To: Mr. Sean Kavanagh
First Hartford Realty Corporation
149 Colonial Road
Manchester, CT 06042
Date: June 22, 2021
Memorandum

Project \#: 73170.00
Re: Proposed Car Wash
Wareham, Massachusetts

Introduction

On behalf of First Hartford Realty Corporation, Vanasse Hangen Brustlin, Inc. (VHB) has evaluated the traffic impacts associated with the proposed car wash at the site of a former 99 Restaurant at 3013 Cranberry Highway (Route 6/28) in Wareham, Massachusetts. The proposed Project involves the demolition of the existing restaurant and the construction of an automatic car wash with one wash tunnel. The Site will be accessed via the existing site driveway located on Cranberry Highway (Route 6/28) and potentially via the Ocean State plaza driveway.

This memorandum includes an evaluation of the existing traffic operations and safety; an assessment of future conditions without and with the Project; and an estimate of projected traffic volumes for the Project and its potential impact on future traffic operations in the area. As detailed herein, the proposed Project is not expected to have a significant impact on local traffic operations.

Existing Conditions

The existing condition analysis consists of an inventory of the traffic control, roadway, driveway, and intersection geometry in the study area, the collection of daily and peak hour traffic volumes, a summary of public transit options in the area, and a review of recent crash history.

Study Area

Based on VHB's knowledge of the area and the development of typical traffic impact and access evaluations, the following intersections were included in this assessment:

- Cranberry Highway (Route $6 / 28$) at Ocean State Plaza Driveway (signalized)
- Cranberry Highway (Route $6 / 28$) at Site Driveway (unsignalized)

Figures 1 and 2 show the study area as well as the lane geometry and traffic control at the study area intersections.

Figure 1
Study Area
(S) Signalized Intersection

Stop-Controlled

Figure 2
Existing Lane Geometry and Traffic Control
Proposed Car Wash
Wareham, Massachusetts

Study Area Roadways

Cranberry Highway (Route 6/28)
Cranberry Highway is part of Massachusetts Route 28 in addition to being part of US Route 6 in the study area. It is classified as an urban minor arterial under MassDOT jurisdiction in the study area and generally runs in an east-west direction. To the west, Route 6 runs along I-195 from Providence to I-195's eastern terminus at I-495 while Route 28 runs along I-495 from Middleborough. Route 6 continues farther west, while Route 28 continues north. To the east, Route 6 becomes the Mid-Cape Highway to Provincetown while Route 28 runs along the south side of the Cape. Cranberry Highway is generally a four-lane roadway (two lanes per direction) in the study area, with turn lanes added at some intersections. The speed limit is 35 mph . No bicycle facilities are provided along the road in the study area. In the study area, a sidewalk is provided on the north side of the road to the west of the Ocean State plaza driveway. Sidewalks are provided on both sides of the road to the west of the Home Depot driveway. No sidewalks are provided to the east of the Ocean State plaza driveway.

Ocean State Plaza Driveway
The Ocean State plaza driveway acts as a driveway for multiple businesses and connects to Cranberry Highway (Route $6 / 28$). The driveway provides access to Cranberry Plaza to the west including Ocean State Job Lot and Cardi's Furniture \& Mattresses as well as the Site to the east. In addition, it connects to the main Cranberry Plaza driveway to the west and the Tractor Supply Co driveway to the east. No pedestrian or bicycle facilities are provided along the driveway.

Study Area Intersections

Cranberry Highway (Route 6/28) at Ocean State Plaza Driveway
Cranberry Highway (Route 6/28) generally runs in an east-west direction and is intersected by the Ocean State plaza driveway from the south to form a three-legged signalized intersection. The Route 6/28 eastbound approach consists of one through lane and one shared through/right-turn lane. The Route $6 / 28$ westbound approach consists of one left-turn lane and two through lanes. The plaza driveway northbound approach consists of one left-turn lane and one right-turn lane. No pedestrian or bicycle accommodations are provided within the intersection. A sidewalk starts on the north side of Route 6 shortly to the west of the intersection. Land use around the intersection is mainly commercial, and Dicks Pond is located to the north.

Cranberry Highway (Route 6/28) at Site Driveway
Cranberry Highway (Route 6/28) generally runs in an east-west direction and is intersected by the site driveway from the south to form a three-legged unsignalized intersection. The Route $6 / 28$ eastbound approach consists of one through lane and one shared through/right-turn lane. The Route $6 / 28$ westbound approach consists of one left-turn lane for the signalized intersection to the west and two through lanes. The site driveway northbound approach consists of one all-purpose lane. The Site is currently vacant, so no volumes would be expected entering or exiting the current Site driveway. No pedestrian or bicycle accommodations are provided at the intersection. Land use around the intersection is mainly commercial, and Dicks Pond is located to the north.

Traffic Volumes

Manual turning movement counts (TMCs) to collect peak hour data were conducted at the signalized study area intersection on Thursday, May 20, 2021 from 4:00 PM to 6:00 PM and Saturday, May 22, 2021 from 11:00 AM to 1:00 PM. The weekday evening peak period occurred from 4:00 PM to 5:00 PM, and the Saturday midday peak period occurred from 12:00 PM to 1:00 PM.

In addition, to provide comparison to pre-COVID count data, a TMC was conducted at the signalized intersection of Cranberry Highway (Route 6/28) at Cranberry Plaza Driveway/Home Depot Driveway on Thursday, May 20, 2021 from 4:00 PM to 6:00 PM and a 24-hour automatic traffic recorder (ATR) count was conducted on Cranberry Highway (Route 6/28) west of Main Street on Thursday, May 20, 2021.

Historic TMC data was available on the MassDOT MS2 Transportation Data Management System for the intersection of Cranberry Highway (Route 6/28) at Cranberry Plaza Driveway/Home Depot Driveway, conducted on Wednesday, June 7, 2017 from 3:30 PM to 5:30 PM, where the weekday evening peak period occurred from 4:30 PM to 5:30 PM. Historic ATR data was also available on the MassDOT MS2 Transportation Data Management System for Cranberry Highway (Route 6/28) west of Main Street, conducted for 72 hours on April 9-12, 2018.

Methodology outlined by MassDOT ${ }^{1}$ was used to grow historic counts conducted at the same locations to compare to 2021 counts. For comparison purposes, the 2017 TMC volumes were grown by a total of 0.3% and the 2018 ATR volumes did not have to be adjusted due to a negative yearly growth rate based on the MassDOT methodology. Historic MassDOT data shows that April, May, and June volumes are historically higher than average month volumes for urban minor arterials such as Route 6. The comparison of the grown 2017 TMC to the 2021 TMC showed that the total volume of the intersection of Cranberry Highway (Route 6/28) at Cranberry Plaza Driveway/Home Depot Driveway was approximately 2.4% higher than the adjusted 2017 TMC volumes. The comparison of the 2018 ATR counts to the 2021 ATR counts showed that the volumes were roughly the same, with overall higher daily volume and overall 1.5% lower evening peak hour volume, which is within standard day-to-day variability. Therefore, no adjustments were made to the 2021 TMC and ATR counts. All traffic count data, as well the historic count comparisons, are included in the Attachments.

Figure 3 shows the resulting 2021 Existing traffic volumes.

Public Transportation

Greater Attleboro and Taunton Regional Transit Authority (GATRA) provides bus service to Cranberry Plaza via Link 1, Link 2, Link 4, and Wareham/Middleborough/Lakeville Train Connector. Southeastern Regional Transit Authority (SRTA) also provides bus service to Cranberry Plaza via its Wareham-New Bedford Connection route.

Because the proposed use is a car wash, all customers would arrive at the site by car. Employees could travel by public transportation, but it was assumed that all trips to the Site would arrive by car for the analysis.

[^0](S) Signalized Intersection

Saturday Midday Peak Hour
Neg = Negligible
(S) Signalized Intersection

Figure 3
2021 Existing Conditions Traffic Volumes
Proposed Car Wash
Wareham, Massachusetts

Vehicular Crash History

To identify potential vehicle crash trends in the study area, reported vehicular crash data for the study area was obtained from MassDOT for the years 2014 through 2018, the most recent five-year history available. A summary of the MassDOT vehicle crash history is presented in Table 1 and included in the Attachments. It should be noted that due to the geolocating methodology of MassDOT's Crash Portal, some crashes that occurred in a parking lot may be included in the crash data for intersections. This is especially prevalent in the areas of shopping plazas such as Cranberry Plaza. In addition, some crashes may be reported at an address instead of the intersection at which they occurred. To calculate a conservative crash rate, crashes reported at 3003, 3005, 3013, and 3014 Cranberry Highway were included in the evaluation for Cranberry Highway (Route 6/28) at Ocean State plaza driveway, some of which specify that they occurred at a signalized intersection.

Crash rates are calculated based on the number of crashes at an intersection and the volume of traffic traveling through that intersection on a daily basis. The 2018 MassDOT average crash rates for District 5 are 0.75 crashes per million entering vehicles (MEV) at signalized intersections and 0.57 crashes per MEV at unsignalized intersections. The 2018 MassDOT statewide average crash rates are 0.78 crashes per MEV at signalized intersections and 0.57 crashes per MEV at unsignalized intersections. The crash rate worksheet is included in the Attachments.

As shown in Table 1, the intersection was calculated to have a crash rate below the district and statewide averages. The 30 crashes at the intersection from 2014 through 2018 included a variety of crash types, but the most common were rear-end (8), angle (7), and single vehicle (7) crashes. Most resulted in property damage only, with only five resulting in injury. No fatal crashes or crashes involving a non-motorist (a pedestrian or bicyclist) were reported in the study area.

Highway Safety Improvement Program

In addition to calculating the crash rate, study area intersections should also be reviewed in the MassDOT's Highway Safety Improvement Program (HSIP) database. An HSIP-eligible cluster is one in which the total number of "equivalent property damage only"2 crashes in the area is within the top 5% of all clusters in that region. Being HSIPeligible makes the location eligible for FHWA and MassDOT funds to address the identified safety issues at these locations. As part of this effort, VHB reviewed this database and found that there are no HSIP-eligible clusters in the study area.

[^1]
Table 1 Vehicular Crash Data (2014-2018)

	Cranberry Highway (Route 6/28) at Ocean State Plaza Driveway
Signalized?	Yes
MassDOT Statewide Average Crash	0.78
MassDOT District 5 Average Crash Rate	0.75
Calculated Crash Rate	0.66
Exceeds Average?	No
Year	
2014	9
2015	10
2016	5
2017	4
2018	$\underline{2}$
Total	30
Yearly Average	
Collision Type	
Angle	7
Head-on	0
Rear-end	8
Sideswipe, opposite direction	3
Sideswipe, same direction	5
Single Vehicle Crash	7
Not reported	0
Severity	
Fatal Injury	0
Non-Fatal Injury	5
Property Damage Only	25
Not Reported	0
Time of day	
Weekday, 7:00 AM - 9:00 AM	0
Weekday, 4:00-6:00 PM	3
Saturday 11:00 AM - 2:00 PM	0
Weekday, other time	16
Weekend, other time	11
Pavement Conditions	
Dry	24
Wet	6
Snow	0
Ice	0
Not reported	0
Non-Motorist (Bike, Ped)	0

[^2]
Future Conditions

To determine the impacts of the site-generated traffic volumes in the vicinity of the site, future traffic conditions were evaluated. A seven-year horizon (2028) was used for the evaluation consistent with MassDOT TIA requirements.

Traffic growth on area roadways is a function of the expected land development, environmental activity, and changes in demographics. A frequently used procedure is to identify estimated traffic generated by planned developments that would be expected to affect the project study area roadways. An alternative procedure is to estimate an annual percentage increase and apply that increase to study area traffic volumes. For this evaluation, both procedures were used. The following summarizes this traffic forecasting process.

Historic Growth

Historic data was reviewed from MassDOT's MS2 Transportation Data Management System for an ATR located on Cranberry Highway (Route 6/28) east of Depot Street, which is located approximately one-half mile to the west of the study area. Based on a comparison of July 2008 and July 2017 counts, Cranberry Highway (Route 6/28) had an average growth rate of 0.05% per year over the ten-year period near the study area. The calculations are included in the Attachments. To provide a conservative analysis, a background growth rate of 1% per year was used to establish future traffic volumes.

Planned Developments

In addition to accounting for background growth, the traffic associated with other planned and/or approved developments near the Site was considered. Based on communications with the Town of Wareham, it was determined that there are no planned development projects in the vicinity of the site that are likely to influence traffic conditions.

Intersection or Roadway Improvement Projects

In assessing future traffic conditions, proposed intersection or roadway improvements within the study area were considered. Based on communications with the Town of Wareham, there is one planned transportation project that would impact the Project study area within the seven-year horizon. Figure 4 shows the future lane geometry and traffic control.

Cranberry Highway (Route 6/28) Reconstruction
The Cranberry Highway (Route 6/28) reconstruction project spans 1.65 miles from 500 feet east of Tyler Avenue to Red Brook Road, which includes the study area. The reconstruction will retain the four travel lanes (two lanes per direction) while adding a median, shoulders that can accommodate bicycles, and sidewalks along both sides of the roadway. It also includes traffic signal upgrades as well as new signage and pavement markings. The median will add u-turn movements to the signalized study area intersection. The 2028 u-turn volumes were assumed to be the same as the predicted u-turn volumes included in the project's Functional Design Report. The volumes and signal timings from the reconstruction project are included in the Attachments. This project is currently under construction. As such, the future geometry within the study area was assumed to be in place for all 2028 analysis.

No-Build Traffic Volumes

The 2028 No-Build traffic volumes were generated by consideration of the above described factors. Figure 5 shows the resulting 2028 No-Build peak hour traffic volumes.

Figure 4
Future Lane Geometry and Traffic Control
Proposed Car Wash
Wareham, Massachusetts
(S) Signalized Intersection

Saturday Midday Peak Hour
Neg = Negligible
(S) Signalized Intersection

Figure 5
2028 No Build Conditions Traffic Volumes
Proposed Car Wash
Wareham, Massachusetts

Trip Generation

The rate at which any development generates traffic is dependent upon a number of factors such as size, location and concentration of surrounding developments. For a conservative analysis, no credit was taken for pass-by trips and all trips were assumed to be vehicular.

Based on communications with the Proponent, it is expected that the car wash will generate 100 trips (50 entering, 50 exiting) in the peak hours. For comparison, trip generation was also estimated using trip generation rates published in the Institute of Transportation Engineers' (ITE) Trip Generation Manual, 10th Edition for land use code (LUC) 948, Automated Car Wash. The ITE trip generation estimates were much lower at 78 trips (39 entering, 39 exiting) in the weekday evening peak hour and 41 trips (19 entering, 22 exiting) in the Saturday midday peak hour. Therefore, the empirical trip generation was used for both peak hours to present a conservative analysis. It should be noted that a substantial portion of the site-generated traffic could be pass-by traffic, which is traffic that is already on Cranberry Highway and chooses to enter and exit the site on the way to their primary destination. To provide a conservative assessment of new traffic, no credit was taken for pass-by trips.

Table 2 summarizes the projected trip generation associated with the proposed development. The ITE trip generation worksheet is included in the Attachments.

Table 2 Trip Generation

Time Period	Movement	ITE Trip Generation ${ }^{\text {a }}$	Empirical Trip Generation ${ }^{\text {b }}$
Weekday Evening Peak	Enter`	39	50
Hour	Exit	$\underline{39}$	$\underline{50}$
	Total	78	100
Saturday Midday Peak	Enter	19	50
Hour	$\underline{\text { Exit }}$	$\underline{22}$	$\underline{50}$
	Total	41	100

[^3]
Trip Distribution

The directional distribution of the vehicular traffic approaching and departing the site is a function of population densities, the location of employment, existing travel patterns, and the efficiency of the existing roadway system. Due to the retail nature of this Project, the trip distribution was determined using existing traffic patterns on Cranberry Highway (Route 6/28). Table 3 summarizes the trip distribution. Figure 6 shows the trip distribution.

> (S) Signalized Intersection
> XX = Entering Traffic
> (XX) = Exiting Traffic

Figure 6
Trip Distribution
Proposed Car Wash
Wareham, Massachusetts

Table 3 Trip Distribution

Travel Route	Direction (from/to)	Percent Site Traffic
Cranberry Highway (Route 6/28)	East	50%
	West	50%
Total		100%

Build Traffic Volumes

The empirical trip generation shown in Table 3 was assigned to the study area roadway network based on the trip distribution shown in Table 4 and added to the 2028 No-Build peak hour traffic volumes to develop the 2028 Build peak hour traffic volumes. Figures 7 and 8 show the Site generated traffic volumes and 2028 Build peak hour traffic volumes respectively.

Site Access and Circulation

The Site will be accessed via a right-in, right-out driveway located on Cranberry Highway (Route 6/28) as well as the Ocean State plaza driveway. It was assumed that most ($\sim 75 \%$) traffic would enter via the Site driveway on Cranberry Highway (Route 6/28), which would involve a u-turn for vehicles entering the study area from the east. The remaining traffic would enter via the Ocean State plaza driveway. To exit the Site, all left-turning vehicles would exit via the Ocean State plaza driveway, while all right-turning vehicles would exit via the Site driveway.

As shown on the site plan (provided in the Attachments), the single wash tunnel is served by three lanes, which allow for stacking of approximately 24 vehicles. There is a pay station at the front of each lane, and cars proceed to the wash tunnel after completing payment. Based on discussions with the Proponent, the proposed site layout should be able to accommodate the anticipated queues. However, the Proponent will implement standard queue management procedures to ensure that no vehicle queues extend back onto Cranberry Highway (Route $6 / 28$). This procedure will include placement of attendants on the site to monitor vehicle queue lengths. If the queue reaches the Route 6/28 entrance, any vehicles entering the site will be directed to the parking area where they will wait briefly until the queueing area can accommodate additional vehicles.

Saturday Midday Peak Hour
(S) Signalized Intersection

XX = Entering Traffic
(XX) = Exiting Traffic

Figure 7
Trip Generation

Saturday Midday Peak Hour
Neg = Negligible
(S) Signalized Intersection

Figure 8
2028 Build Conditions Traffic Volumes

Traffic Operations Analysis

To assess quality of flow, intersection capacity analyses were conducted with respect to 2021 Existing, 2028 No-Build, and 2028 Build traffic volume conditions. Capacity analyses provide an indication of how well the roadway facilities serve the traffic demands placed upon them. Roadway operating conditions are classified by calculated levels-ofservice.

Level of Service Criteria

The evaluation criteria used to analyze area intersections in this traffic study are based on the percentile delay method for signalized intersections and the Highway Capacity Manual (HCM), 6th Edition ${ }^{3}$ for unsignalized intersections. The term 'Level of Service' (LOS) is used to denote the different operating conditions that occur on a given roadway segment under various traffic volume loads. It is a qualitative measure that considers a number of factors including roadway geometry, speed, travel delay and freedom to maneuver. LOS provides an index to the operational qualities of a roadway segment or an intersection. LOS designations range from A to F, with LOS A representing the best operating conditions and LOS F representing the worst operating conditions.

In addition to LOS, two other measures of effectiveness (MOEs) are typically used to quantify the traffic operations at intersections; volume-to-capacity ratio (v / c) and delay (expressed in seconds per vehicle). For example, an existing v/c ratio of 0.90 for an intersection indicates that the intersection is operating at 90 -percent of its available capacity. A delay of 15 seconds for a particular vehicular movement or approach indicates that vehicles on the movement or approach will experience an average additional travel time of 15 seconds. For a given LOS letter designation there may be a wide range of values for both v / c ratios and delay. Comparison of intersection capacity results therefore requires that, in addition to the LOS, the other MOEs should also be considered.

The LOS designations, which are based on delay, are reported differently for signalized and unsignalized intersections. For signalized intersections, the analysis considers the operation of all traffic entering the intersection and the LOS designation is for overall conditions at the intersection. For unsignalized intersections, however, the analysis assumes that traffic on the mainline is not affected by traffic on the side streets. Thus, the LOS designation is for the critical movement exiting the side street, which is generally the left turn out of the side street or site driveway. Table 4 shows the LOS criteria for both signalized intersections and unsignalized intersections.

Table 4 Level of Service Criteria

Level of Service	Delay - Signalized Intersection	Delay - Unsignalized Intersection
A	0 to 10 seconds	0 to 10 seconds
B	10 to 20 seconds	10 to 15 seconds
C	20 to 35 seconds	15 to 25 seconds
D	35 to 55 seconds	25 to 35 seconds
E	55 to 80 seconds	35 to 50 seconds
F	Greater than 80 seconds	Greater than 50 seconds

Source: 2016 Highway Capacity Manual.

Ref: 73170.00
June 22, 2021
Page 10

It should be noted that the analytical methodologies typically used for the analysis of unsignalized intersections use conservative analysis parameters, such as long critical gaps ${ }^{4}$. Actual field observations indicate that drivers on minor streets generally accept shorter gaps in traffic than those used in the analysis procedures and therefore experience less delay than reported by the analysis software. The analysis methodologies also do not fully take into account the beneficial grouping effects caused by nearby signalized intersections. The net effect of these analysis procedures is the over-estimation of calculated delays at unsignalized intersections in the study area. Cautious judgment should therefore be exercised when interpreting the capacity analysis results at unsignalized intersections.

Signalized Intersection Capacity Analysis

Capacity analyses conducted by VHB for the signalized intersection are summarized in Table 5. The capacity analyses were conducted for the 2021 Existing, 2028 No-Build and 2028 Build conditions and the detailed results are included in the Attachments.

Table 5 Signalized Intersection Capacity Analysis

Location /	2021 Existing Conditions					2028 No-Build Conditions					2028 Build Conditions				
Movement	$\mathrm{v} / \mathrm{c}^{\text {a }}$	Del ${ }^{\text {b }}$	LOS $^{\text {c }}$	$50 \mathrm{Q}^{\text {d }}$	$95 \mathrm{Q}^{\text {e }}$	v/c	Del	LOS	50 Q	95 Q	v/c	Del	LOS	50 Q	95 Q
Cranberry Highway (Route 6/28) at Ocean State Plaza Driveway															
Weekday Evening EB U	n/a	n/a	n/a	n / a	n/a	0.10	34	C	7	m11	0.10	35	D	7	m11
EB T/R	0.39	14	B	95	270	0.47	16	B	177	175	0.50	15	B	167	172
WB U/L	0.24	4	A	13	29	0.80	55	D	172	247	0.83	56	E	189	273
WB T	0.33	4	A	68	110	0.34	4	A	50	155	0.34	4	A	57	158
NB L	0.21	44	D	20	47	0.26	48	D	21	49	0.42	52	D	37	75
NB R	0.37	19	B	40	85	0.58	17	B	0	56	0.55	16	B	0	55
Overall		10	A				16	B				17	B		
Saturday Midday EB U	n/a	n/a	n/a	n/a	n/a	0.35	35	D	23	m37	0.35	36	D	25	m36
EB T/R	0.52	18	B	270	234	0.59	24	C	304	258	0.63	24	C	285	266
WB U/L	0.49	8	A	29	48	0.85	58	E	206	\#309	0.88	60	E	220	\#359
WB T	0.40	5	A	113	143	0.42	6	A	132	218	0.43	7	A	141	227
NB L	0.22	41	D	27	57	0.31	48	D	27	58	0.45	51	D	43	84
NB R	0.48	28	C	95	139	0.66	18	B	4	68	0.66	20	C	15	81
Overall		13	B				21	C				23	C		

a Volume to capacity ratio.
b Average total delay, in seconds per vehicle.
c Level-of-service.
$\mathrm{m} \quad$ Volume for $95^{\text {th }}$ percentile queue is metered by upstream signal.
\# 95th percentile volume exceeds capacity, queue may be longer.
As shown in Table 5, the overall LOS at the signalized study area intersection is expected to degrade by one letter in both peak hours between 2021 Existing and 2028 No-Build conditions due to the addition of eastbound and westbound u-turn movements necessitated by a new median on Cranberry Highway (Route 6/28). The intersection degrades from LOS A to B while overall delay increases from 10 to 16 seconds in the weekday evening peak hour, and degrades from LOS B to C while overall delay increases from 13 to 21 seconds in the Saturday midday peak hour. The

[^4]LOS remains the same and delay increases by just one to two seconds between 2028 No-Build and 2028 Build conditions during the peak hours, demonstrating that the project has only minor impacts and the intersection will continue to operate sufficiently.

Unsignalized Intersection Capacity Analysis

Capacity analyses conducted by VHB for the unsignalized intersection are summarized in Table 6. The capacity analyses were conducted for the 2028 Build conditions and the detailed results are included in the Attachments. 2021 Existing and 2028 No-Build conditions were not analyzed as the Site is currently vacant.

Table 6 Unsignalized Intersection Capacity Analysis

Location / Movement	2028 Build Conditions				
	D	v/c	Del	LOS	95 Q
Cranberry Highway (Route 6/28) at Site Driveway					
Weekday Evening NB R	25	0.06	14	B	5
Saturday Midday NB R	25	0.08	16	C	8
a Demand					
b Volume to	rati				
c Average tot	, in	onds p	vehicl		
d Level-of-ser					
e 95th percen	ue,				

As shown in Table 6, the unsignalized right-in, right-out site driveway is expected to operate at LOS C or better during both peak hours. In the peak hours, the average delay is expected to be 14-16 seconds while the $95^{\text {th }}$ percentile queue is expected to be less than one vehicle long.

As previously noted, the analytical methodologies typically used for the analysis of unsignalized intersections use conservative analysis parameters and typically result in the over-estimation of calculated delays.

Conclusion

VHB has conducted a traffic impact and access study to assess the potential traffic impacts associated with the proposed car wash located on Cranberry Highway (Route 6/28) in Wareham, Massachusetts. The proposed development involves the construction of an automatic car wash with one wash tunnel. The Site will be accessed via a right-in, right-out driveway located on Cranberry Highway (Route $6 / 28$) as well as the Ocean State plaza driveway. The Project is expected to generate a total of 100 new vehicle trips (50 entering/50 exiting) during the peak hours. Based on the intersection capacity analysis, it was determined that the Project will have minimal impact on intersection operations at the signalized study area intersection, and the Site driveway will operate with little delay and negligible queues. In addition, while the proposed site layout should be able to accommodate the anticipated queues, the Proponent will implement standard queue management procedures to ensure that no vehicle queues extend back onto Cranberry Highway (Route 6/28).

Attachments

-	Site Plan
-	May 2021 Traffic Count Data
-	Historic Traffic Count Data
-	Historic Traffic Count Data Adjustments
) MassDOT Guidance on Traffic Count Data
) MassDOT Weekday Seasonal Correction Factors
	, MassDOT Yearly Growth Rates
-	Count Comparisons
-	Crash Data
-	Background Growth Rate
-	Cranberry Highway (Route 6/28) Reconstruction Project Traffic Volumes
-	Cranberry Highway (Route 6/28) Reconstruction Project Signal Plans
-	ITE Trip Generation
	Synchro Capacity Analyses

Site Plan

Client:
Project \#: BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week: Weather:

Matthew J. Kealey, PE, PTOE
713_099_VHB
Location 1
Wareham, MA

$$
\text { Route } 6
$$

Home Depot Access Road

5/20/2021

Thursday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

TRAFFIC DATA
PO BOX 1723, Framingham, MA 0170
Office: 978-746-1259
DataRequest@BostonTrafficData.com www.BostonTrafficData.com

	Cranberry Plaza Shopping Mall Drive Northbound				Home Depot Access Road Southbound				Route 6 Eastbound				Route 6 Westbound			
Start Time	U-Turn	Left	Thru	Right												
4:00 PM	0	55	6	9	0	31	5	33	0	34	181	26	0	8	203	9
4:15 PM	0	61	8	10	0	23	6	35	0	25	156	22	0	12	217	4
4:30 PM	0	66	5	12	0	31	7	23	0	32	161	27	0	7	166	8
4:45 PM	0	58	3	11	0	26	12	26	0	31	149	33	0	11	153	5
5:00 PM	0	58	4	20	0	20	10	23	0	26	184	27	0	5	191	7
5:15 PM	0	56	7	8	0	27	6	25	0	26	180	24	0	10	168	3
5:30 PM	0	45	8	16	0	26	5	19	0	25	179	28	0	10	179	5
5:45 PM	0	55	2	9	0	21	9	30	0	25	164	33	0	7	159	7

$\begin{gathered} \hline \text { PM PEAK HOUR } \\ \text { 4:00 PM } \end{gathered}$	Cranberry Plaza Shopping Mall Drive Northbound				Home Depot Access Road Southbound				Route 6 Eastbound				Route 6 Westbound			
to	U-Turn	Left	Thru	Right												
5:00 PM	0	240	22	42	0	111	30	117	0	122	647	108	0	38	739	26
PHF	0.92				0.93				0.91				0.86			
HV \%	0.0\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1.7\%	0.0\%	0.0\%	0.8\%	0.0\%	0.0\%	5.3\%	1.6\%	0.0\%

Client:
Project \#: BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week: Weather:

Matthew J. Kealey, PE, PTOE
713_099_VHB

$$
\text { Location } 1
$$

Wareham, MA

$$
\text { Route } 6
$$

Home Depot Access Road

5/20/2021

Thursday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

PO BOX 1723, Framingham, MA 0170
Office: 978-746-1259
DataRequest@BostonTrafficData.com
www.BostonTrafficData.com

	Cranberry Plaza Shopping Mall Drive Northbound				Home Depot Access Road Southbound				Route 6 Eastbound				Route 6 Westbound			
Start Time	U-Turn	Left	Thru	Right												
4:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0
4:15 PM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0
4:30 PM	0	1	0	0	0	0	0	1	0	0	1	0	0	1	2	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	5	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	5	1
5:15 PM	0	2	0	0	0	0	0	0	0	0	2	0	0	0	2	0
5:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	0
5:45 PM	0	1	0	0	0	0	0	1	0	0	3	0	0	1	1	0

$\begin{gathered} \text { PM PEAK HOUR } \\ \text { 4:30 PM } \end{gathered}$	Cranberry Plaza Shopping Mall Drive Northbound				Home Depot Access RoadSouthbound				Route 6 Eastbound				Route 6 Westbound			
to	U-Turn	Left	Thru	Right												
5:30 PM	0	3	0	0	0	0	0	1	0	0	6	0	0	2	14	1
PHF	0.38				0.25				0.75				0.71			

Client:
Project \#:
BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

Matthew J. Kealey, PE, PTOE

> 713_099_VHB
> Location 1
> Wareham, MA
> Route 6

Home Depot Access Road 5/20/2021
Thursday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

PEDESTRIANS \& BICYCLES

Cranberry Plaza Shopping Mall Drive
Home Depot Access Road
Route 6
Route 6

	Cranberry Plaza Shopping Mall DriveNorthbound				Home Depot Access RoadSouthbound				Route 6 Eastbound				Route 6 Westbound			
Start Time	Left	Thru	Right	PED												
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{gathered} \text { PM PEAK HOUR }^{1} \\ \text { 4:00 PM } \end{gathered}$		$\begin{aligned} & \text { Plaza } \\ & \text { Nor } \\ & \hline \end{aligned}$	pping und			$\begin{array}{r} \text { e Dep } \\ \text { Sou } \\ \hline \end{array}$	$\begin{aligned} & \text { cess } \\ & \text { und } \\ & \hline \end{aligned}$									
to	Left	Thru	Right	PED												
5:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

[^5]Client:
Project \#: BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week: Weather:

Matthew J. Kealey, PE, PTOE
713_099_VHB
Location 2
Wareham, MA
Route 6
Ocean State Access Driveway

Thursday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

PO BOX 1723, Framingham, MA 01701
Office: 978-746-1259
DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS \& HEAVY VEHICLES COMBINED

Ocean State Access Driveway Northbound

Route 6
Route 6
Eastbound Westbound

Northbound Southbound Wentbend Eastbound Westbound																
Start Time	U-Turn	Left	Thru	Right												
4:00 PM	0	4	0	30	0	0	0	0	0	0	222	4	0	30	215	0
4:15 PM	0	8	0	37	0	0	0	0	0	0	184	3	0	23	233	0
4:30 PM	0	6	0	31	0	0	0	0	0	0	204	3	0	26	190	0
4:45 PM	0	10	0	31	0	0	0	0	0	0	185	3	0	21	187	0
5:00 PM	0	8	0	30	0	0	0	0	0	0	205	3	0	29	189	0
5:15 PM	0	2	0	40	0	0	0	0	0	0	233	3	0	30	184	0
5:30 PM	0	3	0	33	0	0	0	0	0	0	212	1	0	32	191	0
5:45 PM	0	8	0	22	0	0	0	0	0	0	195	2	0	25	165	0

$\begin{gathered} \hline \text { PM PEAK HOUR } \\ \text { 4:00 PM } \end{gathered}$	Ocean State Access Driveway Northbound				Southbound				Route 6 Eastbound				Route 6 Westbound			
to	U-Turn	Left	Thru	Right												
5:00 PM	0	28	0	129	0	0	0	0	0	0	795	13	0	100	825	0
PHF	0.87				0.00				0.89				0.90			
HV \%	0.0\%	3.6\%	0.0\%	1.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.8\%	0.0\%	0.0\%	2.0\%	1.7\%	0.0\%

Client:
Project \#: BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week: Weather:

Matthew J. Kealey, PE, PTOE
713_099_VHB

$$
\text { Location } 2
$$

Wareham, MA

$$
\text { Route } 6
$$

Ocean State Access Driveway

5/20/2021

Thursday Clouds \& Sun, $70^{\circ} \mathrm{F}$

PO BOX 1723, Framingham, MA 01701
Office: 978-746-1259
DataRequest@BostonTrafficData.com
www.BostonTrafficData.com

HEAVY VEHICLES

Ocean State Access Driveway
Northbound
Southbound

Route 6 Eastbound

Route 6 Westbound

Start Time	U-Turn	Left	Thru	Right												
4:00 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	2	0
4:30 PM	0	0	0	2	0	0	0	0	0	0	1	0	0	0	3	0
4:45 PM	0	1	0	0	0	0	0	0	0	0	1	0	0	1	6	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	5	0
5:15 PM	0	0	0	1	0	0	0	0	0	0	3	0	0	1	2	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	0

Client:
Project \#:
BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

Matthew J. Kealey, PE, PTOE
713_099_VHB
Location 2
Wareham, MA
Route 6
Ocean State Access Driveway 5/20/2021 Thursday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

Ocean State Access Driveway Northbound					Southbound					Route 6 Eastbound			Route 6 Westbound			
Start Time	Left	Thru	Right	PED												
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{gathered} \text { PM PEAK HOUR }^{1} \\ \text { 4:00 PM } \end{gathered}$		State No	$\begin{aligned} & \text { ess Driv } \\ & \text { und } \end{aligned}$			Sou	und									
to	Left	Thru	Right	PED												
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

[^6]Client: Matthew J. Kealey, PE, PTOE
Project \#: BTD \#: Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

> 713_099_VHB
> Location 2
> Wareham, MA Route 6
Ocean State Access Driveway
5/22/2021
Saturday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS \& HEAVY VEHICLES COMBINED

Ocean State Access Driveway

Northbound					Southbound				Eastbound				Westbound			
Start Time	U-Turn	Left	Thru	Right												
11:00 AM	0	11	0	45	0	0	0	0	0	0	208	11	0	46	226	0
11:15 AM	0	12	0	41	0	0	0	0	0	0	227	7	0	40	232	0
11:30 AM	0	8	0	50	0	0	0	0	0	0	239	13	0	49	216	0
11:45 AM	0	7	0	59	0	0	0	0	0	0	243	8	0	39	213	0
12:00 PM	0	6	0	43	0	0	0	0	0	0	237	10	0	37	240	0
12:15 PM	0	12	0	54	0	0	0	0	0	0	260	5	0	39	245	0
12:30 PM	0	12	0	55	0	0	0	0	0	0	220	9	0	58	254	0
12:45 PM	0	8	0	34	0	0	0	0	0	0	275	8	0	40	276	0

MID PEAK HOUR 12:00 PM to 1:00 PM	Ocean State Access DrivewayNorthbound				Southbound				Route 6 Eastbound				Route 6 Westbound			
	U-Turn	Left	Thru	Right												
	0	38	0	186	0	0	0	0	0	0	992	32	0	174	1015	0
PHF	0.84				0.00				0.90				0.94			
HV\%	0.0\%	2.6\%	0.0\%	1.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.3\%	0.0\%	0.0\%	0.6\%	0.7\%	0.0\%

Client: Matthew J. Kealey, PE, PTOE
Project \#:
BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

> 713_099_VHB
> Location 2
> Wareham, MA

Route 6
Ocean State Access Driveway
5/22/2021
Saturday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

Ocean State Access Driveway

Northbound					Southbound				Eastbound				Westbound			
Start Time	U-Turn	Left	Thru	Right												
11:00 AM	0	0	0	1	0	0	0	0	0	0	2	0	0	1	0	0
11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
11:30 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
11:45 AM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0
12:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0
12:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	5	0
12:30 PM	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0
12:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0

$\begin{gathered} \text { MID PEAK HOUR } \\ \text { 11:45 AM } \\ \text { to } \\ \text { 12:45 PM } \end{gathered}$	Ocean State Access DrivewayNorthbound				Southbound				Route 6 Eastbound				Route 6 Westbound			
	U-Turn	Left	Thru	Right												
	0	2	0	2	0	0	0	0	0	0	3	0	0	1	7	0
PHF	0.50				0.00				0.75				0.40			

Client: Matthew J. Kealey, PE, PTOE
Project \#:
BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

> 713_099_VHB
> Location 2
> Wareham, MA

Route 6
Ocean State Access Driveway
5/22/2021
Saturday
Clouds \& Sun, $70^{\circ} \mathrm{F}$ www.BostonTrafficData.com

PEDESTRIANS \& BICYCLES

	Ocean State Access Driveway Northbound				Southbound				Route 6 Eastbound				Route 6 Westbound			
Start Time	Left	Thru	Right	PED												
11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{gathered} \text { MID PEAK HOUR } \\ \text { 12:00 PM } \\ \text { to } \\ \text { 1:00 PM } \end{gathered}$	Ocean State Access Driveway Northbound				Southbound				Route 6 Eastbound				Route 6 Westbound			
	Left	Thru	Right	PED												
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE: Peak hour summaries here correspond to peak hours identified for passenger car and heavy vehicles combined.

Volume Report

Job 713_099_VHB_ATR 1
Area Wareham, MA
Location Route 6 EB, west of Main Avenue

Thursday, May 20, 2021

Volume Report

Job 713_099_VHB_ATR 2
Area Wareham, MA
Location Route 6 WB, west of Main Avenue

Thursday, May 20, 2021

Classification Report														
```Job # 713_099_VHB_ATR 2 Area Wareham, MA Location Route 6 WB, west of Main Avenue Direction Westbound Thursday, May 20, 2021```					$\begin{gathered} \text { Class } \\ 4 \\ \text { Bus } \end{gathered}$	Class52 Axle 6 Tires	Class63 Axle Unit	Class   7   4 Axles or more   Unit		Class95 Axle Trailer	Class106 Axle or moreTrailer	$\qquad$	BOSTON TRAFFIC DATA$\qquad$ DataRequest@BostonTrafficData.cowww.BostonTrafficData.com	
Time	Total	Class 1   Motorcycle	Class 2 Passenger Car	Class 3 Vans, Pick up Trucks									Class 12 6 Axle Multi- Trailer	Class 13 7 Axle or more Multi-Trailer
0000	32	0	29	3	0	0	0	0	0	0	0	0	0	0
0100	19	0	14	4	0	0	0	0	0	1	0	0	0	0
0200	10	0	9	0	0	0	1	0	0	0	0	0	0	0
0300	23	1	20	1	0	1	0	0	0	0	0	0	0	0
0400	94	2	66	24	0	2	0	0	0	0	0	0	0	0
0500	210	1	146	58	1	3	0	0	0	1	0	0	0	0
0600	426	3	333	85	1	2	0	2	0	0	0	0	0	0
0700	571	0	470	92	5	3	0	0	0	1	0	0	0	0
0800	675	1	561	97	3	7	3	0	0	3	0	0	0	0
0900	700	3	578	110	3	3	2	1	0	0	0	0	0	0
1000	721	4	608	98	1	3	3	3	0	1	0	0	0	0
1100	824	7	704	93	5	5	3	5	0	1	0	0	0	1
1200	767	6	660	85	6	4	2	1	0	2	0	0	0	1
$1300$	$852$	7	724	102	4	9	4	2	0	0	0	0	0	0
$1400$	$823$	7	684	118	0	9	4	1	0	0	0	0	0	0
$1500$	899	5	739	134	6	1	3	1	3	1	2	1	0	3
1600	880	4	735	116	3	5	2	7	3	0	1	0	0	4
1700	799	5	675	105	3	3	1	5	2	0	0	0	0	0
1800	697	6	585	90	0	3	4	5	0	1	0	0	0	3
1900	538	5	449	76	0	0	1	1	4	1	0	0	0	1
2000	444	1	376	59	1	4	2	1	0	0	0	0	0	0
2100	240	0	207	28	0	1	1	1	1	1	0	0	0	0
2200	145	1	129	15	0	0	0	0	0	0	0	0	0	0
2300	64	1	55	8	0	0	0	0	0	0	0	0	0	0
Total	11453	70	9556	1601	42	68	36	36	13	14	3	1	0	13
	100.00\%	0.61\%	83.44\%	13.98\%	0.37\%	0.59\%	0.31\%	0.31\%	0.11\%	0.12\%	0.03\%	0.01\%	0.00\%	0.11\%

## Speed Report

Job	$713 _099 _$VHB_ATR 1
Area	Wareham, MA
Location	Route 6 EB, west of Main Avenue
Dir	Eastbound
Thursday,	May 20, 2021

Thursday, May 20, 2021

Time	Total	Speed Bins (mph)																		
		0	5	10	15	20	25	30	35	40	45	50	55	60		65		70		75
		5	10	15	20	25	30	35	40	45	50	55	60	65		70		75		80
0000	27	0	0	0	0	0	2	12	10	3	0	0	0		0		0		0	0
0100	22	0	0	0	0	0	2	6	7	5	1	0	1		0		0		0	0
0200	15	0	0	0	0	0	2	5	6	1	1	0	0		0		0		0	0
0300	11	0	0	0	0	0	2	2	5	1	1	0	0		0		0		0	0
0400	43	0	0	2	3	4	2	10	12	7	3	0	0		0		0		0	0
0500	172	0	0	5	18	9	12	30	60	36	2	0	0		0		0		0	0
0600	486	0	3	12	25	21	51	80	163	101	25	4	1		0		0		0	0
0700	594	0	1	13	137	293	137	12	1	0	0	0	0		0		0		0	0
0800	683	1	0	18	166	389	101	8	0	0	0	0	0		0		0		0	0
0900	743	0	5	22	180	439	94	3	0	0	0	0	0		0		0		0	0
1000	720	0	1	9	170	422	111	6	1	0	0	0	0		0		0		0	0
1100	805	1	5	62	167	484	84	2	0	0	0	0	0		0		0		0	0
1200	806	0	2	9	91	447	228	29	0	0	0	0	0		0		0		0	0
1300	804	1	0	10	77	483	217	15	1	0	0	0	0		0		0		0	0
1400	864	0	2	10	88	434	254	60	9	6	1	0	0		0		0		0	0
1500	886	0	0	1	14	30	158	315	280	68	17	3	0		0		0		0	0
1600	876	0	0	0	17	23	86	295	287	139	23	5	1		0		0		0	0
1700	898	0	0	1	13	18	105	264	303	156	36	2	0		0		0		0	0
1800	730	0	0	0	7	13	65	210	287	112	31	5	0		0		0		0	0
1900	540	0	0	1	8	18	58	168	176	91	18	1	1		0		0		0	0
2000	454	0	0	0	3	8	54	167	160	52	8	1	1		0		0		0	0
2100	242	0	0	0	0	3	23	80	87	33	14	2	0		0		0		0	0
2200	120	0	0	1	1	6	4	26	48	27	4	2	1		0		0		0	0
2300	79	0	0	0	1	0	4	19	34	18	2	1	0		0		0		0	0
Total	11620	3	19	176	1186	3544	1856	1824	1937	856	187	26	6		0		0		0	0

[^7]
## Speed Report

Job	713_099_VHB_ATR 2
Area	Wareham, MA
Location	Route 6 WB, west of Main Avenue
Dir	Westbound
Thursday, May 20, 2021	


Time	Total	Speed Bins (mph)																	
		0	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	40	45	50	55	60	65		70		75
		5								45	50	55	60	65	70		75		80
0000	32	0	0	0	0	4	4	15	5	4	0	0	0	0		0		0	0
0100	19	0	0	0	0	0	1	6	5	5	2	0	0	0		0		0	0
0200	10	0	0	0	0	0	0	1	6	2	1	0	0	0		0		0	0
0300	23	0	0	0	0	1	2	9	8	3	0	0	0	0		0		0	0
0400	94	0	1	1	9	3	3	28	36	12	1	0	0	0		0		0	0
0500	210	0	0	22	9	3	12	39	79	40	6	0	0	0		0		0	0
0600	426	0	1	20	24	15	31	101	152	69	13	0	0	0		0		0	0
0700	571	0	6	55	99	165	166	73	7	0	0	0	0	0		0		0	0
0800	675	0	2	57	127	236	206	45	2	0	0	0	0	0		0		0	0
0900	700	0	19	83	147	232	192	24	3	0	0	0	0	0		0		0	0
1000	721	0	11	93	139	257	189	29	3	0	0	0	0	0		0		0	0
1100	824	1	26	167	268	220	125	17	0	0	0	0	0	0		0		0	0
1200	767	0	8	41	138	319	209	44	8	0	0	0	0	0		0		0	0
1300	852	0	7	77	184	312	212	55	5	0	0	0	0	0		0		0	0
1400	823	0	10	98	352	207	74	44	27	10	0	1	0	0		0		0	0
1500	899	0	0	7	10	24	86	307	324	120	19	2	0	0		0		0	0
1600	880	0	1	13	9	26	83	308	315	106	18	0	1	0		0		0	0
1700	799	0	0	7	10	20	67	285	299	98	12	1	0	0		0		0	0
1800	697	0	0	12	8	19	68	242	244	78	20	4	2	0		0		0	0
1900	538	0	0	9	10	6	57	181	181	80	11	3	0	0		0		0	0
2000	444	0	0	3	5	6	22	140	143	80	37	6	2	0		0		0	0
2100	240	0	0	7	3	2	19	53	84	58	12	1	1	0		0		0	0
2200	145	0	0	3	0	1	12	38	60	25	5	1	0	0		0		0	0
2300	64	0	0	0	0	0	2	17	27	16	2	0	0	0		0		0	0
Total	11453	1	92	775	1551	2078	1842	2101	2023	806	159	19	6	0		0		0	0
	100.00\%	0.01\%	0.80\%	6.77\%	3.54\%	8.14\%	.08\%	.34\%	.66\%	7.04\%	1.39\%	0.17\%	0.05\%	0.00\%	0.0		0.0		0.00\%

[^8]Peak Hour Data for Intersection

Int ID: 8024006
Community: WAREHAM
Road 1: CRANBERRY HIGHWAY
Road 2: ROUTE 6

## Corridor:

## Road 3:

Road 4:

```
|<< < > >>| 1-1 of 1
```



Volume By Hour By Week for 4/8/2018-4/14/2018 Criteria: From 1/1/1900 To 12/31/2049 12:00:00 AM

District :
Location ID : S18-010-310-02
County: PLYMOUTH
Functional Class : (5) Major Collector
Factor Group : U4-7
Area Type : Urban
Located On : ROUTE 6/28


Start Time	Monday	Tuesday	Wednesday	Thursday	Avg	A
	$4 / 9 / 2018$	$4 / 10 / 2018$	$4 / 11 / 2018$	$4 / 12 / 2018$		

Volume By Hour By Week for 4/8/2018-4/14/2018 Criteria: From 1/1/1900 To 12/31/2049 12:00:00 AM

Count Start:	14:00:00	14:00:00	14:00:00
Start	$4 / 9 / 2018$	$4 / 10 / 2018$	$4 / 11 / 2018$
End	$4 / 10 / 2018$	$4 / 11 / 2018$	$4 / 12 / 2018$
24h Total	22077	22333	23271

Volume By Hour By Week for 4/8/2018-4/14/2018 Criteria: From 1/1/1900 To 12/31/2049 12:00:00 AM


District :
Located On : ROUTE 6/28


> Location ID : S18-010-310-02_EB County : PLYMOUTH

Factor Group : U4-7
Functional Class: (5) Major Collector
Area Type: Urban

## Massachusetts Highway Department

Volume By Hour By Week for 4/8/2018-4/14/2018 Criteria: From 1/1/1900 To 12/31/2049 12:00:00 AM

Count Start:	14:00:00	14:00:00	14:00:00
Start	$\mathbf{4 / 9 / 2 0 1 8}$	$4 / 10 / 2018$	$4 / 11 / 2018$
End	$4 / 10 / 2018$	$4 / 11 / 2018$	$4 / 12 / 2018$
24h Total	11177	11368	11820

Volume By Hour By Week for 4/8/2018-4/14/2018 Criteria: From 1/1/1900 To 12/31/2049 12:00:00 AM



## District :

Located On : ROUTE 6/28


Location ID : S18-010-310-02_WB County : PLYMOUTH

Factor Group : U4-7
Functional Class : (5) Major Collector
Area Type: Urban



## Massachusetts Highway Department

Volume By Hour By Week for 4/8/2018-4/14/2018 Criteria: From 1/1/1900 To 12/31/2049 12:00:00 AM

Count Start:	14:00:00	14:00:00	14:00:00
Start	$4 / 9 / 2018$	$4 / 10 / 2018$	$4 / 11 / 2018$
End	$4 / 10 / 2018$	$4 / 11 / 2018$	$4 / 12 / 2018$
24h Total	10900	10965	11451

# GUIDANCE ON TRAFFIC COUNT DATA 

Revised: April, 2020


## Introduction

Traffic counts are currently at historic lows and may underrepresent a realistic existing condition. Current MassDOT guidelines, however, require the use of existing count data for the purposes of planning and designing projects. The purpose of this document is to provide guidance for alternative methods that may be used to supplement or replace existing traffic count data.

## Use of Historical Counts

MassDOT will accept the use of historical count data in lieu of new traffic counts taken after March 13,2020 . As long as the procedures found in this document are followed, counts taken between January 1, 2014 and March 13, 2020 will be accepted without any additional approval required. Counts take prior to January 1, 2014 will need to be approved by the State Traffic Engineer prior to submitting the functional design report or other traffic engineering study.

## How MassDOT Determines Growth Rates

MassDOT oversees approximately 500 permanent counting stations across the Commonwealth that are constantly taking volume data. In addition, MassDOT supplements these permanent count stations with spot counts taken at various locations. All of the count data is geolocated and, when processed, has the following metadata tagged to it:

- Geographic Area Type

$$
\begin{array}{ll}
\circ & \mathrm{U}=\text { Urban } \\
\circ & \mathrm{R}=\text { Rural }
\end{array}
$$

- Functional Class
- $1=$ Interstate
- 2 = Freeways \& Expressways
- 3 = Other Principal Arterial
- $4=$ Minor Arterial
- $5=$ Major Collector
- $6=$ Minor Collector
- 7 = Local Road or Street
- Region
- Boston = Middlesex, Suffolk, and Norfolk Counties
- Essex = Essex County
- *Southeast = Bristol, Plymouth, Barnstable, Nantucket, and Dukes Counties
- *West = Berkshire, Franklin, Hampshire, and Hampden Counties
- Worcester = Worcester County

This combination of Geographic Area Type, Functional Class, and Region is referred to as Factor Group. Based upon the aggregated count data for each Factor Group, MassDOT establishes day of week, monthly, yearly, and axle correction adjustment factors. These factors are published into reports that can be used to determine historical growth rates.

[^9]counts taken in 2016 or later anywhere within their boundaries. These Factor Groups are defined as:

- REC East: all towns on Cape Cod, the Town of Plymouth south of Route 3A, all towns on Martha's Vineyard, and Nantucket.
- REC West: roadways with a Functional Class of 3-5 in the towns of Becket, Great Barrington, Lee, Lenox, Stockbridge, and West Stockbridge.


## Procedures for Estimating Average Annual Daily Traffic (AADT)

To estimate existing AADT from an historical count, the count location should be classified by Geographic Area Type, Functional Class, and Region per the descriptions from the previous section. Once the classification has been completed, the following steps are required.

## 1. Axle Correction

## (Please note this step is required only if the original count did not include vehicle classification data, typically a single pneumatic tube. If classification data has been included, please proceed directly to Step 2.)

- Identify the year the count was taken.
- Open the Weekday Seasonal Axle Correction file for the year that corresponds to the raw count data.
- Multiply the average daily traffic (ADT) taken from the raw count data by the Axle Factor for the corresponding Factor Group.

2. Seasonal Factor

- Identify the month and year the count was taken.
- Open the Weekday Seasonal Axle Correction file for the year that corresponds to the raw count data.
- Multiply the number obtained in Step 1 (or the raw count data if it contains vehicle classification data) by the Monthly Factor for the corresponding Factor Group.

3. Yearly Growth

- Identify the year the count was taken.
- Open the Yearly Growth Rate file. Note that MassDOT considers 2019 data to be existing.
- The Growth Factors are set up to factor count data to the year shown in the header column from the previous year. Therefore, using the appropriate Factor Group, multiply the number obtained in Step 2 by the growth factor for the year after it was taken. Repeat the factoring until it is grown to 2019.
- A count taken in 2018 will only need the 2019 factor applied to it.
- A count taken in 2015 will need to go through four steps of factoring: the 2016 factor, then the 2017 factor, then the 2018 factor, and finally the 2019 factor.

Once these steps have been completed, the existing AADT may be estimated.

## Procedures for Estimating Turning Movement Counts (TMCs)

In cases where historic TMCs are available for an intersection, those volumes may be adjusted based upon these procedures in order to estimate existing traffic volumes.

1. Seasonal Factor

- Identify the day, month, and year the count was taken.
- Open the Seasonal Factors Report file for the corresponding year.
- Using the appropriate Factor Group, identify the Seasonal Factor by month and day. If that number is equal to or less than 1, then no Seasonal Factor needs to be applied. If that number is greater than one then the TMC should be multiplied by that number.


## 2. Yearly Growth

- Using the seasonally factored count data, follow the steps found in Part 3 of Procedures for Estimating AADT.

If no historic TMC can be obtained, consultation with MassDOT's Traffic and Safety Engineering Section is strongly encouraged prior to estimating existing volumes. Failure to do so may result in rejection of the submittal to MassDOT.

## Non-Motorized Users

MassDOT does not currently have any methodologies for estimating non-motorized users from historical count data. Based upon mode share and employment data, it can be assumed that nonmotorized volumes have increased on a yearly basis. However, without access to data from permanent count stations, it is difficult to provide any type of regional growth or seasonal factors compared to what is available for motorized traffic.

Capturing bicycle and pedestrian data in 2020 in areas that are typically designed to accommodate peaked volumes that are associated with commuting may not be realistic. However, there are many third-party sensor and/or probe data aggregators that may provide good baseline information from 2019. This data is acceptable for use in design and operational analysis.

For recreational facilities, taking new bicycle and pedestrian counts after March 13, 2020 will likely be acceptable, though any adjacent generators of bicycle and pedestrian traffic that are temporarily closed should be taken into consideration prior to taking new counts. Comparing historic thirdparty sensor or probe data to 2020 data may add additional confidence and, in addition, provide practical future growth rates.

## Future Growth Rates

MassDOT recommends that 2019 counts be grown to the build year using growth rates obtained from the Regional Planning Agency (RPA), if available. If specific, known future traffic generators are identified, they may be added to the count either in addition to the growth rate or while partially discounting the growth rate. In all cases, the methodology used for growing the traffic to the build year shall be documented and shall conform to planning and engineering principles.

## Traffic Signal Warrant Analysis

Traffic Signal Warrants may be estimated using historic TMC count data that is factored to 2019 using the methodology presented in this document. It is understood that many TMCs will not have 8 hours of data, so it will be acceptable to use Warrant 2 (Four-Hour Vehicular Volume) in place of the typical Warrant 1 (Eight-Hour Vehicular Volume) that MassDOT typically recommends as justification. Warrant 3 (Peak Hour) alone is still not recommended as justification for installation of a traffic signal unless very unusual circumstances exist, per MUTCD standards.

Where no TMCs exist, Traffic Signal Warrants may be estimated using third-party sensor or probe data, estimates based upon ATRs, or combinations thereof, upon authorization from the State Traffic Engineer. The methodology for estimating TMCs shall be presented to MassDOT as part of any request for approval.

Massachusetts Highway Department
Statewide Traffic Data Collection
2017 Weekday Seasonal Factors

Factor Group	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Axle Factor
R1	1.30	1.23	1.21	1.04	0.98	0.92	0.86	0.81	0.95	0.99	1.03	1.10	0.80
R2	0.95	0.96	0.98	0.97	0.97	0.93	0.97	0.94	0.96	0.90	0.92	0.93	0.96
R3	1.05	1.01	1.04	0.99	0.94	0.93	0.91	0.92	0.96	0.94	1.01	1.03	0.97
R4-R7	1.10	1.07	1.09	1.00	0.95	0.89	0.88	0.87	0.92	0.95	1.04	1.09	0.93
U1-Boston	1.01	1.04	0.99	0.94	0.93	0.92	0.96	0.93	0.94	0.93	0.95	0.98	0.95
U1-Essex	1.04	1.05	1.00	0.96	0.93	0.89	0.90	0.90	0.93	0.93	0.98	1.03	0.90
U1-Southeast	1.07	1.05	1.02	0.97	0.95	0.90	0.89	0.88	0.92	0.94	0.98	1.01	0.97
U1-West	1.00	0.96	0.94	0.92	0.93	0.92	0.95	0.93	0.92	0.92	0.97	0.97	0.89
U1-Worcester	1.10	1.10	1.04	0.97	0.95	0.94	0.93	0.91	0.95	0.96	0.98	1.04	0.89
U2	1.01	1.03	0.98	0.95	0.93	0.91	0.94	0.92	0.95	0.95	0.95	0.97	0.98
U3	1.03	1.05	1.01	0.95	0.92	0.90	0.94	0.93	0.93	0.92	0.96	0.99	0.96
U4-U7	1.06	1.05	1.02	0.96	0.92	0.89	0.95	0.95	0.92	0.92	0.98	1.03	0.98
Rec - East	1.18	1.17	1.08	1.03	0.95	0.87	0.83	0.83	0.97	0.98	1.19	1.19	0.98
Rec - West	1.30	1.23	1.32	1.18	0.95	0.82	0.70	0.69	0.97	0.96	1.16	1.15	0.95

Round off:
$0-999=10$
$>1000=100$

U = Urban
R = Rural

1 - Interstate
2 - Freeway and Expressway
3 - Other Principal Arterial
4 - Minor Arterial
5 - Major Collector
6 - Minor Collector
7 - Local Road and Street

Recreational - East Group - Cape Cod (all towns) including the town of Plymouth south of Route 3A (stations
$7014,7079,7080,7090,7091,7092,7093,7094,7095,7096,7097,7108$ and 7178), Martha's Vineyard and Nantucket.
Recreational - West Group - Continuous Stations 2 and 189 including stations
$1066,1067,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1113,111$
4,1116,2196,2197 and 2198.

Massachusetts Highway Department
Statewide Traffic Data Collection
2018 Weekday Seasonal Factors

Factor Group	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Axle Factor
R1	1.37	1.26	1.30	1.08	0.97	0.93	0.87	0.83	0.96	0.98	1.05	1.13	0.78
R2	0.95	0.96	0.98	0.97	0.97	0.93	0.97	0.94	0.96	0.90	0.92	0.93	0.96
R3	1.15	1.06	1.07	1.00	0.89	0.88	0.89	0.89	0.95	0.92	1.02	1.01	0.98
R4-R7	1.10	1.07	1.03	1.00	0.90	0.92	0.94	0.94	0.96	0.94	1.03	1.02	0.93
U1-Boston	1.05	0.98	1.01	0.93	0.92	0.91	0.95	0.93	0.94	0.92	0.96	0.99	0.96
U1-Essex	1.05	1.01	1.04	0.93	0.92	0.89	0.90	0.90	0.94	0.93	0.98	1.01	0.91
U1-Southeast	1.11	1.05	1.07	0.99	0.93	0.89	0.88	0.87	0.93	0.95	1.01	1.05	0.98
U1-West	1.15	1.08	1.07	0.98	0.94	0.92	0.92	0.88	0.92	0.91	1.00	1.06	0.83
U1-Worcester	1.18	1.11	1.09	0.99	0.95	0.94	0.95	0.91	0.97	0.97	1.01	1.05	0.87
U2	1.04	0.99	0.99	0.94	0.92	0.90	0.93	0.91	0.94	0.92	0.96	0.98	0.99
U3	0.99	1.00	1.02	0.96	0.91	0.89	0.92	0.90	0.95	0.92	1.01	0.97	0.97
U4-U7	1.03	1.02	0.97	0.95	0.88	0.89	0.96	0.93	0.94	0.93	1.00	1.00	0.99
Rec - East	1.22	1.15	1.09	1.12	0.90	0.89	0.82	0.83	0.92	0.98	1.06	1.08	0.99
Rec - West	1.30	1.23	1.32	1.18	0.95	0.82	0.70	0.69	0.97	0.96	1.16	1.15	0.97

Round off:
$0-999=10$
$>1000=100$

U = Urban
R = Rural

1 - Interstate
2 - Freeway and Expressway
3 - Other Principal Arterial
4 - Minor Arterial
5 - Major Collector
6 - Minor Collector
7 - Local Road and Street

Recreational - East Group - Cape Cod (all towns) including the town of Plymouth south of Route 3A (stations
$7014,7079,7080,7090,7091,7092,7093,7094,7095,7096,7097,7108$ and 7178), Martha's Vineyard and Nantucket.
Recreational - West Group - Continuous Stations 2 and 189 including stations
$1066,1067,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1113,111$
4,1116,2196,2197 and 2198.

Massachusetts Highway Department
Statewide Traffic Data Collection
2019 Weekday Seasonal Factors

Factor Group	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Axle Factor
R1	1.22	1.14	1.12	1.06	1.00	0.96	0.87	0.85	0.96	0.99	1.04	1.12	0.85
R2	0.95	0.96	0.98	0.97	0.97	0.93	0.97	0.94	0.96	0.90	0.92	0.93	0.96
R3	1.15	1.06	1.07	1.00	0.89	0.88	0.89	0.89	0.95	0.92	1.02	1.01	0.97
R4-R7	1.09	1.09	1.11	1.02	0.96	0.92	0.89	0.89	0.99	0.98	1.09	1.13	0.98
U1-Boston	1.03	1.01	0.98	0.94	0.94	0.92	0.95	0.93	0.94	0.94	0.97	1.04	0.96
U1-Essex	1.09	1.06	1.03	0.99	0.94	0.90	0.88	0.86	0.93	0.94	0.99	1.06	0.93
U1-Southeast	1.06	1.05	1.01	0.97	0.95	0.93	0.93	0.90	0.94	0.94	0.98	1.04	0.98
U1-West	1.19	1.14	1.09	0.95	0.92	0.89	0.89	0.86	0.91	0.95	0.97	1.07	0.84
U1-Worcester	1.02	1.04	0.97	0.94	0.93	0.91	0.95	0.91	0.93	0.92	0.95	1.10	0.88
U2	1.01	1.00	0.94	0.93	0.91	0.89	0.93	0.90	0.90	0.91	0.94	1.02	0.99
U3	1.06	1.03	0.98	0.94	0.93	0.91	0.95	0.91	0.92	0.93	0.97	1.00	0.98
U4-U7	1.01	1.00	0.95	0.92	0.88	0.86	0.92	0.91	0.92	0.94	0.99	1.04	0.99
Rec - East	1.04	1.16	1.12	0.98	0.92	0.88	0.77	0.81	0.94	1.02	1.08	1.12	0.99
Rec - West	1.30	1.23	1.32	1.18	0.95	0.82	0.70	0.69	0.97	0.96	1.16	1.15	0.98

Round off:
$0-999=10$
$>1000=100$

U = Urban
R = Rural

1 - Interstate
2 - Freeway and Expressway
3 - Other Principal Arterial
4 - Minor Arterial
5 - Major Collector
6 - Minor Collector
7 - Local Road and Street

Recreational - East Group - Cape Cod (all towns) including the town of Plymouth south of Route 3A (stations
$7014,7079,7080,7090,7091,7092,7093,7094,7095,7096,7097,7108$ and 7178), Martha's Vineyard and Nantucket.
Recreational - West Group - Continuous Stations 2 and 189 including stations
$1066,1067,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1113,111$ 4,1116,2196,2197 and 2198.

MassDOT Yearly Growth Rates

for data from 2014 to 2018					
Group	Grow 2014   to 2015				
R1	Grow 2015   to 2016	Grow 2016   to 2017	Grow 2017   to 2018	Grow 2018   to 2019	
R2	0	0.023	0.004	0.018	0.016
R3	0.05	0.068	0.004	0.014	0.014
R4-7	-0.038	0.002	0.008	0.011	0.06
Rec - East	-0.01	0.003	0.001	0.011	0.012
Rec - West		0.032	0.02	0.041	0.025
U1-Boston	0.061	0.07	-0.003	0.012	0.006
U1-Essex	0.024	0.025	0.007	0.014	0.011
U1-Southeast	0.05	0.062	0.021	0.014	0
U1-West	0.03	-0.027	0.02	0.028	0.013
U1-Worcester	0.042	0.005	0.018	0.01	0.01
U2	0.04	0.048	0.008	0.01	0.02
U3	0.011	0.013	0.011	0.014	0.004
U4-7	0.023	0.062	0.017	0.003	-0.004

updated 5/1/2020

TMC COMPARISON
Project Name: Wareham Car Wash
Project No: 73170.00
Location: Wareham, MA
Date: June 2021
Growth
2017 to 2018
$\begin{array}{lll}2017 \text { to } 2018 & 1.003 \\ 2018 \text { to } 2019 & 1.000\end{array}$
Calc. By: AD
Calc. By: AD
Factor Group: U4-7
5/20/2021 \& 5/22/2021

Cal ${ }^{\text {d }}$ A		6/7/2017 Factor Group: U4-7			5/20/2021 \& 5/22/2021			
		2017 VOLUMES - RAW	2017 VOLUMES GROWN TO EXISTING		MAY 2021 VOLUMES - RAW		DIFFERENCE FROM GROWN 2017TO 2021	
INTERSECTION	MOVEMENT	4:30 PM WED	PM	SAT	4:00 PM THURS	12:00 PM SAT	PM	SAT
REF. ROUTE 6 AT MAIN PLAZA DWY								
Route 6	EBL	88	88		122		34	
	EB T	753	755		647		-108	
	EB R	125	125		108		-17	
Route 6	WBL	49	49		38		-11	
	WB T	643	645		739		94	
	WB R	28	28		26		-2	
Main Plaza Driveway	NB L	216	217		240		23	
	NB T	19	19		22		3	
	NB R	64	64		42		-22	
Home Depot Driveway	SB L	90	90		111		21	
	SB T	21	21		30		9	
	SB R	86	86		117		31	
		2182	2189		2242		53	


	Tuesday			Wednesday			2018 Average			Thursday						Comparison		
		/10/2018			/11/2018						"2019" ${ }^{\text {a }}$			/20/202				
Start Time:	EB	WB	Combined															
12:00 AM	57	42	99	58	36	94	58	39	97	58	39	97	27	32	59	47\%	82\%	61\%
1:00 AM	24	30	54	30	25	55	27	28	55	27	28	55	22	19	41	81\%	69\%	75\%
2:00 AM	22	18	40	24	21	45	23	20	43	23	20	43	15	10	25	65\%	51\%	59\%
3:00 AM	26	37	63	17	32	49	22	35	56	22	35	56	11	23	34	51\%	67\%	61\%
4:00 AM	43	101	144	44	84	128	44	93	136	44	93	136	43	94	137	99\%	102\%	101\%
5:00 AM	136	192	328	113	172	285	125	182	307	125	182	307	172	210	382	138\%	115\%	125\%
6:00 AM	371	487	858	390	475	865	381	481	862	381	481	862	486	426	912	128\%	89\%	106\%
7:00 AM	555	679	1234	577	735	1312	566	707	1273	566	707	1273	594	571	1165	105\%	81\%	92\%
8:00 AM	566	711	1277	694	714	1408	630	713	1343	630	713	1343	683	675	1358	108\%	95\%	101\%
9:00 AM	571	674	1245	596	692	1288	584	683	1267	584	683	1267	743	700	1443	127\%	102\%	114\%
10:00 AM	620	664	1284	667	718	1385	644	691	1335	644	691	1335	720	721	1441	112\%	104\%	108\%
11:00 AM	719	703	1422	737	784	1521	728	744	1472	728	744	1472	805	824	1629	111\%	111\%	111\%
12:00 PM	756	713	1469	812	816	1628	784	765	1549	784	765	1549	806	767	1573	103\%	100\%	102\%
1:00 PM	757	737	1494	779	836	1615	768	787	1555	768	787	1555	804	852	1656	105\%	108\%	107\%
2:00 PM	796	771	1567	850	798	1648	823	785	1608	823	785	1608	864	823	1687	105\%	105\%	105\%
3:00 PM	878	763	1641	952	864	1816	915	814	1729	915	814	1729	886	899	1785	97\%	111\%	103\%
4:00 PM	1028	811	1839	953	804	1757	991	808	1798	991	808	1798	876	880	1756	88\%	109\%	98\%
5:00 PM	926	770	1696	920	804	1724	923	787	1710	923	787	1710	898	799	1697	97\%	102\%	99\%
6:00 PM	772	586	1358	784	633	1417	778	610	1388	778	610	1388	730	697	1427	94\%	114\%	103\%
7:00 PM	510	435	945	617	500	1117	564	468	1031	564	468	1031	540	538	1078	96\%	115\%	105\%
8:00 PM	388	302	690	487	342	829	438	322	760	438	322	760	454	444	898	104\%	138\%	118\%
9:00 PM	270	210	480	273	256	529	272	233	505	272	233	505	242	240	482	89\%	103\%	96\%
10:00 PM	174	110	284	177	139	316	176	125	300	176	125	300	120	145	265	68\%	116\%	88\%
11:00 PM	88	67	155	109	90	199	99	79	177	99	79	177	79	64	143	80\%	82\%	81\%
total	11053	10613	21666	11660	11370	23030	11357	10992	22348	11357	10992	22348	11620	11453	23073	102\%	104\%	103\%

## massDOT <br> - - - - I Highway

## INTERSECTION CRASH RATE WORKSHEET



Comments : MassDOT Crash Data (2014-2018)
Project Title \& Date: 73170.00 Wareham Car Wash, June 2021

cantume	criom nom	camome	cmasment	cantime		whereovatas	pote amomor tre	｜neomomer vamper	Somomeme otam		wiscomites	comeor	Nomeosat toe ent	arsmatecmation	Toutamies	Tauna fan lime	，	veremememememe		wetat combeem	Camemertos	Semutemuvemes	seme	mater
373	wnatime			mom	Nobior		Itate	2， 3	Ss．		Stamed			wer			Nomen		vis V2，	Comblame	1，4	V1：（Collision with motor vehicle in traffic）／V2；－（Collision with motor vehicle in traffic）	${ }^{03}$	canesear anv
m392	мmatime	020	Pemend	mosam	Nobur		Eapate	s．4．	${ }_{5}$		20，	nata		was			mita		vew／／2w	tar	ияпнак		as	canmearaum
m2m	танамп	cramere		apm	nobier		compe	5，	S．s．		mam	nate		or			为		uts／V2N	tar	148．ac	为	as	canesearum
smas		O2masam	Forembemens	nsan	voiny		soppote	＊	5s6	${ }_{\text {a }}$	rome	napt		or			atamen		vew wes	comompham	14．5．ac	，	${ }^{18}$	canearawn
semss	манам	csamene		ssen	wion		Eatapese	4	Ss．	（tamamer	\％	为		or			mimimisut	unfengera	n：	Cammon	ийsac		as	canearam
sasse	＂manem	\％roveres		samm	Nomby		mete	20	230	aman	Orame	mas		or			Breng	mifamamat	naw	tar	иганас		${ }^{\text {018 }}$	canceratm
sames	мпенаи		monem	2 sm	Nombe		caspene	ass	sat		Oent	\％eas		or			何			ter	1423．ac	，	${ }^{8}$	canearavav
semb	man			12apem	Nobive		Eatapese	Ss．	54	Otatimemeateme	mom	ande		or					uts，v2w	combuname	иязана	为	ms	canmearaum
senc	mans			İsam	Nobive		Eatapese	ses	s	Otainemeatime	mem	ange		ov					veivas	ter		为	as	canmearame
， 9 9730	тияенам	ceat	Itation	sean			Seatesate	4s． 4	sss	（mem）	Oombe	20em		or			mitumis ten	mifesamatay	vin	com	15.25		2as	canesear unv
smoses	samen		Pemend	spm	Woinior		case	s，4	s56		Dorspe	lase		or			\％		UEL	manh	sanc		${ }^{18}$	canesear anv
atress	semen		Peend	\％	Woing		Sosprate	${ }^{2124}$	23.4	\％emememememed	ant	－		or			\％		ver	Werbe	sizac		${ }^{03}$	canceretw
ane	man			ssme	Noimim		，casomese	Ss．	13 se		amber			or						cme	s，	traffic）／V2－（Collision with motor   vehicle in traffic）／V3：（Collision   with motor vehicle in traffic）／   V4：（Collision with motor vehicle in   （traffic）		camearea
samos	nen	${ }^{238}$	matior	Issm	Simor Pestast		Eappete	5，24	s3．	thamation	Corber			or				Semememe	nis	Camorame			as	canesarnu
casse	masman			328	Weibr		Iplese	230	ste		Srome	mem		or					Ve，v2s	tern	$1{ }^{12727 \times c}$	，	as	canesary
2esser	man			copm	Novior		capare	${ }^{2,124}$	$2{ }^{2} 4$		rome	＋mome		or			Nomen		vet vew	Carrobeme	15323 cc	，	${ }^{18}$	camesertur
atases	тияенам		Selinior	csim			cespete	1220	4ss4	${ }_{\text {a }}^{\text {a }}$	，	cosed		or					velves	man	1 13seac $^{\text {c }}$		as	caneseartur
4 amen				osan	Nominy		Soateme	4，s4	5，4		Stime	\％		ver			demen		ven／ven	Satyone	1 ssone		${ }^{13}$	cancerex my
4183	тияatan		and	239m	Nowiuy					$\underbrace{\text { atemen }}$							min mix		Vetives		1 ss ack			canemaxamr
4 asmal	manatan			vesam	Weinive		2 2cosp prese	${ }^{2} 2,2$	，sse		Orome	hare		on			Nome	隹	meivet	Combume	$16{ }^{162 \times 2}$		2008	cannearame



## Background Growth Rate Calculations

Cranberry Highway east of Depot St

Count Month	Avg ADT
Jul-2017	30075
Oct-2014	24666
Aug-2011	30604
Jul-2008	29916

Note: this volume is substantially lower than others, not used for analysis.

## Years Yearly Growth Rate

```
2011 TO 2017 -0.29%
2008 TO 2017 0.05%
```

From MassDOT's MS2 Transportation Data Management System:


Directions: 2-WAY EB WB ?

AADT (9)								
	Year	AADT	DHV-30	K \%	D \%	PA	BC	Src
	2020	$24,066^{3}$				$22,502(94 \%)$	$1,564(6 \%)$	Grown   from 2019
	2019	$29,171^{3}$	2,586	9	51	$28,035(96 \%)$	$1,136(4 \%)$	Grown   from 2018
	2018	$29,288^{3}$		9	51	$27,678(95 \%)$	$1,610(5 \%)$	Grown   from 2017
	2017	29,200	2,589	9	51	$27,857(95 \%)$	$1,343(5 \%)$	
	2016	$25,010^{3}$		10	52	$23,635(95 \%)$	$1,375(5 \%)$	Grown   from 2015



## Cranberry Highway (Route 6/28) Reconstruction Project Traffic Volumes

From Cranberry Highway (Route 6/28) Reconstruction Project Functional Design Report Cranberry Highway (Routes 6 and 28) Five Locations Transportation Improvements, VHB, June 2010.


Routes 6 \& 28
Wareham, Massachusetts


Routes 6 \& 28
Wareham, Massachusetts

# Cranberry Highway (Route 6/28) Reconstruction Project Signal Plans 

From Cranberry Highway (Route 6/28) Reconstruction Project PS\&E Submission Plan and Profile of Cranberry Highway (U.S. Route 6, State Route 28), VHB, November 2018.


SEQuence AND TIMNG																						
APPROACH	DIRECTION	Housing	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17	18	FLASHING
MINMUM ${ }_{\text {ITERVAL }}$			6			10			6				10			6						OPERATION
VEHICLE EXTENSION			2			2			2				2			2			-			
MAXIMUM 1			15			60			30				45			20			-			
MAXIMUM 2			15			60			30				45			20			-			
Yellow clearance				3			4.5				3.5			4			3.5			3		
RED CLEARANCE					1			1				2.5			2			1			1	
PEDESTRIAN INTERVAL																			7/19			
	EB	A	$\sqrt{8}$	( ${ }^{1}$	同	R	,	R	R		,R	R	R	R	R	R	,	R	园	,	R	
CRANBERRY HWY	EB	B, ${ }^{\text {c }}$	R	R	R	R	R	R	R		R	R	${ }_{6}$	Y	R	R	R	R	R	R	R	FY
CRANBERRY HWY	WB	D	¢R-	<R-	<R-	LR-	<R-	<R-	${ }_{4}$		4-	<R-	${ }_{\text {cR- }}$	<R-	<R-	<R-	(R-	<R-	<R-	<R-	<R-	<FR-
CRANBERRY HWY	WB	E,F	R	-	R	6	,	,	R		R	R	R	R	-	R	-	-	R	-	-	FY
CINEMA DRIVE	NB	G, H	R	R	R	,	R	R	R		R	R	R	R	R	6	Y	R	R	R	R	FR
PEDESTRAN $x$-ING	ALL	P1-P4	Dw	Dw	DW	Dw	Dw	DW	ow		ow	ow	ow	DW	ow	ow	ow	DW				OUT
DETECTOR			NON-LOCK			Non-LOCK			NoN-LOCK				NON-LOCK			Non-LOCK			M/FOM DW DW			
RECALL			OfF			soft			OFF				soft			OfF			-			
			91			${ }^{2}$			${ }^{6}$				${ }^{6}$			${ }_{8} 8$			¢9(PED)			
		ctuation GURS PER GENCY		¢ $\overline{=}$										$\xi$								






	TEM 816.02   TRAFFIC SIGNAL RLCONSTRUCTION   Y HWY (ROUTES 6 \& 28) AT CINEMA DRIVE LIST OF MAJOR ITEMS REQUIRED
Quantir	DESCRPTITON
1	${ }^{86}$ TS 2 TYPE 1 CONTROLLER IN A TYPE 6 BASE MOUNTED CABINET INCL. OUNDATON AND CONCRETE PAD
1	GPS TIME STNCH UNIT
2	TS STRAIN POLE, STEEL ( $\mathrm{H}=32^{2}$, M=230 ft-kip), , NCL . Foundation
1	SPAN WRE ASSEMBLY ( (NCLUDING TETHER WRE)
4	TS Post 8 ' STANDARD INCL. Foundation
8	SIINAL HEAD, 3-SECTION
4	PEDESTRIAN SIGNAL HEAD
2	APS PEDESTRIAN PUSH BUTTON W/R10-3e(L) AND SIGN SADDLE
2	APS PEDESTRIAN PUSH BUTTON W/R10-3e(R) AND SIGN SADDLE
10	PULL BOX $122^{\prime 2} \times 12^{\prime \prime}$
8	TYPE C, 2-CHANNEL CARD RACK LOOP DETECTOR AMPLFIIER
21	WIRE LOOP DETECTOR
3	EMERGENCY PRE-EMPTION OPTICAL DETECTORS \& DETECTOR CABLE
1	EmERGENCY PRE-EMPTION 4 CHANNEL PHASE SELECTOR
1	EMERGENCY PRE-EMPTION SYSTEM CHASSIS
1	EmERGENCY PRE-EMPTION STROBE (WHTE LENS)
1	SERVICE CONNECTION (OVERHEAD)   PLUU NECESSARY UUCT, CABLE, LABOR, MISCELLANEOUS MATERIAL AND EQQIMMENT TO CMPETE THE INSTALLATION AND PROVIDE AN OPERATING


RE-EMPTION PHASING \& PRIORITY			
$\begin{array}{\|l\|l\|l\|c\|cc\|cr\|} \hline \text { PRIORIT } \end{array}$		movement	
01	1	$\stackrel{3}{3}$	${ }^{18}$
02	2	$\stackrel{\square}{\tau}$	${ }^{62 \times 45}$
${ }^{03}$	3	is	${ }^{98}$

EMERGENCY VEHILLE PRE-EMPTION OPERATION.

ach ors located at Each intersection.

3. IN RESPONE TO A RRE-EMPTION SIONAL RECEIVED AT AN INTESEETTON


4. MINMUM GREEN AND NORMAL VEHICLE CLEARANCE SHALL RE PROVIDE

6. Emergencr vehlcle pre-empton shall override coordination
7. THE CABLE FOR THE PRE-EMPTION SYSTEM SHALL BE SEPARATE FROM THE

DETECTOR DATA						
$\begin{aligned} & \text { DETECTORR } \\ & \hline \text { NO. } \end{aligned}$	No. SECTION/	$\xrightarrow{\text { No. of }}$ TURNS	OPERations	$\begin{aligned} & \text { DELAY } \\ & \text { EEXT } \end{aligned}$	CALL	
1		2-4-2	Presence	0	91	SINGLE
2		2-4-2	Presence	0	${ }^{91}$	SINGLE
3	$2-6^{\prime} \times 20^{\prime}$ QUADRUPOLE	2-4-2	Presence	0	${ }^{96}$	SERIES
4	${ }^{2-6^{\circ} \times 20^{\circ}}$	2-4-2	Presence	0	${ }^{96}$	SERIES
5	$1-4 \times 6^{\prime}$ QUAORPDOLE	2-4-2	PRESENCE	0	${ }^{96}$	SINGLE   BICYCL
6	$1-6^{\prime} \times 20^{\prime}$ QUADRPDOLE	2-4-2	Presence	0	${ }^{95}$	SINGLE
$\bigcirc$	$1-6^{\prime} \times 20^{\prime}$ QUADRUPOLE	2-4-2	PRESENCE	0	${ }^{95}$	SINC
8	$1-6^{\prime} \times 20^{\circ}$   QUAORUPOLE	2-4-2	Presence	0	${ }^{65}$	SINGLE
9	$3-6^{\prime} \times 20^{\prime}$ QUADRUPOLE	2-4-2	Presence	0	${ }^{82}$	ser
10	$3-6^{\circ} \times 20^{\circ}$ QUADRUPOLE	2-4-2	Presence	0	${ }^{62}$	SERIES
4	$1-4^{\prime} \times 6^{\prime}$ QUADRUPLE	2-4-2	Presence	0	${ }^{92}$	SIICGLE   BICYCEE
12	$1-6 \times 30^{\prime}$ QUADRUPOLE	4-2	Presence	0	${ }^{98}$	SINGLE
13	$\begin{aligned} & 1-6^{\circ} \times 0^{\circ} \\ & \text { QUADRPDOLE } \end{aligned}$	2-4-2	Presence	0	${ }^{98}$	SINGLE
14	Q $1-6 \times 30^{\circ}$ QUDRUPOLE	2-4-2	Presence	0	${ }^{98}$	SINGLE
15	$\begin{aligned} & 1-6^{\circ} \times 0^{\prime} \\ & \text { QUADRUPOLE } \end{aligned}$	2-4-2	Presence	0	${ }^{98}$	SINGLE




ITE Trip Generation

## ITE TRIP GENERATION WORKSHEET

## (10th Edition, Updated 2017)

LANDUSE: Automatic Car Wash

## LANDUSE CODE: 948 <br> SETTING/LOCATION: General Urban/Suburban <br> JOB NAME: Wareham Car Wash

 JOB NUMBER: 73170
## Independent Variable --- Number of Units

$\qquad$
1 Car Wash Tunnels

RATES:	\# Studies	R^2	WEEKDAY			Independent Variable Range			Directional Distribution	
			Total Trip Ends							
			Average	Low	High	Average	Low	High	Enter	Exit
DAILY	--	--	-	--	--	-	--	--	--	--
AM PEAK OF GENERATOR	--	--	--	--	--	--	--	--	--	--
PM PEAK OF GEnERATOR	--	--	--	--	--	--	--	--	--	--
AM PEAK (ADJACENT ST)	--	--	--	--	--	--	--	--	--	--
PM PEAK (ADJACENT ST)	3	--	77.50	50.00	104.50	1	1	2	50\%	50\%

TRIPS:

	BY AVERAGE			BY REGRESSION			Caution - Small Sample Size
	Total	Enter	Exit	Total	Enter	Exit	
DAILY	n/a	n/a	n/a	n/a	n/a	n/a	
AM PEAK OF GENERATOR	n/a	n/a	n/a	n/a	n/a	n/a	Caution - Small Sample Size
PM PEAK OF GENERATOR	n/a	n/a	n/a	n/a	n/a	n/a	Caution - Small Sample Size
AM PEAK (ADJACENT ST)	n/a	n/a	n/a	n/a	n/a	n/a	Caution - Small Sample Size
PM PEAK (ADJACENT ST)	78	39	39	n/a	n/a	n/a	Caution - Small Sample Size


SATURDAY													
RATES:	\# Studies		R^2	Total Trip Ends			Independent Variable Range			Directional Distribution			
			Average	Low	High	Average	Low	High	Enter	Exi	xit		
	PEAK OF GENERATOR			--	--	--	--	--	--	--	--		
		1	--	41.00	41.00	41.00	1	1	1	46\%	54\%	\%	
TRIPS:				BY AVERAGE			BY REGRESSION						
				Total	Enter	Exit	Total	Enter	Exit				
			DAILY	n/a	n/a	n/a	n/a	n/a	n/a	Caution	Sm	nall Sample Size	
	PEA	K OF GEN	ATOR	41	19	22	n/a	n/a	n/a	Caution	Sm	nall Sample Size	


SUNDAY													
RATES:	\# Studies		R^2	Total Trip Ends			Independent Variable Range			Directional Distribution			
			Average	Low	High	Average	Low	High	Enter	Exit			
	PEAK OF GENERATOR	--		--	--	--	--	--	--	--	--		
		--	--	--	--	--	--	--	--	--	--		
TRIPS:				BY AVERAGE			BY REGRESSION						
				Total	Enter	Exit	Total	Enter	Exit				
			DAILY	n/a	n/a	n/a	n/a	n/a	n/a	Caution	Sm	nall Sample Size	
	PEA	K OF GEN	ATOR	n/a	n/a	n/a	n/a	n/a	n/a	Caution	Sm	nall Sample Size	



## Intersection Summary

Area Type:
Cycle Length: 100
Actuated Cycle Length: 100
Offset: $0(0 \%)$, Referenced to phase 2:EBT and $6: W B T L$, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.39
Intersection Signal Delay: 9.7
Intersection Capacity Utilization 48.0\%
Intersection LOS: A
CU Level of Service A

Analysis Period (min) 15
Splits and Phases: 2: Ocean State Plaza Driveway \& Cranberry Highway (Route 6/28)



## Area Type:

Cycle Length: 100
Actuated Cycle Length: 100
Offset: $0(0 \%)$, Referenced to phase 2:EBT and $6: W B T L$, Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.52
Intersection Signal Delay: 13.1
Intersection LOS: B
Intersection Capacity Utilization 58.0\%
CU Level of Service B

Analysis Period (min) 15
Splits and Phases: 2: Ocean State Plaza Driveway \& Cranberry Highway (Route 6/28)


	$\pm$	$\rightarrow$		5	$\downarrow$		4	$p$
Lane Group	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	日	性			\％	个个	\％	「
Traffic Volume（vph）	10	850	15	160	100	885	30	130
Future Volume（vph）	10	850	15	160	100	885	30	130
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	300		0		0		0	0
Storage Lanes	1		0				1	1
Taper Length（tt）	25				25		25	
Satd．Flow（prot）	1770	3564	0	0	1770	3539	1736	1583
Flt Permitted	0.950				0.950		0.950	
Satd．Flow（perm）	1770	3564	0	0	1770	3539	1736	1583
Right Turn on Red			Yes					Yes
Satd．Flow（RTOR）		2						141
Link Speed（mph）		30				30	30	
Link Distance（ft）		950				374	318	
Travel Time（s）		21.6				8.5	7.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	2\％	1\％	0\％	2\％	2\％	2\％	4\％	2\％
Shared Lane Traffic（\％）								
Lane Group Flow（vph）	11	940	0	0	283	962	33	141
Turn Type	Prot	NA		Prot	Prot	NA	Prot	Prot
Protected Phases	1	6		5	5	2	8	8
Permitted Phases								
Detector Phase	1	6		5	5	2	8	8
Switch Phase								
Minimum Initial（s）	6.0	10.0		6.0	6.0	10.0	6.0	6.0
Minimum Split（s）	10.0	16.0		12.0	12.0	15.5	10.5	10.5
Total Split（s）	12.0	44.0		32.0	32.0	64.0	24.0	24.0
Total Split（\％）	12．0\％	44．0\％		32．0\％	32．0\％	64．0\％	24．0\％	24．0\％
Yellow Time（s）	3.0	4.0		3.5	3.5	4.5	3.5	3.5
All－Red Time（s）	1.0	2.0		2.5	2.5	1.0	1.0	1.0
Lost Time Adjust（s）	0.0	0.0			0.0	0.0	0.0	0.0
Total Lost Time（s）	4.0	6.0			6.0	5.5	4.5	4.5
Lead／Lag	Lead	Lag		Lead	Lead	Lag		
Lead－Lag Optimize？								
Recall Mode	None	C－Min		None	None	C－Min	None	None
Act Effct Green（s）	6.1	56.2			20.0	80.6	7.3	7.3
Actuated g／C Ratio	0.06	0.56			0.20	0.81	0.07	0.07
$\mathrm{V} / \mathrm{C}$ Ratio	0.10	0.47			0.80	0.34	0.26	0.58
Control Delay	33.7	15.7			54.6	3.5	48.3	17.3
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0
Total Delay	33.7	15.7			54.6	3.5	48.3	17.3
LOS	C	B			D	A	D	B
Approach Delay		15.9				15.1	23.1	
Approach LOS		B				B	C	
Queue Length 50th（ft）	7	177			172	50	21	0
Queue Length 95th（ft）	m11	175			247	155	49	56
Internal Link Dist（ft）		870				294	238	
Turn Bay Length（ft）	300							
Base Capacity（vph）	141	2005			460	2853	338	422
Starvation Cap Reductn	0	0			0	0	0	0
Spillback Cap Reductn	0	0			0	0	0	0
Storage Cap Reductn	0	0			0	0	0	0
Reduced v／c Ratio	0.08	0.47			0.62	0.34	0.10	0.33

## Intersection Summary

Area Type：
Cycle Length： 100
Actuated Cycle Length： 100
Offset： $9(9 \%)$ ，Referenced to phase 2：WBT and 6：EBT，Start of Green
Natural Cycle： 60
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 0.80
$\begin{array}{ll}\text { Maximum v／c Ratio：} 0.80 & \text { Intersection LOS：B } \\ \text { Intersection Signal Delay：} 16.0 & \text { ICU Level of Service B } \\ \text { Intersection Capacity Utilization } 60.2 \% & \end{array}$
Analysis Period（min） 15
$m$ Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：2：Ocean State Plaza Driveway \＆Cranberry Highway（Route $6 / 28$ ）


	$\pm$	$\rightarrow$		5	$\downarrow$		4	$p$
Lane Group	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	Д				\%	性	\%	F'
Traffic Volume (vph)	40	1060	30	145	175	1090	40	185
Future Volume (vph)	40	1060	30	145	175	1090	40	185
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	300		0		0		0	0
Storage Lanes	1		0		1		1	1
Taper Length (ft)	25				25		25	
Satd. Flow (prot)	1770	3596	0	0	1779	3574	1752	1599
Flt Permitted	0.950				0.950		0.950	
Satd. Flow (perm)	1770	3596	0	0	1779	3574	1752	1599
Right Turn on Red			Yes					Yes
Satd. Flow (RTOR)		3						192
Link Speed (mph)		30				30	30	
Link Distance (tt)		950				374	318	
Travel Time (s)		21.6				8.5	7.2	
Peak Hour Factor	0.92	0.97	0.97	0.92	0.96	0.96	0.93	0.93
Heavy Vehicles (\%)	2\%	0\%	0\%	2\%	1\%	1\%	3\%	1\%
Shared Lane Traffic (\%)								
Lane Group Flow (vph)	43	1124	0	0	340	1135	43	199
Turn Type	Prot	NA		Prot	Prot	NA	Prot	Prot
Protected Phases	1	6		5	5	2	8	8
Permitted Phases								
Detector Phase	1	6		5	5	2	8	8
Switch Phase								
Minimum Initial (s)	6.0	10.0		6.0	6.0	10.0	6.0	6.0
Minimum Split (s)	10.0	16.0		12.0	12.0	15.5	10.5	10.5
Total Split (s)	12.0	49.0		32.0	32.0	69.0	19.0	19.0
Total Split (\%)	12.0\%	49.0\%		32.0\%	32.0\%	69.0\%	19.0\%	19.0\%
Yellow Time (s)	3.0	4.0		3.5	3.5	4.5	3.5	3.5
All-Red Time (s)	1.0	2.0		2.5	2.5	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.0			6.0	5.5	4.5	4.5
Lead/Lag	Lead	Lag		Lead	Lead	Lag		
Lead-Lag Optimize?								
Recall Mode	None	C-Min		None	None	C-Min	None	None
Act Effct Green (s)	7.0	53.2			22.4	75.2	7.9	7.9
Actuated g/C Ratio	0.07	0.53			0.22	0.75	0.08	0.08
v/c Ratio	0.35	0.59			0.85	0.42	0.31	0.66
Control Delay	35.3	24.3			57.5	6.1	48.4	18.1
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0
Total Delay	35.3	24.3			57.5	6.1	48.4	18.1
LOS	D	C			E	A	D	B
Approach Delay		24.7				17.9	23.5	
Approach LOS		C				B	C	
Queue Length 50th (ft)	23	304			206	132	27	4
Queue Length 95th (ft)	m37	258			\#309	218	58	68
Internal Link Dist (ft)		870				294	238	
Turn Bay Length (ft)	300							
Base Capacity (vph)	141	1915			462	2686	254	396
Starvation Cap Reductn	0	0			0	0	0	0
Spillback Cap Reductn	0	0			0	0	0	0
Storage Cap Reductn	0	0			0	0	0	0
Reduced v/c Ratio	0.30	0.59			0.74	0.42	0.17	0.50

## Intersection Summary

Area Type:
Cycle Length: 100
Actuated Cycle Length: 100
Offset: $99(99 \%)$, Referenced to phase 2:WBT and 6 :EBT, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 21.1
Intersection Capacity Utilization 73.2\%
Intersection LOS: C

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer
Queue shown is maximum after two cycles.
$m$ Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Ocean State Plaza Driveway \& Cranberry Highway (Route 6/28)


	$\pm$	$\rightarrow$		5	$\checkmark$		4	1
Lane Group	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	¢	性			\％	个个	\％	F
Traffic Volume（vph）	10	870	20	180	105	885	55	130
Future Volume（vph）	10	870	20	180	105	885	55	130
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	300		0		0		0	0
Storage Lanes	1		0		1		1	1
Taper Length（ft）	25				25		25	
Satd．Flow（prot）	1770	3564	0	0	1770	3539	1736	1583
Flt Permitted	0.950				0.950		0.950	
Satd．Flow（perm）	1770	3564	0	0	1770	3539	1736	1583
Right Turn on Red			Yes					Yes
Satd．Flow（RTOR）		3						141
Link Speed（mph）		30				30	30	
Link Distance（ft）		950				374	318	
Travel Time（s）		21.6				8.5	7.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	2\％	1\％	0\％	2\％	2\％	2\％	4\％	2\％
Shared Lane Trafic（\％）								
Lane Group Flow（vph）	11	968	0	0	310	962	60	141
Turn Type	Prot	NA		Prot	Prot	NA	Prot	Prot
Protected Phases	1	6		5	5	2	8	8
Permitted Phases								
Detector Phase	1	6		5	5	2	8	8
Switch Phase								
Minimum Initial（s）	6.0	10.0		6.0	6.0	10.0	6.0	6.0
Minimum Split（s）	10.0	16.0		12.0	12.0	15.5	10.5	10.5
Total Split（s）	12.0	44.0		32.0	32.0	64.0	24.0	24.0
Total Split（\％）	12．0\％	44．0\％		32．0\％	32．0\％	64．0\％	24．0\％	24．0\％
Yellow Time（s）	3.0	4.0		3.5	3.5	4.5	3.5	3.5
All－Red Time（s）	1.0	2.0		2.5	2.5	1.0	1.0	1.0
Lost Time Adjust（s）	0.0	0.0			0.0	0.0	0.0	0.0
Total Lost Time（s）	4.0	6.0			6.0	5.5	4.5	4.5
Lead／Lag	Lead	Lag		Lead	Lead	Lag		
Lead－Lag Optimize？								
Recall Mode	None	C－Min		None	None	C－Min	None	None
Act Effct Green（s）	6.1	54.2			21.1	79.7	8.2	8.2
Actuated g／C Ratio	0.06	0.54			0.21	0.80	0.08	0.08
$\mathrm{v} / \mathrm{C}$ Ratio	0.10	0.50			0.83	0.34	0.42	0.55
Control Delay	35.4	15.4			56.1	3.8	52.2	15.7
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0
Total Delay	35.4	15.4			56.1	3.8	52.2	15.7
LOS	D	B			E	A	D	B
Approach Delay		15.7				16.6	26.6	
Approach LOS		B				B	C	
Queue Length 50th（ft）	7	167			189	57	37	0
Queue Length 95th（ft）	m11	172			273	158	75	55
Internal Link Dist（ft）		870				294	238	
Turn Bay Length（ft）	300							
Base Capacity（vph）	141	1932			460	2821	338	422
Starvation Cap Reductn	0	0			0	0	0	0
Spillback Cap Reductn	0	0			0	0	0	0
Storage Cap Reductn	0	0			0	0	0	0
Reduced v／c Ratio	0.08	0.50			0.67	0.34	0.18	0.33

## Intersection Summary

Area Type：
Cycle Length： 100
Actuated Cycle Length： 100
Offset： $9(9 \%)$ ，Referenced to phase 2：WBT and 6：EBT，Start of Green
Natural Cycle： 60
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 0.83
$\begin{array}{ll}\text { Maximum } & \text { Intersection LOS：B } \\ \text { Intersection Signal Delay：} 17.0 & \text { ICU Level of Service B }\end{array}$
Analysis Period（min） 15
$m$ Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：2：Ocean State Plaza Driveway \＆Cranberry Highway（Route $6 / 28$ ）



	$\pm$	$\rightarrow$		¢	7		4	$p$
Lane Group	EBU	EBT	EBR	WBU	WBL	WBT	NBL	NBR
Lane Configurations	A	个t			\％	个4	\％	「
Traffic Volume（vph）	40	1080	35	165	180	1090	65	185
Future Volume（vph）	40	1080	35	165	180	1090	65	185
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	300		0		0		0	0
Storage Lanes	1		0		1		1	1
Taper Length（ft）	25				25		25	
Satd．Flow（prot）	1770	3592	0	0	1779	3574	1752	1599
Flt Permitted	0.950				0.950		0.950	
Satd．Flow（perm）	1770	3592	0	0	1779	3574	1752	1599
Right Turn on Red			Yes					Yes
Satd．Flow（RTOR）		4						174
Link Speed（mph）		30				30	30	
Link Distance（ft）		950				374	318	
Travel Time（s）		21.6				8.5	7.2	
Peak Hour Factor	0.92	0.97	0.97	0.92	0.96	0.96	0.93	0.93
Heavy Vehicles（\％）	2\％	0\％	0\％	2\％	1\％	1\％	3\％	1\％
Shared Lane Trafic（\％）								
Lane Group Flow（vph）	43	1149	0	0	367	1135	70	199
Turn Type	Prot	NA		Prot	Prot	NA	Prot	Prot
Protected Phases	1	6		5	5	2	8	8
Permitted Phases								
Detector Phase	1	6		5	5	2	8	8
Switch Phase								
Minimum Initial（s）	6.0	10.0		6.0	6.0	10.0	6.0	6.0
Minimum Split（s）	10.0	16.0		12.0	12.0	15.5	10.5	10.5
Total Split（s）	12.0	49.0		32.0	32.0	69.0	19.0	19.0
Total Split（\％）	12．0\％	49．0\％		32．0\％	32．0\％	69．0\％	19．0\％	19．0\％
Yellow Time（s）	3.0	4.0		3.5	3.5	4.5	3.5	3.5
All－Red Time（s）	1.0	2.0		2.5	2.5	1.0	1.0	1.0
Lost Time Adjust（s）	0.0	0.0			0.0	0.0	0.0	0.0
Total Lost Time（s）	4.0	6.0			6.0	5.5	4.5	4.5
Lead／Lag	Lead	Lag		Lead	Lead	Lag		
Lead－Lag Optimize？								
Recall Mode	None	C－Min		None	None	C－Min	None	None
Act Effict Green（s）	7.0	51.1			23.4	74.1	9.0	9.0
Actuated g／C Ratio	0.07	0.51			0.23	0.74	0.09	0.09
$\mathrm{v} / \mathrm{C}$ Ratio	0.35	0.63			0.88	0.43	0.45	0.66
Control Delay	36.1	24.4			59.7	6.6	51.3	20.4
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0
Total Delay	36.1	24.4			59.7	6.6	51.3	20.4
LOS	D	C			E	A	D	C
Approach Delay		24.8				19.6	28.5	
Approach LOS		C				B	C	
Queue Length 50th（ft）	25	285			220	141	43	15
Queue Length 95th（ti）	m36	266			\＃359	227	84	81
Internal Link Dist（ft）		870				294	238	
Turn Bay Length（ft）	300							
Base Capacity（vph）	141	1837			462	2647	254	380
Starvation Cap Reductn	0	0			0	0	0	0
Spillback Cap Reductn	0	0			0	0	0	0
Storage Cap Reductn	0	0			0	0	0	0
Reduced v／c Ratio	0.30	0.63			0.79	0.43	0.28	0.52

## Intersection Summary

Area Type：
Cycle Length： 100
Actuated Cycle Length： 100
Offset： $99(99 \%)$ ，Referenced to phase 2：WBT and 6 ：EBT，Start of Green
Natural Cycle： 60
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 0.88

Intersection Signal Delay：22．5	Intersection LOS：C
Intersection Capacity Utilization 75．3\％	ICU Level of Service D

Analysis Period（min） 15
\＃95th percentile volume exceeds capacity，queue may be longer
Queue shown is maximum after two cycles．
$m$ Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：2：Ocean State Plaza Driveway \＆Cranberry Highway（Route 6／28）




[^0]:    ${ }^{1}$ Guidance on Traffic Count Data, MassDOT, April 2021.

[^1]:    2 Equivalent property damage only" is a method of combining the number of crashes with the severity of the crashes based on a weighted scale. Crashes involving property damage only are reported at a minimal level of importance, while collisions involving personal injury (or fatalities) are weighted more heavily.

[^2]:    Source: Crash data was obtained from MassDOT Crash Portal, accessed June 1, 2021.

[^3]:    Source: VHB; ITE
    a Based on ITE LUC 948 (Automated Car Wash) for one wash tunnel, using average rates.
    b Based on communications with the Proponent.

[^4]:    4 'Critical gap' is defined as the minimum time, in seconds, between successive major-stream vehicles, 0.64 in which a minor-street vehicle can make a maneuver.0.90

[^5]:    ${ }^{1}$ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

[^6]:    ${ }^{I}$ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

[^7]:    Maximum $=59.6 \mathrm{mph}$, Minimum $=3.8 \mathrm{mph}$, Mean $=28.6 \mathrm{mph}$
    $85 \%$ Speed $=38.03 \mathrm{mph}, 95 \%$ Speed $=42.17 \mathrm{mph}$, Median $=26.79 \mathrm{mph}$
    10 mph Pace $=19-29$, Number in Pace $=5575(47.98 \%)$
    Variance $=64.11$, Standard Deviation $=8.01 \mathrm{mph}$

[^8]:    Maximum $=57.0 \mathrm{mph}$, Minimum $=4.9 \mathrm{mph}$, Mean $=28.1 \mathrm{mph}$
    $85 \%$ Speed $=37.92 \mathrm{mph}, 95 \%$ Speed $=41.83 \mathrm{mph}$, Median $=28.24 \mathrm{mph}$
    10 mph Pace = 29 - 39, Number in Pace $=4183$ (36.56\%)
    Variance $=80.56$, Standard Deviation $=8.98 \mathrm{mph}$

[^9]:    *Note that beginning in 2016, MassDOT has further refined some of the Factor Groups for portions of the Commonwealth that experience significant seasonal fluctuations in traffic. These Factor Groups supersede Geographic Area Type, Functional Class, and Region and may be applied to

