25 inches or more of snow within a 24-hour period.

Reduced Frequency (if applicable)

For stabilized areas

- □ Twice during first month, no more than 14 calendar days apart; then once per month after first month until permit coverage is terminated consistent with Part 9 in any area of your site where the stabilization steps in 2.2.14.a have been completed.
 - Specify locations where stabilization steps have been completed
 - Insert date that they were completed

For stabilized areas on "linear construction sites" (as defined in Appendix A)

- □ Twice during first month, no more than 14 calendar days apart; then once more within 24 hours of a storm event that produces 0.25 inches or more of rain within a 24-hour period, or within 24 hours of a snowmelt discharge from a storm event that produces 3.25 inches or more of snow within a 24-hour period
 - Specify locations where stabilization steps have been completed
 - Insert date that they were completed

For arid, semi-arid, or drought-stricken areas during seasonally dry periods or during drought

- □ Once per month and within 24 hours of either:
 - A storm event that produces 0.25 inches or more of rain within a 24-hour period, or
 - A snowmelt discharge from a storm event that produces 3.25 inches or more of snow within a 24-hour period.

Insert beginning and ending month identified as the seasonally dry period for your area or the valid period of drought:

- Beginning month of the seasonally dry period: Insert approximate date
- Ending month of the seasonally dry period: Insert approximate date

For frozen conditions where construction activities are being conducted

 \Box Once per month

Insert beginning and ending dates of frozen conditions on your site:

- Beginning date of frozen conditions: Insert approximate date
- Ending date of frozen conditions: Insert approximate date

For frozen conditions where construction activities are suspended

 $\hfill\square$ Inspections are temporarily suspended

Insert beginning and ending dates of frozen conditions on your site:

- Beginning date of frozen conditions: Insert approximate date
- Ending date of frozen conditions: Insert approximate date

Dewatering Inspection Frequency

Select the inspection frequency that applies based on CGP Part 4.3.2

Dewatering Inspection

 \Box Once per day on which the discharge of dewatering water occurs.

Rain Gauge Location (if applicable)

Specify location(s) of rain gauge to be used for determining whether a rain event of 0.25 inches or greater has occurred (only applies to inspections conducted for Part 4.2.2, 4.3, or 4.4.2). If a rain gauge is not used onsite, the storm event information must be obtained from a weather station that is representative of the site. For any 24-hour period during which there is 0.25 inches or more of rainfall, you must record the total rainfall measured for that day in accordance with CGP Part 4.7.1d.

Inspection Report Forms

Refer to **SWPPP Appendix D** for a copy of an inspection report form. The form must be completed with 24 hours of completing any site inspection.

6.2 Corrective Action

Personnel Responsible for Corrective Actions

Corrective actions will be taken by the Contractor per the direction of the Stormwater Team, Engineer or per applicable local, state, or federal agency and/or their representative(s).

Requirements for Taking Corrective Action

Corrective Actions must take place to address any of the following conditions identified at the site:

- A stormwater control needs a significant repair or a new or replacement control is needed, or, in accordance with CGP Part 2.1.4c, you find it necessary to repeatedly (i.e., three (3) or more times) conduct the same routine maintenance fix to the same control at the same location (unless you document in your inspection report under CGP Part 4.7.1c that the specific reoccurrence of this same problem should still be addressed as a routine maintenance fix under CGP Part 2.1.4); or
- A stormwater control necessary to comply with the requirements of this permit was never installed, or was installed incorrectly; or
- Discharges are not meeting applicable water quality standards;
- A prohibited discharge has occurred (see CGP Part 1.3); or
- During discharge from site dewatering activities:
 - The weekly average of the turbidity monitoring results exceeds the 50 NTU benchmark (or alternate benchmark if approved by EPA pursuant to CGP Part 3.3.2b); or
 - Observed or informed by EPA, State, or local authorities of the presence of the conditions specified in CGP Part 4.6.3e.

Corrective Action Deadlines

The Contractor must complete the following corrective actions in accordance with the deadlines specified in CGP Part 5 and as outlined below:

- Immediately take all reasonable steps to address the condition, including cleaning up any contaminated surfaces so the material will not discharge in subsequent storm events; and
- When the problem does not require a new or replacement control or significant repair, the corrective action must be completed by the close of the next business day; or
- When the problem requires a new or replacement control or significant repair, install the new or modified control and make it operational, or complete the repair, by no later than seven (7) calendar days from the time of discovery. If it is infeasible to complete the installation or repair within seven (7) calendar days, you must document in your records why it is infeasible to complete the installation or repair within the 7-day timeframe and document your schedule for installing the stormwater control(s) and making it operational as soon as feasible after the 7-day timeframe. Where these actions result in changes to any of the stormwater controls or procedures documented in your SWPPP, you must modify the SWPPP accordingly within seven (7) calendar days of completing this work.

If responding to triggering conditions related to site dewatering activities, the Contractor must:

- Immediately take all reasonable steps to minimize or prevent the discharge of pollutants until you can implement a solution, including shutting off the dewatering discharge as soon as possible depending on the severity of the condition taking safety considerations into account;
- Determine whether the dewatering controls are operating effectively and whether they are causing the conditions; and
- Make any necessary adjustments, repairs, or replacements to the dewatering controls to lower the turbidity levels below the benchmark or remove the visible plume or sheen.

When you have completed these steps and made any changes deemed necessary, you may resume discharging from your dewatering activities.

Corrective Action Log

For each corrective action taken in accordance with CGP Part 5, the Contractor must complete a corrective action report, which includes the applicable information in CGP Parts 5.4.1 and 5.4.2. The Contractor must keep a copy of the corrective action log at the site or at an easily accessible location, so that it can be made immediately available at the time of an on-site inspection or upon request by EPA. The corrective action logs must be retained for at least three (3) years from the date that the permit coverage expires or is terminated Note that these reports must be maintained in the Contractor's records but do not need to be provided to EPA except upon request.

Corrective Action Forms

Refer to **SWPPP Appendix E** for a copy of a corrective action form.

6.3 Delegation of Authority

Refer to **SWPPP Appendix J** for a copy of the signed delegation of authority.

Duly Authorized Representative(s) or Position(s):

Insert Company or Organization Name Insert Name Insert Position Insert Address Insert City, State, Zip Code Insert Telephone Number Insert Fax/Email

SECTION 7: TURBIDITY BENCHMARK MONITORING FOR DEWATERING DISCHARGES

Part 3.3 of the CGP requires turbidity benchmark monitoring for site discharging dewatering water to "sensitive waters" (i.e. receiving waters listed as impaired for sediment or a sediment-related parameter, or receiving waters of the designated as a Tier 2, Tier 2.5, Tier 3 for antidegradation purposes) to comply with benchmark monitoring requirements in Part 3.3 of the CGP and document the procedures you will pursuant to Part 7.2.8 of the CGP. Although dewatering may be required for the project, no dewatering discharges will be discharged to "sensitive waters". Dewatering shall follow the practices discussed in Section 4.14 of this SWPPP.

Procedures: Not applicable

Collecting and evaluating	Describe how you will collect and evaluate samples	
samples		
Reporting results and	Describe how you will report results to EPA and keep	
keeping monitoring	monitoring information records	
information records		
Taking corrective action	Describe how you will take corrective action when necesary	
when necessary		

Turbidity Meter: Not applicable

Type of turbidity meter		Insert the type of turbidity meter
	_	- · ·

Turbidity meter manuals and manufacturer instructions

Coordinating Arrangements for Turbidity Monitoring: Not applicable

Permitted operator name	Insert operator name	
Permitted operator NPDES ID	Insert operator NPDES ID	
Coordinating Arrangement	Describe the coordinating arrangement including which	
parties are tasked with specifc responsibilities		

[Repeat as necessary.]

Alternate turbidity benchmark: Not applicable

Alternate turbidity benchmark (NTU)	Insert alternate turbidity benchmark	
Data and documentation used to request the	Insert the data and documentation that was	
alternate benchmark	submitted to EPA to request the alternate	
	benchmark	

SECTION 8: CERTIFICATIONS AND NOTIFICATION

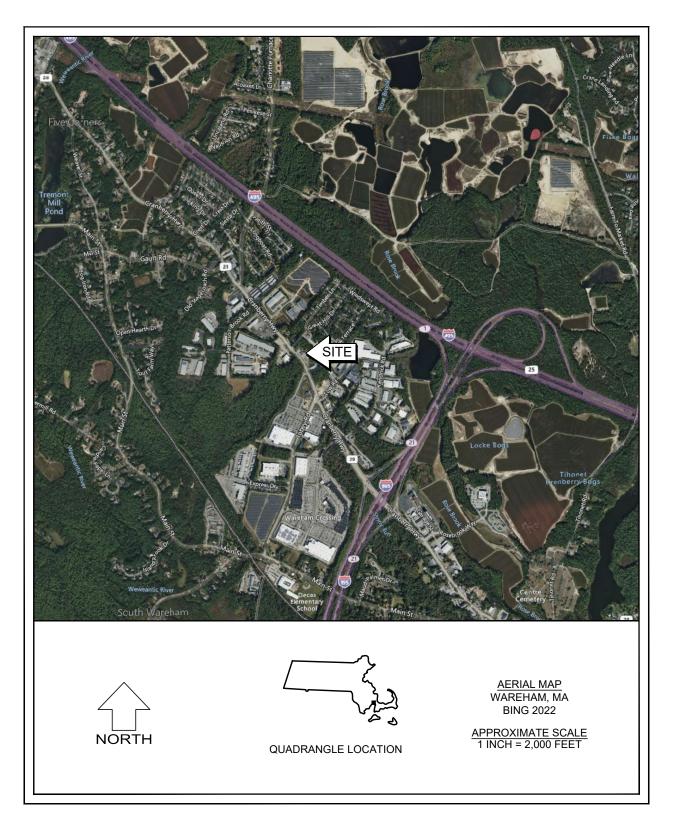
• I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Title:	
Signature:		Date:

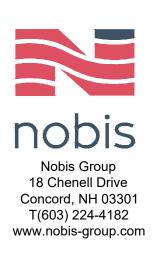
[Repeat as needed for multiple construction operators at the site.]

SWPPP APPENDICES

- Appendix A Site Maps
- Appendix B Copy of 2022 CGP
- Appendix C NOI and EPA Authorization Email
- Appendix D Site Inspection Form and Dewatering Inspection Form (if applicable)
- Appendix E Corrective Action Log
- Appendix F SWPPP Amendment Log
- Appendix G Subcontractor Certifications/Agreements
- Appendix H Grading and Stabilization Activities Log
- Appendix I Training Documentation
- Appendix J Delegation of Authority
- Appendix K Endangered Species Documentation
- Appendix L Historic Preservation Documentation
- Appendix M Rainfall Gauge Recording
- Appendix N Turbidity Meter Manual and Manufacturer's Instructions
- Appendix O Structural BMP Specifications for the Mass. Stormwater Handbook


Appendix A – Site Maps

TRUE STORAGE FACILITY


2400 & 2402 CRANBERRY HIGHWAY WAREHAM, MASSACHUSETTS

SITE ENGINEER NOBIS GROUP - LOWELL, MA <u>ARCHITECT</u> BRADY SULLIVAN PROPERTIES - MANCHESTER, NH <u>SURVEYOR</u> CONTROL POINT ASSOCIATES, INC. - SOUTHBOROUGH, MA <u>SEPTIC DESIGNER</u> PROVENCHER ENGINEERING, LLC - MERRIMACK, NH

95560.00 - Brady Sullivan Portfolio/95561.15 - 2400-2402 Cranberry Hwy - Wareham MA\CAD\dwa\95561.15-C-001-CAVFR.dwa 7/15/2022 9:56

JULY 18, 2022

SHEET INDEX

I.D.	<u>NO.</u>	DRAWING NAME
CS		COVER SHEET
G-1	1	GENERAL NOTES AND LEGEND
S-1	2	BOUNDARY & LOCATION SURVEY
S-2	3	BOUNDARY, TOPOGRAPHIC & UTILITY SURVEY
C-1	4	DEMOLITION PLAN
C-2	5	SITE LAYOUT PLAN
C-3	6	GRADING AND DRAINAGE PLAN
C-4	7	UTILITY LAYOUT PLAN
C-5	8	EROSION CONTROL PLAN
C-6	9	CONSTRUCTION DETAILS
C-7	10	CONSTRUCTION DETAILS
C-8	11	CONSTRUCTION DETAILS WITHIN STATE HIGHWAY LAYOUT (SHLO)
C-9	12	TRAFFIC MANAGEMENT PLAN DETAILS
1	13	PROPOSED SEWAGE DISPOSAL SITE PLAN
2	14	PROPOSED SEWAGE DISPOSAL DETAIL PLAN

NOBIS PROJECT NO. 95561.15

LEGEN)				
EXISTING	PROPOSED		EXISTING	PROPOSED	
		SUBJECT PROPERTY LINE	\square	D	DRAIN MA
		OTHER PROPERTY LINE			CATCH BA
				Ŀ	UTILITY P
		EASEMENT	T	Ξ	PAD MOU
		STONE WALL	S	S	SANITARY
			CO	0	SANITARY
· · · · · ·		EDGE OF WETLAND	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×	HYDRANT
· ·	· ·		$\overset{\otimes}{\boxtimes}$	×	WATER V
	www.www.	TREE LINE	# <u></u>	* S o	WATER S
OO	ooo			8	WATER S
	OO		GS	GS	GAS SHU
<u> </u>	<u> </u>	GUARDRAIL (STEEL)	GM		GAS MET
		GUARDRAIL (WOOD)	× 100.0	× 100.0	SPOT GR/
		CENTERLINE	$\times \frac{100.0}{100.5}$	$\times \frac{100.0}{100.5}$	CURB SPO
		- — EDGE OF GRAVEL	<u> </u>		SIGN POS
		EDGE OF PAVEMENT	¢	፼●፼ ●፼	LIGHT PO
			* E	\odot \bigcirc	TREE
VGC	VGC	VERTICAL GRANITE CURB	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CONCRET
TD	TD	TIP DOWN			GRAVEL
100	100	MAJOR CONTOUR			RIP RAP
98	98			\$ -2-	FLOW DIR
D D		DRAIN LINE			INLET PRO
RD	RD			2%	SLOPE & I
FD	FD		- E - TP		TEST PIT
>	>		в		BORING L
x	X	SILT FENCE / WATTLE	- () - MW		MONITOR
OHW	OH₩		● PT		PERC. TE
	UGE				PHOTO LO
T	— т —				STEEP SL
S	S				
	W				
	ws				
G	G	GAS LINE			
		ZONING BOUNDARY LINE			

GENERAL NOTES:

(MASSDOT).

DATED MARCH 2022 PREPARED BY NOBIS GROUP.

REGULATIONS UNDER THE CLEAN WATER ACT.

EROSION CONTROL NOTES: CATCH BASINS: CARE SHALL BE TAKEN TO ENSURE THAT SEDIMENTS DO NOT ENTER CATCH BASINS DURING EXCAVATION FOR PIPE TRENCHES, DITCHES AND SWALES. THE CONTRACTOR SHOULD PLACE NON-WOVEN GEOTEXTILE FABRIC FOR INLET PROTECTION OVER INLETS IN AREAS OF SOIL DISTURBANCE, WHICH ARE SUBJECT TO SEDIMENT CONTAMINATION. AND THE SURROUNDING AREAS ARE WELL VEGETATED. CHEDULE OF WORI HIS WORK IS ANTICIPATED TO BEGIN IN THE SUMMER/FALL 2022 WITH A FINAL COMPLETION DATE IN SUMMER/FALL 2023. NO WINTER EARTH DISTURBANCE IS EXPECTED FOR THIS PROJECT. SHOULD WINTER WORK BE REQUIRED, THIS PLAN AND THE ACCOMPANYING STORM WATER POLLUTION PREVENTION PLAN (SWPPP) SHALL BE MODIFIED ACCORDINGLY. ADEQUATE MEASURES SHOULD BE TAKEN TO MINIMIZE AIR BORNE DUST PARTICLES ARISING FROM SOIL DISTURBANCE AND CONSTRUCTION. * DISTURBANCE OF AREAS SHOULD BE MINIMIZED AND NOT EXCEED 100,000 SQUARE FEET IN AREA AT ANY ONE TIME. * NO DISTURBED AREA SHOULD BE LEFT UNSTABILIZED FOR LONGER THAN TWO WEEKS DURING THE GROWING SEASON. * PERMANENT EROSION CONTROL FEATURES SHOULD BE INCORPORATED INTO THE PROJECT AT THE EARLIEST PRACTICABLE TIME, AS SPECIFIED ON THE CONTRACT PLANS. * WITHIN 14 DAYS OF COMPLETING WORK IN AN AREA, AND PRIOR TO ANTICIPATED RAIN EVENTS. APPLY HAY/STRAW MULCH AND TACKIFIER ON ALL DISTURBED SOIL AREAS. APPLICATION RATES OF 2 TONS OF STRAW OR HAY PER ACRE SHOULD BE USED TO PREVENT EROSION UNTIL VEGETATIVE COVER CAN BE ESTABLISHED. ALTERNATIVELY, APPLY WOOD CHIPS OR GROUND BARK MULCH 2 TO 6 INCHES DEEP AT A RATE OF 10 TO 20 TONS PER ACRE. * WHEN EROSION IS LIKELY TO BE A PROBLEM, GRUBBING OPERATION SHOULD BE SCHEDULED AND PERFORMED SUCH THAT GRADING OPERATION AND PERMANENT EROSION CONTROL FEATURES CAN FOLLOW IMMEDIATELY THEREAFTER. * AS WORK PROGRESSES, PATCH SEEDING AND MULCHING SHOULD BE DONE AS REQUIRED ON AREAS PREVIOUSLY TREATED TO MAINTAIN OR ESTABLISH PROTECTIVE COVER. * REMOVE ACCUMULATED SEDIMENTS AND DEBRIS WHEN SEDIMENT CONTAINMENT DEVICES REACH 33% CAPACITY. EROSION CONTROL IMPLEMENTATION SCHEDULE THE FOLLOWING GENERAL SCHEDULE IDENTIFIES THE PROPOSED SOIL EROSION AND SEDIMENT CONTROL AND STORM WATER MANAGEMENT MEASURES THAT ARE TO BE IMPLEMENTED PRIOR TO AND DURING CONSTRUCTION: * PERFORM LIMITED GRUBBING, STRIPPING AND SITE GRADING ONLY AS NEEDED TO COMPLETE IMMEDIATE WORK GOALS. * BLOCK STORM WATER FLOW AS NECESSARY TO INSTALL ALL STORM WATER STRUCTURES IN THE DRY. * INSTALL PERMANENT STORM DRAIN SYSTEM. * INSTALL TEMPORARY SOIL STABILIZATION MEASURE INCLUDING SEED, MULCH, FERTILIZER, MATTING, ETC. * REDIRECT FLOWS INTO FINISHED STRUCTURES PRIOR TO FILL OPERATIONS. * PLACE HUMUS AND CONDUCT PERMANENT SEEDING AND MULCHING OF ALL DISTURBED GROUND. TEMPORARY STABILIZATION EROSION CONTROL MEASURES SHALL BE IMPLEMENTED, AS WRITTEN HEREIN AND AS DEPICTED ON THE ACCOMPANYING PLAN, FROM THE COMMENCEMENT OF CONSTRUCTION ACTIVITY UNTIL FINAL STABILIZATION IS COMPLETE: TEMPORARY GRADING: TEMPORARY GRADING DURING CONSTRUCTION SHOULD BE PERFORMED IN SUCH A MANNER TO FACILITATE MAXIMUM INFILTRATION OF STORMWATER AND MINIMIZE OR ELIMINATE STORMWATER RUNOFF FROM THE SITE MULCH: MULCHING WITH LOOSE HAY OR STRAW, AT A RATE OF 2 TONS PER ACRE, SHALL BE DONE IMMEDIATELY AFTER EACH AREA HAS BEEN FINAL GRADED. WHEN SEED FOR EROSION CONTROL IS SOWN PRIOR TO PLACING THE MULCH, THE MULCH SHOULD BE PLACED ON THE SEEDED AREAS WITHIN 48 HOURS AFTER SEEDING. TACKIFIER: PLACEMENT OF SOIL TACKIFIER HAS PROVEN TO BE AN EFFECTIVE METHOD OF PREVENTING SOIL AND ADHERING MULCH IN PLACE. THE PLACEMENT OF A SOIL TACKIFIER SHOULD BE PERFORMED IN ACCORDANCE WITH THE MANUFACTURERS SPECIFICATIONS AND SHOULD BE REAPPLIED AS NECESSARY TO CONTROL AIR BORN DUST AND SOIL, AND ROAD CLEANING: THE CONTRACTOR SHALL SWEEP ROADS DAILY, OR AS NEEDED TO MAINTAIN CLEAN PAVED SURFACES AT ALL CONSTRUCTION ACCESS/EGRESS POINTS.

"STORMWATER MANAGEMENT REPORT FOR TRUE STORAGE FACILITY, 2400 & 2402 CRANBERRY HIGHWAY, WAREHAM, MA" 2. EXISTING CONDITIONS, TOPOGRAPHICAL INFORMATION, NORTH ORIENTATION, NORTH ARROW, AND COORDINATE VALUES PLACE INLET PROTECTION DEVICES, IN CATCH BASINS AND MAINTAIN UNTIL ALL CONSTRUCTION ACTIVITIES HAVE CEASED DEPICTED ON THESE DRAWINGS ARE BASED ON PLANS TITLED "BOUNDARY & LOCATION SURVEY, 2400, 2402, & 2406 ALL SWALES SHALL BE STABILIZED PRIOR TO DIRECTING RUNOFF INTO THEM. 3. THESE DRAWINGS AND ACCOMPANYING TEXT HAVE BEEN PREPARED FOR BRADY SULLIVAN PROPERTIES, FOR REVIEW BY 4. THE CONTRACTOR SHALL OBTAIN COVERAGE UNDER EPA NPDES GENERAL PERMIT FOR STORM WATER DISCHARGES FOR CONSTRUCTION ACTIVITIES PRIOR TO THE START OF CONSTRUCTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING AND IMPLEMENTING AN ENVIRONMENTAL PROTECTION AGENCY (EPA) STORM WATER POLLUTION PREVENTION PLAN PRIOR TO THE START OF CONSTRUCTION AND DURING CONSTRUCTION ON-SITE IN ACCORDANCE WITH THE EPA MULCH LOSS UNTIL PERMANENT VEGETATION IS ESTABLISHED.

DUST CONTROL: THE CONTRACTOR SHALL IMPLEMENT DUST CONTROL MEASURES AS NEEDED TO PREVENT AIRBORNE DUST PARTICLES FROM LEAVING THE SITE. DUST CONTROL MEASURES SHALL CONSIST OF USE OF A WATER TRUCK EQUIPPED WITH A SPRAY-BAR THAT DISSIPATES THE WATER EVENLY OVER THE SURFACE.

COMPLETION. 4. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.

EXCAVATION DEWATERING

TABLES, WITH 98% PURITY:

SEED WINTER RYE 80 (I RED FESCUE PERENNIAL RYE RED CLOVER OTHER CROP GR NOXIOUS WEED INERT MATTER

SEED RED FESCUE (CR KENTUCKY BLUE PERENNIAL RYE RED TOP LANDINO CLOVE

SNOW OR ON FROZEN GROUND.

FOR THE DESIGN FLOW CONDITIONS. AFTER NOVEMBER 15TH, INCOMPLETE ROAD OR PARKING SURFACES SHALL BE PROTECTED WITH A MINIMUM OF 3-INCHES OF CRUSHED GRAVEL PER NHDOT ITEM 304.3 OR IF CONSTRUCTION IS TO CONTINUE THROUGH THE WINTER SEASON BE CLEARED OF ANY ACCUMULATED SNOW AFTER EACH STORM EVENT.

1. CONSTRUCT TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES PRIOR TO ANY EARTH MOVING OPERATIONS. INSPECT EROSION AND SEDIMENT CONTROL MEASURES WEEKLY AND WITHIN 24 HOURS OF ANY SIGNIFICANT RAINFALL EVENT (1/2" OF RAIN OR MORE). PERFORM ANY NEEDED MAINTENANCE AND STABILIZATION AS NEEDED.

1. THESE DRAWINGS SHOULD BE REVIEWED IN CONJUNCTION WITH THE ACCOMPANYING DESIGN REPORT TITLED

CRANBERRY HIGHWAY", DATED JULY 12, 2022, PROVIDED TO NOBIS GROUP. BY CONTROL POINT ASSOCIATES, INC.

THE TOWN OF WAREHAM VARIOUS DEPARTMENTS AND THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION

- 2. DISTURBANCES OF AREAS SHALL BE MINIMIZED. NO DISTURBED AREA SHALL BE LEFT UNSTABILIZED FOR LONGER THAN TWO WEEKS DURING THE GROWING SEASON. AREAS WHICH WILL NOT BE PERMANENTLY SEEDED WITHIN TWO WEEKS OF DISTURBANCE SHALL BE TEMPORARILY SEEDED AND MULCHED. ALL AREAS SHALL BE STABILIZED WITH SEED MULCH AND TACKIFIER WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE AND PRIOR TO THE END OF THE GROWING SEASON.
- 3. PERFORM DEMOLITION OF EXISTING SITE FEATURES AS SHOWN ON DEMOLITION PLAN.
- 4. PERFORM CLEARING AND GRUBBING TO LIMITS SHOWN ON DEMOLITION PLAN.
- 5. EXCAVATE AND GRADE, THEN INSTALL LOAM, SEED, AND EROSION CONTROL MATTING TO STABILIZE DETENTION PONDS AND OTHER STORMWATER CONTROLS AS NEEDED ...
- 6. REMOVE AND TEMPORARILY STOCKPILE LOAM AND TOPSOIL FOR REUSE, IF NEEDED, ON SITE. SEED AND/OR MULCH STOCKPILES AND ENCIRCLE WITH SILT FENCE.
- 7. CONDUCT ALL UNDERGROUND UTILITY STRUCTURE AND PIPING INSTALLATION, BACKFILL, AND COMPACTING.
- 8. CONSTRUCT BUILDING FOUNDATION.

9. PLACE AND COMPACT NEW GRAVEL COURSES IN THE PARKING, LOADING, SIDEWALK, AND GRAVEL ACCESS DRIVE AREAS

15. SWEEP COMPLETED PAVEMENT AND CLEAN OUT CATCH BASINS AND DRAINAGE PIPES DURING CONSTRUCTION

16. REMOVE TEMPORARY EROSION CONTROL MEASURES AND PROPERLY DISPOSE OF FOLLOWING CONSTRUCTION AND

GENERAL CONSTRUCTION SEQUENCE:

FLOW DIRECTION INLET PROTECTION SLOPE & DIRECTION

TEST PIT LOCATION

DRAIN MANHOLE

CATCH BASIN

UTILITY POLE

WATER VALVE

GAS SHUT OFF

GAS METER

SPOT GRADE

SIGN POST

LIGHT POLE

CONCRETE

CURB SPOT GRADE

WATER SHUT OFF

WATER SUPPLY WELL

PAD MOUNTED TRANSFORMER

SANITARY SEWER MANHOLE

SANITARY SEWER CLEAN-OUT

BORING LOCATION

MONITORING WELL LOCATION

PERC. TEST LOCATION

PHOTO LOCATION / DIRECTION

STEEP SLOPE

10. PLACE, GRADE, AND STABILIZE DISTURBED AREAS WITH TEMPORARY SEEDING AND MULCHING.

11.BEGIN CONSTRUCTION OF BUILDING AND REMAINING SITE WORK.

12. PLACE PAVEMENT COURSES, SIDEWALKS, AND CURBING.

13. ALL CUT AND FILL SLOPES SHALL BE STABILIZED, LOAMED, SEEDED, AND MULCHED.

14. COMPLETE PERMANENT SEEDING AND LANDSCAPING IN ACCORDANCE WITH THE LANDSCAPE DESIGN AND DETAILS.

CLOSE-OUT PROCEDURES. PROPERLY DISPOSE OF COLLECTED SEDIMENT AND DEBRIS.

ONCE FULL GROUND COVER HAS BEEN ESTABLISHED.

PERMANENT STABILIZATION: GRASS, TREES, SHRUBS AND MULCHED PLANTING BEDS WILL BE CONSTRUCTED AND MAINTAINED IN LOCATIONS AS SHOWN ON THE DRAWINGS TO STABILIZE AREAS NOT WITHIN THE PARKING LOT/BUILDING FOOTPRINT. THE CONTRACTOR WILL BE RESPONSIBLE FOR EROSION AND SEDIMENT CONTROL FOR ONE YEAR AFTER

AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED: 1. BASE COARSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED;

2. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED; 3. A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIP RAP HAS BEEN INSTALLED;

ALL ROADWAYS/PARKING AREAS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.

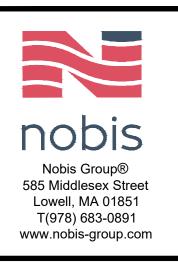
SHOULD EXCAVATION DEWATERING BE REQUIRED, THE CONTRACTOR MUST INSURE THAT ANY EXCAVATION DEWATERING DISCHARGES ARE NOT CONTAMINATED. NOTE: THE WATER IS CONSIDERED UNCONTAMINATED IF THERE IS NO GROUNDWATER CONTAMINATION WITHIN 1,000 FEET OF THE DISCHARGE.

THE CONTRACTOR MUST TREAT ANY UNCONTAMINATED EXCAVATION DEWATERING AS NECESSARY TO REMOVE SUSPENDED SOLIDS AND TURBIDITY DURING CONSTRUCTION. THE DISCHARGES MUST BE SAMPLED AT A LOCATION PRIOR TO MIXING WITH STORM WATER OR STREAM FLOW AT LEAST ONCE PER WEEK DURING WEEKS WHEN DISCHARGES OCCUR. THE SAMPLES MUST BE ANALYZED FOR TOTAL SUSPENDED SOLIDS (TSS) AND MUST MEET MONTHLY AVERAGE AND MAXIMUM DAILY TSS LIMITATIONS OF 50 MILLIGRAMS PER LITER (MG/L), RESPECTIVELY.

STORMWATER POLLUTION PREVENTION PLAN:

THE PROJECT IS SUBJECT TO THE REQUIREMENTS OF THE USEPA NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) CONSTRUCTION PERMIT. WHICH INCLUDES A WRITTEN STORM WATER POLLUTION PREVENTION (SWPPP) PLAN FOR CONSTRUCTION. THE SWPPP PLAN SHALL OUTLINE DETAILED SPECIFICATIONS FOR IMPLEMENTATION, INSPECTIÓN, AND MAINTENANCE OF ALL EROSION CONTROL MEASURES. THE CONTRACTOR HAS SOLE RESPONSIBILITY FOR COMPLIANCE WITH THE EROSION AND SEDIMENT CONTROL PLAN, SHALL BE RESPONSIBLE FOR AMENDING THE SWPPP ACCORDINGLY, AND SHALL BE RESPONSIBLE FOR ANY PENALTIES RESULTING FROM LACK OF COMPLIANCE.

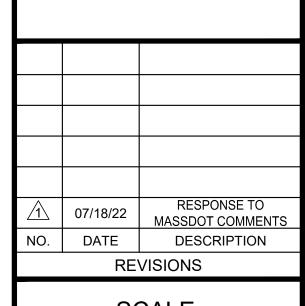
SPECIFICATIONS FOR TEMPORARY AND PERMANENT SEEDING:


GRASS SEED MIXES SHALL CONSIST OF THE MIXTURES AS DETAILED IN THE FOLLOWING

EROSION CONTROL SEED MIX						
	BY % MASS	% GERMINATION (MIN.)				
(MIN.)	80 (MIN.)	85				
CREEPING)	4 (MIN.)	80				
GRASS	3 (MIN.)	90				
	3 (MIN.)	90				
RASS	0.5 (MAX.)					
SEED	0.5 (MAX.)					
	1.0 (MAX.)					
	PERMANENT SEED MIX					
	BY % MASS	% GERMINATION (MIN.)				
REEPING)	50	85				
	25	85				
GRASS	10	90				
	10	85				
R	5	85				

WINTER CONSTRUCTION NOTES

ALL PROPOSED POST-DEVELOPMENT VEGETATED AREAS WHICH DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15TH, OR WHICH ARE DISTURBED AFTER OCTOBER 15TH, SHALL BE STABILIZED BY SEEDING AND INSTALLING EROSION CONTROL BLANKETS ON SLOPES GREATER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE ELSEWHERE. MULCH REMAINING IN THE SPRING SHALL BE REMOVED AND REPLACED AT RATE OF 2 TONS PER ACRE. THE PLACEMENT OF EROSION CONTROL BLANKETS OR MULCH AND TACKIFIER SHALL NOT OCCUR OVER ACCUMULATED

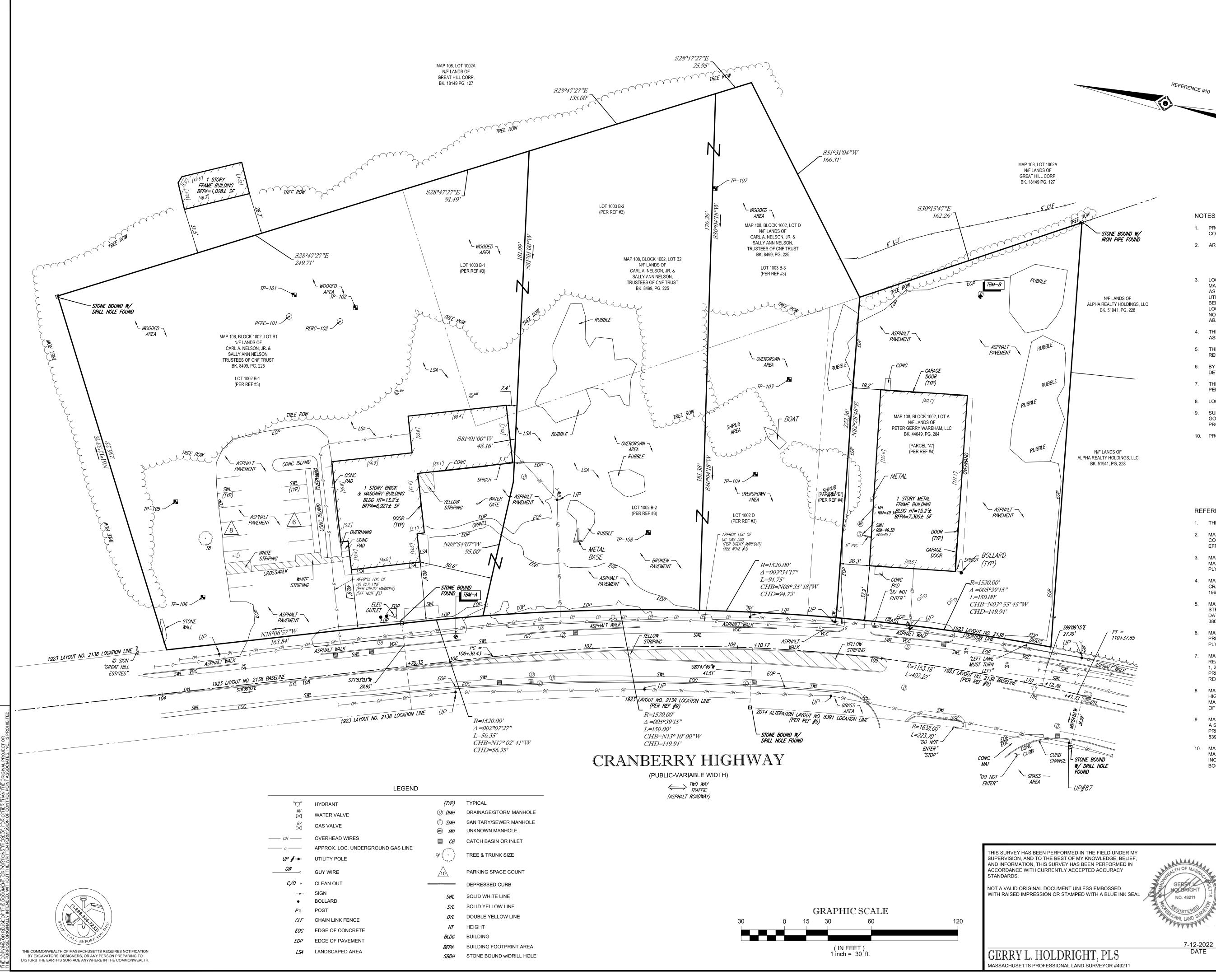

ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15TH, OR WHICH ARE DISTURBED AFTER OCTOBER 15TH, SHALL BE STABILIZED WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE

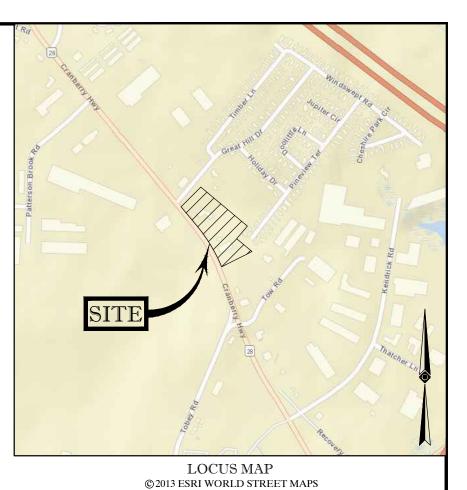
NOT ISSUED FOR CONSTRUCTION

TRUE STORAGE FACILITY

2400 & 2402 CRANBERRY HWY WAREHAM, MASSACHUSETTS

SCALE: AS NOTED


APRIL 2022 DATE: NOBIS PROJECT NO. 95561.15 DRAWN BY: SM

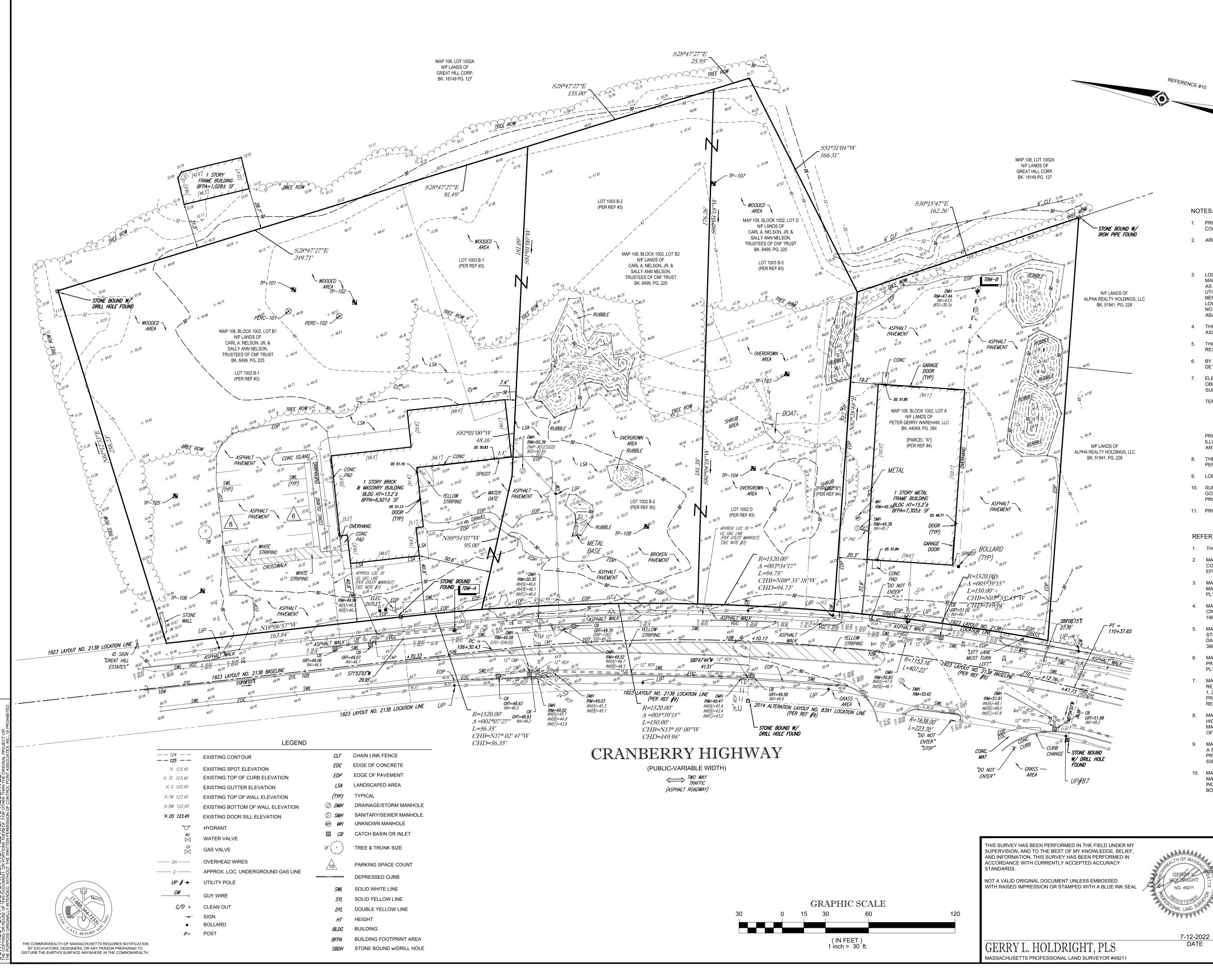

CHECKED BY: CK CAD DRAWING FILE: X-95561.15-BORDER.dwg

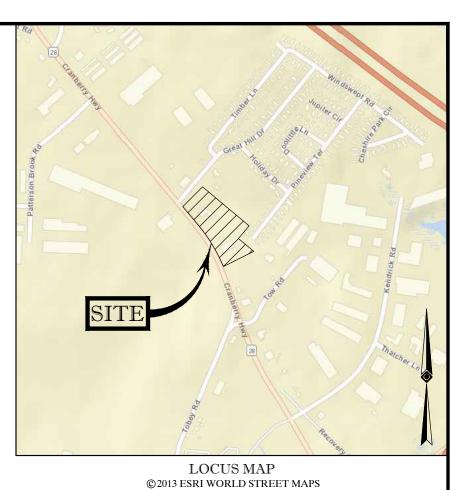
SHEET TITLE

GENERAL NOTES AND LEGEND

> SHEET **G**-

NOT TO SCALE


NOTES:


- 1. PROPERTY KNOWN AS LOTS A, B1, B2 & D AS SHOWN ON THE TOWN OF WAREHAM, PLYMOUTH COUNTY, COMMONWEALTH OF MASSACHUSETTS MAP NO. 108.
- 2. AREA: LOT A = 38,487 SQUARE FEET OR 0.883 ACRES LOT B-1 = 80,353 SQUARE FEET OR 1.845 ACRES LOT B-2 = 44,797 SQUARE FEET OR 1.028 ACRES
 - LOT D = 31,218 SQUARE FEET OR 0.717 ACRES TOTAL = 194,855 SQUARE FEET OR 4.466
- 3. LOCATION OF UNDERGROUND UTILITIES ARE APPROXIMATE. LOCATIONS AND SIZES ARE BASED ON UTILITY MARK-OUTS, ABOVE GROUND STRUCTURES THAT WERE VISIBLE & ACCESSIBLE IN THE FIELD, AND THE MAPS AS LISTED IN THE REFERENCES AVAILABLE AT THE TIME OF THE SURVEY, AVAILABLE AS-BUILT PLANS AND UTILITY MARKOUT DOES NOT ENSURE MAPPING OF ALL UNDERGROUND UTILITIES AND STRUCTURES BEFORE ANY EXCAVATION IS TO BEGIN, ALL UNDERGROUND UTILITIES SHOULD BE VERIFIED AS TO THEIR LOCATION, SIZE AND TYPE BY THE PROPER UTILITY COMPANIES. CONTROL POINT ASSOCIATES, INC. DOES NOT GUARANTEE THE UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA EITHER IN SERVICE OR ABANDONED.
- 4 THIS PLAN IS BASED ON INFORMATION PROVIDED BY A SURVEY PREPARED IN THE FIELD BY CONTROL POINT ASSOCIATES, INC. AND OTHER REFERENCE MATERIAL AS LISTED HEREON.
- THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A TITLE COMMITMENT AND IS SUBJECT TO THE RESTRICTIONS, COVENANTS AND/OR EASEMENTS THAT MAY BE CONTAINED THEREIN.
- 6. BY GRAPHIC PLOTTING ONLY PROPERTY IS LOCATED IN FLOOD HAZARD ZONE X-UNSHADED (AREAS
- DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN) PER REF. #2 7. THE OFFSETS SHOWN ARE NOT TO BE USED FOR THE CONSTRUCTION OF ANY STRUCTURE, FENCE,
- PERMANENT ADDITION, ETC. 8. LOCUS PROPERTIES ARE LOCATED WHOLLY WITHIN THE INDUSTRIAL ZONING DISTRICT.
- 9. SUBJECT PROPERTIES WERE CHECKED FOR THE PRESENCE OF WETLANDS ON JANUARY 12, 2021 BY GODDARD CONSULTING, LLC, CERTIFIED WETLAND SCIENTISTS. NO WETLANDS WERE FOUND ON THE PROPERTIES.
- 10. PROPERTY LINES BETWEEN LOTS A, B-1, B-2 & D TO BE ELIMINATED AT FUTURE DATE.

REFERENCES:

- 1. THE TAX ASSESSOR'S MAP OF WAREHAM, PLYMOUTH COUNTY, MAP #108.
- 2. MAP ENTITLED "NATIONAL FLOOD INSURANCE PROGRAM, FIRM, FLOOD INSURANCE RATE MAP, PLYMOUTH COUNTY, MASSACHUSETTS (ALL JURISDICTIONS) PANEL 486 OF 650," MAP NUMBER 25023C0486J, MAP EFFECTIVE DATE: JULY 17, 2012.
- 3. MAP ENTITLED "DIVISION OF LAND PREPARED FOR M. EDWIN STRAWN, CRANBERRY HIGHWAY, WAREHAM, MASS," PREPARED BY CHARLES . ROWLEY & ASSOCIATES, DATED OCTOBER 19, 1977. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 19, PLAN 971.
- 4. MAP ENTITLED "PLAN OF LAND TO BE CONVEYED BY ALFRED H. HERMANSON & JOHN W. HERMANSON, CRANBERRY HIGHWAY, WAREHAM, MASS.," PREPARED BY WALTER E. ROWLEY & ASSOCIATES, DATED MAY 7, 1968. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 3444, PLAN 537.
- 5. MAP ENTITLED "PLAN OF LAND TO BE CONVEYED BY GREAT HILL MOBILEHOMES, INC., & ELMER MERRITT STRAWN, CRANBERRY HIGHWAY, WAREHAM, MASS," PREPARED BY WALTER E. ROWLEY & ASSOCIATES, DATED DECEMBER 17, 1971. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 3802, PLAN 606.
- 6. MAP ENTITLED "PLAN OF LAND SURVEYED FOR ELMER MERRITT STRAWN, GREAT HILL, WAREHAM, MASS.," PREPARED BY WALTER E. ROWLEY & ASSOCIATES, DATED NOVEMBER 24, 1969. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 3584, PLAN 696.
- MAP ENTITLED "APPROVAL NOT REQUIRED PLAN DRANW FOR: NANCY S. ANGUS, TRUSTEE OF CRAN-WAY REALTY TRUST, 2416 CRANBERRY HIGHWAY, LLC, 2404, 2416, 2414 CRANBERRY HIGHWAY & TOW ROAD, LOTS 1, 2, 3, & 4, MAP 108, TOWN OF WAREHAM, PLYMOUTH COUNTY, COMMONWEALTH OF MASSACHUSETTS." PREPARED BY CONTROL POINT ASSOCIATES, INC., DATED JANUARY 30, 2019. LAST REVISED MARCH 20, 2019. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 63, PLAN 1009.
- MAP ENTITLED "PLAN OF ROAD IN THE TOWN OF WAREHAM, PLYMOUTH COUNTY, LAID OUT AS A STATE 8 HIGHWAY BY THE DEPARTMENT OF PUBLIC WORKS, DIVISION OF HIGHWAYS," PREPARED BY THE MASSACHUSETTS DEPARTMENT OF PUBLIC WORKS, DATED NOVEMBER 6, 1923. LAYOUT NO. 2138, SHEET 10 OF 16.
- 9. MAP ENTITLED "PLAN OF ROAD IN THE TOWN OF WAREHAM, PLYMOUTH COUNTY, ALTERED AND LAID OUT AS A STATE HIGHWAY BY THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION, HIGHWAY DIVISION," PREPARED BY THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION, DATED JUNE 12, 2014. LAYOUT NO. 8391, SHEET 1 OF 5.
- 10. MAP ENTITLED "APPROVAL NOT REQUIRED PLAN, DRAWN FOR DONALD ANGUS IN WEST WAREHAM, MASSACHUSETTS, PREPARED FOR: CRAN-WAY REALTY TRUST," PREPARED BY EASTBOUND LAND SURVEY. INC., DATED FEBRUARY 3, 2006. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 52, PLAN 105.

	2		UPDATED PER	MA DOT COMMENT	S	-	R.J.K.	G.L.H.	7-12-2022
	1	REVISED TO ADD BORING LOCATIONS			C.W.	M.D.	G.L.H.	11-12-21	
	No.		DESCRIPT	ION OF REVISION	F	IELD CREW	DRAWN:	APPROVED:	DATE
DOCUMENT UNLESS EMBOSSED ON OR STAMPED WITH A BLUE INK SEAL	01- FIEL 20 FIEL	D DATE 12-2021 D BOOK NO. -17 MA D BOOK PG. -82	BOUNDARY & LOCATION SURVEY NOBIS ENGINEERING 2400, 2402 & 2406 CRANBERRY HIGHWAY LOTS A, B1, B2 & D, BLOCK 1002, MAP 108 TOWN OF WAREHAM, PLYMOUTH COUNTY COMMONWEALTH OF MASSACHUSETTS						
7-12-2022 DATE	C. ^V DRA R.v		A 352 SO 508	CONTR SSOCI TURNPIKE RC UTHBOROUGH .948.3000 - 508 VW.CPASURVE DATE	A T E S, DAD I, MA 01772 .948.3003 FAX		CHA • HAUPI MANH MT L	LBANY, NY S LFONT, PA 2 PAUGE, NY (ATTAN, NY (AUREL, NJ (ARREN, NJ 9 DWG. NO	215-712-9800 531-580-2645 546-780-0411 509-857-2099 908-668-0099
OLDRIGHT, PLS DATE							0070		
ESSIONAL LAND SURVEYOR #49211	K .	J.K.	G.L.H.	01-25-2021	1"=30'	03-20	0318	1 O	

NOT TO SCALE

NOTES:

- 1. PROPERTY KNOWN AS LOTS A, B1, B2 & D AS SHOWN ON THE TOWN OF WAREHAM, PLYMOUTH COUNTY, COMMONWEALTH OF MASSACHUSETTS MAP NO. 108. 2. AREA: LOT A = 38,487 SQUARE FEET OR 0.883 ACRES
 - LOT B-1 = 80,353 SQUARE FEET OR 1.845 ACRES LOT B-2 = 44,797 SQUARE FEET OR 1.028 ACRES LOT D = 31,218 SQUARE FEET OR 0.717 ACRES TOTAL = 194,855 SQUARE FEET OR 4.466
- 3. LOCATION OF UNDERGROUND UTILITIES ARE APPROXIMATE. LOCATIONS AND SIZES ARE BASED ON UTILITY MARK-OUTS, ABOVE GROUND STRUCTURES THAT WERE VISIBLE & ACCESSIBLE IN THE FIELD, AND THE MAPS AS LISTED IN THE REFERENCES AVAILABLE AT THE TIME OF THE SURVEY. AVAILABLE AS-BUILT PLANS AND UTILITY MARKOUT DOES NOT ENSURE MAPPING OF ALL UNDERGROUND UTILITIES AND STRUCTURES. BEFORE ANY EXCAVATION IS TO BEGIN, ALL UNDERGROUND UTILITIES SHOULD BE VERIFIED AS TO THEIR LOCATION, SIZE AND TYPE BY THE PROPER UTILITY COMPANIES. CONTROL POINT ASSOCIATES, INC. DOES NOT GUARANTEE THE UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA EITHER IN SERVICE OR ABANDONED.
- THIS PLAN IS BASED ON INFORMATION PROVIDED BY A SURVEY PREPARED IN THE FIELD BY CONTROL POINT 4. ASSOCIATES, INC. AND OTHER REFERENCE MATERIAL AS LISTED HEREON.
- THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A TITLE COMMITMENT AND IS SUBJECT TO THE
- 6. BY GRAPHIC PLOTTING ONLY PROPERTY IS LOCATED IN FLOOD HAZARD ZONE X-UNSHADED (AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN) PER REF. #2

RESTRICTIONS, COVENANTS AND/OR EASEMENTS THAT MAY BE CONTAINED THEREIN.

ELEVATIONS REFER TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88), BASED ON GPS OBSERVATIONS UTILIZING THE KEYSTONE VRS NETWORK (KEYNETGPS) TAKEN AT THE TIME OF THE FIELD SURVEY.

TEMPORARY BENCH MARKS SET: TBM-A: MAG NAIL SET IN ASPHALT WALK ON EASTERLY SIDE OF CRANBERRY HIGHWAY.

TBM-B: MAG NAIL SET IN ASPHALT PAVEMENT. ELEVATION = 47.47'

ELEVATION = 49.77'


PRIOR TO CONSTRUCTION IT IS THE CONTRACTOR'S RESPONSIBILITY TO VERIFY THAT THE BENCHMARKS ILLUSTRATED ON THIS SKETCH HAVE NOT BEEN DISTURBED AND THEIR ELEVATIONS HAVE BEEN CONFIRMED. ANY CONFLICTS MUST BE REPORTED PRIOR TO CONSTRUCTION.

- THE OFFSETS SHOWN ARE NOT TO BE USED FOR THE CONSTRUCTION OF ANY STRUCTURE, FENCE, PERMANENT ADDITION, ETC.
- 9. LOCUS PROPERTIES ARE LOCATED WHOLLY WITHIN THE INDUSTRIAL ZONING DISTRICT.
- 10. SUBJECT PROPERTIES WERE CHECKED FOR THE PRESENCE OF WETLANDS ON JANUARY 12, 2021 BY GODDARD CONSULTING, LLC, CERTIFIED WETLAND SCIENTISTS. NO WETLANDS WERE FOUND ON THE PROPERTIES.
- 11. PROPERTY LINES BETWEEN LOTS A, B-1, B-2 & D TO BE ELIMINATED AT FUTURE DATE.

REFERENCES:

- 1. THE TAX ASSESSOR'S MAP OF WAREHAM, PLYMOUTH COUNTY, MAP #108.
- 2. MAP ENTITLED "NATIONAL FLOOD INSURANCE PROGRAM. FIRM. FLOOD INSURANCE RATE MAP. PLYMOUTH COUNTY, MASSACHUSETTS (ALL JURISDICTIONS) PANEL 486 OF 650," MAP NUMBER 25023C0486J, MAP EFFECTIVE DATE: JULY 17, 2012.
- 3. MAP ENTITLED "DIVISION OF LAND PREPARED FOR M. EDWIN STRAWN, CRANBERRY HIGHWAY, WAREHAM, MASS," PREPARED BY CHARLES . ROWLEY & ASSOCIATES, DATED OCTOBER 19, 1977. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 19, PLAN 971.
- 4. MAP ENTITLED "PLAN OF LAND TO BE CONVEYED BY ALFRED H. HERMANSON & JOHN W. HERMANSON, CRANBERRY HIGHWAY, WAREHAM, MASS.," PREPARED BY WALTER E. ROWLEY & ASSOCIATES, DATED MAY 7, 1968. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 3444, PLAN 537.
- MAP ENTITLED "PLAN OF LAND TO BE CONVEYED BY GREAT HILL MOBILEHOMES, INC., & ELMER MERRITT 5. STRAWN, CRANBERRY HIGHWAY, WAREHAM, MASS," PREPARED BY WALTER E. ROWLEY & ASSOCIATES, DATED DECEMBER 17, 1971. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 3802, PLAN 606.
- MAP ENTITLED "PLAN OF LAND SURVEYED FOR ELMER MERRITT STRAWN, GREAT HILL, WAREHAM, MASS.," 6. PREPARED BY WALTER E. ROWLEY & ASSOCIATES, DATED NOVEMBER 24, 1969. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 3584, PLAN 696.
- MAP ENTITLED "APPROVAL NOT REQUIRED PLAN DRANW FOR: NANCY S. ANGUS, TRUSTEE OF CRAN-WAY 7. REALTY TRUST, 2416 CRANBERRY HIGHWAY, LLC, 2404, 2416, 2414 CRANBERRY HIGHWAY & TOW ROAD, LOTS 1, 2, 3, & 4, MAP 108, TOWN OF WAREHAM, PLYMOUTH COUNTY, COMMONWEALTH OF MASSACHUSETTS," PREPARED BY CONTROL POINT ASSOCIATES, INC., DATED JANUARY 30, 2019. LAST REVISED MARCH 20, 2019. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 63, PLAN 1009.
- MAP ENTITLED "PLAN OF ROAD IN THE TOWN OF WAREHAM, PLYMOUTH COUNTY, LAID OUT AS A STATE 8. HIGHWAY BY THE DEPARTMENT OF PUBLIC WORKS, DIVISION OF HIGHWAYS," PREPARED BY THE MASSACHUSETTS DEPARTMENT OF PUBLIC WORKS, DATED NOVEMBER 6, 1923. LAYOUT NO. 2138, SHEET 10 OF 16.
- MAP ENTITLED "PLAN OF ROAD IN THE TOWN OF WAREHAM, PLYMOUTH COUNTY, ALTERED AND LAID OUT AS 9. A STATE HIGHWAY BY THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION, HIGHWAY DIVISION," PREPARED BY THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION, DATED JUNE 12, 2014. LAYOUT NO. 8391, SHEET 1 OF 5.
- 10. MAP ENTITLED "APPROVAL NOT REQUIRED PLAN, DRAWN FOR DONALD ANGUS IN WEST WAREHAM, MASSACHUSETTS, PREPARED FOR: CRAN-WAY REALTY TRUST," PREPARED BY EASTBOUND LAND SURVEY, INC., DATED FEBRUARY 3, 2006. RECORDED WITH THE PLYMOUTH COUNTY REGISTRY OF DEEDS AS PLAN BOOK 52, PLAN 105.

		2	UPDATED PEF	R MA DOT COMMENT	s	-	R.J.K.	G.L.H.	7-12-2022	
		1	REVISED TO AD	REVISED TO ADD BORING LOCATIONS		C.W.	M.D.	G.L.H.	11-12-21	
		No.	DESCRIPT	ION OF REVISION	F	FIELD CREW	DRAWN:	APPROVED:	DATE	
N PERFORMED IN THE FIELD UNDER MY THE BEST OF MY KNOWLEDGE, BELIEF, IS SURVEY HAS BEEN PERFORMED IN JRRENTLY ACCEPTED ACCURACY DOCUMENT UNLESS EMBOSSED ION OR STAMPED WITH A BLUE INK SEAL	GERDY L HOLDRIGHT NO. 49211	FIELD DATE 01-12-20 FIELD BOOK 20-17 N FIELD BOOK 80-82	21 NO. A 2400, 2402 LOTS A, B TOWN OF	BOUNDARY, TOPOGRAPHIC & UTILITY SURVEY NOBIS ENGINEERING 2400, 2402 & 2406 CRANBERRY HIGHWAY LOTS A, B1, B2 & D, BLOCK 1002, MAP 108 TOWN OF WAREHAM, PLYMOUTH COUNTY COMMONWEALTH OF MASSACHUSETTS						
	7-12-2022	FIELD CREW C.W. DRAWN: R.J.K.		CONTR SSOCI UTHBOROUGH UTHBOROUGH 3.948.3000 - 508 WW.CPASURVE	A T E S, DAD 1, MA 01772 .948.3003 FAX		CHA HAUP MANH MT I	LBANY, NY S LFONT, PA 2 PAUGE, NY 6 ATTAN, NY 6 AUREL, NJ 6 'ARREN, NJ 9	215-712-9800 531-580-2645 546-780-0411 509-857-2099	
OLDRIGHT, PLS fessional land surveyor #49211	DATE	REVIEWED: R.J.K.	APPROVED: G.L.H.	DATE 01-25-2021	scale 1"=30'	FILE NO.	0378	dwg. no 1 O		

NOTES:

- 1. REFER TO SURVEYOR'S PLAN FOR PLAN REFERENCES ADDITIONAL NOTES, EXISTING DRAINAGE AND SANITARY SEWER INVERT INFORMATION.
- 2. LOCATION AND ELEVATION OF UTILITIES ARE APPROXIMATE ONLY AND ARE BASED ON FIELD MEASUREMENTS OF VISIBLE STRUCTURES. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING ALL UTILITIES PRIOR TO CONSTRUCTION AND WILL NOTIFY ENGINEER AND OWNER IMMEDIATELY OF ANY CONFLICTS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR CONTACTING DIG SAFE (1-888-DIG-SAFE) AT LEAST 72 HOURS PRIOR TO THE COMMENCEMENT OF WORK. THE CONTRACTOR WILL COORDINATE WORK WITH THE TOWN FIRE AND POLICE DEPARTMENTS. 4. DEMOLISH STRUCTURES AND SITE FEATURES AS SHOWN HEREON AND REMOVE
- PAVEMENT TO LIMITS INDICATED. 5. CONTRACTOR IS RESPONSIBLE FOR OFF-SITE DISPOSAL OF CONSTRUCTION DEMOLITION DEBRIS IN ACCORDANCE WITH LOCAL, STATE AND FEDERAL
- REGULATIONS. 6. CONTRACTOR WILL COORDINATE REMOVAL/RELOCATION OF UNDERGROUND GAS AND OVERHEAD UTILITIES WITH RESPECTIVE UTILITY COMPANIES.
- 7. ABATEMENT OF HAZARDOUS MATERIALS SUCH AS LEAD PAINT, ASBESTOS, ETC., WILL BE PERFORMED BY A LICENSED CONTRACTOR PRIOR TO COMMENCEMENT OF DEMOLITION. A PRE-DEMOLITON SURVEY WILL BE PERFORMED BY CONTRACTOR PRIOR TO THE START OF DEMOLITION ACTIVITIES TO ENSURE PROPER DEMOLITION
- AND DISPOSAL PROCEDURES. 8. DEMOLITION SEQUENCING WILL BE AS DIRECTED BY THE PRIME CONTRACTOR AND THE ARCHITECT.
- 9. ALL WORK PERFORMED TO CONFORM TO THE REQUIREMENTS OF THE LATEST EDITION OF THE MUNICIPAL CONSTRUCTION STANDARDS AND MASSDOT CONSTRUCTION STANDARDS WITHIN THE ROUTE 28 RIGHT-OF-WAY.
- 10. REFER TO SHEET G-1 FOR GENERAL NOTES AND LEGEND FOR CONSTRUCTION SEQUENCING NOTES. 11. CONTRACTOR WILL NOTIFY OWNER, ENGINEER, AND ARCHITECT IMMEDIATELY IF SITE
- CONDITIONS DIFFER FROM WHAT IS SHOWN ON PLAN. 12. CONTRACTOR WILL PROTECT ALL EXISTING UTILITIES WITHIN THE LIMIT OF WORK. CONTRACTOR WILL BE RESPONSIBLE FOR DAMAGES TO EXISTING UTILITIES AND ALL
- COSTS ASSOCIATED WITH REPLACEMENT OR REPAIR WILL BE BORNE BY THE CONTRACTOR.
- 13. CONTRACTOR WILL PROTECT ALL SITE FEATURES OUTSIDE LIMIT OF WORK SHOWN HEREON. CONTRACTOR WILL BE RESPONSIBLE FOR DAMAGES TO EXISTING SITE FEATURES AND ALL COSTS ASSOCIATED WITH REPLACEMENT OR REPAIR WILL BE BORNE BY THE CONTRACTOR.
- 14. DEMOLITION/REMOVAL OF EXISTING STORMWATER STRUCTURES AND PIPING WILL BE CONDUCTED DRY CONDITIONS TO THE EXTENT PRACTICAL. INSTALLATION OF NEW STRUCTURES AND PIPE WILL BE CONDUCTED PRIOR TO DEMOLITION TO THE EXTENT PRACTICAL.
- *TBM–B* 15. EXISTING SEPTIC SYSTEMS WITHIN THE WORK AREA WILL BE DISCONTINUED PRIOR TO DEMOLITION. CONTRACTOR WILL REMOVE EXISTING PIPES CONNECTING TO THE BUILDING AND THE SEPTIC SYSTEM. CONTRACTOR WILL THEN DRAIN AND REMOVE EXISTING SEPTIC TANKS. ALL MATERIALS TO BE DISPOSED OF OFF-SITE.
 - 16. VEHICULAR AND NON-VEHICULAR ACCESS PERMITS FROM MASSDOT ARE REQUIRED FOR THE WORK WITHIN THE ROUTE 28 RIGHT-OF-WAY.

www.nobis-group.com

NOT ISSUED FOR CONSTRUCTION

TRUE STORAGE FACILITY

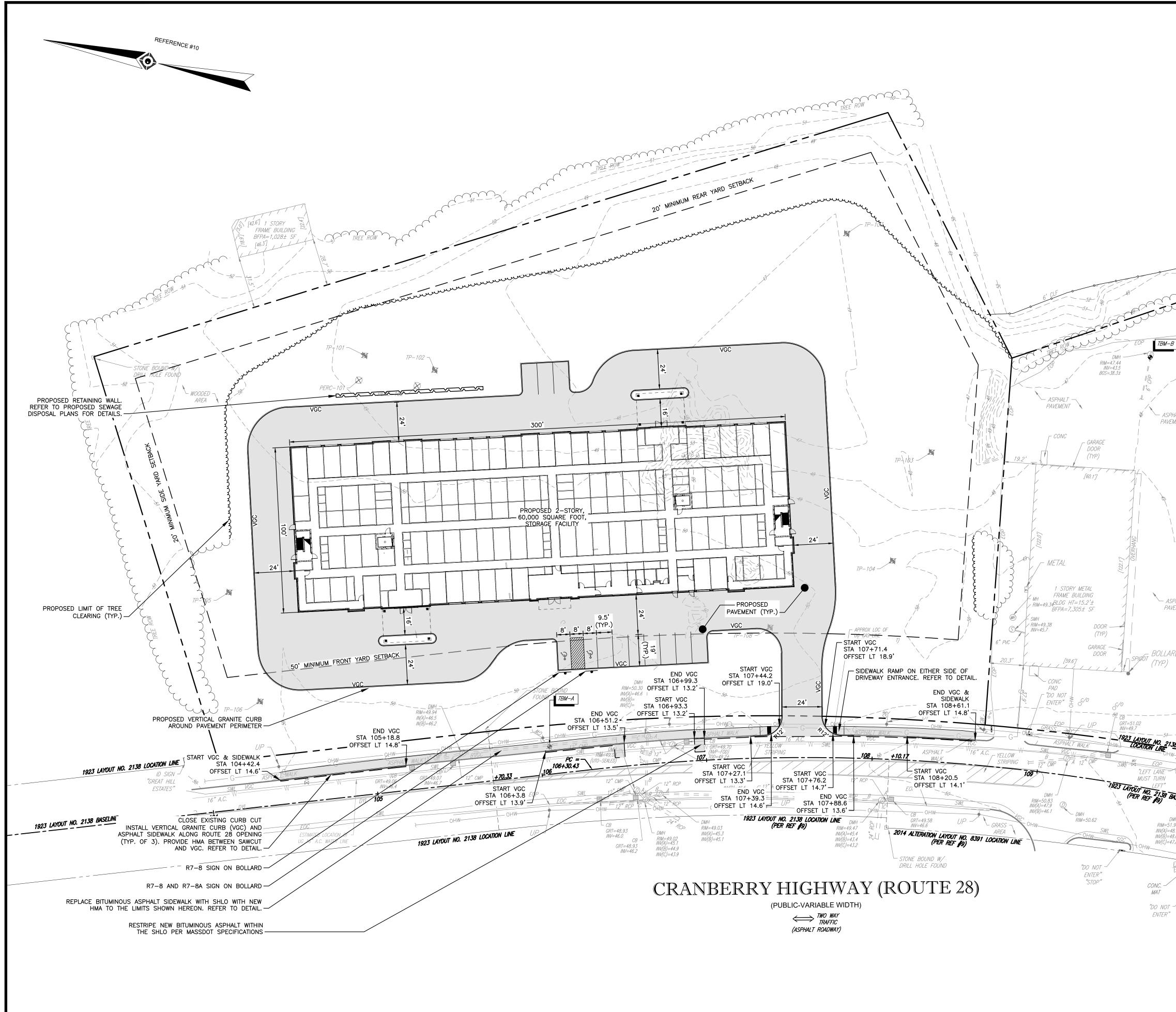
2400 & 2402 CRANBERRY HWY WAREHAM, MASSACHUSETTS

ASPi	
PAVEi	

– ASPHA

PAVEML

BOLLARI



ENTER"

RESPONSE TO 1 07/18/22 MASSDOT COMMENTS NO. DATE DESCRIPTION REVISIONS 30' 60 GRAPHIC SCALE DATE: APRIL 2022 NOBIS PROJECT NO. 95561.15 DRAWN BY: SM CHECKED BY: CK CAD DRAWING FILE: 95561.15-C-100-DEMO.dwg SHEET TITLE

DEMOLITION PLAN

> SHEET \frown

NOTES:

- 1. THE PURPOSE OF THIS PLAN IS TO DEPICT THE SITE LAYOUT FOR A PROPOSED STORAGE FACILITY BUILDING MERGING EXISTING LOTS A, B1, B2, & D FROM TAX MAP 108 BLOCK 1002.
- 2. ALL BUILDING AND SITE CONSTRUCTION TO COMPLY WITH THE RULES AND REGULATIONS OF THE AMERICANS WITH DISABILITY ACT (ADA) 2010 EDITION.
- 3. DIMENSIONS SHOWN TAKE PRECEDENCE OVER SCALED DIMENSIONS. THE CONTRACTOR TO USE CAUTION WHEN SCALING REPRODUCED PLANS. IN THE EVENT OF A CONFLICT BETWEEN THIS PLAN SET AND ANY OTHER DRAWINGS AND / OR SPECIFICATIONS, THE ENGINEER WILL BE NOTIFIED BY THE CONTRACTOR.
- 4. NO JURISDICTIONAL WETLANDS WERE FOUND ON THE SUBJECT PARCEL BASED ON AN INSPECTION MADE BY GODDARD CONSULTING, LLC'S CERTIFIED WETLAND SCIENTIST ON JANUARY 12, 2021.
- 5. PROPOSED BUILDING WILL BE SERVICED BY MUNICIPAL WATER AND PRIVATE SEPTIC. 6. CONTRACTOR IS RESPONSIBLE FOR CONTACTING DIG SAFE (1-888-DIG-SAFE) AT LEAST 72 HOURS PRIOR TO THE COMMENCEMENT OF WORK. THE CONTRACTOR WILL COORDINATE WORK WITH THE CITY FIRE, POLICE, AND COMMUNITY DEVELOPMENT DEPARTMENTS.
- 7. A MANDATORY PRE-CONSTRUCTION MEETING WILL NEED TO BE HELD PRIOR TO ISSUANCE OF ANY PERMITS TO DISCUSS INSPECTION FEES, CONSTRUCTION SCHEDULE, ETC.
- 8. CONTRACTOR WILL NOTIFY ENGINEERS IMMEDIATELY IF SITE CONDITIONS DIFFER FROM WHAT IS SHOWN ON PLAN.

PLAN REFERENCES:

- 1. EXISTING CONDITIONS, TOPOGRAPHICAL INFORMATION, NORTH ORIENTATION, NORTH ARROW, AND COORDINATE VALUES DEPICTED ON THESE DRAWINGS ARE BASED ON PLANS TITLED "BOUNDARY & LOCATION SURVEY, 2400, 2402, & 2406 CRANBERRY HIGHWAY", DATED JULY 12, 2022, PROVIDED TO NOBIS GROUP. BY CONTROL POINT ASSOCIATES, INC.
- 2. BUILDING FOOTPRINT REPRESENTS FIRST FLOOR PROVIDED TO NOBIS GROUP. BY BRADY SULLIVAN ON APRIL 18, 2022. REFER TO ARCHITECTURAL/STRUCTURAL PLANS FOR FOUNDATION AND BUILDING DIMENSIONS.

ZONING ANALYSIS

TAX MAP/BLOCK/LOT: ADDRESS:

ZONING DISTRICT:

MINIMUM LOT AREA

MINIMUM LOT FRONTAGE

30 000 SE

SIDE YARD

REAR YARD

INDUSTRIAL

TBM-B

`— ASPHA

PAVEMEI

MAP 108 / BLOCK 1002 / LOTS A, B1, B2, & D 2400, 2402, & 2406 CRANBERRY HIGHWAY (MA ROUTE 28) WAREHAM, MASSACHUSETTS INDUSTRIAL

PROVIDED 194,855 SF OR 4.466 ACRES PROVIDED 614.94'

LMAXIMUM BUILDING COVERAGEPROVIDED50%17%

MAXIMUM LOT COVERAGE 70% OR 60,000 SF MAXIMUM BUILDING HEIGHT

BUILDING SETBACKS REQUIRED
FRONT YARDREQUIRED
20' (50' ALONG MA ROUTE 28)

LANDSCAPE BUFFER REQUIRED ADJACENT TO COMMERCIAL USE REQUIRED RESIDENTIAL COMMERCIAL/OFFICE

PROVIDED 37% OR 71,500 SF PROVIDED

<u>BOLLARD</u>

MAT

CONC. 🦯 🔺 "DO NOT -/ ENTER"

NOBIS PROJECT NO. 95561.15 DRAWN BY: SM CHECKED BY: CK CAD DRAWING FILE: 95561.15-C-200-SITE.dwg SHEET TITLE SITE LAYOUT PLAN SHEET **C-2**

RESPONSE TO

60'

MASSDOT COMMENTS

APRIL 2022

1 07/18/22

DATE:

NO. DATE DESCRIPTION

REVISIONS

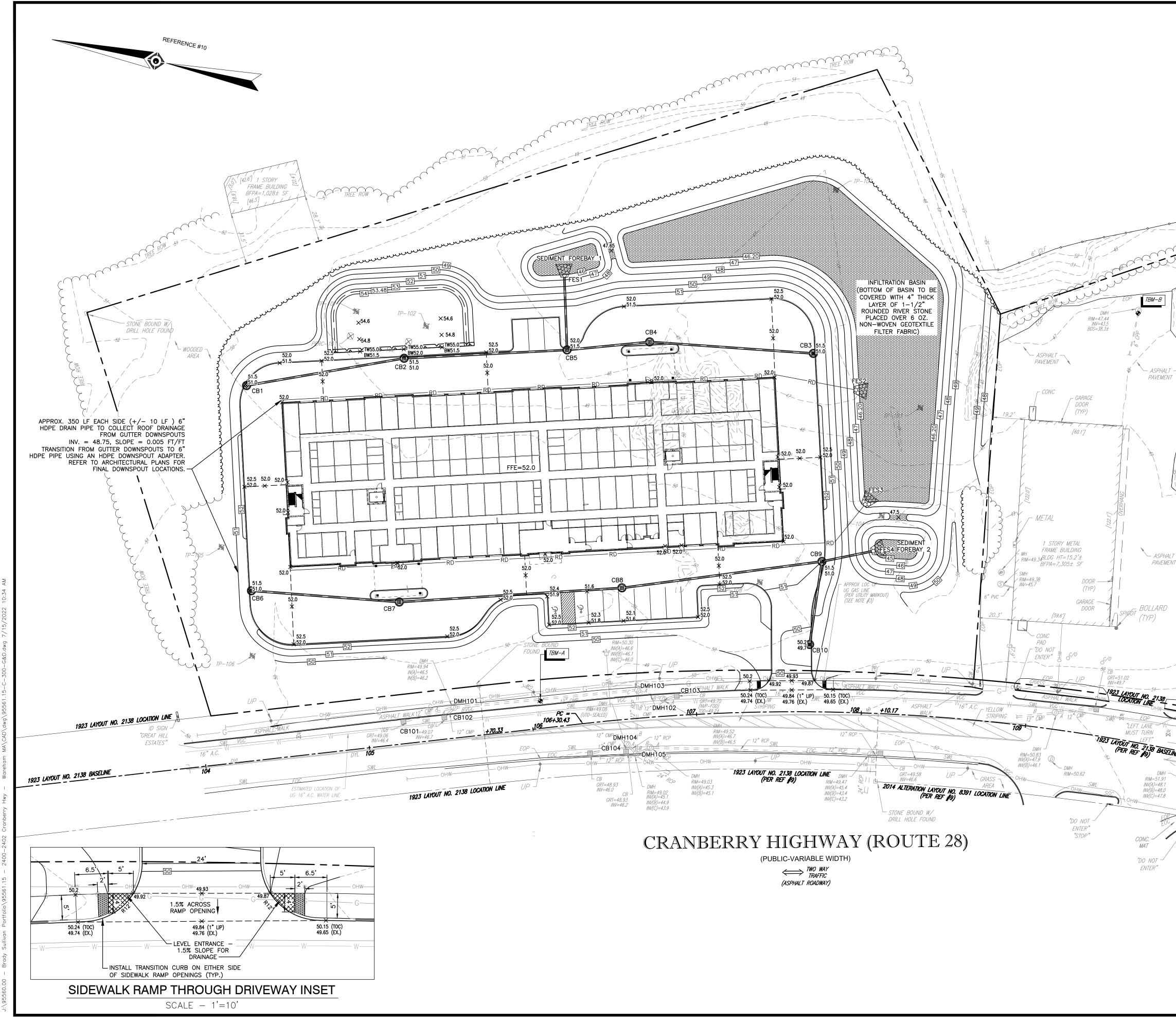
30'

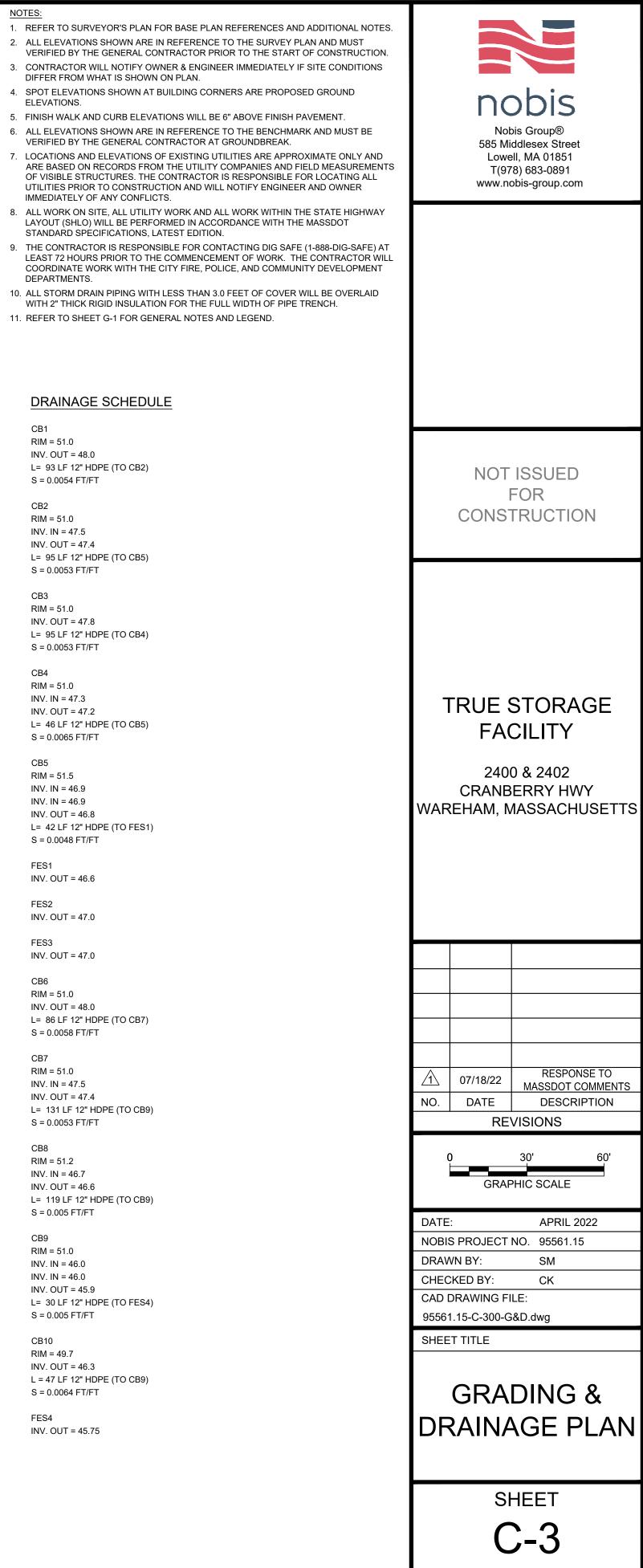
GRAPHIC SCALE

nobis

Nobis Group®

585 Middlesex Street

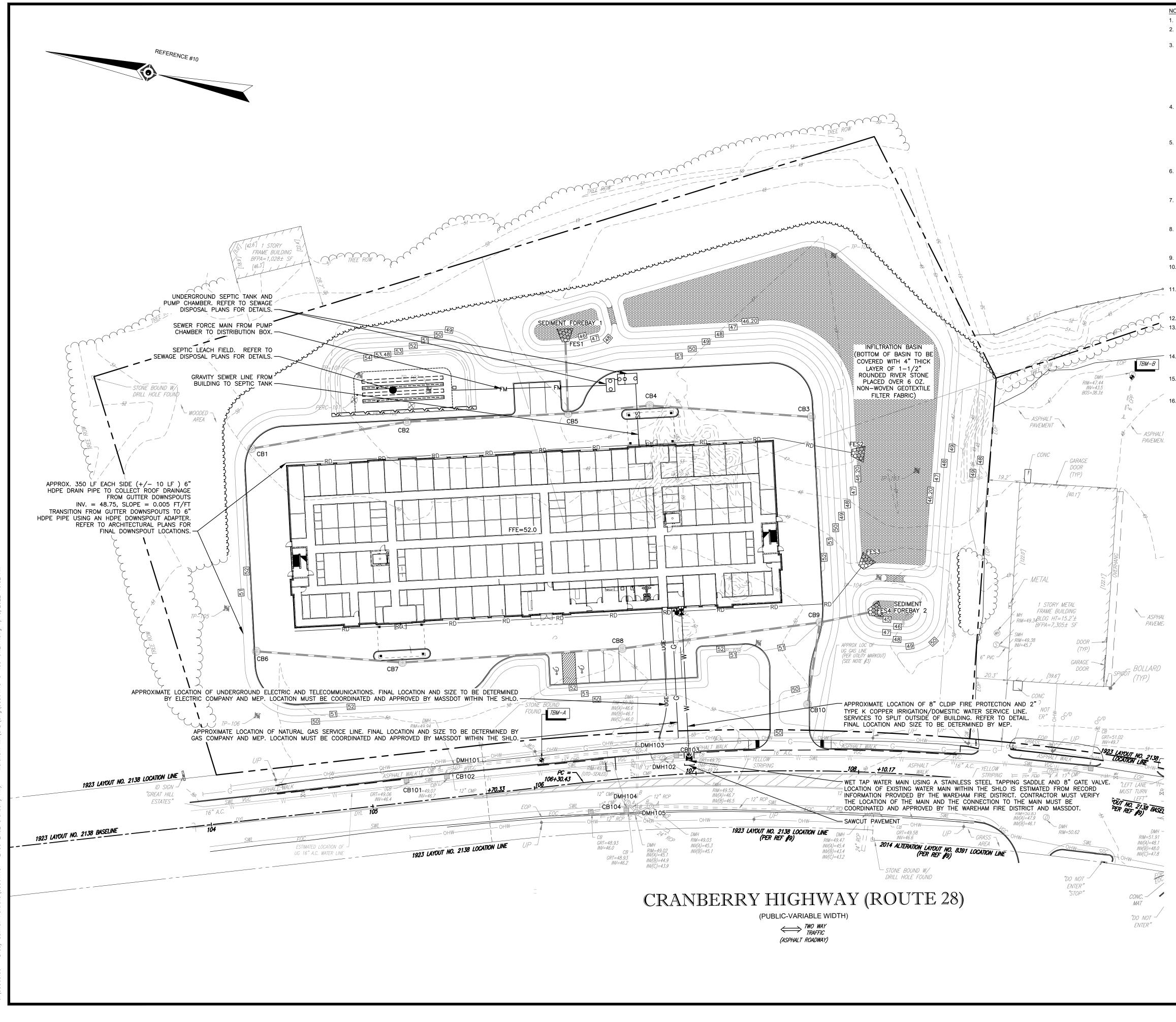

Lowell, MA 01851


NOT ISSUED FOR CONSTRUCTION

TRUE STORAGE FACILITY

2400 & 2402 CRANBERRY HWY WAREHAM, MASSACHUSETTS

ASPH, PAVEM.


PAVEMENT

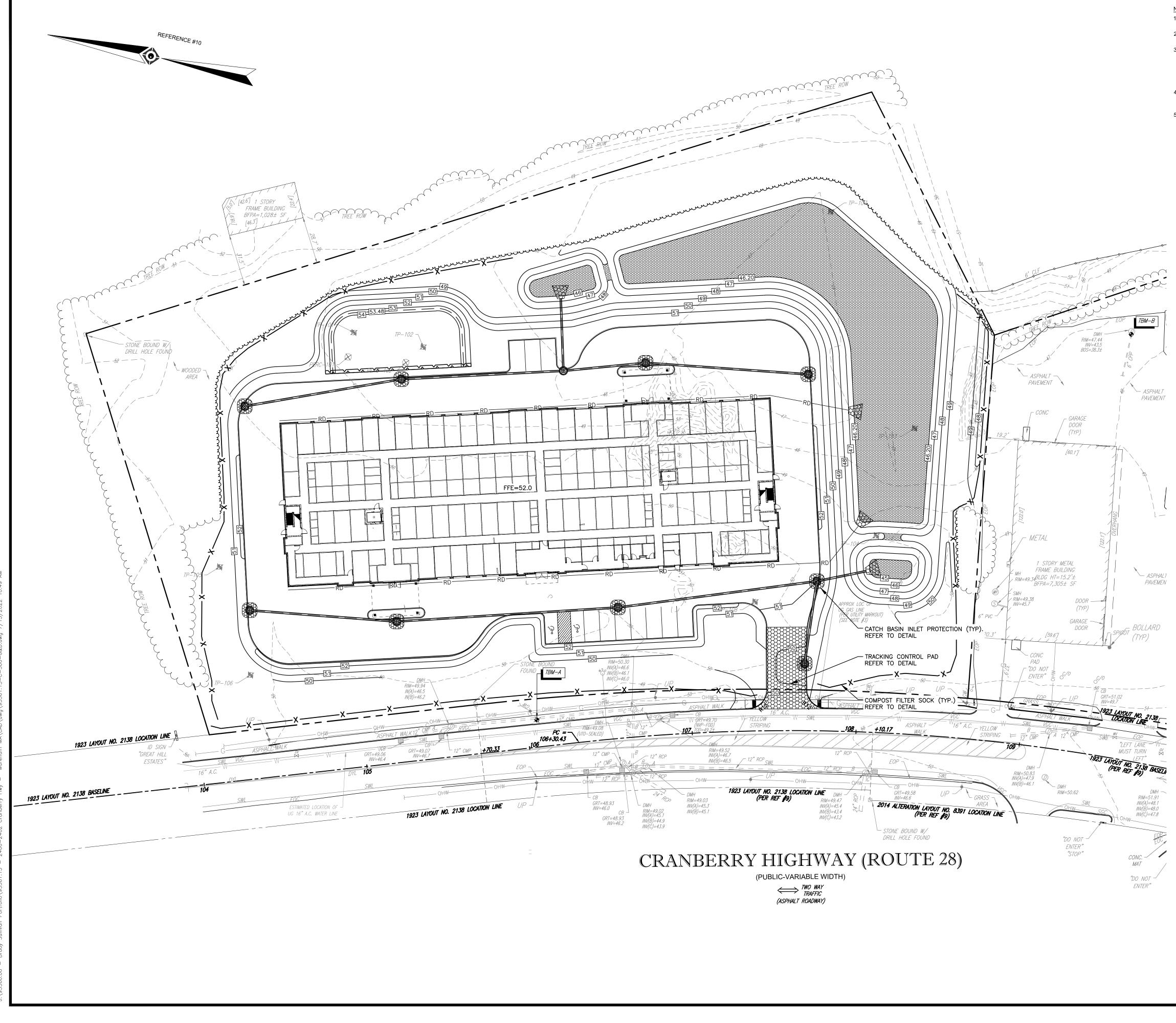
∽ ASPHALT PAVEMENT

BOLLARD

RIM=51.91 INV(A)=48.1 INV(B)=48.0 INV(C)=47.8

	NC	DTES:			
	2. 3.	REFER TO SURVEYOR'S PLAN, FOR BASE PLAN REFERENCES AND ADDITIONAL NOTES. ALL ELEVATIONS SHOWN ARE IN REFERENCE TO THE SURVEY PLAN AND MUST BE VERIFIED BY THE GENERAL CONTRACTOR PRIOR TO THE START OF CONSTRUCTION. THE UNDERGROUND UTILITIES SHOWN HAVE BEEN LOCATED FROM FIELD SURVEY INFORMATION AND EXISTING DRAWINGS. THE SURVEYOR MAKES NO GUARANTEES THAT THE UNDERGROUND UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED ALTHOUGH HE DOES CERTIFY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM INFORMATION AVAILABLE. THE SURVEYOR HAS NOT PHYSICALLY LOCATED THE UNDERGROUND UTILITIES. CALL 1-888-DIGSAFE AT LEAST THREE BUSINESS DAYS BEFORE PERFORMING ANY CONSTRUCTION. LOCATIONS AND ELEVATIONS OF UTILITIES ARE APPROXIMATE ONLY AND ARE BASED		Noł 585 Mi Lowe	bis Group® ddlesex Street ell, MA 01851 78) 683-0891
		ON RECORDS FROM THE UTILITY COMPANIES AND FIELD MEASUREMENTS OF VISIBLE STRUCTURES. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING ALL UTILITIES PRIOR TO CONSTRUCTION AND WILL NOTIFY ENGINEER AND OWNER IMMEDIATELY OF		· ·	o) 665-6691 obis-group.com
		ANY CONFLICTS. THE CONTRACTOR WILL PROVIDE A MINIMUM NOTICE OF FOURTEEN (14) DAYS TO ALL CORPORATIONS, COMPANIES AND/OR LOCAL AUTHORITIES OWNING OR HAVING A JURISDICTION OVER UTILITIES RUNNING TO, THROUGH OR ACROSS PROJECT AREAS PRIOR TO DEMOLITION AND/OR CONSTRUCTION ACTIVITIES. THE LOCATION, SIZE, DEPTH AND SPECIFICATIONS FOR CONSTRUCTION OF PROPOSED PRIVATE UTILITY SERVICES WILL BE TO THE STANDARDS AND REQUIREMENTS OF THE RESPECTIVE UTILITY COMPANY (ELECTRIC, TELEPHONE, CABLE TELEVISION, FIRE ALARM, GAS, WATER, AND SEWER).			
	7.	ALL CONSTRUCTION WILL CONFORM TO THE TOWN STANDARDS AND REGULATIONS, UNLESS OTHERWISE SPECIFIED. ALL CONSTRUCTION ACTIVITIES WILL CONFORM TO LABOR OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) RULES AND			
		REGULATIONS. THE CONTRACTOR IS TO VERIFY LOCATION AND DEPTH OF ALL EXISTING UTILITY STUBS PRIOR TO CONSTRUCTION AND DISCONNECT ALL EXISTING SERVICE CONNECTIONS AT THEIR RESPECTIVE MAINS IN ACCORDANCE WITH THE RESPECTIVE UTILITY COMPANY'S STANDARDS AND SPECIFICATIONS. ENGINEER TO BE NOTIFIED.			
		AS-BUILT PLANS WILL BE SUBMITTED TO TOWN OF WAREHAM AND MASSDOT. CONTRACTOR WILL PLACE 2" WIDE METAL WIRE IMPREGNATED GREEN PLASTIC WARNING TAPE OVER ENTIRE LENGTH OF ALL GRAVITY SEWERS, SERVICES, AND			
		FORCE MAINS. PROPOSED RIM ELEVATIONS OF SANITARY MANHOLES ARE APPROXIMATE. FINAL ELEVATIONS ARE TO BE SET FLUSH WITH FINISH GRADES. ADJUST ALL OTHER RIM ELEVATIONS OF MANHOLES, WATER GATES, GAS GATES AND OTHER UTILITIES TO FINISH GRADE. DIMENSIONS ARE SUCCEMENTED UNE OF DIDE OR ELTING			ISSUED FOR
		DIMENSIONS ARE SHOWN TO CENTERLINE OF PIPE OR FITTING. SEWER AND WATER INFRASTRUCTURE ON PRIVATE PROPERTY IS TO REMAIN PRIVATE, HOWEVER, THE TOWN RESERVES THE RIGHT TO ENTER THE PROPERTY IN ORDER TO INSPECT, REPAIR AND/OR TERMINATE INDIVIDUAL SEWER OR WATER			TRUCTION
TBM-B		SERVICES (AT OWNER'S EXPENSE). CONTRACTOR WILL SET RIMS OF NEW SANITARY SEWER MANHOLES TO EXISTING FINISHED GRADE FOR THE WINTER SEASON. RIMS WILL BE RAISED IN THE SPRING PRIOR TO PLACEMENT OF 1" BITUMINOUS OVERLAY. SERVICE LATERAL LOCATIONS SHOWN ARE APPROXIMATE AND MAY BE ADJUSTED IN			
	16.	THE FIELD BASED ON INPUT FROM TOWN INSPECTOR AND/OR PROJECT CLERK OF THE WORKS. REFER TO SHEET G-1 FOR GENERAL NOTES AND LEGEND.			
/					
– ASPHALT PAVEMEN,			-	TRUE \$	STORAGE
				FA	CILITY
				_	0 & 2402
40			WAF		ERRY HWY IASSACHUSETTS
L —					
∽ ASPHAL					
PAVEME,					
OLLARD YP)					RESPONSE TO
			<u>/1</u> NO.	07/18/22 DATE	MASSDOT COMMENTS DESCRIPTION
				RE	VISIONS
— <i>51</i> — —				0 GRAF	30' 60' PHIC SCALE
NE OHW			DATE		APRIL 2022
					NO. 95561.15
138 BASEL				VN BY: CKED BY:	SM CK
DMH - RIM=51.91				DRAWING FI 1.15-C-400-U	
VV(A)=48.1 IV(B)=48.0 IV(C)=47.8				ET TITLE	
EOP					
с			ι	JTILI	FY PLAN
NOT ITER"					
				.91	HEET
					C-4
				L	/ ⁻4

NOTES:


TBM-B

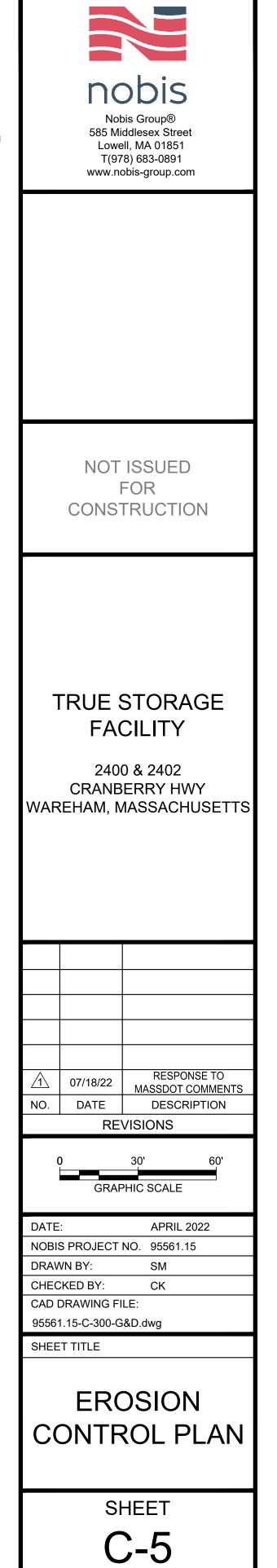
PAVEME,

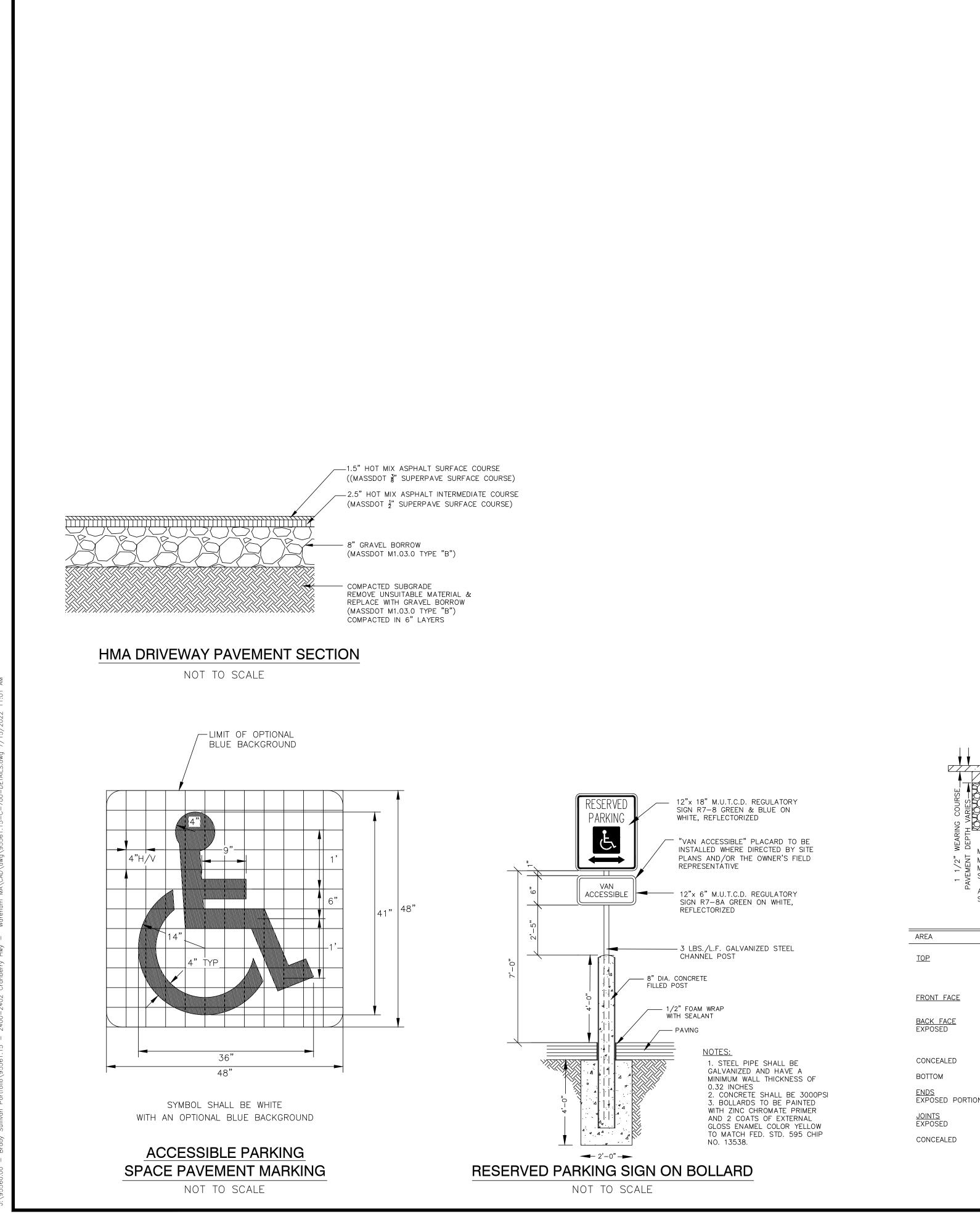
(TYP)

DMH RIM=51.91 INV(A)=48.1 INV(B)=48.0 INV(C)=47.8

ENTER"

NOTES:

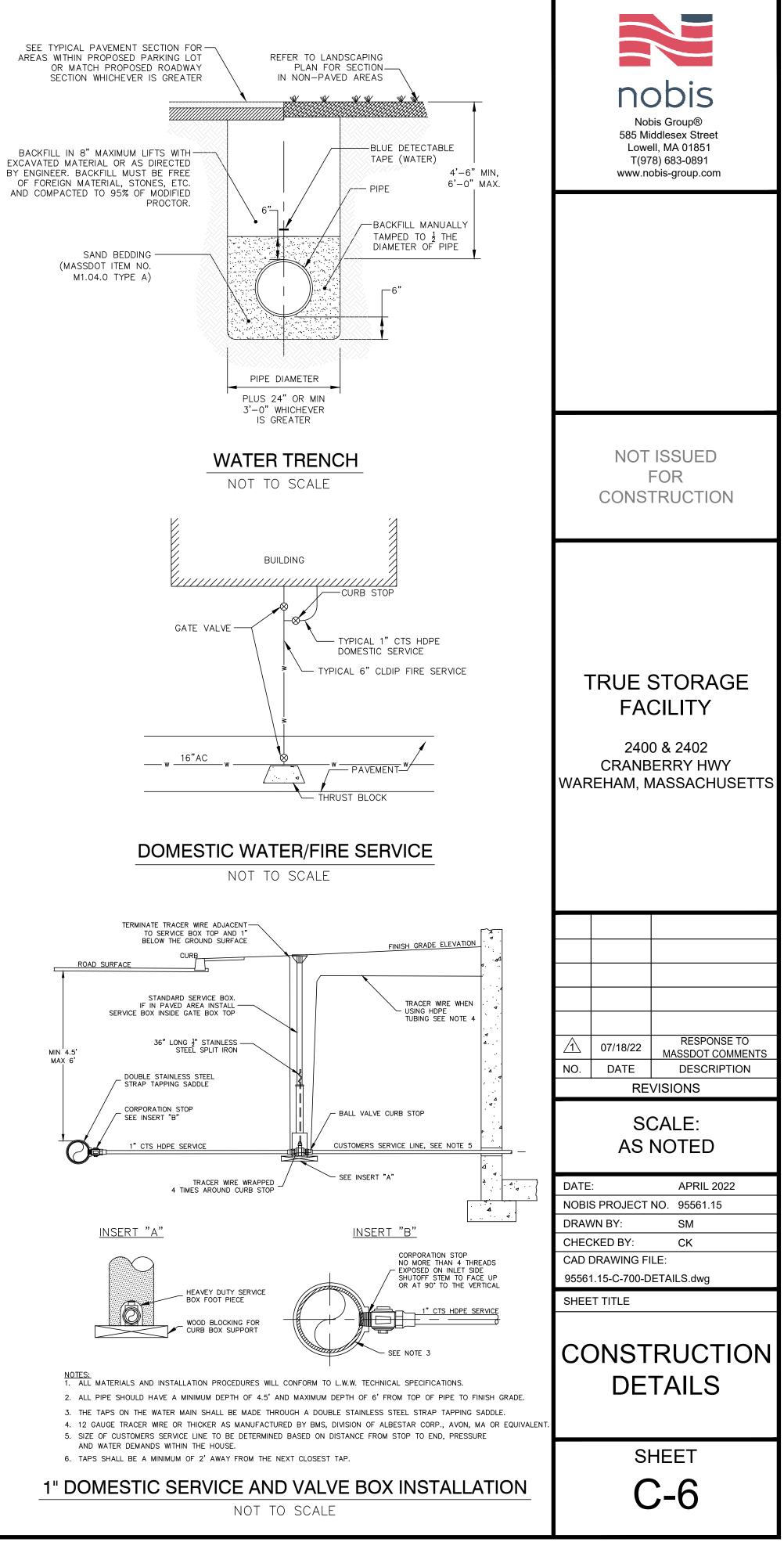

TBM-B

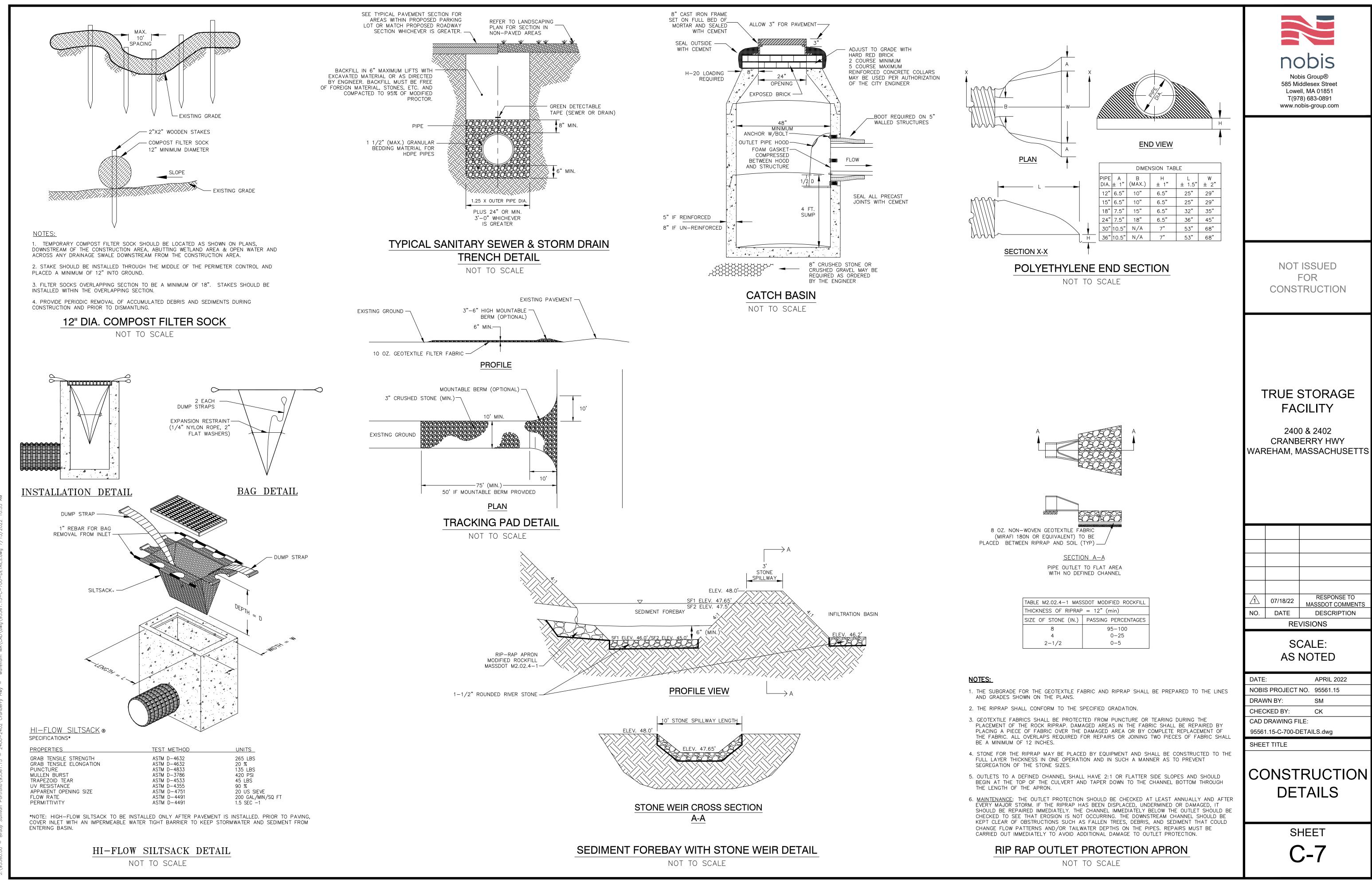

└─ ASPHALT PAVEMENT

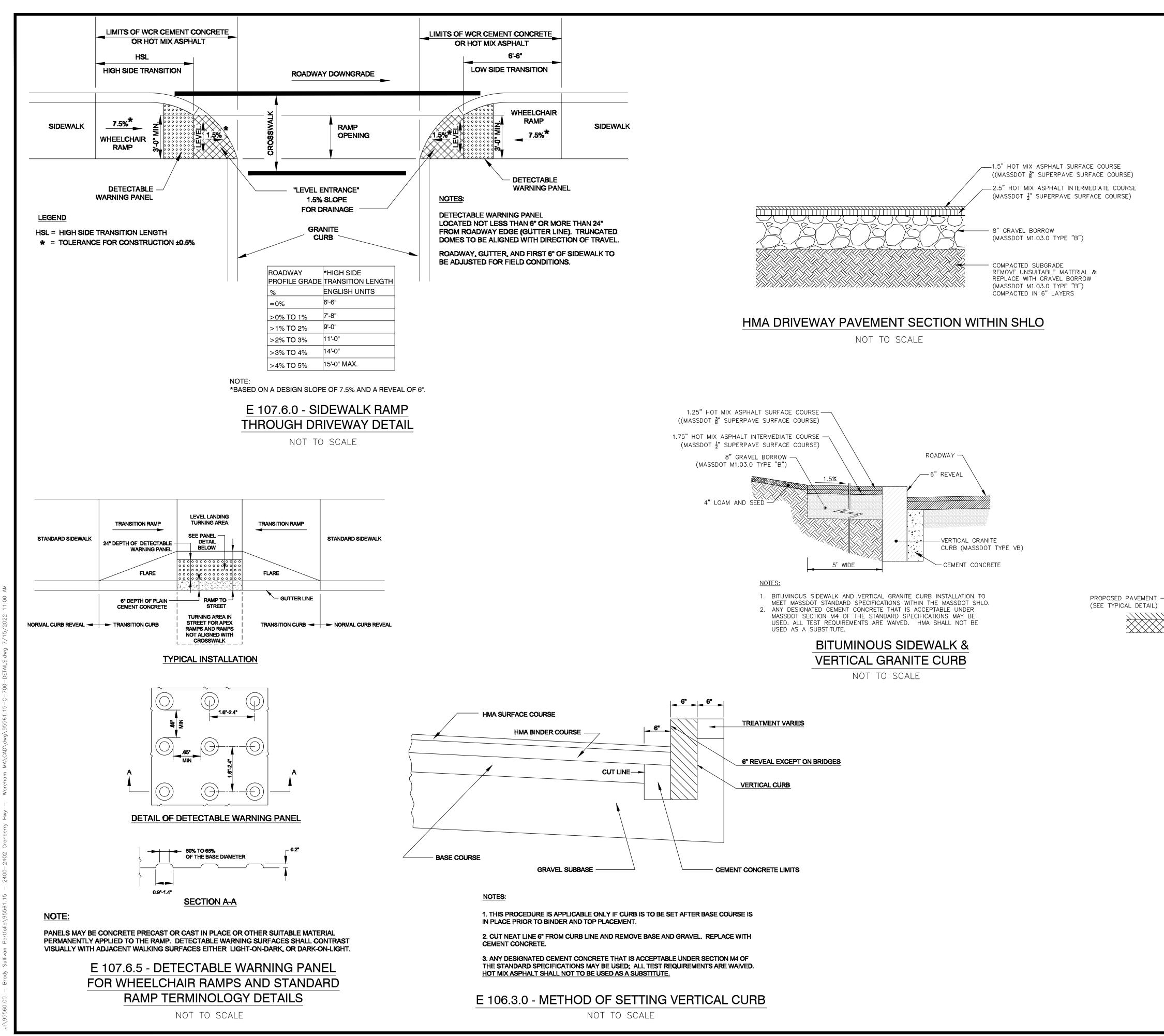
ASPHALI PAVEMEN

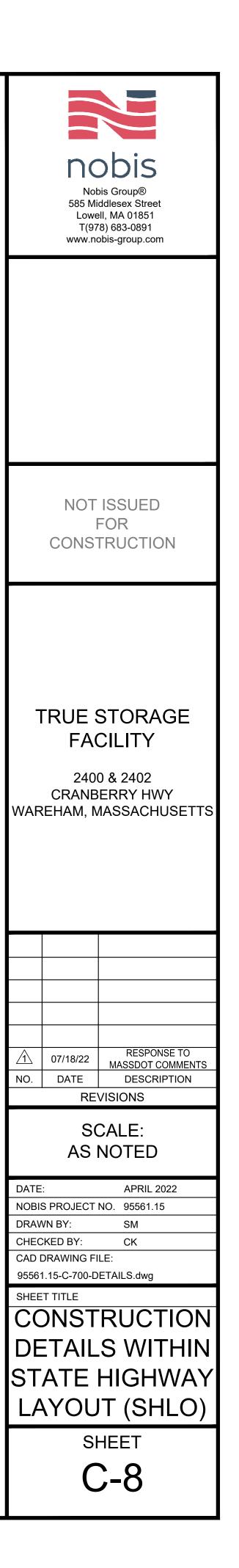
TYP)

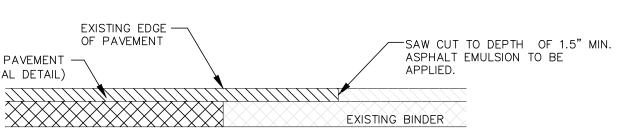
- 1. THIS PLAN IS NOT INTENDED TO SHOW PERMANENT DRAINAGE DESIGNS AND TO BE USED FOR TEMPORARY EROSION AND SEDIMENT CONTROL ONLY.
- 2. CONTRACTOR TO GRADE ACTIVE EXCAVATION AREAS TO ALLOW MAXIMUM
- INFILTRATION OF STORMWATER AND MINIMIZE RUNOFF FROM DISTURBED AREAS. 3. DISTURBANCES OF AREAS TO BE MINIMIZED. NO DISTURBED AREA SHALL BE LEFT UNSTABILIZED FOR LONGER THAN TWO WEEK DURING THE GROWING SEASON. AREAS WHICH WILL NOT BE PERMANENTLY SEEDED WITHIN TWO WEEKS OF DISTURBANCE SHALL BE TEMPORARILY SEEDED AND MULCHED. ALL AREAS SHALL BE STABILIZED WITH SEED AND MULCH AND TACKIFIER WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE AND PRIOR TO THE END OF THE GROWING SEASON.
- 4. FOR FURTHER INFORMATION ON BEST MANAGEMENT PRACTICES SEE COMPLETE PLAN SET AND STORMWATER POLLUTION PREVENTION PLAN (SWPPP) FOR THIS PROJECT PREPARED BY NOBIS GROUP.
- 5. REFER TO GENERAL NOTES AND LEGEND SHEET FOR ADDITIONAL EROSION CONTROL NOTES AND CONSTRUCTION SEQUENCE.


1 1/2" PAVEMENT SEE VIM		N
FIN	IISH SURFACE AND TOLERANCES FOR VERTICAL GRANITE CURB	
AREA	FINISH SURFACE	TOLERANCE
TOP	6" WIDE OR AS OTHERWISE SHOWN, SAWN TRUE PLANE.	+½" TO +½"
	FRONT AND BACK ARRIS LINES PITCHED STRAIGHT AND PARALLEL.	+½" TO +½"
FRONT FACE	RIGHT ANGLE TO TOP, APPROXIMATELY TRUE PLANE. NO DRILL HOLES SHOWING IN TOP 10"	+1" TO −½"
<u>BACK FACE</u> EXPOSED	PLANE PARALLEL WITH FRONT FACE. STRAIGHT SPLIT TO 1½" BELOW EXPOSED SURFACE. NO LARGER THAN ¼" SEGMENT OF DRILL HOLES SHOWING IN ARRIS LINES.	+1"TO -1"
CONCEALED	BELOW 1½" FROM EXPOSED SURFACE.	+1½" TO -1½"
BOTTOM	APPROXIMATELY PARALLEL TO TOP. MINIMUM WIDTH: 3.5"	SEE PLANS
<u>ENDS</u> EXPOSED PORTION	SQUARE WITH PLANES OF TOP AND FACE	
<u>JOINTS</u> EXPOSED	MAX. WIDTH: ½"	
CONCEALED	TO BREAK BACK NO MORE THAN 8"	+¾" TO -¾"
	VERTICAL GRANITE CURB	
	NOT TO SCALE	


CEMENT CONCRETE 3000 PSI MIN.


18"


COMPACT TO A MINIMUM OF 95%



SAWCUT AND PAVE JOINT

NOT TO SCALE

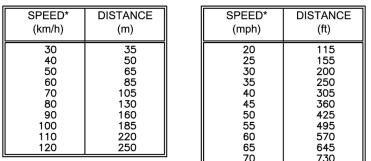
	IOTES: ALL TEMPORARY 1	TRAFFIC CONTROL WOI	RK SHALL CONFORM	I TO THE LATEST E	DITION OF THE "N	IANUAL ON UNIFORM
2.	TRAFFIC CONTROL	DEVICES" (MUTCD) A	AND ALL REVISIONS,	UNLESS SUPERCE	DED BY THESE PL	
3.	TEMPORARY CONS START OF ANY WO		ID ALL OTHER TRAF	FIC CONTROL DEVIC	ES SHALL BE IN	PLACE PRIOR TO THE
	SHALL BE REMOVI	ED FROM THE HIGHWA	AY OR COVERED WH	IEN THEY ARE NOT	REQUIRED FOR C	
5.	CRASH ATTENUATO	SUPPORTS LOCATED (ORS MUST PASS THE PERFORMANCE EVALU, H).	CRITERIA SET FORTH	H IN NCHRP REPOR	RT 350, RECOMM	ENDED PROCEDURES
6.	WILL REQUIRE THE	IALL NOTIFY EACH ABU IE TEMPORARY CLOSUF PORARY DRIVEWAY PAV	RE OF ACCESS, SUC	CH AS CONDUIT INS	STALLATION, EXISTI	
	THE FIRST FIVE P	PLASTIC DRUMS OF A	TAPER SHALL BE M	IOUNTED WITH TYPE	E A LIGHTS.	
		PEED LIMIT, IF REQUIR A GUIDE AND MAY BE	-			
	MPH.			-		O THE SPEED LIMIT IN
	MEASURED FROM	IDTH IS TO BE 11 FE THE EDGE OF DRUMS BE MOUNTED ON TH	S OR MEDIAN BARRI	ER.	. MINIMOM LANE	WIDTH TO BE
	LEGEND:					
•	 REFLECTORIZED OR 36" CONE 	D PLASTIC DRUM	WORK ZONE			CLE INTED ATTENUATOR
	P/F POLICE/FLAGGE		IMPACT ATTEN ☐ MEDIAN BARRI		→ TRAFFIC OR → SIGN	PEDESTRIAN SIGNAL
	CHANGEABLE M	t	MEDIAN BARRI WARNING LIGH	ER WITH		
THE	E IDEAL CAPACITY (OF A MAJOR HIGHWAY				
PEF		IN WORK ZONES ON ED:		VIDED HIGHWAY, TH		
		R OF LANES	NUMBER OF	AVERAGE (
	NORMAL (EXISTING) 3	OPEN (TO TRAFFIC)	STUDIES	VPH 1,170	VPHPL 1,170	
	2 5 4	1 2 2	8 8 4	1,340 2,740 2,960	1,340 1,370 1,480	
	3 4	2 3	9 4	2,980 4,560	1,490 1,520	
BY	Transportation In	C., <u>Notes on Work Zo</u> Istitute, Texas A&M U Y TRAFFIC COUNTS FC	niversity, College St	ation, Texas (1984	F)	HOUR AUTOMATIC
TRA		ATR) COUNT), THIS WI			S OF THE DAY O	R NIGHT A CERTAIN
			Not	es		FIGURE GEN-1
🖉 📕 м	IIICISS Aassachusetts Departm Ighway Division	DOT nent of Transportation	fo Traffic Mar		GEN	ERAL GUIDELINES
			00 FT 30m) 1	WORK ZON		• • • • • • • • •

SUGGESTED WORK ZONE WARNING SIGN SPACING

ROAD TYPE	DISTANCE BETWEEN SIGNS **					
ROAD TIFE	A	В	С			
LOCAL OR LOW VOLUME ROADWAYS*	350 (100)	350 (100)	350 (100)			
MOST OTHER ROADWAYS*	500 (150)	500 (150)	500 (150)			
FREEWAYS AND EXPRESSWAYS*	1,000 (300)	1,500 (450)	2,640 (800)			

* ROAD TYPE TO BE DETERMINED BY MASSDOT OFFICE OF TRANSPORTATION PLANNING.

** DISTANCES ARE SHOWN IN FEET (METERS). THE COLUMN HEADINGS A, B, AND C ARE THE DIMENSIONS SHOWN IN THE DETAIL/ TYPICAL SETUP FIGURES. THE A DIMENSION IS THE DISTANCE FROM THE TRANSITION OR POINT OF RESTRICTION TO THE FIRST SIGN. THE B DIMENSION IS THE DISTANCE BETWEEN THE FIRST AND SECOND SIGNS. THE C DIMENSION IS THE DISTANCE BETWEEN THE SECOND AND THIRD SIGNS. (THE "THIRD" SIGN IS THE FIRST ONE TYPICALLY ENCOUNTERED BY A DRIVER APPROACHING A TEMPORARY TRAFFIC CONTROL (TTC) ZONE.)


THE "THIRD" SIGN ABOVE IS TYPICALLY REFERRED TO AS AN "ADVANCE WARNING" SIGN ON THE TTCP SETUPS. THESE ADVANCE WARNING SIGNS ARE LOCATED PRIOR TO THE PROJECT LIMITS ON ALL APPROACHES (i.e. THE W20–1 SERIES (ROAD WORK XX FT) SIGNS), AND USUALLY REMAIN FOR THE DURATION OF THE PROJECT. ADDITIONAL SIGNS (i.e. "RIGHT LANE CLOSED 1 MILE" AND "LEFT LANE CLOSED 1 MILE") HAVE BEEN SHOWN IN SOME FIGURES AS EXAMPLES OF REINFORCEMENT SIGN PLACEMENT BUT ARE USED IN RARE OCCASIONS.

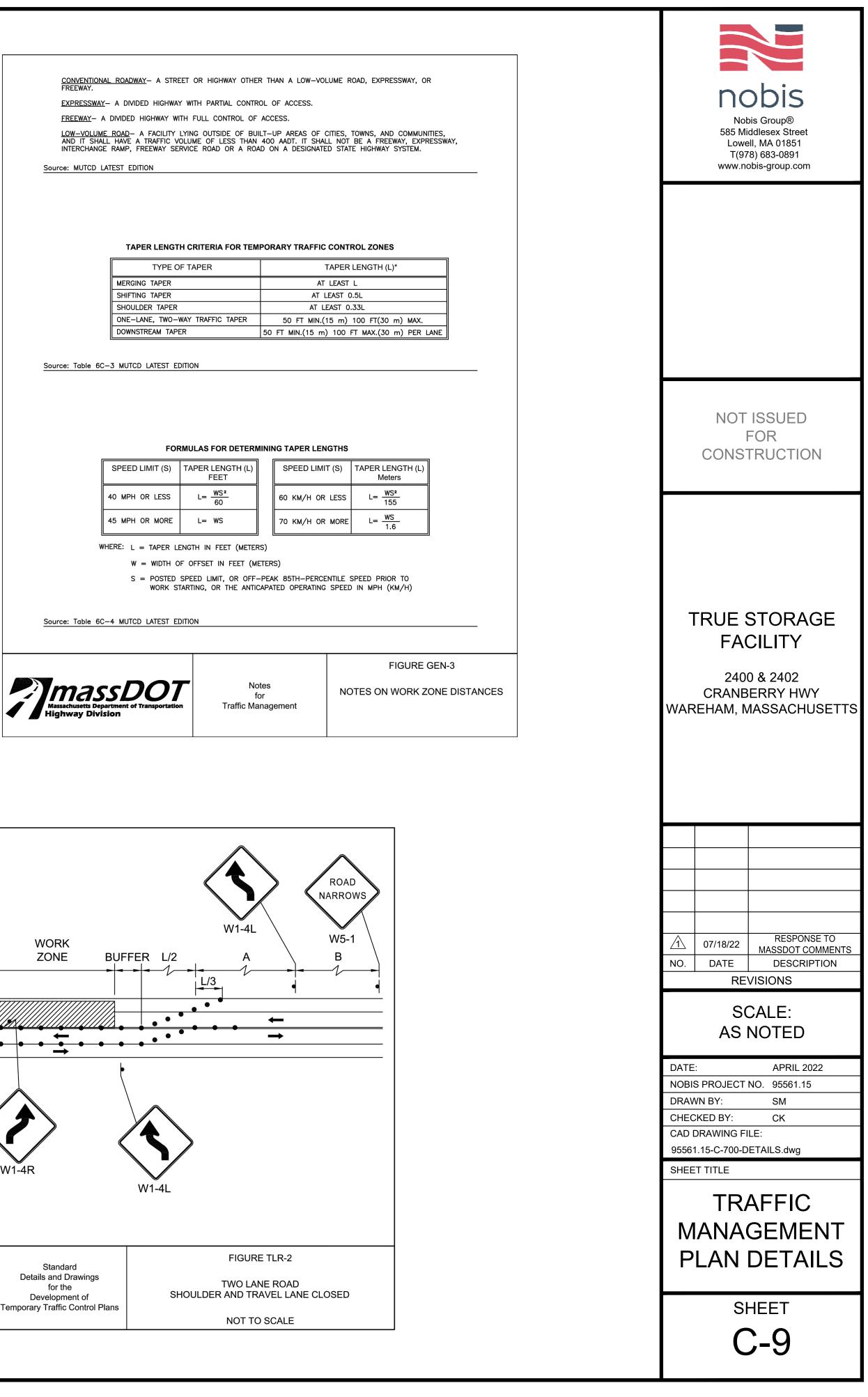
THE FIRST AND SECOND WARNING SIGNS ABOVE ARE REFERRED TO AS THE OPERATIONAL (DAY-TO-DAY) WORK ZONE SIGNS AND MAY BE MOVED DEPENDING ON WHERE THE SPECIFIC ROADWAY WORK FOR THAT DAY IS LOCATED.

R2-10a SIGNS SHALL BE PLACED BETWEEN THE SECOND AND THIRD SIGNS AS DESCRIBED ABOVE.

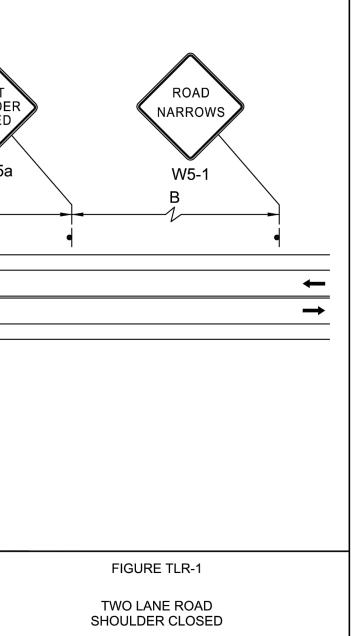
R2-10a, R2-10e, AND W20-1 SERIES SIGNS ARE TO BE INCLUDED ON ALL DETAILS/TYPICAL SETUPS. Based on: Table 6C-1 MUTCD LATEST EDITION

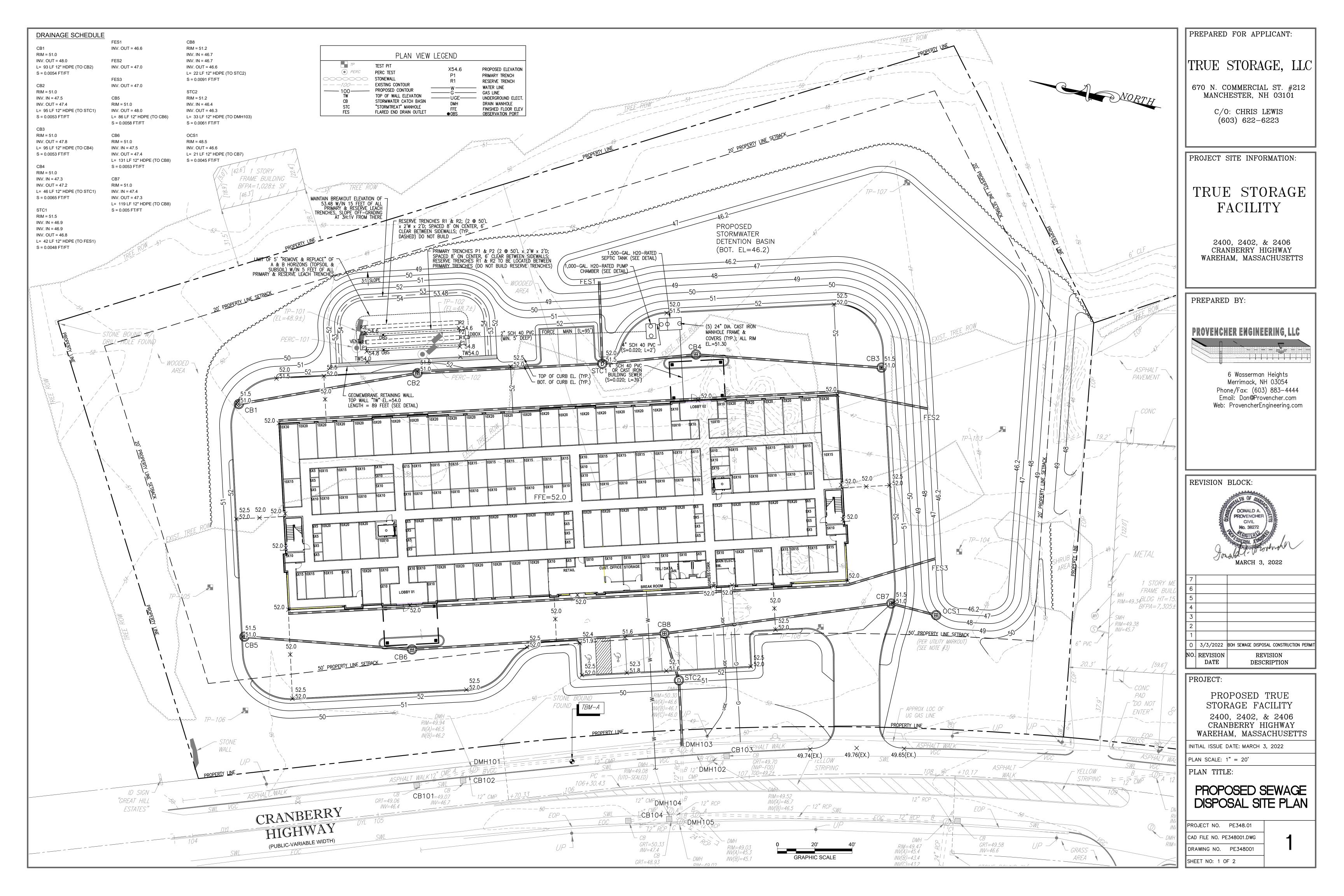
STOPPING SIGHT DISTANCE AS A FUNCTION OF SPEED

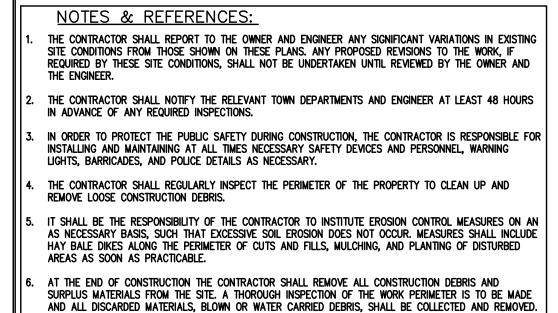
*POSTED SPEED, OFF-PEAK 85TH-PERCENTILE SPEED PRIOR TO WORK STARTING, OR THE ANTICIPATED OPERATING SPEED

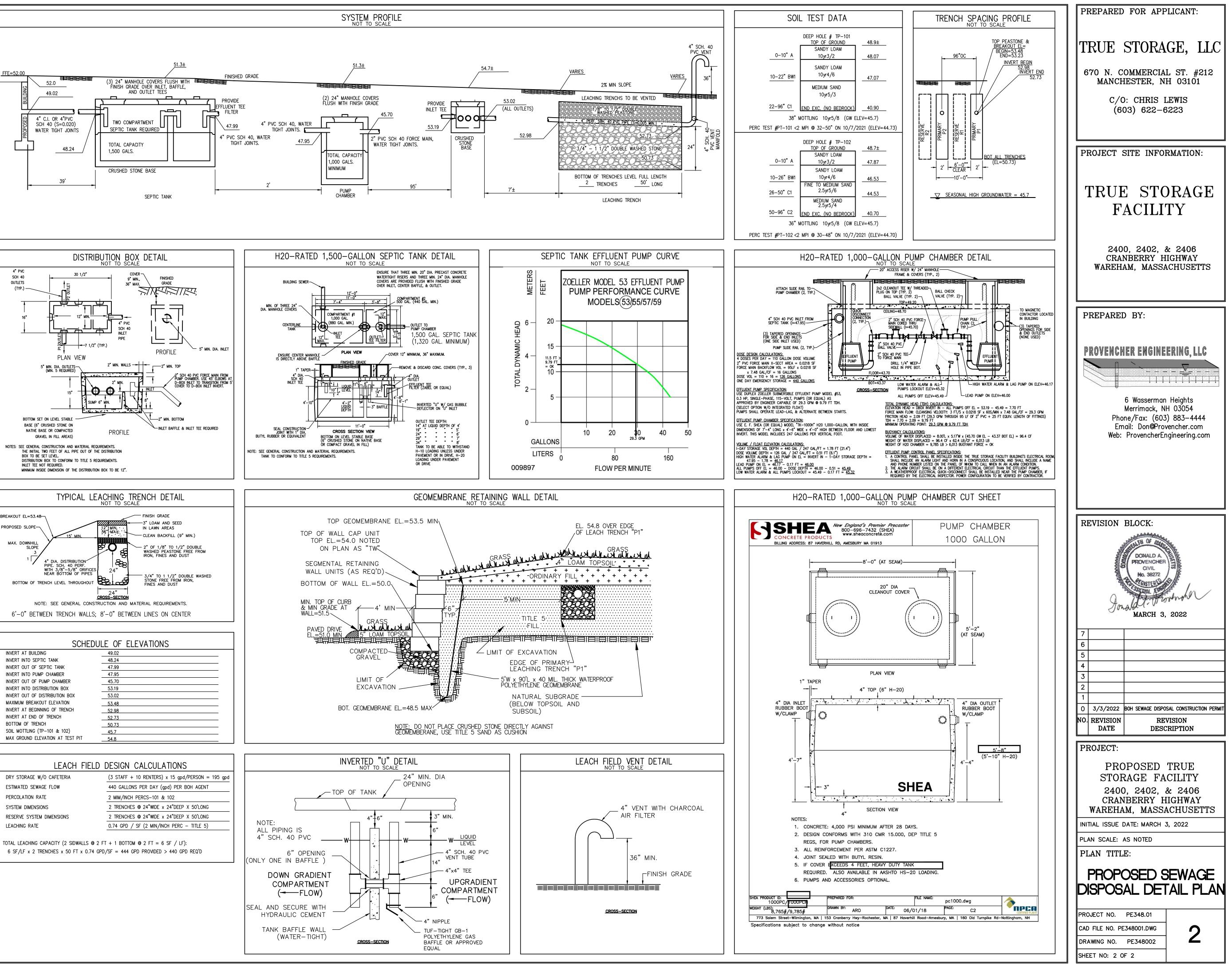

THESE VALUES MAY BE USED TO DETERMINE THE LENGTH OF LONGITUDINAL BUFFER SPACES.

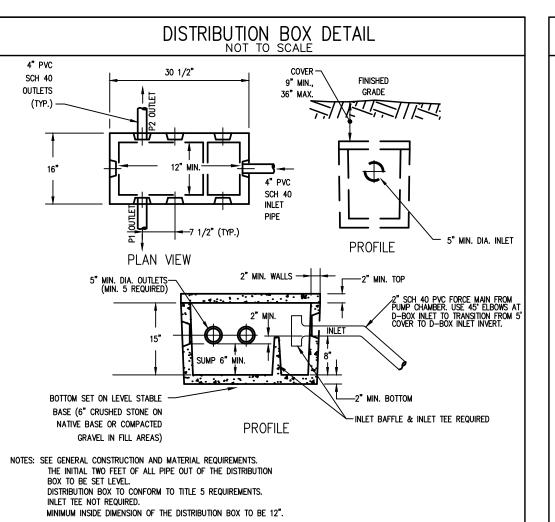

THE DISTANCES IN THE ABOVE CHART REPRESENT THE MINIMAL VALUES FOR BUFFER SPACING.

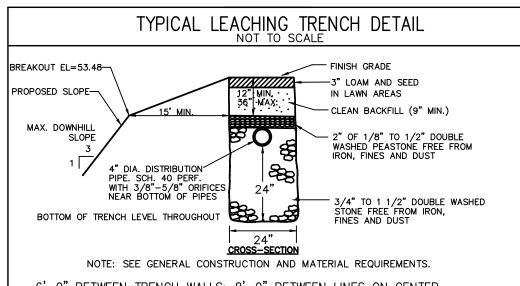

Source: Table 6C-2 MUTCD LATEST EDITION


Traffic Management






NOT TO SCALE



- AT THE END OF CONSTRUCTION, AFTER ALL DISTURBED AREAS HAVE BEEN STABILIZED, THE CONTRACTOR SHALL CLEAN THE SUMPS OF ALL CATCH BASINS AND THE INVERTS OF ALL DRAIN CONDUITS IF THESE STRUCTURES HAVE BEEN IMPACTED BY SILT.
- THE LOCATION OF UNDERGROUND UTILITIES AS REPRESENTED ON THESE PLANS IS BASED UPON PLANS AND INFORMATION PROVIDED BY THE RESPECTIVE UTILITY COMPANIES, BY THE SITE ENGINEER, OR MUNICIPAL DEPARTMENTS. NO WARRANTY IS MADE AS TO THE ACCURACY OF THESE LOCATIONS OR THAT ALL UNDERGROUND UTILITIES ARE SHOWN. THE CONTRACTOR IS TO CONTACT DIG SAFE AT LEAST 72 HOURS PRIOR TO THE START OF CONSTRUCTION. DIG SAFE TELEPHONE NUMBER IS 1-800-322-4844.
- THE CONTRACTOR IS TO VERIFY THE LOCATION, SIZE, AND DEPTH OF EXISTING UTILITIES PRIOR TO TAPPING INTO, CROSSING OR EXTENDING THEM. IF THE PROPOSED WORK POSES A CONFLICT WITH THE EXISTING UTILITIES, THE ENGINEER IS TO BE NOTIFIED PRIOR TO THE CONTRACTOR CONTINUING.
- ALL DISTURBED AREAS ARE TO BE LOAMED AND SEEDED WITH A MINIMUM OF 4" OF TOP SOIL SPREAD EVENLY THROUGHOUT. PROVIDE EROSION CONTROL MEASURES AS NECESSARY TO PROVIDE SLOPE STABILITY UNTIL VEGETATION IS ESTABLISHED.
- ALL STUMPS, "A" HORIZONS (TOP SOIL), "B" HORIZONS (SUB SOIL), AND OTHER DELETERIOUS MATERIALS ARE TO BE REMOVED FROM THE PROPOSED SEPTIC SYSTEM AREA, AND FOR A DISTANCE OF 5 FEET IN ALL DIRECTIONS THEREFROM AS SHOWN ON THE PLAN.
- 2. ALL CONSTRUCTION METHODS AND MATERIALS SHALL CONFORM TO MASS. DEP TITLE 5 REGULATIONS, AND TO BOARD OF HEALTH REGULATIONS.
- . TIGHT JOINT PIPING TO CONSIST OF POLYVINYL CHLORIDE (PVC) SCHEDULE 40, UNLESS OTHERWISE NOTED. EXISTING CONDITIONS SITE DETAIL, TOPOGRAPHY, WETLANDS BOUNDARY, AND PROPERTY LINE OBTAINED FROM NOBIS ENGINEERING, INC., DBA NOBIS GROUP,
- ANY ALTERATIONS TO THE DESIGN FROM THAT SHOWN ON THE PLAN MUST BE APPROVED BY PROVENCHER ENGINEERING AND BY THE BOARD OF HEALTH.
- . THE BOARD OF HEALTH SHALL REQUIRE AN AS-BUILT PLAN OF ALL CONSTRUCTION BY THE DESIGN ENGINEER. AND REQUIRE SUCH PERSON TO CERTIFY IN WRITING THAT ALL WORK HAS BEEN COMPLETED IN ACCORDANCE WITH THE TERMS OF THE PERMIT AND THE APPROVED PLANS.
- PROVISIONS FOR A GARBAGE GRINDER HAVE NOT BEEN INCLUDED IN THE DESIGN OF THE LEACHING FIELD. GARBAGE GRINDERS ARE PROHIBITED.
- . THERE ARE NO ACTIVE POTABLE WELLS WITHIN 200' OF THE LEACHING FACILITY SHOWN ON THIS PLAN.
- EXISTING SITE CONDITIONS MUST BE VERIFIED BY THE CONTRACTOR AND DISCREPANCIES MUST BE REPORTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORK.
- 20. CERTIFICATION OF THE SYSTEM BY THE INSTALLER MAY BE REQUIRED. THE INSTALLER MUST CONFIRM WITH THE BOARD OF HEALTH IF AN INSTALLERS PERMIT AND LICENSE IS REQUIRED WITH THE TOWN PRIOR TO COMMENCEMENT OF CONSTRUCTION.
- VEHICULAR TRAFFIC, PARKING OF VEHICLES, STOCKPILING OF MATERIALS AND STORAGE OF EQUIPMENT OVER THE LEACHING FIELD IS PROHIBITED AT ALL TIMES.
- 22. SYSTEM COMPONENTS ARE NOT TO BE BACKFILLED OR CONCEALED WITHOUT INSPECTION BY AND PERMISSION OF THE BOARD OF HEALTH AND DESIGN ENGINEER.
- THERE ARE NO INLAND BANKS, WETLANDS, BORDERING SURFACE WATER SUPPLIES OR THEIR TRIBUTARIES, OPEN SURFACE OR SUBSURFACE DRAINS INTERCEPTING HIGH GROUNDWATER, VERNAL POOLS, LEACHING CATCH BASINS, DRYWELLS, OTHER OPEN SURFACE OR SUBSURFACE DRAINS, REGULATED FLOODWAYS, OF 100-YEAR FLOOD BOUNDARIES WITHIN 100 FEET OF THE LEACHING AREA OTHER THAN THOSE SHOWN ON THE PLAN.
- 24. THERE ARE NO SURFACE WATERS WITHIN 500 FEET OF THE LEACHING AREA SHOWN ON THIS PLAN
- SUBMITTALS SHALL BE PROVIDED TO THE DESIGN ENGINEER BY THE CONTRACTOR, INCLUDING PROPOSED PIPE, VALVES, DBOX, SEPTIC TANK, PUMP CHAMBER, EFFLUENT PUMPS, CONTROL PANEL, ALARM SYSTEM, LEVEL CONTROLS, FLOAT RACKS, SLIDE RAILS, QUICK DISCONNECTS, PULL CHAIN, MANHOL FRAME AND COVERS. ACCESS RISERS. GEOMEMBRANE, RETAINING WALL BLOCK UNITS, EFFLUENT TEE FILTER. TITLE 5 FILL GRAIN SIZE DISTRIBUTION ANALYSIS FOR THE TITLE 5 FILL PROPOSED TO BE USED, AND OTHER EQUIPMENT AND MATERIAL ASSOCIATED WITH THE SEPTIC SYSTEM CONSTRUCTION.
- 26. IF ANY EQUIPMENT OR MATERIAL IS USED W/O APPROVAL OF SUBMITTALS FOR THAT EQUIPMENT OR MATERIAL, THE CONTRACTOR WILL BE RESPONSIBLE FOR REMOVAL OF THAT EQUIPMENT OR MATERIAL IF IT IS SUBSEQUENTLY FOUND TO NOT BE COMPLIANT WITH THE DESIGN PLAN OR TITLE 5 REGULATIONS.
- GENERAL CONSTRUCTION AND MATERIAL REQUIREMENTS: TITLE 5 FILL MATERIAL FOR SYSTEMS CONSTRUCTED IN FILL SHALL CONSIST OF SELECT ON-SITE OR IMPORTED SOIL MATERIAL, CONSISTING OF CLEAN GRANULAR SAND, FREE FROM ORGANIC MATTER AND OTHER DELETERIOUS SUBSTANCES. MIXTURES AND LAYERS OF DIFFERENT CLASSES OF SOIL SHALL NOT BE USED. TITLE 5 FILL SHALL BE GRADED SUCH THAT NO MATERIAL SHALL BE LARGER THAN 2 INCHES AND 45% BY WEIGHT OF THE SAMPLE SHALL BE RETAINED ON THE #4 SIEVE. OF THE FRACTION OF THE SAMPLE PASSING THE #4 SIEVE, 10% TO 100% SHALL PASS THE #50 SIEVE, 0% TO 20% SHALL PASS THE #100 SIEVE, AND 0% TO 5% SHALL PASS THE #200 SIEVE.
- A MINIMUM OF ONE REPRESENTATIVE FILL SAMPLE SHALL BE TAKEN PER PIT PER REMOVAL DAY AND TESTED FOR COMPLIANCE WITH THE GRAIN SIZE DISTRIBUTION SPECIFICATION ABOVE.
- WHERE FILL IS REQUIRED TO REPLACE UNSUITABLE OR IMPERMEABLE SOILS, THE EXCAVATION OF THE UNSUITABLE MATERIAL SHALL EXTEND A MINIMUM OF FIVE FEET LATERALLY IN ALL DIRECTIONS BEYOND THE OUTER PERIMETER OF THE SOIL ABSORPTION SYSTEM OR TO THE DELINEATED BOUNDARY AS INDICATED ON THE PLANS AS "REMOVE AND REPLACE" TO THE DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL AS REQUIRED BY 310 CMR 15.240 (SOIL ABSORPTION SYSTEMS) AND REPLACED WITH FILL MATERIAL MEETING THE SPECIFICATIONS OF 310 CMR 15.255(3).
- PRIOR TO PLACEMENT OF TITLE 5 FILL, WHICH SHALL BE STOCKPILED AT THE EDGE OF THE EXCAVATION AND FILLED IN GRADUALLY, THE BOTTOM SURFACE OF THE EXCAVATION SHALL BE SCARIFIED AND RELATIVELY DRY. FILL SHALL NOT BE PLACED DURING RAIN OR SNOW STORMS. IF PONDED STANDING WATER IS ABOVE THE ELEVATION OF THE BOTTOM OF THE EXCAVATION, THE EXCAVATION SHALL BE DEWATERED AS NECESSARY.
- THE BOTTOM OF EACH LEACHING TRENCH SHALL BE EXCAVATED TO A LEVEL GRADE. IF THE REMOVAL OF STONES OR BOULDERS IS REQUIRED, CREATING LOCALIZED DEPRESSIONS, FILLING TO GRADE WITH THE EXCAVATED SOIL IS ACCEPTABLE.
- THE SOIL PLACED AS BACKFILL OVER THE SYSTEM SHALL BE A MINIMUM OF 12 INCHES, INCLUDING TOPSOIL, PLACED IN LIFTS AND SUFFICIENTLY COMPACTED TO PREVENT DEPRESSIONS DUE TO SETTLING WHICH MAY INTERCEPT OR COLLECT SURFACE WATER RUNOFF ABOVE THE SYSTEM.
- BACKFILL ABOVE THE LEACHING TRENCHES MUST BE CLEAN AND FREE OF STONES AND BOULDERS GREATER THAN SIX INCHES IN SIZE. TAILINGS, CLAY OR SIMILAR MATERIALS ARE PROHIBITED.
- FINAL COVER ABOVE THE SYSTEM SHALL BE GRADED TO REDUCE INFILTRATION OF SURFACE WATER AND MINIMIZE EROSION. FINISH GRADE SHALL HAVE A MINIMUM SLOPE OF 0.02 FEET PER FOOT AND RUNOFF SHALL BE DIRECTED AWAY FROM THE SAS.
- ALL COMPONENTS SHALL BE INSTALLED AT THE ELEVATIONS AND LOCATIONS INDICATED ON THE PLANS. ANY CHANGES MUST BE APPROVED BY THE OWNER'S REPRESENTATIVE, THE BOARD OF HEALTH, AND THE DESIGN ENGINEER.
- EXCAVATION FOR CONSTRUCTION OF A SOIL ABSORPTION SYSTEM MAY BE BY MECHANICAL MEANS, PROVIDED CARE IS TAKEN TO ASSURE THAT THE SOIL AT THE BOTTOM OF THE EXCAVATION IS NOT COMPACTED OR SMEARED. THE BOTTOM AND SIDES OF THE EXCAVATION SHALL BE LEVEL AND SCARIFIED.
- VEHICULAR TRAFFIC AND PARKING OF VEHICLES OR EQUIPMENT IN OR ON THE AREA OF THE SOIL ABSORPTION SYSTEM IS STRICTLY PROHIBITED DURING AND AFTER CONSTRUCTION. FROM THE DATE OF TH INSTALLATION OF THE SOIL ABSORPTION SYSTEM UNTIL COMPLETION OF CONSTRUCTION, THE PERIMETER OF THE SOIL ABSORPTION SYSTEM SHALL BE STAKED AND FLAGGED TO PREVENT THE USE OF SUCH AREA FOR ALL ACTIVITIES WHICH MIGHT DAMAGE THE SOIL ABSORPTION SYSTEM. SUCH FLAGGING IS NOT INTENDED TO PRECLUDE THE FINAL GRADING AND LANDSCAPING OF THE AREA OF THE SOIL ABSORPTION SYSTEM. STOCKPILING OF MATERIALS WITHIN THE AREA IS PROHIBITED.
- CONSTRUCTION OF THE SOIL ABSORPTION SYSTEM SHALL CONFORM TO TITLE 5 AND TO THE BOARD OF HEALTH REQUIREMENTS. 3/4" TO 1-1/2" STONE AGGREGATE IS REQUIRED FOR THE INSTALLATION OF THIS SOIL ABSORPTION SYSTEM FROM THE CROWN OF THE DISTRIBUTION PIPES TO THE BOTTOM OF THE SOIL ABSORPTION SYSTEM. ALL STONE AGGREGATE MUST BE DOUBLE WASHED AND FREE OF FINES AND DUST.
- 3. 2" OF PEASTONE SHALL BE PLACED ON TOP OF THE CROWN OF THE INLET PIPES ABOVE THE 3/4" TO 1-1/2" CRUSHED STONE. PEASTONE SHALL BE 1/8"-1/2" STONE. EACH LEACHING TRENCH SHALL INCLUDE AN INSPECTION (OBSERVATION) PORT CONSISTING OF A VERTICAL PERFORATED 4-INCH PVC PIPE DOWN THROUGH THE STONE TO THE BOTTOM OF THE TRENCH. THE PORT SHALL BE CAPPED WITH A SCREW-TYPE CAP WITHIN 3 INCHES OF FINISHED GRADE ELEVATION, AND NOTED ON THE FINAL AS-BUILT PLAN.

SCHEDU	LE OF ELEVATIONS
INVERT AT BUILDING	49.02
INVERT INTO SEPTIC TANK	48.24
INVERT OUT OF SEPTIC TANK	47.99
INVERT INTO PUMP CHAMBER	47.95
INVERT OUT OF PUMP CHAMBER	45.70
INVERT INTO DISTRIBUTION BOX	53.19
INVERT OUT OF DISTRIBUTION BOX	53.02
MAXIMUM BREAKOUT ELEVATION	53.48
INVERT AT BEGINNING OF TRENCH	52.98
INVERT AT END OF TRENCH	52.73
BOTTOM OF TRENCH	50.73
SOIL MOTTLING (TP-101 & 102)	45.7
MAX GROUND ELEVATION AT TEST PIT	54.8

LEACH FIELD I	DESIGN CALCULATIONS				
DRY STORAGE W/O CAFETERIA	(3 STAFF + 10 RENTERS) x 15 gpd/PERSON = 195 gpd				
ESTIMATED SEWAGE FLOW	440 GALLONS PER DAY (gpd) PER BOH AGENT				
PERCOLATION RATE	2 MIM/INCH PERCS-101 & 102				
SYSTEM DIMENSIONS	2 TRENCHES @ 24"WIDE x 24"DEEP X 50'LONG				
RESERVE SYSTEM DIMENSIONS	2 TRENCHES @ 24"WIDE x 24"DEEP X 50'LONG				
LEACHING RATE	0.74 GPD / SF (2 MIN/INCH PERC - TITLE 5)				
U:/4 GPD / SF (2 MIN/INCH PERC - ITILE 5) TOTAL LEACHING CAPACITY (2 SIDWALLS @ 2 FT + 1 BOTTOM @ 2 FT = 6 SF / LF): 6 SF/LF x 2 TRENCHES x 50 FT x 0.74 GPD/SF = 444 GPD PROVIDED > 440 GPD REQ'D					

Appendix B – Copy of 2022 CGP

The 2022 CGP is available at <u>https://www.epa.gov/npdes/2022-construction-general-permit-cgp</u>)

Appendix C – Copy of NOI and EPA Authorization Email

INSERT COPY OF NOI AND EPA'S AUTHORIZATION EMAIL PROVIDING COVERAGE UNDER THE CGP

Appendix D – Copy of Site and Dewatering Inspection Forms

Project Name: ______ NPDES ID Number: ______

Section A – General Information (If necessary, complete additional inspection reports for each separate inspection location.)						
Inspector Information						
Inspector Name:	Title:					
Company Name:	Email:					
Address:	Phone Number:					
Inspectio	on Details					
Inspection Date: Inspection Location:						
Inspection Start Time: Inspection End Time:						
Current Phase of Construction: Weather Conditions During Inspection:						
Did you determine that any portion of your site was unsafe for inspection per CGP Part 4.5? 🗆 Yes 🔲 No						
If "Yes," provide the following information:						
Location of unsafe conditions:						
The conditions that prevented you inspecting this location:						
Indicate the required inspection frequency: (Check all that apply. You may b	e subject to different inspection frequencies in different areas of the site.)					
Standard Frequency (CGP Part 4.2): At least once every 7 calendar days; OR Once every 14 calendar days and within 24 hours of the occurrence of either:						
 A storm event that produces 0.25 inches or more of rain within a 24-hour period, or A snowmelt discharge from a storm event that produces 3.25 inches or more of snow within a 24-hour period 						
Increased Frequency (CGP Part 4.3.1) (If site discharges to sediment or nutrier Once every 7 calendar days and within 24 hours of the occurrence of eight						
 A storm event that produces 0.25 inches or more of rain within a 24- A snowmelt discharge from a storm event that produces 3.25 inche 						

Reduced Frequency (CGP Part 4.4):
For stabilized areas: Twice during first month, no more than 14 calendar days apart; then once per month after first month until permit coverage is
terminated
For stabilized areas on "linear construction sites": Twice during first month, no more than 14 calendar days apart; then once more within 24 hours of
the occurrence of either:
 A storm event that produces 0.25 inches or more of rain within a 24-hour period, or
 A snowmelt discharge from a storm event that produces 3.25 inches or more of snow within a 24-hour period
For arid, semi-arid, or drought-stricken areas during seasonally dry periods or during drought : Once per month and within 24 hours of the occurrence
of either:
 A storm event that produces 0.25 inches or more of rain within a 24-hour period, or
 A snowmelt discharge from a storm event that produces 3.25 inches or more of snow within a 24-hour period
For frozen conditions where construction activities are being conducted: Once per month
Was this inspection triggered by a storm event producing 0.25 inches or more of rain within a 24-hour period? 🗆 Yes 🗔 No
If "Yes," how did you determine whether the storm produced 0.25 inches or more of rain?
□ On-site rain gauge
Weather station representative of site.
Weather station location:
Total rainfall amount that triggered the inspection (inches):
Was this inspection triggered by a snowmelt discharge from a storm event producing 3.25 inches or more of snow within a 24-hour period? 🗆 Yes 🗔 No
If "Yes," how did you determine whether the storm produced 3.25 inches or more of snow?
 On-site rain gauge
Weather station representative of site.
Weather station location:
Total snowfall amount that triggered the inspection (inches):

NPDES ID Number: _____

	Section B – Condition and Effectiveness of Erosion and Sediment (E&S) Controls (CGP Part 2.2) (Insert additional rows if needed)							
Type and Location of E&S Control	Conditions Requiring Routine Maintenance? ¹	If "Yes," How Many Times (Including This Occurrence) Has This Condition Been Identified?	Conditions Requiring Corrective Action? ^{2, 3}	Date on Which Condition First Observed (If Applicable)?	Description of Conditions Observed			
1.	🗆 Yes 🗆 No		🗆 Yes 🔲 No					
2.	🗆 Yes 🗆 No		🗆 Yes 🗆 No					
3.	🗆 Yes 🗆 No		🗆 Yes 🔲 No					
4.	🗆 Yes 🗆 No		🗆 Yes 🔲 No					
5.	🗆 Yes 🗆 No		🗆 Yes 🗆 No					
	n requirements and re	ecord the required info			same location (including this occurrence), , or describe here why you believe the specific			

condition should still be addressed as routine maintenance:

¹ Routine maintenance includes minor repairs or other upkeep performed to ensure that the site's stormwater controls remain in effective operating condition, not including significant repairs or the need to install a new or replacement control. Routine maintenance is also required for specific conditions: (1) for perimeter controls, whenever sediment has accumulated to half or more the above-ground height of the control (CGP Part 2.2.3.c.i); (2) where sediment has been tracked-out from the site onto paved roads, sidewalks, or other paved areas (CGP Part 2.2.4.d); (3) for inlet protection measures, when sediment accumulates, the filter becomes clogged, and/or performance is compromised (CGP Part 2.2.10.b); and (4) for sediment basins, as necessary to maintain at least half of the design capacity of the basin (CGP Part 2.2.12.f)

² Corrective actions are triggered only for specific conditions (CGP Part 5.1):

- 2. A stormwater control necessary to comply with the requirements of this permit was never installed, or was installed incorrectly; or
- 3. Your discharges are not meeting applicable water quality standards; or
- 4. A prohibited discharge has occurred (see CGP Part 1.3); or
- 5. During the discharge from site dewatering activities:

a. The weekly average of your turbidity monitoring results exceeds the 50 NTU benchmark (or alternate benchmark if approved by EPA pursuant to Part 3.3.2.b); or b. You observe or you are informed by EPA, State, or local authorities of the presence of the conditions specified in Part 4.6.3.e.

³ If a condition on your site requires a corrective action, you must also fill out a corrective action log found at https://www.epa.gov/npdes/construction-general-permitresources-tools-and-templates. See CGP Part 5.4 for more information.

^{1.} A stormwater control needs a significant repair or a new or replacement control is needed, or, in accordance with Part 2.1.4.c, you find it necessary to repeatedly (i.e., three (3) or more times) conduct the same routine maintenance fix to the same control at the same location (unless you document in your inspection report under Part 4.7.1.c that the specific reoccurrence of this same problem should still be addressed as a routine maintenance fix under 2.1.4); or

Project Name:	
NPDES ID Number:	

Type and Location of P2 Practices and Controls	Conditions Requiring Routine Maintenance? ¹	If "Yes," How Many Times (Including This Occurrence) Has This Condition Been Identified?	Conditions Requiring Corrective Action? ^{2, 3}	Date on Which Condition First Observed (If Applicable)?	Description of Conditions Observed
1.	🗆 Yes 🗆 No		🗆 Yes 🗆 No		
2.	□ Yes □ No		🗆 Yes 🗆 No		
3.	🗆 Yes 🗆 No		🗆 Yes 🗆 No		
4.	🗆 Yes 🗆 No		🗆 Yes 🗆 No		
5.	□ Yes □ No		□ Yes □ No		

Section D – Stabilization of Exposed Soil (CGP Part 2.2.14) (Insert additional rows if needed) **Stabilization Method** Stabilization **Specific Location That Has** Final Stabilization **Final Stabilization** and Applicable Notes Been or Will Be Stabilized Initiated? Criteria Met? Photos Taken? Deadline □ Yes □ No 1. □ Yes □ No □ Yes □ No If "Yes," date If "Yes," date initiated: criteria met: 2. 🗆 Yes 🗆 No □ Yes □ No □ Yes □ No If "Yes," date If "Yes," date initiated: criteria met: □ Yes □ No 🗆 Yes 🗆 No 3. □ Yes □ No If "Yes," date If "Yes," date initiated: criteria met: □ Yes □ No □ Yes □ No 4. □ Yes □ No If "Yes," date If "Yes," date initiated: criteria met: 🗆 Yes 🗆 No □ Yes □ No 5. □ Yes □ No If "Yes," date If "Yes," date initiated: criteria met:

Project Name:	
NPDES ID Number:	

Section E – Description of Discharges (CGP Part 4.6.2) (Insert additional rows if needed) Was a discharge (not including dewatering) occurring from any part of your site at the time of the inspection? ⁴ Yes No If "Yes," for each point of discharge, document the following: • The visual quality of the discharge. • The characteristics of the discharge, including color; odor; floating, settled, or suspended solids; foam; oil sheen; and other indicators of stormwater pollutants. • Signs of the above pollutant characteristics that are visible from your site and attributable to your discharge in receiving waters or in other constructed or natural site drainage features.						
					Discharge Location	Observations
					1.	
2.						
3.						
4.						
5.						

⁴ If a dewatering discharge was occurring, you must conduct a dewatering inspection pursuant to CGP Part 4.3.2 and complete a separate dewatering inspection report.

Section F – Signature and Certification (CGP Part 4.7.2)

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information contained therein. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information contained is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

MANDATORY: Signature of Operator or "Duly Authorized Representative:"				
Signature:	Date:			
Printed Name:	Affiliation:			
OPTIONAL: Signature of Contractor or Subcontractor				
Signature:	Date:			
Printed Name:	Affiliation:			

General Tips for Using This Template

This Site Inspection Report Template is provided to assist you in preparing site inspection reports for EPA's 2022 Construction General Permit (CGP). If you are covered under the 2022 CGP, you can use this template to create a site inspection report form that is customized to the specific circumstances of your site and that complies with the minimum reporting requirements of Part 4.7 of the permit. Note that the use of this form is optional; you may use your own site inspection report form provided it includes the minimum information required in Part 4.7 of the CGP.

This template does not address the CGP's inspection reporting requirements related to dewatering activities. A separate inspection template has been developed specifically for dewatering activities and is available at https://www.epa.gov/npdes/construction-general-permit-resources-tools-and-templates.

Keep in mind that this document is a template and not an "off-the-shelf" inspection report that is ready to use without some modification. You must first customize this form to include the specifics of your project in order for it to be useable for your inspection reports. Once you have entered all of your site-specific information into the blank fields, you may use this form to complete inspection reports.

The following tips for using this template will help you ensure that the minimum permit requirements are met:

- **Review the inspection requirements.** Before you start developing your inspection report form, read the CGP's Part 4 inspection requirements. This will ensure that you have a working understanding of the permit's underlying inspection requirements.
- Complete all required blank fields. Fill out <u>all</u> blank fields. Only by filling out all fields will the template be compliant with the requirements of the permit. (Note: Where you do not need the number of rows provided in the template form for your inspection, you may delete these or cross them off as you see fit. Or, if you need more space to document your findings, you may insert additional rows in the electronic version of this form or use the bottom of the page in the field version of this form.)
- Use your site map to document inspection findings. In several places in the template, you are directed to specify the location of certain features of your site, including where stormwater controls are installed and where you will be stabilizing exposed soil. You are also asked to fill in location information for unsafe conditions and the locations of any discharges occurring during your inspections. Where you are asked for location information, EPA encourages you to reference the point on your SWPPP site map that corresponds to the requested location on the inspection form. Using the site map as a tool in this way will help you conduct efficient inspections, will assist you in evaluating problems found, and will ensure proper documentation.
- Complete the inspection report within 24 hours of completing a site inspection. You must complete an inspection report in accordance with Part 4.7.1 of the CGP.
- Include the inspection form with your SWPPP. Once your form is complete, make sure to include a copy of the inspection form in your SWPPP in accordance with Part 7.2.7.e of the CGP.
- Retain copies of all inspection reports with your records. You must also retain in your records copies of all inspection reports in accordance with the requirements in Part 4.7.3 of the CGP. These reports must be retained for at least 3 years from the date your permit coverage expires or is terminated in accordance with the requirements in Part 4.7.4 of the CGP.

Instructions for Section A

Inspector Name

Enter the name of the person that conducted the inspection. Include the person's contact information (title, affiliated company name, address, email, and phone number).

Inspection Date and Time

Enter the date you performed the inspection and the time you started and ended the inspection.

Weather Conditions During Inspection

Enter the weather conditions occurring during the inspection, e.g., sunny, overcast, light rain, heavy rain, snowing, icy, windy.

Current Phase of Construction

If this project is being completed in more than one phase, indicate which phase it is currently in.

Inspection Location

If your project has multiple locations where you conduct separate inspections, specify the location where this inspection is being conducted. If only one inspection is conducted for your entire project, enter "Entire Site." If necessary, complete additional inspection report forms for each separate inspection location.

Unsafe Conditions for Inspection (CGP Part 4.5.7)

Inspections are not required where a portion of the site or the entire site is subject to unsafe conditions. These conditions should not regularly occur and should not be consistently present on a site. Generally, unsafe conditions are those that render the site (or a portion of it) inaccessible or that would pose a significant probability of injury to applicable personnel. Examples could include severe storm or flood conditions, high winds, and downed electrical wires.

If your site, or a portion of it, is affected by unsafe conditions during the time of your inspection, provide a description of the conditions that prevented you from conducting the inspection and what parts of the site were affected. If the entire site was considered unsafe, specify the location as "Entire Site."

Inspection Frequency

Check all the inspection frequencies that apply to your project. Note that you may be subject to different inspection frequencies in different areas of your site.

Inspection Triggered by a Storm Event

If you were required to conduct this inspection because of a storm event that produced 0.25 inches or more of rain within a 24-hour period, indicate whether you relied on an on-site rain gauge or a nearby weather station (and where the weather station is located). Also, specify the total amount of rainfall for this specific storm event.

If you were required to conduct this inspection because of a snowmelt discharge from a storm event that produced 3.25 inches or more of snow within a 24hour period, then indicate whether you relied on an on-site measurement or a nearby weather station (and where the weather station is located). Also, specify the total amount of snowfall for this specific storm event.

Instructions for Section B

Type and Location of Erosion and Sediment (E&S) Controls

Provide a list of all erosion and sediment (E&S) controls that your SWPPP indicates will be installed and implemented at your site. This list must include at a minimum all E&S controls required by CGP Part 2.2. Include also any natural buffers established under CGP Part 2.2.1. Buffer requirements apply if your project's earth-disturbing activities will occur within 50 feet of a discharge to receiving water. You may group your E&S controls on your form if you have several of the same type of controls (e.g., you may group "Inlet Protection Measures," "Perimeter Controls," and "Stockpile Controls" together on one line), but if there are any problems with a specific control, you must separately identify the location of the control, whether routine maintenance or corrective action is necessary, and in the notes section you must describe the specifics about the problem you observed.

Conditions Requiring Routine Maintenance?

Answer "Yes" if the E&S control requires routine maintenance as defined in footnote 1 of this template. Note that in many cases, "Yes" answers are expected and indicate a project with an active operation and maintenance program. You should also answer "Yes" if work to fix the problem is still ongoing from the previous inspection, though necessary work must be initiated immediately and completed by the end of the next business day or within seven calendar days if documented in accordance with CGP Part 2.1.4.b.

If "Yes," How Many Times (Including this Occurrence) Has this Condition Been Identified?

Indicate how many times the routine maintenance has been required for the same control at the same location.

Conditions Requiring Corrective Action?

Answer "Yes" if you found any of the conditions listed in footnote 2 in this template to be present during your inspection (CGP Part 5.1). If you answer "Yes," you must take corrective action and complete a corrective action log, found at https://www.epa.gov/npdes/construction-general-permit-resources-tools-and-templates. You should also answer "Yes" if work to fix the problem from a previous inspection is still ongoing, though the operator must comply with the corrective action deadlines in CGP Part 5.2.

Date on Which Condition First Observed (If Applicable)?

Provide the date on which the condition that triggered the need for routine maintenance or corrective action was first identified. If the condition was just discovered during this inspection, enter the inspection date. If the condition is a carryover from a previous inspection, enter the original date of the condition's discovery.

Description of Conditions Observed

For each E&S control and the area immediately surrounding it, describe whether the control is properly installed and whether it appears to be working to minimize sediment discharge. Indicate also whether a new or modified control is necessary to comply with the permit. Describe any problem condition(s) you observed such as the following:

- 1. Failure to install or to properly install a required E&S control
- 2. Damage or destruction to an E&S control caused by vehicles, equipment, or personnel, a storm event, or other event
- 3. Mud or sediment deposits found downslope from E&S controls, including in receiving waters, or on nearby streets, curbs, or open conveyance channels 4. Sediment tracked out onto paved areas by vehicles leaving construction site
- 5. Noticeable erosion or sedimentation at discharge outlets or at adjacent streambanks or channels
- 6. Erosion of the site's sloped areas (e.g., formation of rills or gullies)
- 7. E&S control is no longer working due to lack of maintenance
- 8. Other incidents of noncompliance

Describe also why you think the problem condition(s) occurred as well as actions (e.g., routine maintenance or corrective action) you will take or have taken to fix the problem.

For buffer areas, make note of whether they are marked off as required, whether there are signs of construction disturbance within the buffer, which is prohibited under the CGP, and whether there are visible signs of erosion resulting from discharges through the area.

If routine maintenance or corrective action is required, briefly note the reason. If routine maintenance or corrective action has been completed, make a note of the date it was completed and what was done. If corrective action is required, note that you will need to complete a separate corrective action log describing the condition and your work to fix the problem.

Routine Maintenance Need Has Been Found to be Necessary Three (3) or More Times for the Same Control at the Same Location (Including this Occurrence)

If routine maintenance has been required three (3) or more times for the same control at the same location, the permit requires (CGP Part 2.1.4.c) you to fix the problem using the corrective action procedures in CGP Part 5 or to document why you believe the reoccurring problem can be addressed as a routine maintenance fix. If you believe the problem can continue to be fixed as routine maintenance, describe why you believe the specific condition should still be addressed as routine maintenance.

Instructions for Section C

Type and Location of Pollution Prevention (P2) Practices and Controls

Provide a list of all pollution prevention (P2) practices and controls that are implemented at your site. This list must include all P2 practices and controls required by CGP Part 2.3 and those that are described in your SWPPP.

Conditions Requiring Routine Maintenance?

Answer "Yes" if the P2 practice or control requires routine maintenance as defined in footnote 1 of this template. Note that in many cases, "Yes" answers are expected and indicate a project with an active operation and maintenance program. You should also answer "Yes" if work to fix the problem is still ongoing

from the previous inspection, though necessary work must be initiated immediately and completed by the end of the next business day or within seven calendar days if documented in accordance with CGP Part 2.1.4.b.

If "Yes," How Many Times (Including this Occurrence) Has this Condition Been Identified?

Indicate how many times the routine maintenance has been required for the same practice or control at the same location.

Conditions Requiring Corrective Action?

Answer "Yes" if you found any of the conditions listed in footnote 2 in this template to be present during your inspection (CGP Part 5.1). If you answer "Yes," you must take corrective action and complete a corrective action log, found at https://www.epa.gov/npdes/construction-general-permit-resources-tools-and-templates. You should also answer "Yes" if work to fix the problem from a previous inspection is still ongoing, though the operator must comply with the corrective action deadlines in CGP Part 5.2.

Date on Which Condition First Observed (If Applicable)?

Provide the date on which the condition that triggered the need for maintenance or corrective action was first identified. If the condition was just discovered during this inspection, enter the inspection date. If the condition is a carryover from a previous inspection, enter the original date of the condition's discovery.

Description of Conditions Observed

For each P2 control and the area immediately surrounding it, describe whether the control is properly installed, and whether it appears to be working to minimize or eliminate pollutant discharges. Indicate also whether a new or modified control is necessary to comply with the permit. Describe any problem condition(s) you observed such as the following:

- 1. Failure to install or to properly install a required P2 control
- 2. Damage or destruction to a P2 control caused by vehicles, equipment, or personnel, or a storm event
- 3. Evidence of a spill, leak, or other type of pollutant discharge, or failure to have properly cleaned up a previous spill, leak, or other type of pollutant discharge
- 4. Spill response supplies are absent, insufficient, or not where they are supposed to be located
- 5. Improper storage, handling, or disposal of chemicals, building materials or products, fuels, or wastes
- 6. P2 control is no longer working due to lack of maintenance
- 7. Other incidents of noncompliance

Describe also why you think the problem condition(s) occurred as well as actions (e.g., routine maintenance or corrective action) you will take or have taken to fix the problem.

If routine maintenance or corrective action is required, briefly note the reason. If routine maintenance or corrective action has been completed, make a note of the date it was completed and what was done. If corrective action is required, note that you will need to complete a separate corrective action log describing the condition and your work to fix the problem.

Routine Maintenance Need Was Found to be Necessary Three (3) or More Times for the Same Control at the Same Location (Including this Occurrence)

If routine maintenance has been required three (3) or more times for the same control at the same location, the permit requires (CGP Part 2.1.4.c) you to fix the problem using the corrective action procedures in CGP Part 5 or to document why you believe the reoccurring problem can be addressed as a routine maintenance fix. If you believe the problem can continue to be fixed as routine maintenance, describe why you believe the specific condition should still be addressed as routine maintenance.

Instructions for Section D

Specific Location That Has Been or Will Be Stabilized

List all areas where soil stabilization is required to begin because construction work in that area has permanently stopped or temporarily stopped (i.e., work will stop for 14 or more days), and all areas where stabilization has been implemented (CGP Part 2.2.14).

Stabilization Method and Applicable Deadline

For each area, specify the method of stabilization (e.g., hydroseed, sod, planted vegetation, erosion control blanket, mulch, rock).

Specify also which of the following stabilization deadlines apply to this location:

- 1.5 acres or less of land disturbance occurring at any one time at site: Complete no later than 14 calendar days after stabilization initiated.
- 2. More than 5 acres of land disturbance occurring at any one time at site: Complete no later than 7 calendar days after stabilization initiated.
- 3. <u>Arid, semi-arid, and drought-stricken areas</u>: See CGP Part 2.2.14.b.i.
- 4. Unforeseen circumstances: See CGP Part 2.2.14.b.ii.
- 5. Discharges to a sediment- or nutrient-impaired water or to a water identified as Tier 2, 2.5, or 3 for antidegradation purposes: Complete no later than 7 days after stabilization initiated.

Stabilization Initiated?

For each area, indicate whether stabilization has been initiated. If "Yes," then enter the date stabilization was initiated.

Final Stabilization Criteria Met?

For each area, indicate whether the final stabilization criteria in CGP Part 2.2.14.c have been met. If "Yes," then enter the date final stabilization criteria were met.

Final Stabilization Photos Taken?

Answer "Yes" if you have taken photos before and after meeting the stabilization criteria as required in CGP Part 8.2.1.a.

Notes

For each area where stabilization has been initiated, describe the progress that has been made and what additional actions are necessary to complete stabilization. Note the effectiveness of stabilization in preventing erosion. If stabilization has been initiated but not completed, make a note of the date it is to be completed. If stabilization has not yet been initiated, make a note of the date it is to be initiated and the date it is to be completed.

Instructions for Section E

You are only required to complete this section if a discharge is occurring at the time of the inspection (CGP Part 4.6.2).

Was a discharge (not including dewatering) occurring from any part of your site at the time of the inspection?

During your inspection, examine all points of discharge from your site, and determine whether a discharge is occurring. If a dewatering discharge was occurring, you must conduct a dewatering inspection pursuant to CGP Part 4.3.2. If there is a discharge, answer "Yes" and complete the questions below regarding the specific discharge. If there is not a discharge, answer "No" and skip to the next page.

Discharge Location (Repeat as necessary if there are multiple points of discharge.)

Specify the location on your site where the discharge is occurring. The location may be an outlet from a stormwater control or constructed stormwater channel, a discharge into a storm sewer inlet, or a specific point on the site. Be as specific as possible; it is recommended that you refer to a precise point on your site map.

Observations

Document the visual quality of the discharge and take note of the characteristics of the stormwater discharge, including color; door; floating, settled, or suspended solids; foam; oily sheen; and other indicators of stormwater pollutants. Also, document signs of these same pollutant characteristics that are visible from your site and attributable to your discharge in receiving waters or in other constructed or natural site drainage features.

Instructions for Section F

Each inspection report must be signed and certified to be considered complete (CGP Part 4.7.2).

Operator or "Duly Authorized Representative" – MANDATORY (CGP Appendix G Part G.11.2 and CGP Appendix H Section X)

At a minimum, the site inspection report must be signed by either (1) the person who signed the NOI, or (2) a duly authorized representative of that person. The following requirements apply:

If the signatory will be the person who signed the NOI for permit coverage, as a reminder, that person must be one of the following types of individuals:

- For a corporation: By a responsible corporate officer. For the purpose of this subsection, a responsible corporate officer means: (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
- For a partnership or sole proprietorship: By a general partner or the proprietor, respectively.
- For a municipality, State, Federal, or other public agency: By either a principal executive officer or ranking elected official. For purposes of this subsection, a principal executive officer of a Federal agency includes (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrator of EPA).

If the signatory will be a duly authorized representative, the following requirements must be met:

- The authorization is made in writing by the person who signed the NOI (see above);
- The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual or coupying a named position); and
- The signed and dated written authorization is included in the SWPPP. A copy must be submitted to EPA, if requested.

Sign, date and print your name and affiliation.

Contractor or Subcontractor - OPTIONAL

Where you rely on a contractor or subcontractor to complete the site inspection report, you should consider requiring the individual(s) to sign and certify each report. Note that this does not relieve you, the permitted operator, of the requirement to sign and certify the site inspection report as well. If applicable, sign, date, and print your name and affiliation.

<u>Note</u>

While EPA has made every effort to ensure the accuracy of all instructions contained in this template, it is the permit, not this template, that determines the actual obligations of regulated construction stormwater discharges. In the event of a conflict between this template and any corresponding provision of the CGP, you must abide by the requirements in the permit. EPA welcomes comments on this Site Inspection Report Template at any time and will consider those comments in any future revision. You may contact EPA for CGP-related inquiries at cgp@epa.gov

Project Name: ______ NPDES ID Number: ______

Section A – Dewatering Discharges (CGP Part 4.6.3) Complete this section <u>within 24 hours</u> of completing the inspection. (If necessary, complete additional inspection reports for each separate inspection location.)			
Inspector	Information		
Inspector Name:	Title:		
Company Name:	Email:		
Address:	Phone Number:		
Inspectio	on Details		
Inspection Date: Inspection Location:			
Discharge Start Time: Discharge End Time:			
Rate of Discharge (gallons per day): Corrective Action Required? ¹ U Yes No			
Describe Indicators of Pollutant Discharge at Point of Dewatering Discharge: ¹			
 Attach Photographs of: Dewatering water prior to treatment by a dewatering control(s) and the final discharge after treatment; and Dewatering control(s); and Point of discharge to any receiving waters flowing through or immediately adjacent to the site and/or to constructed or natural site drainage features, storm drain inlets, and other conveyances to receiving waters. If you observe any of the following indicators of pollutant discharge, you are required to take corrective action under Part 5.1.5.b: 			
 a sediment plume, suspended solids, unusual color, presence of odor, decreased clarity, or presence of foam; or 			

• a visible sheen on the water surface or visible oily deposits on the bottom or shoreline of the receiving water.

Project Name:	
NPDES ID Number:	
INI DES ID NUITIDEI.	

Section B – Signature and Certification (CGP Part 4.7.2)

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information contained therein. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information contained is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

MANDATORY: Signature of Operator or "Duly Authorized Representative:"			
Signature: Date:			
Printed Name:	Affiliation:		
OPTIONAL: Signature of Contractor or Subcontractor			
Signature: Date:			
Printed Name:	Affiliation:		

General Tips for Using This Template

This Dewatering Inspection Report Template is provided to assist you in preparing dewatering inspection reports for EPA's 2022 Construction General Permit (CGP). If you are covered under the 2022 CGP, you can use this template to create a dewatering inspection report form that complies with the minimum reporting requirements of Part 4.6.3 of the permit. Note that the use of this form is optional; you may use your own inspection report form provided it includes the minimum information required in Part 4.6.3 of the CGP.

This template is for dewatering inspections only. A separate site inspection report template that does not include dewatering inspections and complies with the minimum reporting requirements of Part 4.7 of the permit is available at https://www.epa.gov/npdes/construction-general-permit-resources-tools-and-templates.

If you are covered under a State CGP, this template may be helpful in developing a report that can be used for that permit; however, it will need to be modified to meet the specific requirements of that permit. If your permitting authority requires you to use a specific inspection report form, you should not use this form.

The following tips for using this template will help you ensure that the minimum permit requirements are met:

- **Review the inspection requirements.** Before you start developing your inspection report form, read the CGP's Part 4 inspection requirements. This will ensure that you have a working understanding of the permit's underlying inspection requirements.
- **Complete all required blank fields.** Fill out <u>all</u> blank fields. Only by filling out all fields will the template be compliant with the requirements of the permit. (Note: Where you do not need the number of rows provided in the template form for your inspection, you may delete these as you see fit. Or, if you need more space to document your findings, you may insert additional rows in the electronic version of this form or use the bottom of the page in the field version of this form.)
- Use your site map to document inspection findings. In several places in the template, you are directed to specify the location of certain features of your site, including where stormwater controls are installed and where you will be stabilizing exposed soil. You are also asked to fill in location information for unsafe conditions and the locations of any discharges occurring during your inspections. Where you are asked for location information, EPA encourages you to reference the point on your SWPPP site map that corresponds to the requested location on the inspection form. Using the site map as a tool in this way will help you conduct efficient inspections, will assist you in evaluating problems found, and will ensure proper documentation.
- Include the inspection form with your SWPPP. Once your form is complete, make sure to include a copy of the inspection form in your SWPPP in accordance with Part 7.2.7.e of the CGP.
- Retain copies of all inspection reports with your records. You must also retain copies of all inspection reports in your records in accordance with the requirements in Part 4.7.3 of the CGP. These reports must be retained for at least 3 years from the date your permit coverage expires or is terminated in accordance with the requirements in Part 4.7.4 of the CGP.

Instructions for Section A

Inspector Name

Enter the name of the person that conducted the inspection. Include the person's contact information (title, affiliated company name, address, email, and phone number).

Inspection Date

Enter the date you performed the inspection.

Inspection Location

If your project has multiple locations where you conduct separate dewatering inspections, specify the location where this inspection is being conducted. Otherwise, you can enter "dewatering operation."

Discharge Start and End Times

Enter the approximate time the dewatering discharge started and ended on the day of the inspection.

Rate of Discharge

Enter the rate of discharge in gallons per day on the day of inspection.

To estimate the approximate discharge rate on the day of dewatering inspection, one approach is to use the manufacturer's design pump rating for the pump model in use. For example, a pump rated at 164 gpm (gallons per minute) by the manufacturer can be assumed to be discharging at 164 gpm in most cases. To convert to gallons per day, multiply the rate in gpm by the ratio of minutes in one-day (1,440 minutes per day), resulting in a discharge rate of 236,160 gallons per day.

In cases where the dewatering discharge is being pumped over long distances or a substantial distance uphill, which will result in a reduced pump rate relative to manufacturer's specification, the operator may improve the accuracy of the estimate by estimating the time required to fill a container of a known volume. For example, if it takes 60 seconds to fill an empty 55-gallon barrel, the estimated discharge rate is 55 gpm, or 79,200 gallons per day.

Indicators of Pollutant Discharge

For the point of discharge, describe any observed sediment plume, suspended solids, unusual color, presence of odor, decreased clarity, or presence of foam; and/or a visible sheen on the water surface or visible oily deposits on the bottom or shoreline of the receiving water.

Corrective Action Required?

Answer "Yes" if during your inspection you found any of the conditions listed above in the instructions for the Indicators of Pollutant Discharge section. If you answer "Yes," you must take corrective action and complete a corrective action log, found at https://www.epa.gov/npdes/construction-general-permit-resources-tools-and-templates. Answer "No" if you did not observe any of the listed pollutant indicators.

Photographs

As required in CGP Part 8.2.1.a, attach photos of: (1) dewatering water prior to treatment by a dewatering control(s) and the final discharge after treatment; (2) the dewatering control(s); and (3) the point of discharge to any receiving waters flowing through or immediately adjacent to the site and/or to constructed or natural site drainage features, storm drain inlets, and other conveyances to receiving waters.

Instructions for Section B

Each inspection report must be signed and certified to be considered complete (CGP Part 4.7.2).

Operator or "Duly Authorized Representative" - MANDATORY (CGP Appendix G Part G.11.2 and CGP Appendix H Section X)

At a minimum, the dewatering inspection report must be signed by either (1) the person who signed the NOI, or (2) a duly authorized representative of that person. The following requirements apply:

If the signatory will be the person who signed the NOI for permit coverage, as a reminder, that person must be one of the following types of individuals:

- For a corporation: By a responsible corporate officer. For the purpose of this subsection, a responsible corporate officer means: (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
- For a partnership or sole proprietorship: By a general partner or the proprietor, respectively.

• For a municipality, State, Federal, or other public agency: By either a principal executive officer or ranking elected official. For purposes of this subsection, a principal executive officer of a Federal agency includes (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrator of EPA).

If the signatory will be a duly authorized representative, the following requirements must be met:

- The authorization is made in writing by the person who signed the NOI (see above);
- The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position); and
- The signed and dated written authorization is included in the SWPPP. A copy must be submitted to EPA, if requested.

Sign, date and print your name and affiliation.

Contractor or Subcontractor - OPTIONAL

Where you rely on a contractor or subcontractor to complete the dewatering inspection report, you should consider requiring the individual(s) to sign and certify each report. Note that this does not relieve you, the permitted operator, of the requirement to sign and certify the dewatering inspection report as well. If applicable, sign, date, and print your name and affiliation.

<u>Note</u>

While EPA has made every effort to ensure the accuracy of all instructions contained in this template, it is the permit, not this template, that determines the actual obligations of regulated construction stormwater discharges. In the event of a conflict between this template and any corresponding provision of the CGP, you must abide by the requirements in the permit. EPA welcomes comments on this Dewatering Inspection Report Template at any time and will consider those comments in any future revision. You may contact EPA for CGP-related inquiries at cgp@epa.gov

Appendix E – Copy of Corrective Action Log

2022 CGP Corrective Action Log Project Name: ______ NPDES ID Number: ______

Section A – Individual Completing this Log			
Name:	Title:		
Company Name:	Email:		
Address:	Phone Number:		
	Problem (CGP Part 5.4.1.a) ing the condition that triggered corrective action.		
Date problem was first identified:	Time problem was first identified:		
What site conditions triggered this corrective action? (Check the box that apple 1 and 2 and 3 and 4 and 5 and 5 b and 6	olies. See instructions for a description of each triggering condition (1 thru 6).)		
Specific location where problem identified:			
Provide a description of the specific condition that triggered the need for con	rective action and the cause (if identifiable):		
	Completion (CGP Part 5.4.1.b) after completing the corrective action.		
For site condition # 1, 2, 3, 4, or 6 (those not related to a dewatering discharge	e) confirm that you met the following deadlines (CGP Part 5.2.1):		
Immediately took all reasonable steps to address the condition, includ in subsequent storm events. AND	ing cleaning up any contaminated surfaces so the material will not discharge		
Completed corrective action by the close of the next business day, un	Completed corrective action by the close of the next business day, unless a new or replacement control, or significant repair, was required. OR		
Completed corrective action within seven (7) calendar days from the time of discovery because a new or replacement control, or significant repair, was necessary to complete the installation of the new or modified control or complete the repair. OR			
It was infeasible to complete the installation or repair within 7 calendar days from the time of discovery. Provide the following additional information:			
Explain why 7 calendar days was infeasible to complete the installatio	n or repair:		

Provide your schedule for installing the stormwater control and making it operational as soon as feasible after the 7 calendar days:

For site condition # 5a, 5b, or 6 (those related to a dewatering discharge), confirm that you met the following deadlines:

- Immediately took all reasonable steps to minimize or prevent the discharge of pollutants until a solution could be implemented, including shutting off the dewatering discharge as soon as possible depending on the severity of the condition taking safety considerations into account.
- Determined whether the dewatering controls were operating effectively and whether they were causing the conditions.
- □ Made any necessary adjustments, repairs, or replacements to the dewatering controls to lower the turbidity levels below the benchmark or remove the visible plume or sheen.

Describe any modification(s) made as part of corrective action:	Date of completion:	SWPPP update	If yes, date SWPPP was
(Insert additional rows below if applicable)		necessary?	updated:
1.		Yes No	
2.		Yes No	

Section D - Signature and Certification (CGP Part 5.4.2)

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information contained therein. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information contained is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

MANDATORY: Signature of Operator or "Duly Authorized Representative:"			
Signature:	Date:		
Printed Name:	Affiliation:		
OPTIONAL: Signature of Contractor or Subcontractor			
Signature: Date:			
Printed Name: Affiliation:			

General Instructions

This Corrective Action Log Template is provided to assist you creating a corrective action log that complies with the minimum reporting requirements of Part 5.4 of the EPA's Construction General Permit (CGP). For each triggering condition on your site, you will need to fill out a separate corrective action log.

The entire form must be completed to be compliant with the requirements of the permit. (Note: In Section C, if you do not need the number of rows provided in the corrective action log, you may delete these or cross them off. Alternatively, if you need more space to describe any modifications, you may insert additional rows in the electronic version of this form or use the bottom of the page in the field version of this form.)

If you are covered under a State CGP, this template may be helpful in developing a log that can be used for that permit; however, you will likely need to modify this form to meet the specific requirements of any State-issued permit. If your permitting authority requires you to use a specific corrective action log, you should not use this template.

Instructions for Section A

Individual completing this form Enter the name of the person completing this log. Include the person's contact information (title, affiliated company name, address, email, and phone number).

Instructions for Section B

You must complete Section B within 24 hours of discovering the condition that triggered corrective action. (CGP Part 5.4)

When was the problem first discovered?

Specify the date and time when the triggering condition was first discovered.

What site conditions triggered this corrective action? (CGP Parts 5.1 and 5.3)

Check the box corresponding to the numbered triggering condition below that applies to your site.

- 1. A stormwater control needs a significant repair or a new or replacement control is needed, or, in accordance with Part Error! Reference source not found., you find it necessary to repeatedly (i.e., 3 or more times) conduct the same routine maintenance fix to the same control at the same location (unless you document in your inspection report under Part Error! Reference source not found, that the specific reoccurrence of this same problem should still be addressed as a routine maintenance fix under Part Error! Reference source not found.);
- 2. A stormwater control necessary to comply with the requirements of this permit was never installed, or was installed incorrectly;
- 3. Your discharges are not meeting applicable water quality standards;
- 4. A prohibited discharge has occurred (see Part 1.3);
- 5. During discharge from site dewatering activities:
 - a. The weekly average of your turbidity monitoring results exceeds the 50 NTU benchmark (or alternate benchmark if approved by EPA pursuant to Part Error! Reference source not found.); or
 - b. You observe or you are informed by EPA, State, or local authorities of the presence of any of the following at the point of discharge to a receiving water flowing through or immediately adjacent to your site and/or to constructed or natural site drainage features or storm drain inlets:
 - sediment plume
 - suspended solids
 - unusual color
 - presence of odor
 - decreased clarity
 - presence of foam
 - visible sheen on the water surface or visible oily deposits on the bottom or shoreline of the receiving water
- 6. EPA requires corrective action as a result of permit violations found during an inspection carried out under Part 4.8.

Provide a description of the problem (CGP Part 5.4.1.a)

Provide a summary description of the condition you found that triggered corrective action, the cause of the problem (if identifiable), and the specific location where it was found. Be as specific as possible about the location; it is recommended that you refer to a precise point on your site map.

Instructions for Section C

You must complete Section C within 24 hours after completing the correction action. (CGP Part 5.4)

Deadlines for completing corrective action for condition # 1, 2, 3, 4, or 6 (if not relating to a dewatering discharge) (CGP Part 5.2.1)

Check the box to confirm that you met the deadlines that apply to each triggering condition. You are always required to check the first box (i.e., Immediately took all reasonable steps to address the condition, including cleaning up any contaminated surfaces so the material will not discharge in subsequent storm events.). Only one of the next three boxes should be checked depending on the situation that applies to this corrective action.

Check the second box if the corrective action for this particular triggering condition does not require a new or replacement control, or a significant repair. These actions must be completed by the close of the next business day from the time of discovery of the condition.

Check the third box if the corrective action for this particular triggering condition requires a new or replacement control, or a significant repair. These actions must be completed by no later than seven calendar days from the time of discover of the condition.

Check the fourth box if the corrective action for this particular triggering condition requires a new or replacement control, or a significant repair, and if it is infeasible to complete the work within seven calendar days. Additionally, you will need to fill out the table below the checkbox that requires:

- 1. An explanation as to why it was infeasible to complete the installation or repair within seven calendar days of discovering the condition.
- 2. Provide the schedule you will adhere to for installing the stormwater control and making it operational as soon as feasible after the seventh day following discovery.

Note: Per Part 5.2.1.c, where these actions result in changes to any of the stormwater controls or procedures documented in your SWPPP, you must modify your SWPPP accordingly within seven calendar days of completing this work.

Deadlines for completing corrective action for condition # 5a, 5b, or 6 related to a dewatering discharge (CGP Part 5.2.2)

These deadlines apply to conditions relating to construction dewatering activities. Check the box to confirm that you met the deadlines that apply to each triggering condition. You are required to check all of the boxes in this section to indicate your compliance with the corrective action deadlines.

List of modification(s) to correct problem

Provide a list of modifications you completed to correct the problem.

Date of completion

Enter the date you completed the modification. The work must be completed by the deadline you indicated above.

SWPPP update necessary?

Check "Yes" or "No" to indicate if a SWPPP update is necessary consistent with Part 7.4.1.a in order to reflect changes implemented at your site. If "Yes," then enter the date you updated your SWPPP. The SWPPP updates must be made within seven calendar days of completing a corrective action. (CGP Part 5.2.1.c)

Instructions for Section D

Each corrective action log entry must be signed and certified following completion of Section D to be considered complete. (CGP Part 5.4.2)

Operator or "Duly Authorized Representative" - MANDATORY (CGP Appendix G Part G.11.2 and CGP Appendix H Section X)

At a minimum, the corrective action log must be signed by either (1) the person who signed the NOI, or (2) a duly authorized representative of that person. The following requirements apply:

If the signatory will be the person who signed the NOI for permit coverage, as a reminder, that person must be one of the following types of individuals:

- For a corporation: By a responsible corporate officer. For the purpose of this subsection, a responsible corporate officer means: (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
- For a partnership or sole proprietorship: By a general partner or the proprietor, respectively.
- For a municipality, State, Federal, or other public agency: By either a principal executive officer or ranking elected official. For purposes of this subsection, a principal executive officer of a Federal agency includes (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrator of EPA).

If the signatory will be a duly authorized representative, the following requirements must be met:

- The authorization is made in writing by the person who signed the NOI (see above);
- The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position); and
- The signed and dated written authorization is included in the SWPPP. A copy must be submitted to EPA, if requested.

Sign, date and print your name and affiliation.

Contractor or Subcontractor - OPTIONAL

Where you rely on a contractor or subcontractor to complete this log and the associated corrective action, you should consider requiring the individual(s) to sign and certify each log entry. Note that this does not relieve you, the permitted operator, of the requirement to sign and certify the log as well. If applicable, sign, date, and print your name and affiliation.

Recordkeeping

Logs must be retained for at least 3 years from the date your permit coverage expires or is terminated. (CGP Part 5.4.4)

Keep copies of your signed corrective action log entries at the site or at an easily accessible location so that it can be made immediately available at the time of an on-site inspection or upon request by EPA. (CGP Part 5.4.3) Include a copy of the corrective action log in your SWPPP. (CGP Part 7.2.7.e)

<u>Note</u>

While EPA has made every effort to ensure the accuracy of all instructions contained in this template, it is the permit, not this template, that determines the actual obligations of regulated construction stormwater discharges. In the event of a conflict between this template and any corresponding provision of the CGP, you must abide by the requirements in the permit. EPA welcomes comments on this Corrective Action Log Template at any time and will consider those comments in any future revision. You may contact EPA for CGP-related inquiries at cgp@epa.gov

Appendix F – SWPPP Amendment Log

No.	Description of the Amendment	Date of	Amendment Prepared by
		Amendment	[Name(s) and Title]
		INSERT	
		DATE	
		INSERT	
		DATE	
		INSERT	
		DATE	
		INSERT	
		DATE	
		INSERT	
		DATE	
		INSERT	
		DATE	
		INSERT	
		DATE	
		INSERT	
		DATE	

Appendix F - SWPPP Amendment Log

Appendix G – Subcontractor Certifications/Agreements

Appendix G – Subcontractor Certifications/Agreements

SUBCONTRACTOR CERTIFICATION STORMWATER POLLUTION PREVENTION PLAN

Project Number: _		 	
Project Title:			
Operator(s):			

As a subcontractor, you are required to comply with the Stormwater Pollution Prevention Plan (SWPPP) for any work that you perform on-site. Any person or group who violates any condition of the SWPPP may be subject to substantial penalties or loss of contract. You are encouraged to advise each of your employees working on this project of the requirements of the SWPPP. A copy of the SWPPP is available for your review at the office trailer.

Each subcontractor engaged in activities at the construction site that could impact stormwater must be identified and sign the following certification statement:

I certify under the penalty of law that I have read and understand the terms and conditions of the SWPPP for the above designated project and agree to follow the practices described in the SWPPP.

This certification is hereby signed in reference to the above named project:

Company: _____

Address:

Telephone Number:	

Type of construction service to be provided:

Nobis Group® Apr-5 Rev 0

Signature:	
Title:	

Date:

Appendix H – Grading and Stabilization Activities Log

Appendix H – Grading and Stabilization Activities Log

Date	Description of Grading Activity	Description of Stabilization	Date Grading	Date When
Grading		Measure and Location	Activity Ceased	Stabilization
Activity			(Indicate	Measures
Initiated			Temporary or	Initiated
			Permanent)	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			🗆 Permanent	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			🗆 Permanent	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			🗆 Permanent	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			🗆 Permanent	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			🗆 Permanent	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			□ Permanent	

Date	Description of Grading Activity	Description of Stabilization	Date Grading	Date When
Grading		Measure and Location	Activity Ceased	Stabilization
Activity			(Indicate	Measures
Initiated			Temporary or	Initiated
			Permanent)	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			🗆 Permanent	
INSERT			INSERT DATE	INSERT
DATE			□ Temporary	DATE
			🗆 Permanent	

Appendix I – Training Documentation

CONTRACTOR TO INSERT TRAINING DOCUMENTATION REQUIRED BY THE CGP

Appendix J – Delegation of Authority Form

Appendix J – Delegation of Authority Form

Delegation of Authority

I, ______ (name), hereby designate the person or specifically described position below to be a duly authorized representative for the purpose of overseeing compliance with environmental requirements, including the EPA's Construction General Permit (CGP), at the ______ construction site. The designee is authorized to sign any reports, stormwater pollution prevention plans and all other documents required by the permit.

(name of person or position)
(company)
(address)
(city, State, zip)
(phone)

By signing this authorization, I confirm that I meet the requirements to make such a designation as set forth in Appendix G of EPA's CGP, and that the designee above meets the definition of a "duly authorized representative" as set forth in Appendix G.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	
Company:	
Title:	
Signature:	
Date:	
095561.150	Nobis Group®
True Storage Facility	Apr-5 Rev 0

Appendix K – Endangered Species Documentation

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as trust resources) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Project information

NAME

True Storage Facility

LOCATION

DESCRIPTION

Some(The Owner is proposing to develop an existing parcel of land located at 2400 & 2402 Cranberry Highway in Wareham, Massachusetts (the "Site"). The subject properties are identified by the Town of Wareham Assessor's office as Tax Map 108 Lots 1002.B1, 1002.B2, 1002.D, 1003.B1, 1003.B2, and 1003.B3. The Site currently consists of a 6,900 square foot one-story building that was used as a Buick Dealership showroom and garage and most recently as Wareham Pharmacy. The northern portion of the building was used as the auto showroom/pharmacy retail area. The southern portion of the building is a three-bay garage. A former auto body shop was located to the south of the standing structure. This was demolished and little evidence of the structure is left. A residential house was historically located on the southern portion of 2402 Cranberry Highway, this structure was demolished, and no apparent evidence of the structure remains.

The Applicant proposes to develop the Site in order to construct a two-story 60,000 square foot storage facility. As proposed, the Project includes the demolition of the former auto showroom/pharmacy, three-bay garage and the existing pavement parking and driveways including the closer of three driveways to Cranberry Highway. The new development will include the construction of the storage facility building, new parking and drive aisles, landscape improvements, and utility and stormwater management improvements to support the development.)

Local office

New England Ecological Services Field Office

\$ (603) 223-2541 (603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- 4. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME	STATUS
Northern Long-eared Bat Myotis septentrionalis Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/9045</u>	Threatened
Reptiles	STATUS
Plymouth Redbelly Turtle Pseudemys rubriventris bangsi Wherever found There is final critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/451	Endangered
Insects	

NAME

Monarch Butterfly Danaus plexippus Wherever found No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9743

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u>

conservation-measures.php

 Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping_tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

American Oystercatcher Haematopus palliatus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8935</u> Breeds Apr 15 to Aug 31

Candidate

Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/1626</u>	Breeds Oct 15 to Aug 31
Black-billed Cuckoo Coccyzus erythropthalmus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9399</u>	Breeds May 15 to Oct 10
Lesser Yellowlegs Tringa flavipes This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9679</u>	Breeds elsewhere
Ruddy Turnstone Arenaria interpres morinella This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds elsewhere
Rusty Blackbird Euphagus carolinus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds elsewhere
Willet Tringa semipalmata This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 20 to Aug 5
Wood Thrush Hylocichla mustelina This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and	Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Alaska.

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

						-			-		-	t — no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
American Oystercatcher BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	****	**++	+ 1 + 1	111+	1+++	++++	1-+1	+	+1++	++++	N
Bald Eagle Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	•			****	1111		S	ال	71	-10	111	
Black-billed Cuckoo BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++				+) 1 ~	++++	+ - + +	* *	* 1 ++	++++	+++
Lesser Yellowlegs BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	 \	24	····	++++	++++	++++	++++	+11	++	+++	++++	+++
Ruddy Turnstone BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)	++++	+-++	**++	++++	++ 1 +	1 +++	++++	I -++	++	++++	++++	+-++
Rusty Blackbird BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)	++++	+++	**+	++++	++++	++++	++++	+++	++	++++	+++	+++
Willet BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	+++	**+*	++1+	++1+	1+++	++++	<mark>+</mark> ++	++	++++	++++	+++

Wood Thrush	++++	+-++	++++
BCC Rangewide (CON) (This is a Bird of			
Conservation Concern (BCC) throughout its			
range in the continental			
USA and Alaska.)			

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

++++

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

++++

++++

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS Birds of Conservation Concern (BCC) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of</u> <u>Ornithology Neotropical Birds guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

If your project has the potential to disturb or kill eagles, you may need to obtain a permit to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

UI

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local U.S. Army Corps of Engineers District.

WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and

nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

TEORCONSULTATIO

Area of Interest (AOI) Information

Area : 2,198.44 acres

Mar 24 2022 15:52:57 Eastern Daylight Time

1:2,25 0.02 0.04 0.09 km GeoEye, Earthstar Geographics, CNES/Airbus DS, RID, IGN, and the GIS User Community. Fixil HERE

Summary

Name	Count	Area(acres)	Length(mi)
Atlantic Sturgeon	0	0	N/A
Shortnose Sturgeon	0	0	N/A
Atlantic Salmon	0	0	N/A
Sea Turtles	0	0	N/A
Atlantic Large Whales	0	0	N/A
In or Near Critical Habitat	0	0	N/A

DISCLAIMER: Use of this App does NOT replace the Endangered Species Act (ESA) Section 7 consultation process; it is a first step in determining if a proposed Federal action overlaps with listed species or critical habitat presence. Because the data provided through this App are updated regularly, reporting results must include the date they were generated. The report outputs (map/tables) depend on the options picked by the user, including the shape and size of the action area drawn, the layers marked as visible or selectable, and the buffer distance specified when using the "Draw your Action Area" function. Area calculations represent the size of overlap between the user-drawn Area of Interest (with buffer) and the specified S7 Consultation Area. Summary table areas represent the sum of these overlapping areas for each species group.

Appendix L – Historic Properties Documentation

Phase I and II Environmental Site Assessment Reports prepared by Nobis are available upon request Appendix N – Turbidity Monitoring Sampling Documentation (Not Applicable)

Appendix O – Structural BMP Specifications for the Mass. Stormwater Handbook

The MassDEP Stormwater Handbook Volume 2 Chapter 2 is available at <u>https://www.mass.gov/doc/massachusetts-stormwater-handbook-vol-2-ch-2-stormwater-best-management-practices/download</u>

APPENDIX F – OPERATIONS & MAINTENANCE PLAN

INSPECTION & MAINTENANCE PROCEDURES

TRUE STORAGE FACILITY 2400 & 2402 CRANBERRY HIGHWAY, WAREHAM, MA

RESPONSIBLE PARTIES

Inspection/Maintenance/Record Keeping: Wareham Development, LLC, & JB Development, LLC, Bourne Acquisition, LLC & 2527 LLC 670 N. Commercial Street, Suite 212 Manchester, NH 03101

INSPECTION SCHEDULE & PROCEDURES

Infiltration Basin / Sediment Forebay	Basins/sediment forebay shall be inspected prior to directing stormwater to them. Thereafter, each area will be inspected as least twice annually, and following any rainfall event exceed 2.5" in a 24-hour period. At least once annually the basin areas will be inspected for drawdown time. Vegetation will also be inspected at least annually. Inspection results will be recorded using the Inspection Form at the end of this document.
Catch Basins	Catch basins shall be inspected prior to directing stormwater to them. Inspect monthly for the first year, then four times per year thereafter. Clean when the sump is half full (2 feet) of sediment.
Proprietary Water Quality Devices	Inspect prior to directing stormwater to them. Inspect annually and per manufacturer's recommendation.
Vegetated Areas	Prune and weed twice per year. Inspect trees and shrubs four times per year.

True Storage Facility Inspection Checklist

General Information			
Date of Inspection			
Inspector's Name(s)			
Inspector's Title(s)			
Type of Inspection:	🗖 Routine (annual)	Post-storm event	

□ Inspection of BMP's

□ No Follow Up Action Required

Generation Follow Up Action Required as Detailed Below

	Visible Erosion/Damage?	Maintenance Required?	
		Provide detail below	
Infiltration Basin	Yes No	□Yes □No	
Sediment Forebay	Yes No	□Yes □No	
Catch Basins	Yes No	□Yes □No	
Proprietary WQD	Yes No	□Yes □No	
Vegetated Areas	Yes No	□Yes □No	
orrective Action Needed and Notes	· · ·		

True Storage Facility Inspection and Maintenance Log

D (
Date:				
Performed by:				
Practice:				
<u>Basins</u>	<u>Sediment Forebay</u>	Catch Basins	WQD	Vegetation
□Inspection	□Inspection	Inspection	□Inspection	□Inspection
Maintenance	□Maintenance	□Maintenance	Maintenance	□Maintenance
Date:				
Performed by:				
Practice:				
Date:				
Performed by:				
Practice:				
Basins	<u>Sediment Forebay</u>	Catch Basins	WQD	Vegetation
□Inspection	□Inspection	□Inspection	□Inspection	□Inspection
Maintenance	□Maintenance	□Maintenance	□Maintenance	Maintenance
Data				
Date:				
Performed by:				
Practice:				
<u>Basins</u>	<u>Sediment Forebay</u>	<u>Catch Basins</u>	WQD	Vegetation
□Inspection	□Inspection	□Inspection	□Inspection	□Inspection
Maintenance	□Maintenance	Maintenance	Maintenance	Maintenance
Date:				
Performed by:				
Practice:				
<u>Basins</u>	Sediment Forebay	<u>Catch Basins</u>	WQD	Vegetation
□Inspection	□Inspection	□Inspection	□Inspection	□Inspection
□Maintenance	□Maintenance	□Maintenance	□Maintenance	□Maintenance

APPENDIX G – MASSDEP CHECKLIST FOR STORMWATER REPORT

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

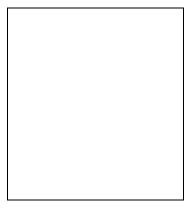
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas			
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)			
	Reduced Impervious Area (Redevelopment Only)			
	Minimizing disturbance to existing trees and shrubs			
	LID Site Design Credit Requested:			
	Credit 1			
	Credit 2			
	Credit 3			
	Use of "country drainage" versus curb and gutter conveyance and pipe			
	Bioretention Cells (includes Rain Gardens)			
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)			
	Treebox Filter			
	Water Quality Swale			
	Grass Channel			
	Green Roof			
\boxtimes	Other (describe): Infiltration Basin and Proprietary Water Quality Devices			

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Simple Dynamic	
-----------------------	--

🛛 Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist	(continued)
-----------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.