Wareham, Massachusetts

PREPARED FOR

First Hartford Realty Corporation 149 Colonial Road Manchester, Connecticut 06042

PREPARED BY

1 Cedar Street Suite 400 Providence, RI 02903 401.272.8100

June 28, 2021

Table of Contents

1	Checklist for Stormwater Report	1
2	Stormwater Report Narrative	2
	Project Description	2
	Site Description	2
	Existing Drainage Conditions	2
	Proposed Drainage Conditions	3
3	Regulatory Compliance	1
	Massachusetts Department of Environmental Protection (DEP) - Stormwater	1
	Standard 1: No New Untreated Discharges or Erosion to Wetlands	۱ 1
	Standard 2: Peak Rate Attenuation	، 1
	Standard 3: Stormwater Recharge	1
	Standard 4: Water Quality	2
	Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)	3
	Standard 6: Critical Areas	3
	Standard 7: Redevelopments and Other Projects Subject to the Standards	
	only to the Maximum Extent Practicable	3
	Standard 8: Construction Period Pollution Prevention and Erosion and	
	Sedimentation Controls	3
	Standard 9: Operation and Maintenance Plan	3
	Standard 10: Prohibition of Illicit Discharges	3
4	Appendix A - Standard 1 Computations and Supporting Information	5
5	Appendix B - Standard 2 Computations and Supporting Information	8
6	Appendix C - Standard 3 Computations and Supporting Information	20
7	Appendix D - Standard 4 Computations and Supporting Information	24
8	Appendix E - Standard 8 Supporting Information	28

Appendices

Appendix A	A1
Appendix B	A4
Appendix C	A16
Appendix D	A21

Appendix EA25

List of Tables

Table No.	Description	Page
Table 1 - Peak	Discharge Rates (cfs*)	2

List of Figures

Figure No.	Description	Page
Figure 1: Site	e Locus Map	1
Figure 2: Exis	sting Drainage Areas	2
Figure 3: Pro	posed Drainage Areas	

Checklist for Stormwater Report

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the <u>Massachusetts Stormwater Handbook</u>. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

A Stormwater Report must be submitted with the Notice of Intent permit application to document

compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Con trol Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date	CURTIS R QUITZAU CIVIL No. 42693 CISTERIO SOMAL ENGINE	Go Z 4. ZI Signature and Date	
--------------------	---	----------------------------------	--

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

- New development
- Redevelopment
- Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- □ Treebox Filter
- U Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
- Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

- Soil Analysis provided.
- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static

□ Simple Dynamic □ Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

- The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- □ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - □ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- □ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior** to the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- □ The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - □ Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - □ Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - Redevelopment Project
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- □ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- □ The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Stormwater Report Narrative

This Stormwater Report has been prepared to demonstrate compliance with the Massachusetts Stormwater Management Standards in accordance with the Massachusetts Wetlands Protection Act Regulations (310 CMR 10.00) and Water Quality Certification Regulations (314 CMR 9.00) to the maximum extent practicable.

Project Description

The Applicant, First Hartford Realty Corporation, is proposing to construct a car wash on a parcel of land, about 1.7 acres, located at 3013 Cranberry Highway in Wareham, Massachusetts (the Site). As proposed, the Project consists of a 6,830 square foot building footprint, ancillary landscape improvements, parking spaces for 28 vehicles, stormwater management, and utility improvements to support this use.

The Project will entail the construction of commercial space and is not considered a Land Use with Higher Potential Pollutant Loads (LUHPPL).

Site Description

The Site is approximately $1.7\pm$ acres identified as parcel 12-LC1. The site is located on the south side of Cranberry Highway and is bounded by mostly developed land to the west, east, and south. To the north and on the opposite side of Cranberry Highway, is Dicks Pond.

The site is currently developed as a restaurant, identified as the 99-Restaurant, and associated parking lot, sidewalks, and some utility infrastructure that remains (see Figure 1). The Site lies within the Buzzards Bay watershed.

MassGIS indicates there are no wetlands located on the site, but there is a 100 ft. wetland buffer zone going through a small portion of the site. The buffer zone is associated with Dick's Pond (Waterbody ID: MA95038_2008), a 52-acre pond located to the North of the Site.

The Natural Resource Conservation Service (NRCS) has multiple mapped soil types on the site with the predominant soil type identified as Carver urban land complex with a Hydrologic Soil Group (HSG) A rating. The site also contains a small area with Udipsamments, which all has an HSG A rating. Based on the soil evaluation included in Appendix C, the Site is within an area of rapid infiltration (soils with a saturated hydraulic conductivity greater than 2.4 inches per hour). An infiltration rate of 8.27 in/hr was used to model the stormwater BMPs, based on geotechnical investigations performed in the area of the basins.

Existing Drainage Conditions

Under existing conditions, the Site is predominantly parking lot pavement, roofs, and mulch landscape islands. The Site is bordered on three sides by developed land, and one side by Cranberry Highway. Figure 2 illustrates the existing drainage patterns on the Site. The Site is divided into three drainage areas as stormwater runoff flows to three Design Points. They

have been identified as the Cranberry Highway drainage system, an existing catch basin onsite, and an existing catch basin in the drive aisle to the south of the site.

Proposed Drainage Conditions

Figure 3 illustrates the proposed "post construction" drainage conditions for the project. As shown, the Site will be divided into 12 drainage areas that discharge stormwater to 4 design points.

The project is considered a redevelopment and is required to meet, to the maximum extent practicable, Standards 1, 2, 3, and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6 of the Massachusetts Stormwater Handbook. A redevelopment shall comply with the remaining Standards and improve existing conditions. See pages A1-A3 below for a list of how the project is complying with the Massachusetts Stormwater Standards

Because the Project is located within an area of rapid infiltration, the proposed stormwater management system has been designed to treat the 1-inch Water Quality Volume at Infiltration Basins 1 and 2, and the 0.5-inch Water Quality Volume at Infiltration Basin 3. Due to lack of space, the project was not able to size a basin for the 1-inch Water Quality Basin. The project cannot meet the required 44% pre-treatment TSS removal prior to infiltration because of the grades across the site and the high groundwater. Infiltration systems provide 80% TSS removal.

The access drive and parking lot will be graded to curb breaks. Curb breaks are constructed with a stone diaphragm to help slow the runoff and provide an area for settling of sediment. Stormwater will then flow to sediment forebays prior to discharge to at-grade infiltration basins.

The roof runoff will be piped directly to the existing onsite catch basin.

The proposed drainage conditions will reduce peak rates for all storm events listed in the Standard 2 section of this report.

Figure 1: Site Locus Map

Figure 1 Locus Map Reign Car Wash Wareham, Massachusetts

Figure 2: Existing Drainage Areas

Figure 3: Proposed Drainage Areas

Regulatory Compliance

Massachusetts Department of Environmental Protection (DEP) - Stormwater Management Standards

As demonstrated below, the proposed Project fully complies with the DEP Stormwater Management Standards.

Standard 1: No New Untreated Discharges or Erosion to Wetlands

The Project has been designed to fully comply with Standard 1.

There are no new stormwater discharges directly to a wetland or water.

All proposed Project stormwater outlets and conveyances have been designed to not cause erosion or scour.

Standard 2: Peak Rate Attenuation

The Project has been designed to fully comply with Standard 2.

The rainfall-runoff response of the Site under existing and proposed conditions was analyzed for storm events with recurrence intervals of 2, 10, 25, 50, and 100 years.

Computations and supporting information regarding the hydrologic modeling are included in Appendix B.

Table 1 - Peak Discharge Rates (cfs*)

Design Point	2-year	10-year	25-year	50-year	100-year		
Design Point DP1 Cranberry Highway							
Existing	4.10	6.17	7.45	8.45	9.46		
Proposed	0.51	0.75	1.07	1.70	2.25		
Design Point: DP2 Existing Catch Basin - Onsite							
Existing	1.07	1.60	1.93	2.19	2.45		
Proposed	0.53	0.78	0.93	0.98	1.00		
Design Point: DP3 Existing Catch Basin – South of Site							
Existing	0.52	0.80	0.97	1.11	1.25		
Proposed	0.00	0.12	0.26	0.38	0.47		
*cfs- cubic feet per secc	ond						
Design Point: DP4 Proposed Depression							
Existing	0.00	0.00	0.00	0.00	0.00		
Proposed	0.00	0.00	0.00	0.00	0.00		
*cfs- cubic feet ner seco	nd						

[•]cfs- cubic feet per second

Standard 3: Stormwater Recharge

The Project has been designed to improve recharge on the site. The required recharge volume is being infiltrated to the maximum extent practicable. The impervious roof is not directed to an infiltrating system that would provide recharge because of elevation. The below grade roof drain would not have sufficient cover to reach an infiltration system.

Recharge of stormwater has been provided using surface infiltration, which have been sized using the static method. Each infiltration BMP has been designed to drain completely within 72 hours. Soil evaluation (including Geotechnical Report), computations, and supporting information are included in Appendix C.

Standard 4: Water Quality

The Project does meet the Standard 4 design requirements to the maximum extent practicable.

Infiltration system 1 and 2 will provide water quality treatment for 1" of captured runoff through infiltration, but only achieving 27% pre-treatment. Because of high groundwater and the required separation from the bottom of the infiltration system to seasonal high groundwater, it was infeasible to include a deep sump catch basin in the pre-treatment train.

Infiltration system 3 again only achieves 27% pre-treatment and is sized to treat 0.5" of captured runoff only. Infiltration system 3 could not be larger because of lack of space and required separation to seasonal high groundwater.

Computations and supporting information, including the Long-Term Pollution Prevention Plan, are included in Appendix D.

Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)

The Project is not considered a LUHPPL.

Standard 6: Critical Areas

The Project does not discharge stormwater to a critical area.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the Maximum Extent Practicable

The Project is a redevelopment and results in a decrease in impervious surface of 32%, from $73,289 \pm$ SF to $49,887 \pm$ SF.

The Project complies with the Stormwater Standards 2 and 3 and the pre-treatment and structural stormwater best management practices of Standards 4, 5, and 6, to the maximum extent practicable.

The Project fully complies with standard 1, 8, 9, 10, and the long-term pollution prevention plan component of standard 4

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Controls

The Project will disturb approximately 1.6 acres of land and is therefore required to obtain coverage under the Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Construction General Permit. As required under this permit, a Stormwater Pollution Prevention Plan (SWPPP) will be developed and submitted before land disturbance begins. Recommended construction period pollution prevention and erosion and sedimentation controls to be finalized in the SWPPP are included in Appendix E.

Standard 9: Operation and Maintenance Plan

In compliance with Standard 9, a Post Construction Stormwater Operation and Maintenance (O&M) Plan has been developed for the Project. The O&M Plan is included in Appendix D as part of the Long-Term Pollution Prevention Plan.

Standard 10: Prohibition of Illicit Discharges

Sanitary sewer and storm drainage structures not required for re-use will be removed. Separate storm drainage and sanitary sewer connections are proposed. The design plans submitted with this report have been designed so that the components included therein are in full compliance with current standards. The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges.

Appendix A - Standard 1 Computations and Supporting Information

Pipe Sizing Calculations

The closed drainage system was designed for the 50-Year storm event, in accordance with the Wareham Subdivision Rules and Regulations.

Drainage pipes were sized using Manning's Equation for full-flow capacity and the Rational Method.

CLOSED DRAINAGE SYSTEM CALCULATIONS

vhb
1 Cedar Street
Providence, RI 02903

Storm Drainage Computations												
Name:	Reign Car Wash, Wareham	Proj. No.: Date:	73170.00 6/21/2021	Rainfa								
Client:	First Hartford Realty Corp.	Computed by:	SAP									
		Checked by:	кс									

	LOCATION		AREA	C	C x A	SUM	FLOW TIME (MIN)			DESIGN					CA	PACITY	PROFILE							
DESCRIPTION	FROM	TO	(AC.)			C x A	PIPE	CONC		Q	V	n	PIPE	SLOPE	Q full	V full	LENGTH	FALL	RIM	INV	INV	W.S.E.	Freeboard	
								TIME		cfs	fps		SIZE		ft^3/s	ft/s	ft	ft		UPPER	LOWER	ft	ft	
	Trench Drain	WYE	0.019	0.470	0.009	0.009	0.11	5.0	6.7	0.06	2.7	0.010	4	2.78%	0.41	4.7	18	0.50	12.00	9.00	8.50	8.9	3.1	
	RD - Building	EX CB - Onsite	0.157	0.900	0.141	0.141	0.35	5.0	6.7	0.95	2.8	0.012	8	0.53%	0.95	2.7	59	0.31	0.00	8.61	8.30	8.5	-8.5	
	RD - Canopy	INF1	0.010	0.900	0.009	0.009	0.47	5.0	6.7	0.06	1.6	0.012	6	1.11%	0.64	3.3	45	0.50	0.00	9.50	9.00	9.5	-9.5	

fall Intensity - 50 Year Duration NOAA ATLAS 14
Appendix B - Standard 2 Computations and Supporting Information

Rainfall volumes used for this analysis were based on the Natural Resources Conservation Service (NRCS) Type III, 24-hour storm event and NOAA Atlas 14 precipitation depths for the site: 3.44, 5.04, 6.03, 6.79, 7.57 inches, respectively. Runoff coefficients for the existing and proposed conditions, were determined using NRCS Technical Release 55 (TR-55) methodology as provided in HydroCAD. The HydroCAD model is based on the NRCS Technical Release 20 (TR 20) Model for Project Formulation Hydrology.

NOAA Atlas 14, Volume 10, Version 3 Location name: East Wareham, Massachusetts, USA* Latitude: 41.7584°, Longitude: -70.6612° Elevation: 10.33 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.294 (0.239-0.357)	0.364 (0.296-0.443)	0.479 (0.388-0.584)	0.574 (0.462-0.703)	0.705 (0.552-0.892)	0.803 (0.618-1.03)	0.907 (0.682-1.20)	1.03 (0.731-1.37)	1.21 (0.828-1.64)	1.36 (0.912-1.87)
10-min	0.416 (0.338-0.506)	0.515 (0.419-0.628)	0.677 (0.548-0.826)	0.812 (0.654-0.994)	0.998 (0.782-1.26)	1.14 (0.875-1.46)	1.29 (0.966-1.70)	1.46 (1.03-1.93)	1.71 (1.17-2.33)	1.93 (1.29-2.65)
15-min	0.489 (0.398-0.595)	0.606 (0.493-0.738)	0.798 (0.646-0.972)	0.956 (0.770-1.17)	1.18 (0.920-1.49)	1.34 (1.03-1.72)	1.51 (1.14-2.00)	1.71 (1.22-2.27)	2.02 (1.38-2.73)	2.27 (1.52-3.12)
30-min	0.707 (0.575-0.860)	0.874 (0.710-1.06)	1.15 (0.929-1.40)	1.37 (1.11-1.68)	1.69 (1.32-2.13)	1.92 (1.48-2.46)	2.17 (1.63-2.86)	2.46 (1.75-3.26)	2.89 (1.98-3.92)	3.25 (2.18-4.46)
60-min	0.924 (0.752-1.12)	1.14 (0.927-1.39)	1.50 (1.21-1.83)	1.79 (1.44-2.19)	2.20 (1.72-2.78)	2.50 (1.93-3.21)	2.82 (2.12-3.73)	3.20 (2.27-4.24)	3.76 (2.58-5.10)	4.23 (2.84-5.81)
2-hr	1.25 (1.02-1.51)	1.55 (1.26-1.87)	2.03 (1.66-2.47)	2.44 (1.98-2.97)	3.00 (2.37-3.78)	3.42 (2.65-4.37)	3.86 (2.94-5.09)	4.40 (3.15-5.79)	5.21 (3.60-7.01)	5.90 (3.99-8.04)
3-hr	1.47 (1.21-1.77)	1.82 (1.49-2.19)	2.38 (1.95-2.88)	2.86 (2.33-3.46)	3.51 (2.78-4.39)	3.99 (3.11-5.08)	4.51 (3.44-5.91)	5.13 (3.69-6.72)	6.08 (4.22-8.14)	6.89 (4.68-9.34)
6-hr	1.91 (1.58-2.29)	2.33 (1.93-2.79)	3.01 (2.48-3.61)	3.58 (2.93-4.31)	4.36 (3.48-5.42)	4.94 (3.88-6.23)	5.56 (4.27-7.22)	6.30 (4.56-8.19)	7.40 (5.18-9.84)	8.33 (5.71-11.2)
12-hr	2.42 (2.02-2.88)	2.89 (2.40-3.43)	3.65 (3.03-4.35)	4.29 (3.54-5.13)	5.16 (4.14-6.35)	5.82 (4.59-7.26)	6.51 (5.01-8.33)	7.30 (5.33-9.41)	8.43 (5.95-11.1)	9.37 (6.47-12.5)
24-hr	2.91 (2.44-3.43)	3.44 (2.88-4.06)	4.31 (3.60-5.10)	5.04 (4.18-5.98)	6.03 (4.87-7.36)	6.79 (5.38-8.38)	7.57 (5.84-9.56)	8.43 (6.21-10.8)	9.65 (6.87-12.6)	10.6 (7.41-14.1)
2-day	3.35 (2.82-3.92)	3.97 (3.35-4.66)	5.00 (4.20-5.87)	5.85 (4.89-6.89)	7.02 (5.71-8.50)	7.91 (6.31-9.69)	8.83 (6.87-11.1)	9.85 (7.31-12.5)	11.3 (8.10-14.6)	12.5 (8.75-16.3)
3-day	3.68 (3.11-4.29)	4.34 (3.67-5.06)	5.42 (4.57-6.34)	6.32 (5.30-7.42)	7.55 (6.17-9.10)	8.49 (6.80-10.4)	9.46 (7.39-11.8)	10.5 (7.85-13.3)	12.0 (8.67-15.5)	13.2 (9.34-17.3)
4-day	3.97 (3.37-4.62)	4.64 (3.94-5.41)	5.75 (4.87-6.71)	6.67 (5.62-7.81)	7.94 (6.50-9.53)	8.90 (7.15-10.8)	9.89 (7.73-12.3)	11.0 (8.21-13.8)	12.5 (9.02-16.0)	13.7 (9.68-17.8)
7-day	4.74 (4.05-5.48)	5.44 (4.64-6.30)	6.59 (5.61-7.65)	7.55 (6.39-8.78)	8.86 (7.29-10.5)	9.86 (7.96-11.9)	10.9 (8.54-13.4)	12.0 (9.01-14.9)	13.4 (9.77-17.1)	14.5 (10.4-18.8)
10-day	5.45 (4.67-6.28)	6.17 (5.29-7.12)	7.36 (6.29-8.51)	8.35 (7.10-9.68)	9.71 (8.01-11.5)	10.8 (8.71-12.9)	11.8 (9.28-14.4)	12.9 (9.76-16.0)	14.3 (10.5-18.1)	15.3 (11.0-19.7)
20-day	7.54 (6.51-8.64)	8.36 (7.21-9.58)	9.69 (8.34-11.1)	10.8 (9.24-12.4)	12.3 (10.2-14.5)	13.5 (11.0-16.0)	14.7 (11.6-17.6)	15.8 (12.1-19.4)	17.2 (12.7-21.6)	18.1 (13.1-23.1)
30-day	9.31 (8.06-10.6)	10.2 (8.83-11.6)	11.7 (10.1-13.3)	12.9 (11.1-14.8)	14.5 (12.1-17.0)	15.9 (12.9-18.7)	17.1 (13.5-20.4)	18.3 (14.0-22.4)	19.7 (14.6-24.6)	20.6 (15.0-26.2)
45-day	11.5 (10.0-13.1)	12.5 (10.9-14.2)	14.1 (12.3-16.1)	15.5 (13.4-17.7)	17.3 (14.5-20.1)	18.8 (15.4-22.0)	20.2 (16.0-23.9)	21.4 (16.5-26.1)	22.8 (17.1-28.4)	23.8 (17.4-30.0)
60-day	13.4 (11.7-15.2)	14.5 (12.6-16.4)	16.2 (14.1-18.4)	17.7 (15.3-20.1)	19.7 (16.5-22.8)	21.3 (17.5-24.8)	22.8 (18.1-26.9)	24.1 (18.7-29.2)	25.5 (19.2-31.7)	26.4 (19.4-33.2)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Reign Car Wash

HydroCAD Analysis: Existing Conditions

		Reign Car Wash, Wareham, MA
73170.00 Drainage EX	Τγγ	be III 2ॅ4-hr 2-Year Rainfall=3.44"
Prepared by VHB		Printed 6/23/2021
HvdroCAD® 10 10-5a s/n 01038 © 2020	HvdroCAD Software Solutions I I C	Page 1
Time span=	0 00-72 00 hrs_dt=0 05 hrs_144	1 points
Runoff by SCS T	R-20 method UH=SCS Split Per	vious/Imperv
Reach routing by Stor-In	d+Trans method - Pond routing	by Stor-Ind method
Subcatchment1: Subcat1	Runoff Area=58,956 sf 89.5	59% Impervious Runoff Depth=2.97"
	Flow Length=255' Tc=6.0 min C	N=69/98 Runoff=4.09 cfs 14,583 cf
	5	,
Subcatchment2: Subcat 2	Runoff Area=15,241 sf 91.1	8% Impervious Runoff Depth=3.00
	Flow Length=90' Tc=6.0 min	CN=68/98 Runoff=1.07 cfs 3,811 cf
	-	
Subcatchment3: Subcat 3	Runoff Area=8,071 sf 81.4	7% Impervious Runoff Depth=2.77
	Flow Length=73' Tc=6.0 min	CN=68/98 Runoff=0.52 cfs 1,865 cf
Link DP1: Cranberry Highway Drainag	ge System	Inflow=4.09 cfs 14,583 cf
		Primary=4.09 cfs 14,583 cf
Link DP2: Existing catch basin on site	9	Inflow=1.07 cfs 3,811 cf
		Primary=1.07 cfs 3,811 cf
Link DP3: Existing catch basin in driv	re aisle	Inflow=0.52 cfs 1,865 cf
		Primary=0.52 cfs 1,865 cf

Total Runoff Area = 82,267 sf Runoff Volume = 20,259 cf Average Runoff Depth = 2.96" 10.91% Pervious = 8,979 sf 89.09% Impervious = 73,289 sf

Summary for Subcatchment 1: Subcat 1

Runoff = 4.09 cfs @ 12.09 hrs, Volume= 14,583 cf, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description		
	45,275	98	Paved park	ing, HSG A	
	5,959	68	<50% Ġras	s cover, Po	or, HSG A
	180	96	Gravel surfa	ace, HSG A	N Contraction of the second seco
	7,542	98	Roofs, HSC	β A	
	58,956	95	Weighted A	verage	
	6,139	69	10.41% Pei	rvious Area	
	52,817	98	89.59% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.9	50	0.0090	0.90		Sheet Flow, Pavement
					Smooth surfaces n= 0.011 P2= 3.44"
2.2	205	0.0060	1.57		Shallow Concentrated Flow, Pavement
					Paved Kv= 20.3 fps
2.9					Direct Entry, Min. 6 mins
6.0	255	Total			

Summary for Subcatchment 2: Subcat 2

Runoff = 1.07 cfs @ 12.09 hrs, Volume= 3,811 cf, Depth= 3.00"

A	rea (sf)	CN	Description		
	1,344	68	3 <50% Grass cover, Poor, HSG A		
	13,897	98	Paved park	ing, HSG A	
	15,241	95	Weighted A	verage	
	1,344	68	8.82% Perv	vious Area	
	13,897	98	91.18% lmp	pervious Ar	ea
Тс	Length	Slope	e Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.8	50	0.0150	1.11		Sheet Flow, Pavement
					Smooth surfaces n= 0.011 P2= 3.44"
0.2	40	0.0180	2.72		Shallow Concentrated Flow, Pavement
					Paved Kv= 20.3 fps
5.0					Direct Entry, Min. 6 mins
6.0	90	Total			

Summary for Subcatchment 3: Subcat 3

	Runoff =	= 0.52 cfs @	12.09 hrs, Volume=	1,865 cf, Depth= 2.77"
--	----------	--------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description		
	1,496	68	<50% Gras	s cover, Po	oor, HSG A
	6,575	98	Paved park	ing, HSG A	
	8,071	92	Weighted A	verage	
	1,496	68	18.53% Pe	rvious Area	
	6,575	98	81.47% Im	pervious Ar	ea
Тс	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
1.4	50	0.003	0 0.58		Sheet Flow, Pavement
					Smooth surfaces n= 0.011 P2= 3.44"
0.2	23	0.006	0 1.57		Shallow Concentrated Flow, Pavement
					Paved Kv= 20.3 fps
4.4					Direct Entry, Min. 6 mins
6.0	73	Total			

Summary for Link DP1: Cranberry Highway Drainage System

Inflow Are	a =	58,956 sf,	89.59% Impervious,	Inflow Depth = 2.97"	for 2-Year event
Inflow	=	4.09 cfs @	12.09 hrs, Volume=	14,583 cf	
Primary	=	4.09 cfs @	12.09 hrs, Volume=	14,583 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP2: Existing catch basin on site

Inflow Are	ea =	15,241 sf,	91.18% Impervious,	Inflow Depth = 3.00"	for 2-Year event
Inflow	=	1.07 cfs @	12.09 hrs, Volume=	3,811 cf	
Primary	=	1.07 cfs @	12.09 hrs, Volume=	3,811 cf, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP3: Existing catch basin in drive aisle

 Inflow Area =
 8,071 sf, 81.47% Impervious, Inflow Depth =
 2.77" for 2-Year event

 Inflow =
 0.52 cfs @
 12.09 hrs, Volume=
 1,865 cf

 Primary =
 0.52 cfs @
 12.09 hrs, Volume=
 1,865 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

	Reign C	ar Wash, Wareham, MA
73170.00 Drainage EX	Type III 24-hr	10-Year Rainfall=5.04"
Prepared by VHB		Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solution	is LLC	Page 1
Time span=0.00-72.00 hrs, dt=0.05 hrs	s, 1441 points	

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Subcat1	Runoff Area=58,956 sf 89.59% Impervious Runoff Depth=4.51" Flow Length=255' Tc=6.0 min CN=69/98 Runoff=6.15 cfs 22,157 cf
Subcatchment2: Subcat2	Runoff Area=15,241 sf 91.18% Impervious Runoff Depth=4.55" Flow Length=90' Tc=6.0 min CN=68/98 Runoff=1.60 cfs 5,776 cf
Subcatchment3: Subcat3	Runoff Area=8,071 sf 81.47% Impervious Runoff Depth=4.27" Flow Length=73' Tc=6.0 min CN=68/98 Runoff=0.80 cfs 2,869 cf
Link DP1: Cranberry Highway Drainag	Inflow=6.15 cfs 22,157 cf Primary=6.15 cfs 22,157 cf
Link DP2: Existing catch basin on site	Inflow=1.60 cfs 5,776 cf Primary=1.60 cfs 5,776 cf
Link DP3: Existing catch basin in drive	e aisle Inflow=0.80 cfs 2,869 cf Primary=0.80 cfs 2,869 cf
Total Pupoff Aroa - 92 (267 of Bunoff Volume = 20,802 of Average Bunoff Donth = 4.4

Total Runoff Area = 82,267 sf Runoff Volume = 30,802 cf Average Runoff Depth = 4.49" 10.91% Pervious = 8,979 sf 89.09% Impervious = 73,289 sf

	Reign Car Wash, Wareham, MA
73170.00 Drainage EX	Type III 24-hr 25-Year Rainfall=6.03"
Prepared by VHB	Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Soft	ware Solutions LLC Page 2
T	

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Subcat1	Runoff Area=58,956 sf 89.59% Impervious Runoff Depth=5.47" Flow Length=255' Tc=6.0 min CN=69/98 Runoff=7.44 cfs 26,892 cf
Subcatchment2: Subcat2	Runoff Area=15,241 sf 91.18% Impervious Runoff Depth=5.51" Flow Length=90' Tc=6.0 min CN=68/98 Runoff=1.93 cfs 7,004 cf
Subcatchment3: Subcat3	Runoff Area=8,071 sf 81.47% Impervious Runoff Depth=5.21" Flow Length=73' Tc=6.0 min CN=68/98 Runoff=0.97 cfs 3,503 cf
Link DP1: Cranberry Highway Drainag	Je System Inflow=7.44 cfs 26,892 cf Primary=7.44 cfs 26,892 cf
Link DP2: Existing catch basin on site	e Inflow=1.93 cfs 7,004 cf
Link DP3: Existing catch basin in drive	e aisle Inflow=0.97 cfs 3,503 cf Primary=0.97 cfs 3,503 cf

Total Runoff Area = 82,267 sf Runoff Volume = 37,398 cf Average Runoff Depth = 5.46" 10.91% Pervious = 8,979 sf 89.09% Impervious = 73,289 sf

	Reign Ca	r Wash, Wareham, MA
73170.00 Drainage EX	Type III 24-hr 3	50-Year Rainfall=6.79"
Prepared by VHB		Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Sol	lutions LLC	Page 3
Time span=0.00-72.00 hrs, dt=0.0	05 hrs, 1441 points	

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Subcat1	Runoff Area=58,956 sf 89.59% Impervious Runoff Depth=6.22" Flow Length=255' Tc=6.0 min CN=69/98 Runoff=8.42 cfs 30,544 cf
Subcatchment2: Subcat2	Runoff Area=15,241 sf 91.18% Impervious Runoff Depth=6.26" Flow Length=90' Tc=6.0 min CN=68/98 Runoff=2.19 cfs 7,950 cf
Subcatchment3: Subcat3	Runoff Area=8,071 sf 81.47% Impervious Runoff Depth=5.94" Flow Length=73' Tc=6.0 min CN=68/98 Runoff=1.11 cfs 3,993 cf
Link DP1: Cranberry Highway Drainag	Je System Inflow=8.42 cfs 30,544 cf Primary=8.42 cfs 30,544 cf
Link DP2: Existing catch basin on site	Inflow=2.19 cfs 7,950 cf Primary=2.19 cfs 7,950 cf
Link DP3: Existing catch basin in drive	e aisle Inflow=1.11 cfs 3,993 cf Primary=1.11 cfs 3,993 cf
Total Punoff Area = 82 f	267 sf Runoff Volume = $42.487 cf$ Average Runoff Denth = 6.2

Total Runoff Area = 82,267 sf Runoff Volume = 42,487 cf Average Runoff Depth = 6.20" 10.91% Pervious = 8,979 sf 89.09% Impervious = 73,289 sf

	Reign	Car Wash, Wareham, MA
73170.00 Drainage EX	Type III 24-hr	100-Year Rainfall=7.57"
Prepared by VHB		Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software So	lutions LLC	Page 4
		-

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Subcat1	Runoff Area=58,956 sf 89.59% Impervious Runoff Depth=6.98" Flow Length=255' Tc=6.0 min CN=69/98 Runoff=9.44 cfs 34,304 cf
Subcatchment2: Subcat2	Runoff Area=15,241 sf 91.18% Impervious Runoff Depth=7.03" Flow Length=90' Tc=6.0 min CN=68/98 Runoff=2.45 cfs 8,924 cf
Subcatchment3: Subcat3	Runoff Area=8,071 sf 81.47% Impervious Runoff Depth=6.69" Flow Length=73' Tc=6.0 min CN=68/98 Runoff=1.25 cfs 4,500 cf
Link DP1: Cranberry Highway Drainag	Je System Inflow=9.44 cfs 34,304 cf Primary=9.44 cfs 34,304 cf
Link DP2: Existing catch basin on site	Inflow=2.45 cfs 8,924 cf Primary=2.45 cfs 8,924 cf
Link DP3: Existing catch basin in drive	e aisle Inflow=1.25 cfs 4,500 cf Primary=1.25 cfs 4,500 cf
Total Dunoff Area - 02	267 of Dup off / observed = 47 707 of Automatic Dup off Double = 6.6

Total Runoff Area = 82,267 sf Runoff Volume = 47,727 cf Average Runoff Depth = 6.96" 10.91% Pervious = 8,979 sf 89.09% Impervious = 73,289 sf Reign Car Wash

HydroCAD Analysis: Proposed Conditions

	Reign Car Wash, Wareham, MA
73170.00 Drainage PR	Type III 24-nr 2-Year Rainfall=3.44"
Prepared by VHB	
TIYUTOCAD® 10.10-5a S/IT 01056 @ 2020 TIYUTOCAD Software Solutions	rage i
Time span=0.00-72.00 hrs, dt=0.05 hrs Runoff by SCS TR-20 method, UH=SCS, Spl Reach routing by Stor-Ind+Trans method - Pond ro	, 1441 points it Pervious/Imperv. outing by Stor-Ind method
Subcatchment1A: Subcat1A Runoff Area=7,580 sf Flow Length=28' Slope=0.0900 '/' Tc=6.0 r	68.02% Impervious Runoff Depth=2.18" min CN=39/98 Runoff=0.39 cfs 1,379 cf
Subcatchment1B: Subcat 1BRunoff Area=5,889 sfFlow Length=50'Slope=0.0200 '/'Tc=6.0	56.95% Impervious Runoff Depth=1.83" 0 min CN=39/98 Runoff=0.25 cfs 897 cf
Subcatchment1C: Subcat1CRunoff Area=11,489 sfFlow Length=100'Tc=6.0	61.89% Impervious Runoff Depth=1.99" min CN=39/98 Runoff=0.53 cfs 1,902 cf
Subcatchment1D: Subcat1D Runoff Area=422 sf Flow Length=35' Slope=0.0100 '/' Tc=6	100.00% Impervious Runoff Depth=3.21" 5.0 min CN=0/98 Runoff=0.03 cfs 113 cf
Subcatchment1E: Subcat1E Runoff Area=1,806 sf Flow Length=45' Slope=0.0300 '/' Tc=6.0	88.69% Impervious Runoff Depth=2.84" 0 min CN=39/98 Runoff=0.12 cfs 428 cf
Subcatchment2A: Subcat2ARunoff Area=6,040 sfFlow Length=66'Tc=6.040 sf	41.92% Impervious Runoff Depth=1.35" 0 min CN=39/98 Runoff=0.19 cfs 678 cf
Subcatchment2B: Subcat 2BRunoff Area=13,337 sfFlow Length=107'Tc=6.0	45.50% Impervious Runoff Depth=1.46" min CN=39/98 Runoff=0.46 cfs 1,625 cf
Subcatchment2C: Subcat 2C Runoff Area=6,831 sf Tc=6.0	100.00% Impervious Runoff Depth=3.21") min CN=0/98 Runoff=0.51 cfs 1,825 cf
Subcatchment2D: Subcat 2DRunoff Area=306 sfFlow Length=36'Tc=	100.00% Impervious Runoff Depth=3.21" =6.0 min CN=0/98 Runoff=0.02 cfs 82 cf
Subcatchment3A: Subcat3ARunoff Area=16,792 sfFlow Length=135'Tc=7.8 r	70.28% Impervious Runoff Depth=2.26" min CN=39/98 Runoff=0.84 cfs 3,156 cf
Subcatchment3B: Subcat3BRunoff Area=6,418 sfFlow Length=85'Tc=6.0	73.30% Impervious Runoff Depth=2.35" min CN=39/98 Runoff=0.35 cfs 1,258 cf
Subcatchment4A: Subcat 4A Runoff Area=2,096 s Tc=	of 0.00% Impervious Runoff Depth=0.01" =6.0 min CN=39/98 Runoff=0.00 cfs 1 cf
Subcatchment4B: Subcat 4B Runoff Area=3,262 s Tc=	of 0.03% Impervious Runoff Depth=0.01" =6.0 min CN=39/98 Runoff=0.00 cfs 2 cf
Reach RD1: Roof Drain Avg. Flow Depth=0.08' 6.0" Round Pipe n=0.012 L=45.0' S=0.0111 '/' C	Max Vel=1.69 fps Inflow=0.03 cfs 113 cf apacity=0.64 cfs Outflow=0.03 cfs 113 cf
Reach RD2: Roof Drain Avg. Flow Depth=0.35' M 8.0" Round Pipe n=0.012 L=59.0' S=0.0051 '/' Cap	Max Vel=2.74 fps Inflow=0.51 cfs 1,825 cf bacity=0.93 cfs Outflow=0.51 cfs 1,825 cf
Reach TD1: Trench Drain Avg. Flow Depth=0.05 4.0" Round Pipe n=0.010 L=17.0' S=0.0294 '/' 0	' Max Vel=2.59 fps Inflow=0.02 cfs 82 cf Capacity=0.42 cfs Outflow=0.02 cfs 82 cf

Pond DEP1: Depression 1

· ····· · · · - • p· · · · · · ·	Outflow=0.00 cfs 1 cf
Pond DEP2: Depression 2	Peak Elev=10.50' Storage=0 cf Inflow=0.00 cfs 2 cf Outflow=0.00 cfs 2 cf
Pond INF1: Infiltration Basin 1 Discarded=0.21 cfs	Peak Elev=9.71' Storage=643 cf Inflow=0.81 cfs 2,820 cf 2,820 cf Primary=0.00 cfs 0 cf Outflow=0.21 cfs 2,820 cf
Pond INF2: Infiltration Basin 2 Discarded=0.30 cfs	Peak Elev=9.13' Storage=209 cf Inflow=0.64 cfs 2,224 cf 2,224 cf Primary=0.00 cfs 0 cf Outflow=0.30 cfs 2,224 cf
Pond INF3: Infiltration Basin 3 Discarded=0.45 cfs	Peak Elev=9.29' Storage=618 cf Inflow=1.19 cfs 4,338 cf 4,338 cf Primary=0.00 cfs 0 cf Outflow=0.45 cfs 4,338 cf
Pond SFB1A: Sediment Forebay 1A	Peak Elev=9.30' Storage=34 cf Inflow=0.25 cfs 897 cf Outflow=0.25 cfs 869 cf
Pond SFB1B: Sediment Forebay 1B	Peak Elev=9.77' Storage=73 cf Inflow=0.53 cfs 1,902 cf Outflow=0.53 cfs 1,838 cf
Pond SFB2A: Sediment Forebay 2A	Peak Elev=9.30' Storage=28 cf Inflow=0.19 cfs 678 cf Outflow=0.19 cfs 655 cf
Pond SFB2B: Sediment Forebay 2B	Peak Elev=9.53' Storage=72 cf Inflow=0.46 cfs 1,625 cf Outflow=0.45 cfs 1,569 cf
Pond SFB3A: Sediment Forebay 3A	Peak Elev=9.87' Storage=76 cf Inflow=0.84 cfs 3,156 cf Outflow=0.84 cfs 3,101 cf
Pond SFB3B: Sediment Forebay 3B	Peak Elev=9.62' Storage=25 cf Inflow=0.35 cfs 1,258 cf Outflow=0.35 cfs 1,237 cf
Link DP1: Cranberry Highway	Inflow=0.51 cfs 1,807 cf Primary=0.51 cfs 1,807 cf
Link DP2: Existing Catch Basin - Onsite	Inflow=0.53 cfs 1,907 cf Primary=0.53 cfs 1,907 cf
Link DP3: Existing Catch Basin - Drive Aisle Sou	uth Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link DP4: Site Infiltration	Primary=0.00 cfs_0 cf

Total Runoff Area = 82,266 sf Runoff Volume = 13,347 cf Average Runoff Depth = 1.95" 39.36% Pervious = 32,379 sf 60.64% Impervious = 49,887 sf

Summary for Subcatchment 1A: Subcat 1A

Runoff = 0.39 cfs @ 12.09 hrs, Volume= 1,379 cf, Depth= 2.18"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description				
	5,156	98	Paved park	ing, HSG A			
	2,424	39	>75% Gras	s cover, Go	ood, HSG A		
	7,580	79	Weighted A	verage			
	2,424	39	31.98% Pervious Area				
	5,156	98	68.02% Impervious Area				
Tc	Length	Slope	e Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)			
1.9	28	0.090	0.25		Sheet Flow, Grass		
					Grass: Short n= 0.150 P2= 3.44"		
41					Direct Entry Min 6 mins		
<u> </u>							

Summary for Subcatchment 1B: Subcat 1B

Runoff = 0.25 cfs @ 12.09 hrs, Volume= 897 cf, Depth= 1.83"

A	rea (sf)	CN	Description				
	3,354	98	Paved park	ing, HSG A	Ν		
	2,535	39	>75% Gras	s cover, Go	bod, HSG A		
	0	98	Roofs, HSC	βA			
	5,889	73	Weighted A	verage			
	2,535	39	43.05% Pervious Area				
	3,354	98	56.95% Impervious Area				
Tc	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)			
0.7	50	0.020	0 1.24		Sheet Flow, Pavement		
					Smooth surfaces n= 0.011 P2= 3.44"		
5.3					Direct Entry, Min. 6 mins		
6.0	50	Total					

Summary for Subcatchment 1C: Subcat 1C

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 1,902 cf, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description			
	4,378	39	>75% Gras	s cover, Go	bod, HSG A	
	7,111	98	Paved park	ing, HSG A	N	
	11,489	76	Weighted A	verage		
	4,378	39	38.11% Pe	rvious Area		
	7,111	98 61.89% Impervious Area				
Тс	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
0.9	50	0.0100	0.94		Sheet Flow, Pavement	
					Smooth surfaces n= 0.011 P2= 3.44"	
0.3	50	0.0190) 2.80		Shallow Concentrated Flow, Pavement	
					Paved Kv= 20.3 fps	
4.8					Direct Entry, Min. 6 mins	
6.0	100	Total				

Summary for Subcatchment 1D: Subcat 1D

Runoff = 0.03 cfs @ 12.09 hrs, Volume= 113 cf, Depth= 3.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description		
	422	98	Roofs, HSG	βA	
	422	98	100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	e Velocity) (ft/sec)	Capacity (cfs)	Description
0.7	35	0.0100	0.88		Sheet Flow, Roof
					Smooth surfaces n= 0.011 P2= 3.44"
5.3					Direct Entry, Min. 6 mins
6.0	35	Total			

Summary for Subcatchment 1E: Subcat 1E

Runoff = 0.12 cfs @ 12.09 hrs, Volume= 428 cf, Depth= 2.84"

Reign Car Wash, Wareham, MA *Type III 24-hr 2-Year Rainfall=3.44"* Printed 6/23/2021 LLC Page 5

73170.00 Drainage PR

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description				
	204	39	>75% Gras	s cover, Go	ood, HSG A		
	1,601	98	Paved park	ing, HSG A			
	1,806	91	Weighted A	verage			
	204	39	11.31% Pervious Area				
	1,601	98	88.69% Imp	pervious Ar	ea		
Tc (min)	Length (feet)	Slop (ft/fl	e Velocity t) (ft/sec)	Capacity (cfs)	Description		
0.5	45	0.030	0 1.43		Sheet Flow, Pavement		
					Smooth surfaces n= 0.011 P2	2= 3.44"	
5.5					Direct Entry, Pavement		
6.0	45	Total					

Summary for Subcatchment 2A: Subcat 2A

Runoff	=	0.19 cfs @	12.09 hrs, Volume=	678 cf, Depth= 1.35"
--------	---	------------	--------------------	----------------------

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description						
	3,508	39 >75% Grass cover, Good, HSG A							
	2,532	32 98 Paved parking, HSG A							
	6,040	64	Weighted A	verage					
	3,508	39	58.08% Per	vious Area					
	2,532	98	41.92% Imp	pervious Ar	ea				
Tc	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
5.3	34	0.010	0 0.11		Sheet Flow, Grass				
					Grass: Short n= 0.150 P2= 3.44"				
0.3	16	0.019	0 0.97		Sheet Flow, Pavement				
					Smooth surfaces n= 0.011 P2= 3.44"				
0.1	16	0.030	0 3.52		Shallow Concentrated Flow, Pavement				
					Paved Kv= 20.3 fps				
0.3					Direct Entry, Pavement				
6.0	66	Total							

Summary for Subcatchment 2B: Subcat 2B

Runoff = 0.46 cfs @ 12.09 hrs, Volume= 1,625 cf, Depth= 1.46"

Reign Car Wash, Wareham, MA Type III 24-hr 2-Year Rainfall=3.44" Printed 6/23/2021 HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Page 6

73170.00 Drainage PR

Prepared by VHB

Area (sf) CN Description 7,268 >75% Grass cover, Good, HSG A 39 6,069 98 Paved parking, HSG A 13,337 66 Weighted Average 54.50% Pervious Area 7,268 39 6,069 98 45.50% Impervious Area Velocity Capacity Tc Length Slope Description (feet) (ft/ft) (ft/sec) (cfs) (min) 0.9 50 0.0110 0.98 Sheet Flow, Pavement Smooth surfaces n= 0.011 P2= 3.44" 0.5 2.03 **Shallow Concentrated Flow, Pavement** 57 0.0100 Paved Kv= 20.3 fps 4.6 Direct Entry, Min. 6 mins 107 Total 6.0 Summary for Subcatchment 2C: Subcat 2C Runoff 0.51 cfs @ 12.09 hrs, Volume= 1,825 cf, Depth= 3.21" =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description					
	6,831	98	Roofs, HSC	ΞA				
	6,831	5,831 98 100.00% Impervious Area						
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f) (ft/sec)	(cfs)				
6.0					Direct Entry, Min. 6 mins			
	Summary for Subactabrant 2D, Subact 2D							

Summary for Subcatchment 2D: Subcat 2D

Runoff 0.02 cfs @ 12.09 hrs, Volume= 82 cf, Depth= 3.21" =

Area (sf)	CN	Description
306	98	Paved parking, HSG A
306	98	100.00% Impervious Area

73170.(Prepare)0 Drair d by VH	n age PF B	R		Reign Car Wash, Wareham, M Type III 24-hr 2-Year Rainfall=3.4 Printed 6/23/20		
HydroCA	D® 10.10-	-5a_s/n 01	038 © 202	20 HydroCAI	D Software Solutions LLC Page 7		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
0.4	21	0.0100	0.79		Sheet Flow, Pavement Smooth surfaces n= 0.011 P2= 3.44"		
0.0	15	0.0330	5.51	0.60	Pipe Channel, ACO KlassikDrain K100 4.0" x 5.0" Ellipse Area= 0.1 sf Perim= 1.2' r= 0.09' n= 0.010 PVC, smooth interior		
5.6					Direct Entry, Min. 6 mins		

6.0 36 Total

Summary for Subcatchment 3A: Subcat 3A

Runoff = 0.84 cfs @ 12.11 hrs, Volume= 3,156 cf, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN I	Description		
	11,802	98	N		
	4,990	39 :	>75% Ġras	s cover, Go	bod, HSG A
	16,792	80	Weighted A	verage	
	4,990	39 2	29.72% Pei	vious Area	
	11,802	98	70.28% Imp	pervious Ar	ea
Tc (min)	Length	Slope	Velocity	Capacity	Description
<u> </u>	40	0.0130	0 12	(013)	Shoot Flow, Grace
5.4	40	0.0150	0.12		Grass: Short $n=0.150$ P2= 3.44"
0.2	10	0.0110	0.71		Smooth surfaces n= 0.011 P2= 3.44"
2.2	85	0.0010	0.64		Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps
7.8	135	Total			

Summary for Subcatchment 3B: Subcat 3B

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 1,258 cf, Depth= 2.35"

Area (sf)	CN	Description
4,704	98	Paved parking, HSG A
1,714	39	>75% Grass cover, Good, HSG A
6,418	82	Weighted Average
1,714	39	26.70% Pervious Area
4,704	98	73.30% Impervious Area

	Rei	ign Ca	r Wash, War	eham, MA
73170.00 Drainage PR	Type III 2	24-hr	2-Year Rail	nfall=3.44"
Prepared by VHB			Printed	6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions	LLC			Page 8

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.7	50	0.0200	1.24		Sheet Flow, Pavement
					Smooth surfaces n= 0.011 P2= 3.44"
0.4	35	0.0060	1.57		Shallow Concentrated Flow, Pavement
					Paved Kv= 20.3 fps
 4.9					Direct Entry, Min. 6 mins
6.0	85	Total			

Summary for Subcatchment 4A: Subcat 4A

Runoff = 0.00 cfs @ 23.02 hrs, Volume= 1 cf, Depth= 0.01"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.44"

A	rea (sf)	CN	Description					
	0	98	Paved park	ing, HSG A	N			
	2,095	39	>75% Gras	s cover, Go	bod, HSG A			
	2,096	39	Weighted A	verage				
	2,095	39	39 100.00% Pervious Area					
	0	98	98 0.00% Impervious Area					
Та	Longth	Clar	va Valacity	Consoitu	Description			
	Lengin	Siop		Capacity	Description			
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cts)				
6.0					Direct Entry, Min. 6 mins			

Summary for Subcatchment 4B: Subcat 4B

Runoff = 0.00 cfs @ 23.01 hrs, Volume= 2 cf, Depth= 0.01"

A	rea (sf)	CN	Description					
	3,261	39	>75% Gras	s cover, Go	bod, HSG A			
	1	98	Paved park	Paved parking, HSG A				
	3,262	39	Weighted A	verage				
	3,261	39	39 99.97% Pervious Area					
	1	98	0.03% Impe	ervious Area	а			
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, Min. 6 mins			

Summary for Reach RD1: Roof Drain

 Inflow Area =
 422 sf,100.00% Impervious, Inflow Depth =
 3.21" for 2-Year event

 Inflow =
 0.03 cfs @
 12.09 hrs, Volume=
 113 cf

 Outflow =
 0.03 cfs @
 12.10 hrs, Volume=
 113 cf, Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 1.69 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 1.3 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.08', Surface Width= 0.36' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.64 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 45.0' Slope= 0.0111 '/' Inlet Invert= 9.50', Outlet Invert= 9.00'

Summary for Reach RD2: Roof Drain

 Inflow Area =
 6,831 sf,100.00% Impervious, Inflow Depth =
 3.21" for 2-Year event

 Inflow =
 0.51 cfs @
 12.09 hrs, Volume=
 1,825 cf

 Outflow =
 0.51 cfs @
 12.10 hrs, Volume=
 1,825 cf, Atten=

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 2.74 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.93 fps, Avg. Travel Time= 1.1 min

Peak Storage= 11 cf @ 12.09 hrs Average Depth at Peak Storage= 0.35', Surface Width= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 0.93 cfs

8.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 59.0' Slope= 0.0051 '/' Inlet Invert= 8.60', Outlet Invert= 8.30'

Summary for Reach TD1: Trench Drain

Inflow A	rea =	306 sf	,100.00% Impervious,	Inflow Depth = 3.21"	for 2-Year event
Inflow	=	0.02 cfs @	12.09 hrs, Volume=	82 cf	
Outflow	=	0.02 cfs @	12.09 hrs, Volume=	82 cf, Atte	n= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 2.59 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.87 fps, Avg. Travel Time= 0.3 min

Peak Storage= 0 cf @ 12.09 hrs Average Depth at Peak Storage= 0.05', Surface Width= 0.24' Bank-Full Depth= 0.33' Flow Area= 0.1 sf, Capacity= 0.42 cfs

4.0" Round Pipe n= 0.010 PVC, smooth interior Length= 17.0' Slope= 0.0294 '/' Inlet Invert= 9.00', Outlet Invert= 8.50'

Summary for Pond DEP1: Depression 1

Inflow Area	=	2,096 sf,	0.00% In	npervious,	Inflow Depth =	0.01"	for 2-Yea	ar event
Inflow :	=	0.00 cfs @	23.02 hrs,	Volume=	1 c	f		
Outflow :	=	0.00 cfs @	23.04 hrs,	Volume=	1 c	f, Atten	= 0%, Lag	g= 0.7 min
Discarded :	=	0.00 cfs @	23.04 hrs,	Volume=	1 c	f		

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.50' @ 23.04 hrs Surf.Area= 171 sf Storage= 0 cf

Plug-Flow detention time= 0.4 min calculated for 1 cf (100% of inflow) Center-of-Mass det. time= 0.4 min (1,272.8 - 1,272.4)

Volume	Invert	Avail.Storage	Storage Description
#1	9.50'	108 cf	Custom Stage Data (Irregular)Listed below (Recalc)

, 101A 3.44" 2021								
Inflow Area = $3,262 \text{ sf}$, 0.03% Impervious, Inflow Depth = $0.01"$ for 2-Year eventInflow = 0.00 cfs @ 23.01 hrs , Volume= 2 cf Outflow = 0.00 cfs @ 23.02 hrs , Volume= 2 cf , Atten= 0%, Lag= 0.5 minDiscarded = 0.00 cfs @ 23.02 hrs , Volume= 2 cf								

Discarded OutFlow Max=0.03 cfs @ 23.02 hrs HW=10.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Summary for Pond INF1: Infiltration Basin 1

Inflow Area	a =	17,799 sf,	61.16% Imperv	vious, Inflow	Depth = 1	.90" fc	or 2-Ye	ear ever	ıt
Inflow	=	0.81 cfs @	12.09 hrs, Volu	ume=	2,820 cf				
Outflow	=	0.21 cfs @	12.45 hrs, Volu	ume=	2,820 cf,	Atten=	74%,	Lag= 21	.9 min
Discarded	=	0.21 cfs @	12.45 hrs, Volu	ume=	2,820 cf				
Primary	=	0.00 cfs @	0.00 hrs, Volu	ıme=	0 cf				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.71' @ 12.45 hrs Surf.Area= 1,106 sf Storage= 643 cf

Plug-Flow detention time= 18.0 min calculated for 2,820 cf (100% of inflow)

Center-of-Mass det. time= 18.0 min (790.1 - 772.1)

Volume	Inver	t Avai	I.Storage	Storage Descripti	ion		
#1	9.00	,	2,934 cf	Custom Stage D	oata (Irregular)List	ted below (Recalc)
Elevatio	on S	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
9.0	00	711	234.6	0	0	711	
10.0	00	1,289	248.5	986	986	1,297	
11.0	00	2,693	318.7	1,948	2,934	4,479	
Device	Routing	In	vert Outle	et Devices			
#1	Discarded	9	.00' 8.27	0 in/hr Exfiltration	n over Surface a	rea	action(s)
#2	Primary	10	.00' 6.0'	long Sharp-Crest	red Rectangular \	Weir 2 End Contra	

Discarded OutFlow Max=0.21 cfs @ 12.45 hrs HW=9.71' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=9.00' (Free Discharge) ←2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond INF2: Infiltration Basin 2

Inflow Area	ı =	19,377 sf,	44.39% Impervious,	Inflow Depth = 1.3	8" for 2-Year event
Inflow	=	0.64 cfs @	12.09 hrs, Volume=	2,224 cf	
Outflow	=	0.30 cfs @	12.26 hrs, Volume=	2,224 cf, A	tten= 53%, Lag= 10.3 min
Discarded	=	0.30 cfs @	12.26 hrs, Volume=	2,224 cf	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 9.13' @ 12.26 hrs Surf.Area= 1,581 sf Storage= 209 cf

Plug-Flow detention time= 3.4 min calculated for 2,223 cf (100% of inflow) Center-of-Mass det. time= 3.4 min (777.8 - 774.4)

Volume	١n	vert Ava	il.Storage	Storage Description	on		
#1	9.	00'	3,232 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
9.0 10.0 10.5	00 00 50	1,529 1,936 4,224	171.0 182.2 348.1	0 1,729 1,503	0 1,729 3,232	1,529 1,890 8,892	
Device	Routing	Ir	vert Outl	et Devices			
#1 #2	Discard Primary	ed S	9.00' 8.27 9.50' 8.0'' L= 3 Inlet n= 0	0 in/hr Exfiltration Round Culvert 0.0' RCP, mitered / Outlet Invert= 9.5 0.013 Cast iron, co	to conform to fill, 50' / 8.20' S= 0.0 ated, Flow Area=	∙ea Ke= 0.700 433 '/' Cc= 0.900 0.35 sf	

Discarded OutFlow Max=0.30 cfs @ 12.26 hrs HW=9.13' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.30 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=9.00' (Free Discharge) ←2=Culvert (Controls 0.00 cfs)

Summary for Pond INF3: Infiltration Basin 3

Inflow Area	a =	23,210 sf,	71.12% Impe	ervious, I	nflow Depth =	2.24"	for 2-Y	ear ever	nt
Inflow	=	1.19 cfs @	12.11 hrs, Vo	lume=	4,338 cf	-			
Outflow	=	0.45 cfs @	12.37 hrs, Vo	lume=	4,338 cf	, Atten	= 62%,	Lag= 16	6.0 min
Discarded	=	0.45 cfs @	12.37 hrs, Vo	lume=	4,338 cf	-		-	
Primary	=	0.00 cfs @	0.00 hrs, Vo	lume=	0 cf				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.29' @ 12.37 hrs Surf.Area= 2,328 sf Storage= 618 cf

Plug-Flow detention time= 6.8 min calculated for 4,335 cf (100% of inflow) Center-of-Mass det. time= 6.8 min (773.4 - 766.7)

Volume	Invert	Avail.S	torage	Storage Description	on		
#1	9.00'	4,	359 cf	Custom Stage Da	ata (Irregular)List	ed below (Recalc)	
Elevatic (fee	on Su t)	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
9.0 10.0 10.5	0 00 50	1,996 3,267 3,751	619.6 641.8 531.6	0 2,606 1,753	0 2,606 4,359	1,996 4,312 14,606	
Device	Routing	Inver	rt Outle	et Devices			
#1 #2	Discarded Primary	9.00 9.32	0' 8.27 2' 6.0'' Inlet n= 0	0 in/hr Exfiltration Round FES L= 5 / Outlet Invert= 9.3 .012 Corrugated P	over Surface ar 2.0' RCP, mitere 2' / 8.70' S= 0.0' P, smooth interior	ea ed to conform to fill, 1 119 '/' Cc= 0.900 r, Flow Area= 0.20 s	Ke= 0.700 f

Discarded OutFlow Max=0.45 cfs @ 12.37 hrs HW=9.29' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.45 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=9.00' (Free Discharge) ←2=FES (Controls 0.00 cfs)

Summary for Pond SFB1A: Sediment Forebay 1A

Inflow Area	a =	5,889 sf,	56.95% Impervious,	Inflow Depth = 1.83	for 2-Year event
Inflow	=	0.25 cfs @	12.09 hrs, Volume=	897 cf	
Outflow	=	0.25 cfs @	12.09 hrs, Volume=	869 cf, Att	en= 0%, Lag= 0.3 min
Primary	=	0.25 cfs @	12.09 hrs, Volume=	869 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 9.30' @ 12.09 hrs Surf.Area= 131 sf Storage= 34 cf

Plug-Flow detention time= 35.8 min calculated for 869 cf (97% of inflow) Center-of-Mass det. time= 16.6 min (772.2 - 755.7)

Volume	Inv	ert Avai	il.Storage	Storage Description	on		
#1	9.	00'	156 cf	Custom Stage Da	ata (Irregular) Liste	d below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
9.0 10.0	00 00	100 220	50.0 59.9	0 156	0 156	100 203	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	ç	9.25' 8.0'	long Sharp-Creste	ed Rectangular W	eir 2 End Contraction	(s)

Primary OutFlow Max=0.25 cfs @ 12.09 hrs HW=9.29' (Free Discharge) ←1=Sharp-Crested Rectangular Weir (Weir Controls 0.25 cfs @ 0.69 fps)

Summary for Pond SFB1B: Sediment Forebay 1B

Inflow Are	a =	11,489 sf,	61.89% Impervious,	Inflow Depth = 1	.99" for 2-	Year event
Inflow	=	0.53 cfs @	12.09 hrs, Volume=	1,902 cf		
Outflow	=	0.53 cfs @	12.09 hrs, Volume=	1,838 cf,	Atten= 1%,	Lag= 0.1 min
Primary	=	0.53 cfs @	12.09 hrs, Volume=	1,838 cf		-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 9.77' @ 12.09 hrs Surf.Area= 130 sf Storage= 73 cf

Plug-Flow detention time= 38.1 min calculated for 1,838 cf (97% of inflow) Center-of-Mass det. time= 17.5 min (773.0 - 755.5)

Volume	Inv	ert Avai	I.Storage	Storage Descript	ion		
#1	9.0	00'	105 cf	Custom Stage	Data (Irregular)Lis	ted below (Recald	;)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
9.0 10.0)0)0	64 153	34.1 47.7	0 105	0 105	64 162	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	9	.70' 8.0'	long Sharp-Cres	ted Rectangular	Weir 2 End Contra	action(s)

Summary for Pond SFB2A: Sediment Forebay 2A

Inflow Are	ea =	6,040 sf, 41.92% Imperviou	us, Inflow Depth = 1.35" for 2-Ye	ear event
Inflow	=	0.19 cfs @ 12.09 hrs, Volume	;= 678 cf	
Outflow	=	0.19 cfs @ 12.09 hrs, Volume	e 655 cf, Atten= 0%, La	ag= 0.4 min
Primary	=	0.19 cfs @ 12.09 hrs, Volume	;= 655 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.30' @ 12.09 hrs Surf.Area= 112 sf Storage= 28 cf

Plug-Flow detention time= 38.2 min calculated for 655 cf (97% of inflow) Center-of-Mass det. time= 17.7 min (773.9 - 756.3)

Volume	Inv	ert Avai	I.Storage	Storage Description	on		
#1	9.	00'	144 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)	
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
9.0 10.0)0)0	77 224	37.1 73.1	0 144	0 144	77 397	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	9	.25' 6.0'	long Sharp-Crest	ed Rectangular \	Neir 2 End Contrac	tion(s)

Primary OutFlow Max=0.19 cfs @ 12.09 hrs HW=9.29' (Free Discharge) —1=Sharp-Crested Rectangular Weir (Weir Controls 0.19 cfs @ 0.69 fps)

Summary for Pond SFB2B: Sediment Forebay 2B

Inflow Area	a =	13,337 sf,	45.50% Impervious,	Inflow Depth = 1.46 "	for 2-Year event
Inflow	=	0.46 cfs @	12.09 hrs, Volume=	1,625 cf	
Outflow	=	0.45 cfs @	12.09 hrs, Volume=	1,569 cf, Atte	n= 2%, Lag= 0.3 min
Primary	=	0.45 cfs @	12.09 hrs, Volume=	1,569 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 9.53' @ 12.09 hrs Surf.Area= 197 sf Storage= 72 cf

Plug-Flow detention time= 39.6 min calculated for 1,568 cf (96% of inflow) Center-of-Mass det. time= 18.5 min (774.6 - 756.1)

Volume	Invert	Avail.	Storage	Storage Description	า	
#1	9.00'		371 cf	Custom Stage Dat	t a (Irregular) Liste	ed below (Recalc)
Elevation (feet)	Surf./	Area sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
9.00		82	34.6	0	0	82
10.00		339	88.4	196	196	612
10.10	3	,786	373.0	175	371	11,062

73170.00 Drainage PR	Reign Car Wash, Wareham, MA Type III 24-hr 2-Year Rainfall=3.44
Prepared by VHB	Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solution	ns LLC Page 16

Device	Routing	Invert	Outlet Devices
#1	Primary	9.45'	6.0' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.44 cfs @ 12.09 hrs HW=9.53' (Free Discharge) **1=Sharp-Crested Rectangular Weir** (Weir Controls 0.44 cfs @ 0.92 fps)

Summary for Pond SFB3A: Sediment Forebay 3A

Inflow Are	ea =	16,792 sf, 70.28% Impervious,	Inflow Depth = 2.26" for 2-Year event
Inflow	=	0.84 cfs @ 12.11 hrs, Volume=	3,156 cf
Outflow	=	0.84 cfs @ 12.11 hrs, Volume=	3,101 cf, Atten= 0%, Lag= 0.3 min
Primary	=	0.84 cfs @ 12.11 hrs, Volume=	3,101 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.87' @ 12.11 hrs Surf.Area= 193 sf Storage= 76 cf

Plug-Flow detention time= 21.6 min calculated for 3,099 cf (98% of inflow) Center-of-Mass det. time= 10.4 min (767.4 - 757.0)

Volume	Inve	ert Ava	il.Storage	Storage Descripti	on		
#1	9.0)0'	103 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)	
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
9.00 10.00		15 236	74.3 96.9	0 103	0 103	15 335	
Device F	Routing	In	vert Outle	et Devices			

9.75' 6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) #1 Primary

Primary OutFlow Max=0.82 cfs @ 12.11 hrs HW=9.87' (Free Discharge) ←1=Sharp-Crested Rectangular Weir (Weir Controls 0.82 cfs @ 1.14 fps)

Summary for Pond SFB3B: Sediment Forebay 3B

Inflow Area	a =	6,418 sf,	73.30% Impervious,	Inflow Depth = 2.35"	for 2-Year event
Inflow	=	0.35 cfs @	12.09 hrs, Volume=	1,258 cf	
Outflow	=	0.35 cfs @	12.09 hrs, Volume=	1,237 cf, Atte	n= 0%, Lag= 0.2 min
Primary	=	0.35 cfs @	12.09 hrs, Volume=	1,237 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.62' @ 12.09 hrs Surf.Area= 63 sf Storage= 25 cf

Plug-Flow detention time= 20.3 min calculated for 1,236 cf (98% of inflow) Center-of-Mass det. time= 9.6 min (764.9 - 755.3)

Volume	Invert	Avail.Storage	Storage Description
#1	9.00'	55 cf	Custom Stage Data (Irregular)Listed below (Recalc)

73170.00 Dr Prepared by \	a inage PR ∕HB			Reio Type III 2	in Car Wash, Wa <i>4-hr 2-Year Ra</i> Printed	reham, MA <i>infall=3.44"</i> 6/23/2021
HydroCAD® 10.	.10-5a_s/n 01038	3 © 2020 Hy	droCAD Software S	olutions LLC		Page 17
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft <u>)</u>	
9.00	22	19.9	0	0	22	
10.00	98	39.1	55	55	117	

Device	Routing	Invert	Outlet Devices
#1	Primary	9.55'	6.0' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.34 cfs @ 12.09 hrs HW=9.62' (Free Discharge) ☐ 1=Sharp-Crested Rectangular Weir (Weir Controls 0.34 cfs @ 0.85 fps)

Summary for Link DP1: Cranberry Highway

Inflow Area	a =	27,185 sf,	64.90% Impervious,	Inflow Depth = 0.80"	for 2-Year event
Inflow	=	0.51 cfs @	12.09 hrs, Volume=	1,807 cf	
Primary	=	0.51 cfs @	12.09 hrs, Volume=	1,807 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP2: Existing Catch Basin - Onsite

Inflow A	rea =	26,513 sf,	59.36% Impervious,	Inflow Depth = 0.86'	for 2-Year event
Inflow	=	0.53 cfs @	12.10 hrs, Volume=	1,907 cf	
Primary	=	0.53 cfs @	12.10 hrs, Volume=	1,907 cf, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP3: Existing Catch Basin - Drive Aisle South

Inflow /	Area	a =		23,210 sf,	71.12% Im	pervious,	Inflow Depth =	0.0	00" for 2	2-Year event	t
Inflow		=	(0.00 cfs @	0.00 hrs, \	volume=	. 0 0	of			
Primary	у	=	(0.00 cfs @	0.00 hrs, \	/olume=	0 0	of, A	Atten= 0%	, Lag= 0.0 n	nin

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP4: Site Infiltration

Inflow Area =	5,357 sf,	0.02% Impervious,	Inflow Depth = 0.00"	for 2-Year event
Primary =	0.00 cfs @	0.00 hrs, Volume=	0 cf	

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

	Reign Car Wash, Wareham, MA
73170.00 Drainage PK	Type III 24-nr 10-Year Rainfall=5.04
HydroCAD® 10 10-5a s/p 01038 @ 2020 HydroCAD Software Solution	PIIIIed 0/23/2021
Time span=0.00-72.00 hrs, dt=0.05 hr Runoff by SCS TR-20 method, UH=SCS, Sp Reach routing by Stor-Ind+Trans method - Pond	s, 1441 points blit Pervious/Imperv. routing by Stor-Ind method
Subcatchment1A: Subcat 1A Runoff Area=7,580 s Flow Length=28' Slope=0.0900 '/' Tc=6.0	f 68.02% Impervious Runoff Depth=3.33" min CN=39/98 Runoff=0.57 cfs 2,106 cf
Subcatchment1B: Subcat1B Runoff Area=5,889 s Flow Length=50' Slope=0.0200 '/' Tc=6.0	f 56.95% Impervious Runoff Depth=2.82" min CN=39/98 Runoff=0.37 cfs 1,386 cf
Subcatchment1C: Subcat1CRunoff Area=11,489 sFlow Length=100'Tc=6.0	f 61.89% Impervious Runoff Depth=3.05" min CN=39/98 Runoff=0.79 cfs 2,922 cf
Subcatchment1D: Subcat 1D Runoff Area=422 sf Flow Length=35' Slope=0.0100 '/' Tc=	100.00% Impervious Runoff Depth=4.80" 6.0 min CN=0/98 Runoff=0.05 cfs 169 cf
Subcatchment1E: Subcat1E Runoff Area=1,806 s Flow Length=45' Slope=0.0300 '/' Tc=6	f 88.69% Impervious Runoff Depth=4.28" 0.0 min CN=39/98 Runoff=0.18 cfs 645 cf
Subcatchment2A: Subcat 2ARunoff Area=6,040 sFlow Length=66'Tc=6.0	f 41.92% Impervious Runoff Depth=2.13" min CN=39/98 Runoff=0.28 cfs 1,074 cf
Subcatchment2B: Subcat 2BRunoff Area=13,337 sFlow Length=107'Tc=6.0	f 45.50% Impervious Runoff Depth=2.30" min CN=39/98 Runoff=0.67 cfs 2,555 cf
Subcatchment2C: Subcat 2C Runoff Area=6,831 sf Tc=6.	100.00% Impervious Runoff Depth=4.80" .0 min CN=0/98 Runoff=0.76 cfs 2,734 cf
Subcatchment2D: Subcat 2DRunoff Area=306 sfFlow Length=36'Tc=	100.00% Impervious Runoff Depth=4.80" 6.0 min CN=0/98 Runoff=0.03 cfs 122 cf
Subcatchment3A: Subcat3ARunoff Area=16,792 sFlow Length=135'Tc=7.8	f 70.28% Impervious Runoff Depth=3.44" min CN=39/98 Runoff=1.24 cfs 4,810 cf
Subcatchment3B: Subcat3BRunoff Area=6,418 sFlow Length=85'Tc=6.0	f 73.30% Impervious Runoff Depth=3.58" min CN=39/98 Runoff=0.52 cfs 1,913 cf
Subcatchment4A: Subcat 4A Runoff Area=2,096 Tc=	sf 0.00% Impervious Runoff Depth=0.21" 6.0 min CN=39/98 Runoff=0.00 cfs 36 cf
Subcatchment4B: Subcat 4B Runoff Area=3,262 Tc=	sf 0.03% Impervious Runoff Depth=0.21" 6.0 min CN=39/98 Runoff=0.00 cfs 57 cf
Reach RD1: Roof Drain Avg. Flow Depth=0.09' 6.0" Round Pipe n=0.012 L=45.0' S=0.0111 '/' 0	Max Vel=1.90 fps Inflow=0.05 cfs 169 cf Capacity=0.64 cfs Outflow=0.05 cfs 169 cf
Reach RD2: Roof Drain Avg. Flow Depth=0.46' 8.0" Round Pipe n=0.012 L=59.0' S=0.0051 '/' Category	Max Vel=2.98 fps Inflow=0.76 cfs 2,734 cf apacity=0.93 cfs Outflow=0.75 cfs 2,734 cf
Reach TD1: Trench Drain Avg. Flow Depth=0.06' 4.0" Round Pipe n=0.010 L=17.0' S=0.0294 '/' 0	Max Vel=2.90 fps Inflow=0.03 cfs 122 cf Capacity=0.42 cfs Outflow=0.03 cfs 122 cf

Pond DEP1: Depression1	Peak Elev=9.50' Storage=0 cf Inflow=0.00 cfs 36 cf Outflow=0.00 cfs 36 cf
Pond DEP2: Depression 2	Peak Elev=10.50' Storage=0 cf Inflow=0.00 cfs 57 cf Outflow=0.00 cfs 57 cf
Pond INF1: Infiltration Basin 1 Discarded=0.26 cfs	Peak Elev=10.04' Storage=1,041 cf Inflow=1.20 cfs 4,385 cf 4,258 cf Primary=0.17 cfs 128 cf Outflow=0.43 cfs 4,385 cf
Pond INF2: Infiltration Basin 2 Discarded=0.32 of	Peak Elev=9.32' Storage=509 cf Inflow=0.94 cfs 3,550 cf cfs 3,544 cf Primary=0.00 cfs 0 cf Outflow=0.32 cfs 3,544 cf
Pond INF3: Infiltration Basin 3 Discarded=0.50 cfs	Peak Elev=9.52' Storage=1,207 cf Inflow=1.75 cfs 6,647 cf 6,483 cf Primary=0.10 cfs 164 cf Outflow=0.60 cfs 6,647 cf
Pond SFB1A: Sediment Forebay 1A	Peak Elev=9.31' Storage=36 cf Inflow=0.37 cfs 1,386 cf Outflow=0.37 cfs 1,358 cf
Pond SFB1B: Sediment Forebay 1B	Peak Elev=9.80' Storage=76 cf Inflow=0.79 cfs 2,922 cf Outflow=0.78 cfs 2,858 cf
Pond SFB2A: Sediment Forebay 2A	Peak Elev=9.31' Storage=29 cf Inflow=0.28 cfs 1,074 cf Outflow=0.28 cfs 1,051 cf
Pond SFB2B: Sediment Forebay 2B	Peak Elev=9.55' Storage=76 cf Inflow=0.67 cfs 2,555 cf Outflow=0.66 cfs 2,498 cf
Pond SFB3A: Sediment Forebay 3A	Peak Elev=9.91' Storage=83 cf Inflow=1.24 cfs 4,810 cf Outflow=1.24 cfs 4,755 cf
Pond SFB3B: Sediment Forebay 3B	Peak Elev=9.64' Storage=26 cf Inflow=0.52 cfs 1,913 cf Outflow=0.52 cfs 1,892 cf
Link DP1: Cranberry Highway	Inflow=0.75 cfs 2,878 cf Primary=0.75 cfs 2,878 cf
Link DP2: Existing Catch Basin - Onsite	Inflow=0.78 cfs 2,856 cf Primary=0.78 cfs 2,856 cf
Link DP3: Existing Catch Basin - Drive Aisle S	South Inflow=0.10 cfs 164 cf Primary=0.10 cfs 164 cf
Link DP4: Site Infiltration	

Primary=0.00 cfs 0 cf

Total Runoff Area = 82,266 sf Runoff Volume = 20,530 cf Average Runoff Depth = 2.99" 39.36% Pervious = 32,379 sf 60.64% Impervious = 49,887 sf

72170 00 Drainaga PR	Reign Car Wash, Wareham, MA
Prenared by VHB	Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solution	s LLC Page 3
Time span=0.00-72.00 hrs, dt=0.05 hrs Runoff by SCS TR-20 method, UH=SCS, Sp Reach routing by Stor-Ind+Trans method - Pond r	s, 1441 points lit Pervious/Imperv. routing by Stor-Ind method
Subcatchment1A: Subcat1A Runoff Area=7,580 s Flow Length=28' Slope=0.0900 '/' Tc=6.0	f 68.02% Impervious Runoff Depth=4.08" min CN=39/98 Runoff=0.68 cfs 2,580 cf
Subcatchment1B: Subcat1B Runoff Area=5,889 s Flow Length=50' Slope=0.0200 '/' Tc=6.0	f 56.95% Impervious Runoff Depth=3.49" min CN=39/98 Runoff=0.45 cfs 1,715 cf
Subcatchment1C: Subcat1CRunoff Area=11,489 sFlow Length=100'Tc=6.0	f 61.89% Impervious Runoff Depth=3.76" min CN=39/98 Runoff=0.95 cfs 3,598 cf
Subcatchment1D: Subcat1D Runoff Area=422 sf Flow Length=35' Slope=0.0100 '/' Tc=	100.00% Impervious Runoff Depth=5.79" 6.0 min CN=0/98 Runoff=0.06 cfs 204 cf
Subcatchment1E: Subcat1E Runoff Area=1,806 s Flow Length=45' Slope=0.0300 '/' Tc=6	f 88.69% Impervious Runoff Depth=5.19" .0 min CN=39/98 Runoff=0.21 cfs 781 cf
Subcatchment2A: Subcat 2ARunoff Area=6,040 sFlow Length=66'Tc=6.0	f 41.92% Impervious Runoff Depth=2.69" min CN=39/98 Runoff=0.34 cfs 1,355 cf
Subcatchment2B: Subcat 2BRunoff Area=13,337 sFlow Length=107'Tc=6.0	f 45.50% Impervious Runoff Depth=2.88" min CN=39/98 Runoff=0.81 cfs 3,204 cf
Subcatchment2C: Subcat 2C Runoff Area=6,831 sf Tc=6.	100.00% Impervious Runoff Depth=5.79" 0 min CN=0/98 Runoff=0.90 cfs 3,297 cf
Subcatchment2D: Subcat 2DRunoff Area=306 sfFlow Length=36'Tc=	100.00% Impervious Runoff Depth=5.79" 6.0 min CN=0/98 Runoff=0.04 cfs 148 cf
Subcatchment3A: Subcat3ARunoff Area=16,792 sFlow Length=135'Tc=7.8	f 70.28% Impervious Runoff Depth=4.21" min CN=39/98 Runoff=1.49 cfs 5,885 cf
Subcatchment3B: Subcat 3BRunoff Area=6,418 sFlow Length=85'Tc=6.0	f 73.30% Impervious Runoff Depth=4.37" min CN=39/98 Runoff=0.62 cfs 2,335 cf
Subcatchment4A: Subcat 4A Runoff Area=2,096 Tc=	sf 0.00% Impervious Runoff Depth=0.45" 6.0 min CN=39/98 Runoff=0.01 cfs 79 cf
Subcatchment4B: Subcat 4B Runoff Area=3,262 Tc=6	sf 0.03% Impervious Runoff Depth=0.46" .0 min CN=39/98 Runoff=0.01 cfs 124 cf
Reach RD1: Roof Drain Avg. Flow Depth=0.10' 6.0" Round Pipe n=0.012 L=45.0' S=0.0111 '/' C	Max Vel=2.00 fps Inflow=0.06 cfs 204 cf Capacity=0.64 cfs Outflow=0.06 cfs 204 cf
Reach RD2: Roof Drain Avg. Flow Depth=0.53' 8.0" Round Pipe n=0.012 L=59.0' S=0.0051 '/' Category	Max Vel=3.05 fps Inflow=0.90 cfs 3,297 cf pacity=0.93 cfs Outflow=0.89 cfs 3,297 cf
Reach TD1: Trench Drain Avg. Flow Depth=0.07' 4.0" Round Pipe n=0.010 L=17.0' S=0.0294 '/' 0'	Max Vel=3.06 fps Inflow=0.04 cfs 148 cf Capacity=0.42 cfs Outflow=0.04 cfs 148 cf

Pond DEP1: Depression 1	Peak Elev=9.50' Storage=0 cf Inflow=0.01 cfs 79 cf Outflow=0.01 cfs 79 cf
Pond DEP2: Depression 2	Peak Elev=10.50' Storage=0 cf Inflow=0.01 cfs 124 cf Outflow=0.01 cfs 124 cf
Pond INF1: Infiltration Basin 1 Discarded=0.27 cfs	Peak Elev=10.10' Storage=1,115 cf Inflow=1.44 cfs 5,424 cf 4,925 cf Primary=0.57 cfs 499 cf Outflow=0.84 cfs 5,424 cf
Pond INF2: Infiltration Basin 2 Discarded=0.33 c	Peak Elev=9.48' Storage=774 cf Inflow=1.14 cfs 4,480 cf fs 4,476 cf Primary=0.00 cfs 0 cf Outflow=0.33 cfs 4,476 cf
Pond INF3: Infiltration Basin 3 Discarded=0.53 cfs	Peak Elev=9.65' Storage=1,541 cf Inflow=2.10 cfs 8,144 cf 7,678 cf Primary=0.23 cfs 466 cf Outflow=0.77 cfs 8,144 cf
Pond SFB1A: Sediment Forebay 1A	Peak Elev=9.32' Storage=37 cf Inflow=0.45 cfs 1,715 cf Outflow=0.45 cfs 1,686 cf
Pond SFB1B: Sediment Forebay 1B	Peak Elev=9.81' Storage=78 cf Inflow=0.95 cfs 3,598 cf Outflow=0.94 cfs 3,534 cf
Pond SFB2A: Sediment Forebay 2A	Peak Elev=9.32' Storage=30 cf Inflow=0.34 cfs 1,355 cf Outflow=0.34 cfs 1,332 cf
Pond SFB2B: Sediment Forebay 2B	Peak Elev=9.57' Storage=79 cf Inflow=0.81 cfs 3,204 cf Outflow=0.80 cfs 3,148 cf
Pond SFB3A: Sediment Forebay 3A	Peak Elev=9.93' Storage=88 cf Inflow=1.49 cfs 5,885 cf Outflow=1.49 cfs 5,830 cf
Pond SFB3B: Sediment Forebay 3B	Peak Elev=9.65' Storage=27 cf Inflow=0.62 cfs 2,335 cf Outflow=0.63 cfs 2,314 cf
Link DP1: Cranberry Highway	Inflow=1.05 cfs 3,860 cf Primary=1.05 cfs 3,860 cf
Link DP2: Existing Catch Basin - Onsite	Inflow=0.93 cfs 3,444 cf Primary=0.93 cfs 3,444 cf
Link DP3: Existing Catch Basin - Drive Aisle S	outh Inflow=0.23 cfs 466 cf Primary=0.23 cfs 466 cf
Link DP4: Site Infiltration	Primary=0.00 cfs_0 cf

Total Runoff Area = 82,266 sf Runoff Volume = 25,303 cf Average Runoff Depth = 3.69" 39.36% Pervious = 32,379 sf 60.64% Impervious = 49,887 sf
72170 00 Drainago PP	Reign Car Wash, Wareham, MA
Prenared by VHB	Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solution	ns LLC Page 5
	<u></u> <u></u>
Time span=0.00-72.00 hrs, dt=0.05 hr Runoff by SCS TR-20 method, UH=SCS, S Reach routing by Stor-Ind+Trans method - Pond	rs, 1441 points plit Pervious/Imperv. routing by Stor-Ind method
Subcatchment1A: Subcat 1A Runoff Area=7,580 s Flow Length=28' Slope=0.0900 '/' Tc=6.0	sf 68.02% Impervious Runoff Depth=4.68") min CN=39/98 Runoff=0.78 cfs 2,955 cf
Subcatchment1B: Subcat 1B Runoff Area=5,889 s Flow Length=50' Slope=0.0200 '/' Tc=6.0	sf 56.95% Impervious Runoff Depth=4.03") min CN=39/98 Runoff=0.51 cfs 1,978 cf
Subcatchment1C: Subcat 1CRunoff Area=11,489 sFlow Length=100'Tc=6.0	sf 61.89% Impervious Runoff Depth=4.32") min CN=39/98 Runoff=1.09 cfs 4,135 cf
Subcatchment1D: Subcat 1D Runoff Area=422 sf Flow Length=35' Slope=0.0100 '/' Tc=	[:] 100.00% Impervious Runoff Depth=6.55" =6.0 min CN=0/98 Runoff=0.06 cfs 230 cf
Subcatchment1E: Subcat1E Runoff Area=1,806 s Flow Length=45' Slope=0.0300 '/' Tc=6	sf 88.69% Impervious Runoff Depth=5.89" 6.0 min CN=39/98 Runoff=0.24 cfs 886 cf
Subcatchment2A: Subcat 2ARunoff Area=6,040 sFlow Length=66'Tc=6.0	sf 41.92% Impervious Runoff Depth=3.15" 0 min CN=39/98 Runoff=0.40 cfs 1,585 cf
Subcatchment2B: Subcat 2BRunoff Area=13,337 sFlow Length=107'Tc=6.0	sf 45.50% Impervious Runoff Depth=3.36") min CN=39/98 Runoff=0.95 cfs 3,734 cf
Subcatchment2C: Subcat 2C Runoff Area=6,831 sf Tc=6	[:] 100.00% Impervious Runoff Depth=6.55" 6.0 min CN=0/98 Runoff=1.02 cfs 3,729 cf
Subcatchment2D: Subcat 2DRunoff Area=306 sfFlow Length=36'Tc=	[:] 100.00% Impervious Runoff Depth=6.55" =6.0 min CN=0/98 Runoff=0.05 cfs 167 cf
Subcatchment3A: Subcat3ARunoff Area=16,792 sFlow Length=135'Tc=7.8	sf 70.28% Impervious Runoff Depth=4.81" 3 min CN=39/98 Runoff=1.70 cfs 6,732 cf
Subcatchment3B: Subcat3BRunoff Area=6,418 sFlow Length=85'Tc=6.0	sf 73.30% Impervious Runoff Depth=4.99") min CN=39/98 Runoff=0.71 cfs 2,667 cf
Subcatchment4A: Subcat 4A Runoff Area=2,096 Tc=6	sf 0.00% Impervious Runoff Depth=0.69" 6.0 min CN=39/98 Runoff=0.02 cfs 121 cf
Subcatchment4B: Subcat 4B Runoff Area=3,262 Tc=6	sf 0.03% Impervious Runoff Depth=0.70" 6.0 min CN=39/98 Runoff=0.03 cfs 189 cf
Reach RD1: Roof Drain Avg. Flow Depth=0.11 6.0" Round Pipe n=0.012 L=45.0' S=0.0111 '/'	' Max Vel=2.08 fps Inflow=0.06 cfs 230 cf Capacity=0.64 cfs Outflow=0.06 cfs 230 cf
Reach RD2: Roof Drain Avg. Flow Depth=0.67' 8.0" Round Pipe n=0.012 L=59.0' S=0.0051 '/' Category	Max Vel=3.05 fps Inflow=1.02 cfs 3,729 cf apacity=0.93 cfs Outflow=0.93 cfs 3,729 cf
Reach TD1: Trench Drain Avg. Flow Depth=0.07 4.0" Round Pipe n=0.010 L=17.0' S=0.0294 '/'	' Max Vel=3.17 fps Inflow=0.05 cfs 167 cf Capacity=0.42 cfs Outflow=0.05 cfs 167 cf

Pond DEP1: Depression 1	Peak Elev=9.50' Storage=0 cf Inflow=0.02 cfs 121 cf Outflow=0.02 cfs 121 cf
Pond DEP2: Depression 2	Peak Elev=10.50' Storage=1 cf Inflow=0.03 cfs 189 cf Outflow=0.03 cfs 189 cf
Pond INF1: Infiltration Basin 1 Discarded=0.28 cfs	Peak Elev=10.13' Storage=1,159 cf Inflow=1.65 cfs 6,251 cf 5,427 cf Primary=0.89 cfs 824 cf Outflow=1.16 cfs 6,251 cf
Pond INF2: Infiltration Basin 2 Discarded=0.34 cfs	Peak Elev=9.61' Storage=1,001 cf Inflow=1.33 cfs 5,239 cf 5,195 cf Primary=0.04 cfs 41 cf Outflow=0.37 cfs 5,236 cf
Pond INF3: Infiltration Basin 3 Discarded=0.56 cfs	Peak Elev=9.74' Storage=1,800 cf Inflow=2.40 cfs 9,323 cf 8,557 cf Primary=0.34 cfs 766 cf Outflow=0.90 cfs 9,323 cf
Pond SFB1A: Sediment Forebay 1A	Peak Elev=9.32' Storage=38 cf Inflow=0.51 cfs 1,978 cf Outflow=0.52 cfs 1,949 cf
Pond SFB1B: Sediment Forebay 1B	Peak Elev=9.82' Storage=79 cf Inflow=1.09 cfs 4,135 cf Outflow=1.08 cfs 4,072 cf
Pond SFB2A: Sediment Forebay 2A	Peak Elev=9.32' Storage=31 cf Inflow=0.40 cfs 1,585 cf Outflow=0.40 cfs 1,562 cf
Pond SFB2B: Sediment Forebay 2B	Peak Elev=9.58' Storage=82 cf Inflow=0.95 cfs 3,734 cf Outflow=0.93 cfs 3,677 cf
Pond SFB3A: Sediment Forebay 3A	Peak Elev=9.95' Storage=91 cf Inflow=1.70 cfs 6,732 cf Outflow=1.70 cfs 6,677 cf
Pond SFB3B: Sediment Forebay 3B	Peak Elev=9.66' Storage=28 cf Inflow=0.71 cfs 2,667 cf Outflow=0.71 cfs 2,646 cf
Link DP1: Cranberry Highway	Inflow=1.65 cfs 4,666 cf Primary=1.65 cfs 4,666 cf
Link DP2: Existing Catch Basin - Onsite	Inflow=0.98 cfs 3,937 cf Primary=0.98 cfs 3,937 cf
Link DP3: Existing Catch Basin - Drive Aisle S	outhInflow=0.34 cfs766 cfPrimary=0.34 cfs766 cf
Link DP4: Site Infiltration	Primary=0.00 cfs_0 cf

Total Runoff Area = 82,266 sf Runoff Volume = 29,109 cf Average Runoff Depth = 4.25" 39.36% Pervious = 32,379 sf 60.64% Impervious = 49,887 sf

72170 00 Drainaga BB	-	Reign C	Car Wash, Wareham, MA
Prepared by VHB		iype iii 24-iii	Printed 6/23/2021
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroC/	AD Software Solution	s LLC	Page 7
T : 0.00 T			-
Runoff by SCS TR-20 me Reach routing by Stor-Ind+Tran	thod, UH=SCS, Sp s method - Pond r	s, 1441 points lit Pervious/Imp outing by Stor-Ii	erv. nd method
Cubectebre entit A. Cubect 4 A	Dunoff Aroo-7 590 of	69.000/ Import	ious Dunoff Donth-5 20"
Flow Length=28' Slop	e=0.0900 '/' Tc=6.0	min CN=39/98	Runoff=0.89 cfs 3,348 cf
Subcatchment1B: Subcat 1B	Runoff Area=5,889 sf	f 56.95% Imperv	ious Runoff Depth=4.60"
Flow Length=50' Slop	e=0.0200 '/' Tc=6.0	min CN=39/98	Runoff=0.59 cfs 2,256 cf
Subcatchment1C: Subcat1C R	unoff Area=11,489 st	f 61.89% Imperv	ious Runoff Depth=4.91"
Flow I	_ength=100' Tc=6.0	min CN=39/98	Runoff=1.24 cfs 4,702 cf
Subcatchment1D: Subcat 1D	Runoff Area=422 sf	100.00% Imperv	ious Runoff Depth=7.33"
Flow Length=35' S	lope=0.0100 '/' Tc=6	6.0 min CN=0/98	3 Runoff=0.07 cfs 258 cf
Subcatchment1E: Subcat1E	Runoff Area=1,806 sf	f 88.69% Imperv	ious Runoff Depth=6.61"
Flow Length=45' Sto	ppe=0.0300 '/' Tc=6.	0 min CN=39/98	3 Runoff=0.27 cfs 995 cf
Subcatchment2A: Subcat 2A	Runoff Area=6,040 sf	f 41.92% Imperv	ious Runoff Depth=3.64"
Flow	Length=66' Tc=6.0	min CN=39/98	Runoff=0.47 cfs 1,834 cf
Subcatchment2B: Subcat 2B R	unoff Area=13,337 sf	f 45.50% Imperv	ious Runoff Depth=3.87"
Flow I	₋ength=107' Tc=6.0	min CN=39/98	Runoff=1.11 cfs 4,302 cf
Subcatchment2C: Subcat 2C	unoff Area=6,831 sf	100.00% Imperv	ious Runoff Depth=7.33"
	Tc=6.	0 min CN=0/98	Runoff=1.14 cfs 4,173 cf
Subcatchment2D: Subcat 2D	Runoff Area=306 sf	100.00% Imperv	ious Runoff Depth=7.33"
F	ow Length=36' Tc=0	6.0 min CN=0/98	3 Runoff=0.05 cfs 187 cf
Subcatchment3A: Subcat 3A R	unoff Area=16,792 sf	f 70.28% Imperv	ious Runoff Depth=5.44"
Flow I	.ength=135' Tc=7.8	min CN=39/98	Runoff=1.93 cfs 7,618 cf
Subcatchment3B: Subcat 3B	Runoff Area=6,418 sf	f 73.30% Imperv	ious Runoff Depth=5.64"
Flow	Length=85' Tc=6.0	min CN=39/98	Runoff=0.81 cfs 3,014 cf
Subcatchment4A: Subcat 4A	Runoff Area=2,096 s	sf 0.00% Imperv	ious Runoff Depth=0.98"
	Tc=6	.0 min CN=39/98	8 Runoff=0.03 cfs 172 cf
Subcatchment4B: Subcat 4B	Runoff Area=3,262 s	sf 0.03% Imperv	ious Runoff Depth=0.98"
	Tc=6	.0 min CN=39/98	8 Runoff=0.05 cfs 267 cf
Reach RD1: Roof DrainAv6.0" Round Pipen=0.012L=4	′g. Flow Depth=0.11'	Max Vel=2.14 fp	os Inflow=0.07 cfs 258 cf
	↓5.0' S=0.0111 '/' C	Capacity=0.64 cfs	Outflow=0.07 cfs 258 cf
Reach RD2: Roof DrainAvg8.0" Round Pipen=0.012L=59	Flow Depth=0.67'	Max Vel=3.05 fps	Inflow=1.14 cfs 4,173 cf
	.0' S=0.0051 '/' Ca	pacity=0.93 cfs	Outflow=0.94 cfs 4,173 cf
Reach TD1: Trench DrainAv4.0" Round Pipen=0.010L=1	rg. Flow Depth=0.08'	Max Vel=3.27 fp	os Inflow=0.05 cfs 187 cf
	I7.0' S=0.0294 '/' C	Capacity=0.42 cfs	Outflow=0.05 cfs 187 cf

Peak Elev=10.55' Storage=10 cf Inflow=0.05 cfs 267 cf Pond DEP2: Depression 2 Outflow=0.04 cfs 267 cf Pond INF1: Infiltration Basin 1 Peak Elev=10.17' Storage=1,215 cf Inflow=1.89 cfs 7,124 cf Discarded=0.28 cfs 5,934 cf Primary=1.30 cfs 1,190 cf Outflow=1.59 cfs 7,124 cf Peak Elev=9.72' Storage=1,198 cf Inflow=1.56 cfs 6,057 cf Pond INF2: Infiltration Basin 2 Discarded=0.35 cfs 5,840 cf Primary=0.14 cfs 221 cf Outflow=0.49 cfs 6,061 cf Pond INF3: Infiltration Basin 3 Peak Elev=9.83' Storage=2,085 cf Inflow=2.72 cfs 10,556 cf Discarded=0.58 cfs 9,447 cf Primary=0.43 cfs 1,109 cf Outflow=1.01 cfs 10,556 cf Pond SFB1A: Sediment Forebay 1A Peak Elev=9.33' Storage=39 cf Inflow=0.59 cfs 2,256 cf Outflow=0.59 cfs 2.228 cf Pond SFB1B: Sediment Forebay 1B Peak Elev=9.83' Storage=81 cf Inflow=1.24 cfs 4,702 cf Outflow=1.23 cfs 4,639 cf Pond SFB2A: Sediment Forebay 2A Peak Elev=9.33' Storage=32 cf Inflow=0.47 cfs 1,834 cf Outflow=0.47 cfs 1.811 cf Pond SFB2B: Sediment Forebay 2B Peak Elev=9.60' Storage=85 cf Inflow=1.11 cfs 4,302 cf Outflow=1.09 cfs 4,246 cf Peak Elev=9.96' Storage=95 cf Inflow=1.93 cfs 7,618 cf Pond SFB3A: Sediment Forebay 3A Outflow=1.93 cfs 7.563 cf Pond SFB3B: Sediment Forebay 3B Peak Elev=9.67' Storage=28 cf Inflow=0.81 cfs 3,014 cf Outflow=0.81 cfs 2,993 cf Link DP1: Cranberry Highway Inflow=2.19 cfs 5.533 cf Primary=2.19 cfs 5,533 cf Inflow=1.00 cfs 4,581 cf Link DP2: Existing Catch Basin - Onsite Primary=1.00 cfs 4,581 cf Inflow=0.43 cfs 1.109 cf Link DP3: Existing Catch Basin - Drive Aisle South Primary=0.43 cfs 1,109 cf

Link DP4: Site Infiltration

Primary=0.00 cfs 0 cf

Total Runoff Area = 82,266 sf Runoff Volume = 33,125 cf Average Runoff Depth = 4.83" 39.36% Pervious = 32,379 sf 60.64% Impervious = 49,887 sf

Appendix C - Standard 3 Computations and Supporting Information

Reign Car Wash

Soil Evaluation and Analysis

Table—Hydrologic Soil Group

	-			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		1.7	8.9%
53A	Freetown muck, ponded, 0 to 1 percent slopes	B/D	1.6	8.4%
637B	Carver - Urban land complex, 0 to 8 percent slopes	A	13.9	73.2%
702C	Udipsamments, 8 to 15 percent slopes	A	1.8	9.6%
Totals for Area of Intere	st		19.1	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

EXPLORATION PLAN

3013 Cranberry Highway Car Wash
Wareham, Massachusetts
February 11, 2021
Terracon Project No. J1215000

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

MAP PROVIDED BY MICROSOFT BING MAPS

		E.							F	Page 1 of 1
Ρ	ROJ	ECT: 3013 Cranberry Highway Car	Wash	CLIENT: First H Manch	lartford Real nester, CT	ty Co	rpor	atio	on	
S	ITE:	3013 Cranberry Highway Wareham, MA								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.7583° Longitude: -70.6612° DEPTH		Approximate Surfa	ice Elev.: 11 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
		0.5 3-inches of asphalt			10.5+/-					
1		FILL - POORLY GRADED SAND, trace silt	, brown, loose		8.5+/-	_		\square	10	8-4-5-5 N=9
		POORLY GRADED SAND (SP), trace silt, b	prown to light brown, "	very loose to medium d	lense	_		X	3	4-4-4-4 N=8
		No recovery, rock at end of sampler				5 — _		X	0	1-1-1-3 N=2
		Similar, trace gravel				_			6	2-1-1-1 N=2
						10				
2						-		X	14	4-5-5-6 N=10
						_				
						15— _		X	22	5-6-7-8 N=13
						_				
		21.0			-10+/-	_ 20_		\setminus	24	8-5-5-6 N=10
		Boring Terminated at 21 Feet								
	Stra Sai	atification lines are approximate. In-situ, the transition may be mples obtained using a 2" O.D. split spoon sampler	gradual.		Hammer Type: Auto	omatic	I			
Adva 2- Abai B	ncemer 1/4-inch ndonme orings b	nt Method: I.D. hollow stem augers nt Method: ackfilled with soil cuttings upon completion. Sealed	See Exploration and Testi description of field and lal and additional data (If any See Supporting Information symbols and abbreviation	ng Procedures for a poratory procedures used /). on for explanation of s.	Notes:					
w	ith bitum	ninous cold patch at surface.								
		WATER LEVEL OBSERVATIONS			Boring Started: 01-25-2	2021	E	Boring	Comp	leted: 01-25-2021
	_ 5 f	eet while drilling		JCON	Drill Rig: CME-850X			Driller:	P. Mic	chaud
			77 Sundial A Manche	ve, Ste 401W	Project No.: J1215000					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL J1215000 3013 CRANBERRY HI.GPJ TERRACON_DATATEMPLATE.GDT 2/9/21

				UG NU. D- 2	2				F	Page 1 of 3
Ρ	ROJ	ECT: 3013 Cranberry Highway Car	Wash	CLIENT: First I Manc	Hartford Real hester, CT	ty Co	rpoi	ratio	on	-
S	ITE:	3013 Cranberry Highway Wareham, MA								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.7584° Longitude: -70.6614° DEPTH		Approximate Surf	face Elev.: 11 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
		0.5 3-inches of asphalt			10.5+/-					
1		FILL - POORLY GRADED SAND, light bro	wn, medium dense		8.5+/-	-	-	X	12	4-5-5-4 N=10
		POORLY GRADED SAND (SP), brownish g	gray to gray, very loos	e to medium dense		-		X	16	5-7-8-8 N=15
		Similar, trace silt				5 — -	-	X	16	3-4-5-7 N=9
						-	-		24	6-6-6-6 N=12
						_				
						10- -	-	X	11	2-3-3-3 N=6
2						-	-	/		
-						- 15-	-	\bigvee	10	2-2-2-4
						_	-	\wedge	10	N=4
						-	-			
						20-	-	X	14	1-2-2-2 N=4
							-			
	C+	tification lines are approvimate. In situ, the transities may be	aradual			20				
	Sa	nples obtained using a 2" O.D. split spoon sampler	graduai.		nammer rype. Auto	Smallo				
Adva 2- m Aba	ancemer -1/4-inch nethod w ndonme orings b	It Method: I.D. hollow stem augers, then wash and drive ith 4-inch casing nt Method: ackfilled with soil cuttings upon completion. Sealed	See Exploration and Testi description of field and lal and additional data (If any See Supporting Informatic symbols and abbreviation	ng Procedures for a poratory procedures used). on for explanation of S.	Notes:					
w	ith bitum	inous cold patch at surface.								
		WATER LEVEL OBSERVATIONS			Boring Started: 01-25-2	2021	E	Boring	Comp	leted: 01-25-2021
$\mathbf{\nabla}$	4.5	i feet while drilling	llerr	acon	Drill Rig: CME-850Y)riller	P Mic	baud
			77 Sundial A	ve, Ste 401W				sinici.	· . IVIIC	
			Manche	ster, NH	Project No.: J1215000					

			BORING L	UG NU. B-2	2				F	Page 2 of 3
Р	ROJ	ECT: 3013 Cranberry Highway Car	[.] Wash	CLIENT: First	Hartford Real hester, CT	on	-			
S	ITE:	3013 Cranberry Highway Wareham, MA					i		i	1
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.7584° Longitude: -70.6614° DEPTH		Approximate Sur	face Elev.: 11 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
		POORLY GRADED SAND (SP), brownish (continued)	gray to gray, very loos	se to medium dense		-		\square	7	2-1-2-3 N=3
								\mathbb{X}	10	1-1-1-2 N=2
						-				
								$\left \right $	11	1-2-2-3 N=4
2						_				
						40 -			10	2-2-4-6 N=6
						-				
						45- - -			8	1-4-6-7 N=10
						-				
	Str	tification lines are approximate. In-situ, the transition may b moles obtained using a 2" O.D. solit scoop sampler	e gradual.		Hammer Type: Auto	50- omatic]			
Adva 2- m	ancemer 1/4-inch ethod w	nt Method: I.D. hollow stem augers, then wash and drive ith 4-inch casing	See Exploration and Test description of field and lai and additional data (If any	ing Procedures for a boratory procedures used /).	Notes:					
Abar Bi W	ndonme orings b ith bitum	nt Method: ackfilled with soil cuttings upon completion. Sealed ninous cold patch at surface.	See Supporting Information symbols and abbreviation	on for explanation of ls.						
		WATER LEVEL OBSERVATIONS			Boring Started: 01-25-	2021	E	Boring	Comp	oleted: 01-25-2021
	4.5	5 feet while drilling		acon	Drill Rig: CME-850X			Driller:	: P. Mi	chaud
			77 Sundial A Manche	ve, Ste 401W ester, NH	Project No.: J1215000					

									ŀ	Page 3 of 3
Ρ	ROJI	ECT: 3013 Cranberry Highway Car	Wash	CLIENT: First Manc	Hartford Real hester, CT	ty Co	rpoi	ratio	on	
S	ITE:	3013 Cranberry Highway Wareham, MA								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.7584° Longitude: -70.6614°		Approximate Surf	face Elev.: 11 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
2		POORLY GRADED SAND (SP), brownish (continued)	gray to gray, very loos	e to medium dense		_		X	5	4-4-5-5 N=9
2		54.5			-43.5+/-	_				
Advza m Abas	Stra Sar 1/4-inch- thod w	atification lines are approximate. In-situ, the transition may be nples obtained using a 2" O.D. split spoon sampler it Method: 1.D. hollow stem augers, then wash and drive the 4-inch casing	e gradual. See Exploration and Test description of field and lat and additional data (If any See Supporting Informatii symbols and abbreviation	Ing Procedures for a boratory procedures used).	Hammer Type: Auto	omatic				
Bo Wi	orings ba th bitum	ackfilled with soil cuttings upon completion. Sealed inous cold patch at surface.			Paring Starts J. 04 05 (2021	,	Doring	Carro	latad: 01 25 0001
\square	4.5	i feet while drilling	ller		Boring Started: 01-25-	2021	l ^E	soring	Comp	ielea: 01-25-2021
			77 Sundial A	Ve Ste 401W	Drill Rig: CME-850X		1	Driller:	P. Mic	chaud
			Manche	ester, NH	Project No.: J1215000					

	Borante Ede no. B-o								F	Page 1 of 1
P	ROJ	ECT: 3013 Cranberry Highway Car	Wash	CLIENT: First I Manc	Hartford Real hester, CT	alty Corporation				
S	IIE:	3013 Cranberry Highway Wareham, MA								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.7585° Longitude: -70.6616° DEPTH		Approximate Surf	face Elev.: 10 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
1		 <u>5</u> 3-inches of asphalt <u>FILL - POORLY GRADED SAND</u>, trace gr. 2.5 	avel and glass, light b	prown, medium dense	9.5+/-	-	-	X	12	10-10-10-10 N=20
		POORLY GRADED SAND (SP), brown to c	lark brown, very loose	e to medium dense		-	-	X	24	8-8-9-8 N=17
						5 — _		X	24	3-3-4-3 N=7
						-	-	X	20	2-1-2-2 N=3
		Similar, trace gravel				10- -	-	X	24	1-1-1-1 N=2
2						-	-			
		Similar, trace silt				15- - -	-	X	24	1-1-1-1 N=2
						-	-			
		22.0			-12+/-	20	-	X	24	2-3-2-3 N=5
		Boring Terminated at 22 Feet								
	Str Sa	atification lines are approximate. In-situ, the transition may be mples obtained using a 2" O.D. split spoon sampler	e gradual.		Hammer Type: Auto	omatic				
Adva 2-	anceme 1/4-inch	nt Method: I.D. hollow stem augers	See Exploration and Test description of field and la and additional data (If any See Supporting Information	ing Procedures for a boratory procedures used y). on for explanation of	Notes:					
Aba B w	ndonme orings b ith bitun	nt Method: ackfilled with soil cuttings upon completion. Sealed ninous cold patch at surface.	symbols and abbreviation	IS.						
$\overline{}$		VVAIEK LEVEL UBSERVATIONS			Boring Started: 01-25-2	2021	E	Boring	Comp	leted: 01-25-2021
	_ 5.8	o reer while arilling		JCON	Drill Rig: CME-850X			Driller:	P. Mic	haud
	Drill Rig: CME-850X 77 Sundial Ave, Ste 401W Manchester, NH Project No.: J1215000									

BORING	LOG I	NO.	B-4
--------	-------	-----	------------

	BORING LOG NO. B-4 Page 1 of 1									
Р	ROJ	ECT: 3013 Cranberry Highway Car	Wash	CLIENT: First Manc	Hartford Real hester, CT	ty Co	orpo	ratio	on	
S	IIE:	3013 Cranberry Highway Wareham, MA								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.7586° Longitude: -70.6614° DEPTH		Approximate Sur	face Elev.: 11 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
	XXXX	0.5 3-inches of asphalt			10.5+/-					
		FILL - POORLY GRADED SAND, gray to	dark brown, medium	dense		-	-	$\left \right\rangle$	14	6-6-7-8 N=13
1						-		X	16	5-7-9-10 N=16
		6.5 Wood fibers at 6.5 feet.	n loose to medium de	anse	4.5+/-	5-	-	$\left \right\rangle$	15	4-6-6-5 N=12
		- CORE I CROUED CARD (BP), light blow		ייסט זע		-			24	2-5-5-5 N=10
2						10				
		12.0			-1+/-	10-		$\left \right\rangle$	24	4-4-4-4 N=8
	Str	tification lines are approximate. In-situ, the transition may b	e madual		Hammer Type: Aut	omatic				
Adv	Sa	mples obtained using a 2" O.D. split spoon sampler			Notes:	Unalic				
2. Aba	-1/4-inch	I.D. hollow stem augers	See Exploration and fest description of field and la and additional data (If any See Supporting Information symbols and abbreviation	Ing Procedures for a boratory procedures used /). on for explanation of IS.	10003.					
B W	orings b ith bitun	ackfilled with soil cuttings upon completion. Sealed ninous cold patch at surface.								
		WATER LEVEL OBSERVATIONS			Boring Started: 01-25-	2021	E	Boring	Comp	leted: 01-25-2021
	_ 3.8	b feet while drilling		JCON	Drill Rig: CME-850X		l	Driller:	P. Mic	chaud
			77 Sundial A Manche	ve, Ste 401W ester, NH	Project No.: J1215000)				

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL J1215000 3013 CRANBERRY HI.GPJ TERRACON_DATATEMPLATE.GDT 2/9/21

									F	Page 1 of 1
Ρ	ROJ	ECT: 3013 Cranberry Highway Car	Wash	CLIENT: First I Manc	Hartford Real hester, CT	ty Co	rpo	ratio	on	-
S	ITE:	3013 Cranberry Highway Wareham, MA								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.7586° Longitude: -70.6619° DEPTH		Approximate Surf	ace Elev.: 11 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS
		0.5 3-inches of asphalt			10.5+/-					
		POORLY GRADED SAND (SP), trace grave medium dense	el and silt, brown to g	rayish brown, loose to		_	-	\square	15	10-11-9-9 N=20
						_	-	X	12	10-13-13-14 N=26
2						5 — _			1	5-5-5-4 N=10
						_			16	2-4-3-3 N=7
						_				
		Similar, trace gravel				10- -	-	X	6	4-3-2-3 N=5
		12.0			-1+/-	_		$/$ \backslash		
	Str Sa	atification lines are approximate. In-situ, the transition may be mples obtained using a 2" O.D. split spoon sampler	e gradual.		Hammer Type: Auto	omatic				
Adva 2- Abar Bo	nceme 1/4-inch ndonme prings b th bitum	nt Method: I.D. hollow stem augers nt Method: ackfilled with soil cuttings upon completion. Sealed ninous cold patch at surface.	See Exploration and Testi description of field and la and additional data (If any See Supporting Informatii symbols and abbreviation	ing Procedures for a boratory procedures used /). on for explanation of s.	Notes:					
v¥.										
$\overline{\frown}$					Boring Started: 01-25-2	2021	E	Boring	Comp	leted: 01-25-2021
	. 71	eet while arilling	lierr	JCON	Drill Rig: CME-850X		,	Driller	P. Mic	chaud
			77 Sundial A	ve, Ste 401W						
			Manche	ster, NH	Project No.: J1215000					

Reign Car Wash

Required and Provided Recharge Volumes

Recharge Calculations

Project Name: Reign Car Wash

 Proj. No.:
 73170.00

 Date:
 6/24/2021

 Calculated by:
 SAP

Project Location: Wareham, MA

Proposed Impervious Surface Summary

Net Pro	posed Im	pervious A	Areas by H	lydrologic	Soil Group	(HSG) in acres	
				· · · · · · · · · · · · · · · · · · ·		(

Subcatchment	HSG A	HSG B	HSG C	HSG D	Total Area
PR 1A(DOT DRAINAGE)	0.00				0.00
PR 1B	0.08				0.08
PR 1C	0.16				0.16
PR 1D	0.01				0.01
PR 1E	0.04				0.04
PR 2A	0.06				0.06
PR 2B	0.14				0.14
PR 2C	0.16				0.16
PR 2D	0.01				0.01
PR 3A	0.27				0.27
PR 3B	0.10				0.10
TOTAL	1.02	0.00	0.00	0.00	1.02

Required Recharge Volume (Cubic Feet)

HSG	Area	Recharge Depth*	Volume
	(acres)	(in.)	(c.f.)
Α	1.0	0.60	2,222
В	0.0	0.35	0
С	0.0	0.25	0
D	0.0	0.10	0
TOTAL			2,222

Assumptions:

* Massachusetts DEP Infiltration requirement: HSG A = 0.60 in; HSG B = 0.35 in; HSG C = 0.25 in; HSG D = 0.10 in.

Capture Area Adjustment

Adjusted Required Recharge Volume:	2,730	c.f.
Capture Area Adjustment Factor	1.229	-
Total Site Impervious Area Draining to Recharge Facilities	0.83	acres
Total Site Impervious Area	1.02	acres
Required Recharge Volume	2,222	c.f.

Provided Recharge Volume and Drawdown Times Summary

<u>BMP</u>	Outlet Elev.	Vol. Below Outlet(CF)	Drawdown
INF 1	10.0'	986	24.20 HRS
INF 2	9.50'	813	24.20 HRS
INF 3	9.32'	698	24.20 HRS

RECHARGE VOLUME (CF) PROVIDED TOTAL = 2,497

Reign Car Wash

72-hour Drawdown Analysis

Reign Car Wash, Wareham, MA Type III 24-hr 100-Year Rainfall=7.57" Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Printed 6/23/2021 Page 1

Hydrograph for Pond DEP1: Depression 1

Time	Inflow	Storage	Elevation	Discarded
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	0	9.50	0.00
2.50	0.00	0	9.50	0.00
5.00	0.00	0	9.50	0.00
7.50	0.00	0	9.50	0.00
10.00	0.00	0	9.50	0.00
12.50	0.02	0	9.50	0.02
15.00	0.00	0	9.50	0.00
17.50	0.00	0	9.50	0.00
20.00	0.00	0	9.50	0.00
22.50	0.00	0	9.50	0.00
25.00	0.00	0	9.50	0.00
27.50	0.00	0	9.50	0.00
30.00	0.00	0	9.50	0.00
32.50	0.00	0	9.50	0.00
35.00	0.00	0	9.50	0.00
37.50	0.00	0	9.50	0.00
40.00	0.00	0	9.50	0.00
42.50	0.00	0	9.50	0.00
45.00	0.00	0	9.50	0.00
47.50	0.00	0	9.50	0.00
50.00	0.00	0	9.50	0.00
52.50	0.00	0	9.50	0.00
55.00	0.00	0	9.50	0.00
57.50	0.00	0	9.50	0.00
60.00	0.00	0	9.50	0.00
62.50	0.00	0	9.50	0.00
65.00	0.00	0	9.50	0.00
67.50	0.00	0	9.50	0.00
70.00	0.00	0	9.50	0.00

Reign Car Wash, Wareham, MA Type III 24-hr 100-Year Rainfall=7.57" Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Printed 6/23/2021 Page 2

Hydrograph for Pond DEP2: Depression 2

Time	Inflow	Storage	Elevation	Discarded
(nours)	(CIS)	(cubic-teet)	(teet)	(CIS)
0.00	0.00	0	10.50	0.00
2.50	0.00	0	10.50	0.00
5.00	0.00	0	10.50	0.00
7.50	0.00	0	10.50	0.00
10.00	0.00	0	10.50	0.00
12.50	0.03	7	10.54	0.03
15.00	0.01	0	10.50	0.01
17.50	0.00	0	10.50	0.00
20.00	0.00	0	10.50	0.00
22.50	0.00	0	10.50	0.00
25.00	0.00	0	10.50	0.00
27.50	0.00	0	10.50	0.00
30.00	0.00	0	10.50	0.00
32.50	0.00	0	10.50	0.00
35.00	0.00	0	10.50	0.00
37.50	0.00	0	10.50	0.00
40.00	0.00	0	10.50	0.00
42.50	0.00	0	10.50	0.00
45.00	0.00	0	10.50	0.00
47.50	0.00	0	10.50	0.00
50.00	0.00	0	10.50	0.00
52.50	0.00	0	10.50	0.00
55.00	0.00	0	10.50	0.00
57.50	0.00	0	10.50	0.00
60.00	0.00	0	10.50	0.00
62.50	0.00	0	10.50	0.00
65.00	0.00	0	10.50	0.00
67.50	0.00	0	10.50	0.00
70.00	0.00	0	10.50	0.00

Reign Car Wash, Wareham, MA Type III 24-hr 100-Year Rainfall=7.57" Printed 6/23/2021 Page 3

73170.00 Drainage PRType IIIPrepared by VHBHydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Hydrograph for Pond INF1: Infiltration Basin 1

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)
0.00	0.00	0	9.00	0.00	0.00	0.00
2.50	0.00	0	9.00	0.00	0.00	0.00
5.00	0.02	2	9.00	0.02	0.02	0.00
7.50	0.04	4	9.01	0.04	0.04	0.00
10.00	0.09	9	9.01	0.09	0.09	0.00
12.50	0.44	1,062	10.06	0.53	0.26	0.27
15.00	0.09	315	9.39	0.18	0.18	0.00
17.50	0.04	5	9.01	0.04	0.04	0.00
20.00	0.03	3	9.00	0.03	0.03	0.00
22.50	0.02	3	9.00	0.02	0.02	0.00
25.00	0.00	0	9.00	0.00	0.00	0.00
27.50	0.00	0	9.00	0.00	0.00	0.00
30.00	0.00	0	9.00	0.00	0.00	0.00
32.50	0.00	0	9.00	0.00	0.00	0.00
35.00	0.00	0	9.00	0.00	0.00	0.00
37.50	0.00	0	9.00	0.00	0.00	0.00
40.00	0.00	0	9.00	0.00	0.00	0.00
42.50	0.00	0	9.00	0.00	0.00	0.00
45.00	0.00	0	9.00	0.00	0.00	0.00
47.50	0.00	0	9.00	0.00	0.00	0.00
50.00	0.00	0	9.00	0.00	0.00	0.00
52.50	0.00	0	9.00	0.00	0.00	0.00
55.00	0.00	0	9.00	0.00	0.00	0.00
57.50	0.00	0	9.00	0.00	0.00	0.00
60.00	0.00	0	9.00	0.00	0.00	0.00
62.50	0.00	0	9.00	0.00	0.00	0.00
65.00	0.00	0	9.00	0.00	0.00	0.00
67.50	0.00	0	9.00	0.00	0.00	0.00
70.00	0.00	0	9.00	0.00	0.00	0.00

Reign Car Wash, Wareham, MA Type III 24-hr 100-Year Rainfall=7.57" Printed 6/23/2021 Page 4

73170.00 Drainage PRType IIIPrepared by VHBHydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Hydrograph for Pond INF2: Infiltration Basin 2

Time	Inflow	Storage	Elevation	Outflow	Discarded	Primary
					(US)	
0.00	0.00	0	9.00	0.00	0.00	0.00
2.50	0.00	0	9.00	0.00	0.00	0.00
5.00	0.02	1	9.00	0.02	0.02	0.00
7.50	0.03	3	9.00	0.03	0.03	0.00
10.00	0.07	6	9.00	0.07	0.07	0.00
12.50	0.40	1,189	9.71	0.48	0.35	0.13
15.00	0.08	6	9.00	0.08	0.08	0.00
17.50	0.04	3	9.00	0.04	0.04	0.00
20.00	0.03	2	9.00	0.03	0.03	0.00
22.50	0.02	2	9.00	0.02	0.02	0.00
25.00	0.00	0	9.00	0.00	0.00	0.00
27.50	0.00	0	9.00	0.00	0.00	0.00
30.00	0.00	0	9.00	0.00	0.00	0.00
32.50	0.00	0	9.00	0.00	0.00	0.00
35.00	0.00	0	9.00	0.00	0.00	0.00
37.50	0.00	0	9.00	0.00	0.00	0.00
40.00	0.00	0	9.00	0.00	0.00	0.00
42.50	0.00	0	9.00	0.00	0.00	0.00
45.00	0.00	0	9.00	0.00	0.00	0.00
47.50	0.00	0	9.00	0.00	0.00	0.00
50.00	0.00	0	9.00	0.00	0.00	0.00
52.50	0.00	0	9.00	0.00	0.00	0.00
55.00	0.00	0	9.00	0.00	0.00	0.00
57.50	0.00	0	9.00	0.00	0.00	0.00
60.00	0.00	0	9.00	0.00	0.00	0.00
62.50	0.00	0	9.00	0.00	0.00	0.00
65.00	0.00	0	9.00	0.00	0.00	0.00
67.50	0.00	0	9.00	0.00	0.00	0.00
70.00	0.00	0	9.00	0.00	0.00	0.00

Reign Car Wash, Wareham, MA Type III 24-hr 100-Year Rainfall=7.57" Printed 6/23/2021 Page 5

73170.00 Drainage PRType IIIPrepared by VHBHydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Hydrograph for Pond INF3: Infiltration Basin 3

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)
0.00	0.00	0	9.00	0.00	0.00	0.00
2.50	0.01	1	9.00	0.01	0.01	0.00
5.00	0.04	3	9.00	0.04	0.04	0.00
7.50	0.06	5	9.00	0.06	0.06	0.00
10.00	0.14	11	9.01	0.13	0.13	0.00
12.50	0.70	2.025	9.81	0.99	0.58	0.41
15.00	0.13	10	9.00	0.13	0.13	0.00
17.50	0.06	5	9.00	0.06	0.06	0.00
20.00	0.04	3	9.00	0.04	0.04	0.00
22.50	0.03	3	9.00	0.03	0.03	0.00
25.00	0.00	0	9.00	0.00	0.00	0.00
27.50	0.00	0	9.00	0.00	0.00	0.00
30.00	0.00	0	9.00	0.00	0.00	0.00
32.50	0.00	0	9.00	0.00	0.00	0.00
35.00	0.00	0	9.00	0.00	0.00	0.00
37.50	0.00	0	9.00	0.00	0.00	0.00
40.00	0.00	0	9.00	0.00	0.00	0.00
42.50	0.00	0	9.00	0.00	0.00	0.00
45.00	0.00	0	9.00	0.00	0.00	0.00
47.50	0.00	0	9.00	0.00	0.00	0.00
50.00	0.00	0	9.00	0.00	0.00	0.00
52.50	0.00	0	9.00	0.00	0.00	0.00
55.00	0.00	0	9.00	0.00	0.00	0.00
57.50	0.00	0	9.00	0.00	0.00	0.00
60.00	0.00	0	9.00	0.00	0.00	0.00
62.50	0.00	0	9.00	0.00	0.00	0.00
65.00	0.00	0	9.00	0.00	0.00	0.00
67.50	0.00	0	9.00	0.00	0.00	0.00
70.00	0.00	0	9.00	0.00	0.00	0.00

Hydrograph for Pond SFB1A: Sediment Forebay 1A

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	0	9.00	0.00
2.50	0.00	16	9.15	0.00
5.00	0.01	28	9.25	0.01
7.50	0.01	29	9.25	0.01
10.00	0.03	29	9.26	0.03
12.50	0.14	32	9.28	0.14
15.00	0.03	29	9.26	0.03
17.50	0.01	29	9.26	0.01
20.00	0.01	29	9.25	0.01
22.50	0.01	29	9.25	0.01
25.00	0.00	28	9.25	0.00
27.50	0.00	28	9.25	0.00
30.00	0.00	28	9.25	0.00
32.50	0.00	28	9.25	0.00
35.00	0.00	28	9.25	0.00
37.50	0.00	28	9.25	0.00
40.00	0.00	28	9.25	0.00
42.50	0.00	28	9.25	0.00
45.00	0.00	28	9.25	0.00
47.50	0.00	28	9.25	0.00
50.00	0.00	28	9.25	0.00
52.50	0.00	28	9.25	0.00
55.00	0.00	28	9.25	0.00
57.50	0.00	28	9.25	0.00
60.00	0.00	28	9.25	0.00
62.50	0.00	28	9.25	0.00
65.00	0.00	28	9.25	0.00
67.50	0.00	28	9.25	0.00
70.00	0.00	28	9.25	0.00

Hydrograph for Pond SFB1B: Sediment Forebay 1B

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	0	9.00	0.00
2.50	0.01	35	9.43	0.00
5.00	0.02	65	9.71	0.02
7.50	0.03	65	9.71	0.03
10.00	0.06	66	9.72	0.06
12.50	0.28	70	9.75	0.29
15.00	0.06	66	9.72	0.06
17.50	0.03	65	9.71	0.03
20.00	0.02	65	9.71	0.02
22.50	0.02	65	9.71	0.02
25.00	0.00	64	9.70	0.00
27.50	0.00	64	9.70	0.00
30.00	0.00	64	9.70	0.00
32.50	0.00	64	9.70	0.00
35.00	0.00	64	9.70	0.00
37.50	0.00	64	9.70	0.00
40.00	0.00	64	9.70	0.00
42.50	0.00	64	9.70	0.00
45.00	0.00	64	9.70	0.00
47.50	0.00	64	9.70	0.00
50.00	0.00	64	9.70	0.00
52.50	0.00	64	9.70	0.00
55.00	0.00	64	9.70	0.00
57.50	0.00	64	9.70	0.00
60.00	0.00	64	9.70	0.00
62.50	0.00	64	9.70	0.00
65.00	0.00	64	9.70	0.00
67.50	0.00	64	9.70	0.00
70.00	0.00	64	9.70	0.00

Hydrograph for Pond SFB2A: Sediment Forebay 2A

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cts)
0.00	0.00	0	9.00	0.00
2.50	0.00	12	9.14	0.00
5.00	0.01	23	9.25	0.01
7.50	0.01	23	9.25	0.01
10.00	0.02	24	9.26	0.02
12.50	0.12	26	9.28	0.12
15.00	0.02	24	9.26	0.02
17.50	0.01	24	9.26	0.01
20.00	0.01	23	9.25	0.01
22.50	0.01	23	9.25	0.01
25.00	0.00	23	9.25	0.00
27.50	0.00	23	9.25	0.00
30.00	0.00	23	9.25	0.00
32.50	0.00	23	9.25	0.00
35.00	0.00	23	9.25	0.00
37.50	0.00	23	9.25	0.00
40.00	0.00	23	9.25	0.00
42.50	0.00	23	9.25	0.00
45.00	0.00	23	9.25	0.00
47.50	0.00	23	9.25	0.00
50.00	0.00	23	9.25	0.00
52.50	0.00	23	9.25	0.00
55.00	0.00	23	9.25	0.00
57.50	0.00	23	9.25	0.00
60.00	0.00	23	9.25	0.00
62.50	0.00	23	9.25	0.00
65.00	0.00	23	9.25	0.00
67.50	0.00	23	9.25	0.00
70.00	0.00	23	9.25	0.00

Hydrograph for Pond SFB2B: Sediment Forebay 2B

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	0	9.00	0.00
2.50	0.01	30	9.28	0.00
5.00	0.01	58	9.46	0.01
7.50	0.02	59	9.46	0.02
10.00	0.05	60	9.47	0.05
12.50	0.27	67	9.51	0.28
15.00	0.06	60	9.47	0.06
17.50	0.03	59	9.46	0.03
20.00	0.02	58	9.46	0.02
22.50	0.02	58	9.46	0.02
25.00	0.00	57	9.45	0.00
27.50	0.00	57	9.45	0.00
30.00	0.00	57	9.45	0.00
32.50	0.00	57	9.45	0.00
35.00	0.00	57	9.45	0.00
37.50	0.00	57	9.45	0.00
40.00	0.00	57	9.45	0.00
42.50	0.00	57	9.45	0.00
45.00	0.00	57	9.45	0.00
47.50	0.00	57	9.45	0.00
50.00	0.00	57	9.45	0.00
52.50	0.00	57	9.45	0.00
55.00	0.00	57	9.45	0.00
57.50	0.00	57	9.45	0.00
60.00	0.00	57	9.45	0.00
62.50	0.00	57	9.45	0.00
65.00	0.00	57	9.45	0.00
67.50	0.00	57	9.45	0.00
70.00	0.00	57	9.45	0.00

Hydrograph for Pond SFB3A: Sediment Forebay 3A

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	0	9.00	0.00
2.50	0.01	55	9.75	0.01
5.00	0.03	57	9.76	0.03
7.50	0.04	58	9.77	0.04
10.00	0.10	59	9.78	0.10
12.50	0.51	70	9.84	0.52
15.00	0.09	59	9.78	0.09
17.50	0.05	58	9.77	0.05
20.00	0.03	57	9.76	0.03
22.50	0.02	57	9.76	0.02
25.00	0.00	55	9.75	0.00
27.50	0.00	55	9.75	0.00
30.00	0.00	55	9.75	0.00
32.50	0.00	55	9.75	0.00
35.00	0.00	55	9.75	0.00
37.50	0.00	55	9.75	0.00
40.00	0.00	55	9.75	0.00
42.50	0.00	55	9.75	0.00
45.00	0.00	55	9.75	0.00
47.50	0.00	55	9.75	0.00
50.00	0.00	55	9.75	0.00
52.50	0.00	55	9.75	0.00
55.00	0.00	55	9.75	0.00
57.50	0.00	55	9.75	0.00
60.00	0.00	55	9.75	0.00
62.50	0.00	55	9.75	0.00
65.00	0.00	55	9.75	0.00
67.50	0.00	55	9.75	0.00
70.00	0.00	55	9.75	0.00

Hydrograph for Pond SFB3B: Sediment Forebay 3B

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)
0.00	0.00	0	9.00	0.00
2.50	0.01	21	9.55	0.00
5.00	0.01	21	9.56	0.01
7.50	0.02	22	9.56	0.02
10.00	0.04	22	9.57	0.04
12.50	0.18	24	9.59	0.18
15.00	0.04	22	9.56	0.04
17.50	0.02	22	9.56	0.02
20.00	0.01	21	9.56	0.01
22.50	0.01	21	9.55	0.01
25.00	0.00	21	9.55	0.00
27.50	0.00	21	9.55	0.00
30.00	0.00	21	9.55	0.00
32.50	0.00	21	9.55	0.00
35.00	0.00	21	9.55	0.00
37.50	0.00	21	9.55	0.00
40.00	0.00	21	9.55	0.00
42.50	0.00	21	9.55	0.00
45.00	0.00	21	9.55	0.00
47.50	0.00	21	9.55	0.00
50.00	0.00	21	9.55	0.00
52.50	0.00	21	9.55	0.00
55.00	0.00	21	9.55	0.00
57.50	0.00	21	9.55	0.00
60.00	0.00	21	9.55	0.00
62.50	0.00	21	9.55	0.00
65.00	0.00	21	9.55	0.00
67.50	0.00	21	9.55	0.00
70.00	0.00	21	9.55	0.00
Appendix D - Standard 4 Computations and Supporting Information

Required:

- Long-Term Pollution Prevention Plan
- Water Quality Volume Calculations
- TSS Removal Worksheets

Reign Car Wash

Long – Term Pollution Prevention Plan

Long-Term Pollution Prevention Plan

This Long-Term Pollution Prevention Plan has been developed to establish site management practices that improve the quality of stormwater discharges from the Project.

Pollutant Control Approach

Maintenance of Pavement Systems

Standard Asphalt Pavement

Regular maintenance of pavement surfaces will prevent pollutants such as oil and grease, trash, and sediments from entering the stormwater management system. The following practices should be performed:

- Sweep or vacuum asphalt pavement areas annually with a commercial cleaning unit and dispose of removed material.
- Check dumpster areas frequently for spillage and/or pavement staining and clean as necessary
- Routinely pick up and remove litter from the parking areas, islands, and perimeter landscaping.

Maintenance of Vegetated Areas

Proper maintenance of vegetated areas can prevent the pollution of stormwater runoff by controlling the source of pollutants such as suspended sediments, excess nutrients, and chemicals from landscape care products. Practices that should be followed under the regular maintenance of the vegetated landscape include:

- > Inspect planted areas on a semi-annual basis and remove any litter.
- > Maintain planted areas adjacent to pavement to prevent soil washout.
- > Immediately clean any soil deposited on pavement.
- Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.
- Plant alternative mixture of grass species in the event of unsuccessful establishment.

1

- > The grass vegetation should be cut to a height between three and four inches.
- Pesticide/Herbicide Usage No pesticides are to be used unless a single spot treatment is required for a specific control application.
- Fertilizer usage should be avoided. If deemed necessary, slow release fertilizer should be used. Fertilizer may be used to begin the establishment of vegetation in bare or damaged areas, but should not be applied on a regular basis unless necessary.

Management of Snow and Ice

Storage and Disposal

Snow shall be stockpiled on standard pavement surfaces so sand and salt may be swept in the spring or removed as snow melts and drains through the stormwater management system. Key practices for the safe storage and disposal of snow include:

 Under no circumstances shall snow be disposed or stored in stormwater management areas.

Salt and Deicing Chemicals

The amount of salt and deicing chemicals to be used on the site shall be reduced to the minimum amount needed to provide safe pedestrian and vehicle travel. The following practices should be followed to control the amount of salt and deicing materials that come into contact with stormwater runoff:

- Devices used for spreading salt and deicing chemicals should be capable of varying the rate of application based on the site specific conditions.
- Sand and salt should be stockpiled under covered storage facilities that prevent precipitation and adjacent runoff from coming in contact with the deicing materials.

Spill Prevention and Response Plan

Spill prevention equipment and training will be provided by CFS.

Initial Notification

In the event of a spill the facility and/or construction manager or supervisor will be notified immediately.

FACILITY MANAGER

Name:	TBD	Home Phone:	
Phone:		E-mail:	
CONST Name: Phone:	RUCTION MANAGER TBD	Home Phone: E-mail:	

The supervisor will first contact the Fire Department and then notify the Police Department, the Public Health Commission and the Conservation Commission. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

Further Notification

The State Department of Environmental Protection (DEP)/Department of Environmental Services (DES) and the EPA may be notified depending upon the nature and severity of the spill. The attached list of emergency phone numbers shall be posted in the main construction/facility office and readily accessible to all employees. A hazardous waste spill report shall be completed as necessary using the attached form.

3

Emergency Notification Phone Numbers

1.	FACILITY N	IANAGER	
	Name:	TBD	Home Phone:
	Phone:		E-mail:
	ALTERENA	TE	
	Name:		Home Phone:
	Phone:		E-mail:
2.	FIRE DEPAR	TMENT	
	Emergency	/: 911	
	Business:	(508) 295-6725	
	POLICE DEP	ARTMENT	
	Emergency	/: 911	
	Business:	(508) 295-1212	
3.	CLEANUP C	ONTRACTOR:	
	Address:		
	Phone:		
4.	MASSACHU	SETTS DEPARTMENT OF E	NVIRONMENTAL PROTECTION
	Emergency	/: 1-888-304-1133	
	Southeast	Region – Lakeville Office:	508-946-2700
5.	NATIONAL R	ESPONSE CENTER	
	Phone:	(800) 424-8802	
	ALTERNATE	: U.S. ENVIRONMENTAL PI	ROTECTION AGENCY
	Emergency	/:	
	Business:	888-372-7341	

Hazardous Waste / Oil Spill Report

xact location (Transformer #) Make ype of equipment Make / N Weather Co on or near Water YesIf Yes, name of bod No ype of chemical/oil spilled mount of chemical/oil spilled ause of Spill leasures taken to contain or clean up spill mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing prums containing cotation and method of debris disposal ame and address of any person, firm, or corporation suf rocedures, method, and precautions instituted to preven	Siz tions Water	20
ype of equipment Make / N Weather Common or near Water Yes If Yes, name of bod No ype of chemical/oil spilled No mount of chemical/oil spilled Image: Spill ause of Spill Image: Spill leasures taken to contain or clean up spill Image: Spill mount of chemical/oil recovered Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup: Image: Spill Itaterial collected as a result of cleanup:	tions Siz	ze
/ N Weather Common or near Water I Yes If Yes, name of bod I No I	tions	
In or near Water Yes If Yes, name of bod No ype of chemical/oil spilled mount of chemical/oil spilled ause of Spill leasures taken to contain or clean up spill mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing Drums containing cocation and method of debris disposal ame and address of any person, firm, or corporation suf rocedures, method, and precautions instituted to preven	Water	
No ype of chemical/oil spilled mount of chemical/oil spilled ause of Spill leasures taken to contain or clean up spill mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing Drums containing ocation and method of debris disposal ame and address of any person, firm, or corporation sufficiency instituted to prevention instituted to prevention.		
ype of chemical/oil spilled mount of chemical/oil spilled ause of Spill leasures taken to contain or clean up spill mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing Drums containing prums containing cocation and method of debris disposal ame and address of any person, firm, or corporation sub rocedures, method, and precautions instituted to preven		
mount of chemical/oil spilled ause of Spill leasures taken to contain or clean up spill mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing Drums containing pocation and method of debris disposal ame and address of any person, firm, or corporation sub rocedures, method, and precautions instituted to preven		
ause of Spill leasures taken to contain or clean up spill mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing Drums containing Drums containing cocation and method of debris disposal ame and address of any person, firm, or corporation suf		
leasures taken to contain or clean up spill mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing Drums containing ocation and method of debris disposal ame and address of any person, firm, or corporation suf rocedures, method, and precautions instituted to preven		
mount of chemical/oil recovered laterial collected as a result of cleanup: Drums containing Drums containing Drums containing ocation and method of debris disposal ame and address of any person, firm, or corporation suf rocedures, method, and precautions instituted to preven		
laterial collected as a result of cleanup: Drums containing Drums containing Drums containing Drums containing Dcation and method of debris disposal ame and address of any person, firm, or corporation suf	Method	
Drums containing Drums containing Drums containing ocation and method of debris disposal ame and address of any person, firm, or corporation suf rocedures, method, and precautions instituted to preven		
Drums containing Drums containing ocation and method of debris disposal ame and address of any person, firm, or corporation suf rocedures, method, and precautions instituted to preven		
Drums containing ocation and method of debris disposal ame and address of any person, firm, or corporation sub rocedures, method, and precautions instituted to preven		
ame and address of any person, firm, or corporation sub rocedures, method, and precautions instituted to preven		
ame and address of any person, firm, or corporation suf		
ame and address of any person, firm, or corporation sub rocedures, method, and precautions instituted to preven		
rocedures, method, and precautions instituted to preven	ig damages:	
rocedures, method, and precautions instituted to preven		
	similar occurrenc	e from recurring:
pill reported to General Office by		AM / PM
pill reported to DEP / National Response Center by	Time	
EP Date Time AM	Time	
RC Date Time AM	Time M Inspector	

5

Assessment - Initial Containment

The supervisor or manager will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. A list of recommended spill equipment to be kept on site is included on the following page.

Fire / Police Department

911

Emergency Response Equipment

The following equipment and materials shall be maintained at all times and stored in a secure area for long-term emergency response need.

Supplies		Recommended Suppliers
SORBENT PILLOWS/"PIGS"	2	http://www.newpig.com
SORBENT BOOM/SOCK	25 FEET	Item # KIT276 — mobile container with two pigs,
SORBENT PADS	50	26 feet of sock, 50 pads, and five pounds of
LITE-DRI® ABSORBENT	5	absorbent (or equivalent)
POUNDS		http://www.forestry-suppliers.com
SHOVEL	1	Item # 43210 — Manhole cover pick (or
PRY BAR	1	equivalent)
GOGGLES	1 PAIR	Item # 33934 — Shovel (or equivalent)
GLOVES – HEAVY	1 PAIR	Item # 90926 — Gloves (or equivalent)
		Item # 23334 — Goggles (or equivalent)

Stormwater Operation and Maintenance Plan

Project Information

Site

3013 Cranberry Highway East Wareham, Massachusetts 02538

Owner – to be changed after property is sold

First Hartford Realty Corporation 149 Colonial Road Manchester, Connecticut 06042

Site Supervisor

TBD

Name:

Telephone: _____

Cell phone: _____

Email: _____

Description of Stormwater Maintenance Measures

The following Operation and Maintenance (O&M) program is proposed to ensure the continued effectiveness of the stormwater management system. Attached to this plan are a Stormwater Best Management Practices Checklist and Maintenance Figure for use during the long term operation and maintenance of the stormwater management system.

Parking Lot

> Sweep with mechanized cleaning equipment on an annual basis.

Catch Basin

- Catch basin shall be inspected and cleaned a minimum of at least twice per year by a licensed contractor.
- Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations.
- Any sediment accumulations in excess of half of the unit's sump depth shall be removed.
- Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary
- During colder periods, the catch basin grates must be kept free of snow and ice.
- During warmer periods, the catch basin grates must be kept free of leaves, litter, sand, and debris.
- Material shall be removed by a licensed contractor, who shall be responsible for disposing of the material off-site in a manner consistent with all local, state, and federal regulations.

Surface Infiltration Basin

- Infiltration basins should be inspected after every major storm for the first few months to ensure proper stabilization and function.
- The grass on the side slopes should be mowed, and grass clippings, organic matter, and accumulated trash and debris removed, at least twice during the growing season.
- Eroded or barren spots should be reseeded immediately after inspection to prevent additional erosion and accumulation of sediment.
- > Deep tilling can be used to break up a clogged surface area.
- Sediment should be removed from the basin as necessary. Removal procedures should not take place until the floor of the basin is thoroughly dry.

9

- Infiltration basins should be inspected at least twice a year to ensure proper stabilization and function.
- Light equipment, which will not compact the underlying soil, should be used to remove the top layer.

Sediment Forebay

- Inspect the forebay monthly and remove any deposited sediment at least four times per year.
- > Correct any ponding, erosion, and replant any vegetation that has died.

Prepared for: Permits Date: 06/21/2021

Reign Car Wash, Wareham, MA Long Term Best Management Practices – Maintenance/ Evaluation Checklist

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed ⊡yes ⊡no (List Items)	Date of Cleaning/Repair	Performed by
Asphalt Pavement	Annually			 Sweep or vacuum asphalt pavement areas annually with a commercial cleaning unit and dispose of removed material. Check loading docks and dumpster areas frequently for spillage and/or pavement staining and clean as necessary Routinely pick up and remove litter from the parking areas, islands, and perimeter landscaping. 			
Catch Basin	Bi-annually			 All catch basins / landscape drains shall be inspected and cleaned at least twice per year. Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations. Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary. During colder periods, the catch basin / landscape drain grates must be kept free of snow and ice. During warmer periods, the catch basin / landscape drain grates must be kept free of leaves, litter, sand, and debris. 	yes no		

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed ⊡yes ⊡no (List Items)	Date of Cleaning/Repair	Performed by
Surface Infiltration Basin	Bi-annually			 Infiltration basins should be inspected after every major storm for the first few months to ensure proper stabilization and function. The grass on the sideslopes and in the buffer areas should be mowed, and grass clippings, organic matter, and accumulated trash and debris removed, at least twice during the growing season. Eroded or barren spots should be reseeded immediately after inspection to prevent additional erosion and accumulation of sediment. Deep tilling can be used to break up a clogged surface area. Sediment should be removed from the basin as necessary. Removal procedures should not take place until the floor of the basin is thoroughly dry. Infiltration basins should be inspected at least twice a year to ensure proper stabilization and function. Light equipment, which will not compact the underlying soil, should be used to remove the top layer. 	□yes □no		
Sediment Forebay	Monthly			 Inspect Monthly Maintain vegetation to prevent erosion and blockage Clean forebay of sediment at least four times per year 	⊡yes ⊡no		

Stormwater Control Manager _____

Reign Car Wash, Wareham, MA Construction Best Management Practices – Maintenance/ Evaluation Checklist

Best Management Practice	Inspection Frequency	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/Repair Needed ☐yes	Date of Cleaning/Repair	Performed by:
Erosion Control Barriers/Silt Fencing	Weekly and after ½" storm events or greater			Inspect for deterioration or failure. Remove sediment as necessary.	⊡yes ⊡no		
Silt Sack Catch Basin Protection	Weekly and after ½" storm events or greater			Inspect for proper operation of catch basin. If clogged, dispose of sediment.	⊡yes ⊡no		
Gravel and Construction Entrance/Exit	Weekly and after 1/2" storm events or greater			Inspect for breakdown of crushed-stone. Reapply stone if necessary to depths specified in construction documents.	⊡yes ⊡no		

Stormwater Control Manager

Reign Car Wash

Water Quality Volume Calculations

Water Quality Volume Calculations

Project Name: Reign Car Wash

Proj. No.: 73170.00

Project Location: Wareham, MA

Date: 6/24/2012

Calculated by: SAP Checked by: KC

	Runoff Depth to be Treated (in.)	Impervious Area (SF)	Required Volume (c.f.)	-
To INF 1	1	10,925	910	
To INF 2	1	8,777	731	
To INF 3	0.5	16,387	683	Seeking waiver
Provided: (per HydroCAD)			Provided	-
		Stat	tic Vol. Below Outl	et (c.f.)
INF 1	1	10,925	986	-
INF 2	1	8,777	813	
INF 3	0.5	16,387	698	

Summary for Pond DEP1: Depression 1

Inflow Area	ı =	2,096 sf,	0.00% Impervious,	Inflow Depth = 0.00	for WQV event
Inflow	=	0.00 cfs @	12.09 hrs, Volume=	0 cf	
Outflow	=	0.00 cfs @	12.10 hrs, Volume=	0 cf, Atte	en= 0%, Lag= 0.5 min
Discarded	=	0.00 cfs @	12.10 hrs, Volume=	0 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.50' @ 12.10 hrs Surf.Area= 171 sf Storage= 0 cf

Plug-Flow detention time= 0.4 min calculated for 0 cf (100% of inflow) Center-of-Mass det. time= 0.4 min (788.3 - 787.9)

Volume	Inver	: Avail	.Storage	Storage Description	on		
#1	9.50	I	108 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc))
Elevatio (fee	on S •t)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
9.5 10.0	50 00	171 264	89.4 95.7	0 108	0 108	171 275	
Device	Routing	Inv	ert Outle	et Devices			
#1	Discarded	9.	50' 8.27	0 in/hr Exfiltration	over Surface ar	rea	

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=9.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Stage-Area-Storage for Pond DEP1: Depression 1

Elevation (feet)	Surface (sg-ft)	Storage (cubic-feet)
9.50	171	0
9.51	173	2
9.52	174	3
9.53	176	5
9.54	178	/ Q
9.56	181	11
9.57	183	12
9.58	185	14
9.59	186	16
9.60	188	18
9.01	190	20
9.63	193	24
9.64	195	26
9.65	197	28
9.66	199	30
9.67	200	32
9.68	202	34 36
9.70	204	38
9.71	208	40
9.72	209	42
9.73	211	44
9.74	213	46
9.75	215	40 50
9.77	219	52
9.78	221	55
9.79	222	57
9.80	224	59
9.81	226	61
9.02	220	66
9.84	232	68
9.85	234	71
9.86	236	73
9.87	238	75
9.88	240	78 80
9.09	242	83
9.91	246	85
9.92	248	87
9.93	250	90
9.94	252	92
9.90 9 96	204 256	95 QR
9.97	258	100
9.98	260	103
9.99	262	105
10.00	264	108

Summary for Pond DEP2: Depression 2

Inflow Area	=	3,262 sf,	0.03% Imper	rvious, I	Inflow Depth =	0.00"	for WQV event
Inflow	=	0.00 cfs @	12.09 hrs, Vol	lume=	0 ct	f	
Outflow	=	0.00 cfs @	12.10 hrs, Vol	lume=	0 ct	f, Atten	= 0%, Lag= 0.5 min
Discarded	=	0.00 cfs @	12.10 hrs, Vol	lume=	0 c	f	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 10.50' @ 12.10 hrs Surf.Area= 164 sf Storage= 0 cf

Plug-Flow detention time= 0.4 min calculated for 0 cf (100% of inflow) Center-of-Mass det. time= 0.4 min (788.3 - 787.9)

Volume	Invert	Avail.	Storage	Storage Descripti	on		
#1	10.50'		140 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)
Elevatio (feet	n Su t)	ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
10.5 11.0	0 0	164 415	248.6 255.0	0 140	0 140	164 450	
Device	Routing	Inv	ert Outle	et Devices			
#1	Discarded	10.5	50' 8.27	0 in/hr Exfiltratio	n over Surface ar	ea	

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=10.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Stage-Area-Storage for Pond DEP2: Depression 2

Elevation	Surface (sq-ft)	Storage (cubic-feet)
10.50	164	0
10.51	168	2
10.52	172	3
10.53	176	5
10.54	180	/ Q
10.55	188	11
10.57	192	12
10.58	196	14
10.59	201	16
10.60	205	18
10.01	209 214	20
10.63	218	25
10.64	223	27
10.65	227	29
10.66	232	32
10.67	230	34 36
10.69	246	39
10.70	251	41
10.71	255	44
10.72	260	46
10.73	265	49
10.74	270	54
10.76	280	57
10.77	285	60
10.78	290	63
10.79	296	66
10.80	301	69 72
10.82	311	75
10.83	317	78
10.84	322	81
10.85	328	84
10.86	333 330	88 01
10.88	344	94
10.89	350	98
10.90	356	101
10.91	361	105
10.92	307 373	109
10.93	379	112
10.95	385	120
10.96	391	124
10.97	397	128
10.98	403 700	132
11.00	415	140

Summary for Pond INF1: Infiltration Basin 1

Inflow Area	a =	17,799 sf,	61.16% lm	pervious,	Inflow Depth =	0.42"	for WG	V event
Inflow	=	0.21 cfs @	12.09 hrs, \	Volume=	626 cf			
Outflow	=	0.14 cfs @	12.19 hrs, \	Volume=	626 cf	, Atten	= 34%,	Lag= 6.0 min
Discarded	=	0.14 cfs @	12.19 hrs, \	Volume=	626 cf			
Primary	=	0.00 cfs @	0.00 hrs, `	Volume=	0 cf			

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.06' @ 12.19 hrs Surf.Area= 740 sf Storage= 42 cf

Plug-Flow detention time= 2.3 min calculated for 625 cf (100% of inflow) Center-of-Mass det. time= 2.3 min (824.0 - 821.7)

Volume	Invert	Avail.St	orage	Storage Descriptio	n				
#1	9.00'	2,9	934 cf	Custom Stage Da	ta (Irregular) Liste	ed below (Recalc)			
Elevatio (fee	on Su t)	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
9.0 10.0 11.0	0 00 00	711 1,289 2,693	234.6 248.5 318.7	0 986 1,948	0 986 2,934	711 1,297 4,479			
Device	Routing	Inver	Outle	et Devices					
#1 #2	#1Discarded9.00'8.270 in/hr Exfiltration over Surface area#2Primary10.00'6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)								
Discard	Discarded OutFlow Max=0.14 cfs @ 12.19 hrs HW=9.06' (Free Discharge)								

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=9.00' (Free Discharge) ←2=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Stage-Area-Storage for Pond INF1: Infiltration Basin 1

Elevation (feet)	Surface (sɑ-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
9.00	711		10.02	1.312	1.012
9.02	721	14	10.04	1.335	1.038
9.04	731	29	10.06	1.359	1.065
9.06	741	44	10.08	1,382	1,093
9.08	751	58	10.10	1,406	1,121
9.10	761	74	10.12	1,430	1,149
9.12	771	89	10.14	1,455	1,178
9.14	782	104	10.16	1,479	1,207
9.16	792	120	10.18	1,504	1,237
9.18	802	136	10.20	1,529	1,267
9.20	813	152	10.22	1,554	1,298
9.22	824	169	10.24	1,579	1,329
9.24	834	185	10.26	1,605	1,361
9.26	845	202	10.28	1,631	1,394
9.28	856	219	10.30	1,656	1,426
9.30	866	236	10.32	1,683	1,460
9.32	877	254	10.34	1,709	1,494
9.34	888	271	10.36	1,736	1,528
9.36	899	289	10.38	1,762	1,563
9.38	911	307	10.40	1,789	1,599
9.40	922	326	10.42	1,816	1,635
9.42	933	344	10.44	1,844	1,671
9.44	944	363	10.46	1,871	1,709
9.40	950	382	10.48	1,899	1,740
9.40	907	401	10.50	1,927	1,704
9.50	979	421	10.52	1,900	1,023
9.52	1 002	440	10.54	2 012	1,003
9.54	1,002	400	10.50	2,012	1,903
9.50	1,014	400 501	10.50	2,041	1,945
9.60	1,023	521	10.00	2,070	2 026
9.62	1 049	542	10.62	2,000	2,020
9.64	1,061	563	10.66	2,158	2,000
9.66	1.073	585	10.68	2.188	2,155
9.68	1.085	606	10.70	2.218	2,199
9.70	1,098	628	10.72	2,248	2,243
9.72	1,110	650	10.74	2,279	2,289
9.74	1,122	673	10.76	2,309	2,334
9.76	1,135	695	10.78	2,340	2,381
9.78	1,147	718	10.80	2,371	2,428
9.80	1,160	741	10.82	2,403	2,476
9.82	1,172	764	10.84	2,434	2,524
9.84	1,185	788	10.86	2,466	2,573
9.86	1,198	812	10.88	2,498	2,623
9.88	1,211	836	10.90	2,530	2,673
9.90	1,224	860	10.92	2,562	2,724
9.92	1,236	885	10.94	2,594	2,776
9.94	1,250	910	10.96	2,627	2,828
9.96	1,263	935	10.98	2,660	2,881
9.98	1,276	960	11.00	2,693	2,934
10.00	1,209	900			

Summary for Pond INF2: Infiltration Basin 2

Inflow Area	a =	19,377 sf,	44.39% In	npervious,	Inflow Depth =	0.30"	for WQV event
Inflow	=	0.17 cfs @	12.10 hrs,	Volume=	487 c	of	
Outflow	=	0.16 cfs @	12.12 hrs,	Volume=	487 c	of, Atter	n= 5%, Lag= 1.1 min
Discarded	=	0.16 cfs @	12.12 hrs,	Volume=	487 c	of	
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0 0	of	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 9.01' @ 12.12 hrs Surf.Area= 1,532 sf Storage= 13 cf

Plug-Flow detention time= 1.3 min calculated for 487 cf (100% of inflow) Center-of-Mass det. time= 1.3 min (826.4 - 825.1)

Volume	Inve	rt Avai	I.Storage	Storage Description	n			
#1	9.0	0'	3,232 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)		
Elevatio (fee	on s et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
9.0 10.0 10.5	00 00 50	1,529 1,936 4,224	171.0 182.2 348.1	0 1,729 1,503	0 1,729 3,232	1,529 1,890 8,892		
Device	Routing	In	vert Outle	et Devices				
#1 #2	#1 Discarded 9.00' 8.270 in/hr Exfiltration over Surface area #2 Primary 9.50' 8.0" Round Culvert L= 30.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 9.50' / 8.20' S= 0.0433 '/' Cc= 0.900 n= 0.013 Cast iron, coated, Flow Area= 0.35 sf							
Discard	Discarded OutFlow Max=0.29 cfs @ 12.12 hrs HW=9.01' (Free Discharge)							

1=Exfiltration (Exfiltration Controls 0.29 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=9.00' (Free Discharge) ←2=Culvert (Controls 0.00 cfs)

Stage-Area-Storage for Pond INF2: Infiltration Basin 2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
9.00	1,529	0	10.02	2,011	1,768
9.02	1,537	3 I 61	10.04	2,087	1,809
9.04	1,544	92	10.00	2,104	1,001
9.08	1,560	124	10.10	2,323	1,941
9.10	1,568	155	10.12	2,405	1,988
9.12	1,575	186	10.14	2,488	2,037
9.14	1,583	218	10.16	2,572	2,088
9.16	1,591	250	10.18	2,658	2,140
9.18	1,599	281	10.20	2,745	2,194
9.20	1,007	346	10.22	2,034	2,250
9.24	1,622	378	10.26	3,016	2,367
9.26	1,630	411	10.28	3,109	2,428
9.28	1,638	443	10.30	3,203	2,491
9.30	1,646	476	10.32	3,299	2,556
9.32	1,654	509	10.34	3,396	2,623
9.34	1,002	576	10.30	3,490 3,505	2,092
9.38	1,678	609	10.30	3,696	2,703
9.40	1,686	643	10.42	3,799	2,911
9.42	1,694	677	10.44	3,903	2,988
9.44	1,702	711	10.46	4,009	3,067
9.46	1,710	745	10.48	4,116	3,148
9.48	1,718	//9	10.50	4,224	3,232
9.50	1,727	848			
9.54	1,733	883			
9.56	1,751	918			
9.58	1,759	953			
9.60	1,767	988			
9.62	1,776	1,024			
9.64	1,784	1,059			
9.00	1,792	1,095			
9.70	1.809	1,167			
9.72	1,817	1,203			
9.74	1,826	1,240			
9.76	1,834	1,276			
9.78	1,842	1,313			
9.80	1,851	1,350			
9.82	1,868	1,307			
9.86	1,876	1,462			
9.88	1,885	1,499			
9.90	1,893	1,537			
9.92	1,902	1,575			
9.94	1,910	1,613			
9.90 9.90	1,919	1,001 1,690			
10.00	1,936	1,729			
	,	.,5			

Summary for Pond INF3: Infiltration Basin 3

Inflow Area	a =	23,210 sf,	71.12% In	npervious,	Inflow Depth = 0).52" fo	r WQV event
Inflow	=	0.31 cfs @	12.11 hrs,	Volume=	1,012 cf		
Outflow	=	0.30 cfs @	12.13 hrs,	Volume=	1,012 cf,	Atten= 3	3%, Lag= 1.5 min
Discarded	=	0.30 cfs @	12.13 hrs,	Volume=	1,012 cf		-
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0 cf		

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.01' @ 12.13 hrs Surf.Area= 2,009 sf Storage= 24 cf

Plug-Flow detention time= 1.3 min calculated for 1,011 cf (100% of inflow) Center-of-Mass det. time= 1.3 min (812.9 - 811.6)

Volume	Invert	Avail.S	torage	Storage Descriptio	n		
#1	9.00'	4,	359 cf	Custom Stage Da	ita (Irregular) Liste	ed below (Recalc)	
Elevatio (fee	n Su t)	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
9.0 10.0 10.5	0 0 60	1,996 3,267 3,751	619.6 641.8 531.6	0 2,606 1,753	0 2,606 4,359	1,996 4,312 14,606	
Device	Routing	Inver	t Outle	et Devices			
#1 #2	Discarded Primary	9.00 9.32)' 8.27 2' 6.0'' Inlet n= 0	0 in/hr Exfiltration Round FES L= 52 / Outlet Invert= 9.33 .012 Corrugated Pl	over Surface ard 2.0' RCP, mitere 2' / 8.70' S= 0.0 ⁻⁷ P, smooth interior	ea ed to conform to fill, Ke= 119 '/' Cc= 0.900 c, Flow Area= 0.20 sf	: 0.700

Discarded OutFlow Max=0.38 cfs @ 12.13 hrs HW=9.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.38 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=9.00' (Free Discharge) ←2=FES (Controls 0.00 cfs)

Stage-Area-Storage for Pond INF3: Infiltration Basin 3

Elevation	Surface	Storage	Elevation	Surface	Storage
9.00	1,996	0	10.02	3,286	2,671
9.02	2,018	40	10.04	3,304	2,737
9.04	2,041	81	10.06	3,323	2,803
9.06	2,063	122	10.08	3,342	2,870
9.08	2,000	205	10.10	3 380	2,937
9.12	2,132	248	10.12	3,399	3,072
9.14	2,155	291	10.16	3,418	3,140
9.16	2,178	334	10.18	3,437	3,209
9.18	2,202	378	10.20	3,457	3,278
9.20	2,225	422	10.22	3 495	3,347
9.24	2,273	512	10.26	3,515	3,487
9.26	2,296	558	10.28	3,534	3,557
9.28	2,320	604	10.30	3,553	3,628
9.30	2,345	650	10.32	3,5/3	3,700
9.32	2,309	745	10.34	3,592	3 843
9.36	2,418	793	10.38	3,632	3,916
9.38	2,442	842	10.40	3,652	3,989
9.40	2,467	891	10.42	3,671	4,062
9.42	2,492	941	10.44	3,691	4,135
9.44 9.46	2,517	991 1 041	10.46	3 731	4,209 4 284
9.48	2,567	1,092	10.40	3,751	4,359
9.50	2,593	1,144			
9.52	2,618	1,196			
9.54	2,644	1,249			
9.50	2,009	1,302			
9.60	2,721	1,410			
9.62	2,747	1,464			
9.64	2,774	1,519			
9.66	2,800	1,575			
9.00	2,020	1,031			
9.72	2,880	1,746			
9.74	2,907	1,803			
9.76	2,934	1,862			
9.78	2,961	1,921			
9.80	3 015	2 040			
9.84	3,043	2,101			
9.86	3,070	2,162			
9.88	3,098	2,224			
9.90 g g2	3,120 3 151	2,280			
9.94	3.182	2,343			
9.96	3,210	2,476			
9.98	3,239	2,540			
10.00	3,267	2,606			
			1		

Project:	Reign Carwash	Project	#	73170.00		
Location:	Wareham, MA	Sheet:	1	of	1	
Calculated	By: SAP	Date:	06	/24/2021		
Checked B	y: KC	Date:	06	/24/2021		
Title: SFE	Pretreatment Calculations					

_	
SFI	B1A
•	Contributing impervious = 3.354 sf
	WOV $(1'/12'')$ (3.354 sft= 280 CF
	Pretreatment Vol Required 10% x 280 = 280 CF
	Pretrostment Vel Previded (Vel below weir ELEV 0.25 in Undre Ced) 28 of
•	Pretreatment voi Provided (voi. below weir ELEV 9.25 in HydroCad) = 28 cr
SFI	B1B
	Contributing impensious - 7111 sf
	WOV $(1'/12'')$ (7 111 sfl = 593 CF
	Pretreatment Vol Required 10% x 593 = 593 CF
•	
•	Pretreatment Vol Provided (Vol. below weir ELEV 9.7 in HydroCad) = 64 cf
-	
SFI	32A
	Contributing impervious = 2532 sf
	WOV $(1'/12'') (2.522 \text{ sft} - 211 \text{ CE})$
	District Vol Pequired 10% v 211 - 211 CF
•	Pretreatment Vol Provided (Vol. below weir elev 9.25 in HydroCad) = 23 cf
SFI	32B
	Contributing imponyious - 6069 sf
	$W_{0V} = (1/12^{\circ}) (6.069 \text{ s}) - 5.06 \text{ C}$
	Protrostment Vol Pequired 10% x 506 - 50.6 CF
•	
•	Pretreatment Vol Provided (Vol. below weir elev 9.45 in HydroCad) = 57 cf
SFI	B3A (Seeking reduced WQv of 0.5-inches over impervious surface)
	Contributing impervious = 11.802 sf
	WOV $(0.5'/(12''))$ (11.802 sf) = 492 CF
	Pretreatment Vol Required 10% v 492 - 492 CF
•	
•	Pretreatment Vol Provided (Vol. below weir elev 9.75 in HydroCad) = 55 cf
_	
SFI	B3B (Seeking reduced WQv of 0.5-inches over impervious surface)
	Contributing impensious - 1701 sf
	WOV $(0.5'/12'')$ (4.704 sft = 196 CF
	Pretreatment Vol Required 10% v 196 = 196 CF
•	Pretreatment voi Provided (voi. below weir elev 9.55 in HydroCad) = 21 cf

Summary for Pond SFB1A: Sediment Forebay 1A

Inflow Area	a =	5,889 sf,	56.95% Impervious,	Inflow Depth = 0.45	for WQV event
Inflow	=	0.07 cfs @	12.09 hrs, Volume=	221 cf	
Outflow	=	0.07 cfs @	12.10 hrs, Volume=	193 cf, At	ten= 0%, Lag= 0.5 min
Primary	=	0.07 cfs @	12.10 hrs, Volume=	193 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.27' @ 12.10 hrs Surf.Area= 128 sf Storage= 30 cf

Plug-Flow detention time= 91.3 min calculated for 193 cf (87% of inflow) Center-of-Mass det. time= 34.3 min (822.2 - 787.9)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on		
#1	9.	00'	156 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
9.0 10.0	00 00	100 220	50.0 59.9	0 156	0 156	100 203	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	9	.25' 8.0'	long Sharp-Crest	ed Rectangular	Weir 2 End Contra	iction(s)

Primary OutFlow Max=0.07 cfs @ 12.10 hrs HW=9.27' (Free Discharge) ☐ 1=Sharp-Crested Rectangular Weir (Weir Controls 0.07 cfs @ 0.44 fps)

Stage-Area-Storage for Pond SFB1A: Sediment Forebay 1A

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sɑ-ft)	Storage (cubic-feet)
9.00	100	<u>0</u>	9.51	155	65
9.01	101	1	9.52	157	66
9.02	102	2	9.53	158	68
9.03	103	3	9.54	159	69
9.04	104	4	9.55	160	71
9.05	105	5	9.56	161	73
9.06	106	6	9.57	163	74
9.07	107	7	9.58	164	76
9.08	108	8	9.59	165	77
9.09	109	9	9.60	166	79
9.10	110	10	9.61	168	81
9.11	111	12	9.62	169	82
9.12	112	13	9.63	170	84
9.13	113	14	9.64	1/1	86
9.14	114	15	9.65	173	88
9.15	115	16	9.66	174	89
9.10	110	17	9.07	175	91
9.17	117	10	9.00	170	93
9.10	110	20	9.09	170	90
9.19	120	21	9.70	180	90
9.20	120	22	9.71	182	100
9.21	121	20	9.72	183	100
9.22	122	26	9 74	184	102
9.24	125	27	9.75	186	105
9.25	126	28	9.76	187	107
9.26	127	29	9.77	188	109
9.27	128	31	9.78	190	111
9.28	129	32	9.79	191	113
9.29	130	33	9.80	192	115
9.30	131	35	9.81	194	117
9.31	132	36	9.82	195	119
9.32	133	37	9.83	196	121
9.33	134	39	9.84	198	123
9.34	136	40	9.85	199	125
9.35	137	41	9.86	200	127
9.36	138	43	9.87	202	129
9.37	139	44	9.88	203	131
9.38	140	45	9.89	205	133
9.39	141	47	9.90	200	135
9.40	142	40 50	9.91	207	137
9.41	144	51	9.92	209	139
9.42	145	53	9.95 9.94	210	141
9 44	140	54	9.95	213	145
9,45	148	55	9.96	214	147
9,46	149	57	9.97	216	150
9.47	151	58	9.98	217	152
9.48	152	60	9.99	219	154
9.49	153	62	10.00	220	156
9.50	154	63			

Summary for Pond SFB1B: Sediment Forebay 1B

Inflow Area	a =	11,489 sf,	61.89% Impervi	ious, Inflow De	epth = 0.49 "	for WQV event
Inflow	=	0.14 cfs @	12.09 hrs, Volur	me=	469 cf	
Outflow	=	0.14 cfs @	12.09 hrs, Volur	me=	405 cf, Atte	n= 1%, Lag= 0.2 min
Primary	=	0.14 cfs @	12.09 hrs, Volur	ne=	405 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 9.73' @ 12.09 hrs Surf.Area= 125 sf Storage= 68 cf

Plug-Flow detention time= 95.4 min calculated for 405 cf (86% of inflow) Center-of-Mass det. time= 35.8 min (823.7 - 787.9)

Volume	Inv	ert Avai	I.Storage	Storage Description	on		
#1	9.	00'	105 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
9.0 10.0)0)0	64 153	34.1 47.7	0 105	0 105	64 162	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	g	.70' 8.0'	long Sharp-Creste	ed Rectangular V	Neir 2 End Contra	action(s)

Primary OutFlow Max=0.14 cfs @ 12.09 hrs HW=9.73' (Free Discharge) —1=Sharp-Crested Rectangular Weir (Weir Controls 0.14 cfs @ 0.57 fps)

Stage-Area-Storage for Pond SFB1B: Sediment Forebay 1B

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
9.00	64	0	9.51	105	43
9.01	65	1	9.52	106	44
9.02	65	1	9.53	106	45
9.03	66	2	9.54	107	46
9.04	67	3	9.55	108	47
9.05	68	3	9.56	109	48
9.06	68	4	9.57	110	49
9.07	69 70	5	9.58	111	50
9.00	70	D C	9.59	112	51
9.09	70	07	9.00	113	52 53
9.10	71	7	9.01	114	55
9.11	72	/ 8	9.02	115	55
9.12	73	0	9.05	110	57
9.15 9.14	73	10	9.65	117	58
9.14	74	10	9.65	118	50
9.16	76	10	9.67	110	60 60
9.10	76	12	9.68	120	62
9.18	70	13	9.60	120	63
9 19	78	13	9 70	122	64
9.20	79	10	971	123	65
9.21	80	15	9.72	124	67
9.22	80	16	9.73	125	68
9.23	81	17	9.74	126	69
9.24	82	17	9.75	127	70
9.25	83	18	9.76	128	72
9.26	83	19	9.77	129	73
9.27	84	20	9.78	130	74
9.28	85	21	9.79	131	76
9.29	86	22	9.80	132	77
9.30	87	23	9.81	133	78
9.31	88	23	9.82	134	79
9.32	88	24	9.83	135	81
9.33	89	25	9.84	136	82
9.34	90	26	9.85	137	84
9.35	91	27	9.86	138	85
9.36	92	28	9.87	139	86
9.37	92	29	9.88	140	88
9.38	93	30	9.89	141	89
9.39	94	31	9.90	142	91
9.40	95	32	9.91	143	92
9.41	96	33	9.92	144	93
9.42	97	34	9.93	140	95
9.43	98	34 25	9.94	147	90
9.44 0.45	90	30 26	9.90	140	90
9.40 Q /A	99 100	30 27	9.90	149	99 101
0.40 0/7	100	20	0.02	150	101
9.47 9.48	107	30	0.00	157	102
9 49	103	41	10.00	153	105
9.50	104	42			
0.00					

Summary for Pond SFB2A: Sediment Forebay 2A

Inflow Area	a =	6,040 sf,	41.92% Imperviou	s, Inflow Depth = 0).33" for WQV event	
Inflow	=	0.05 cfs @	12.09 hrs, Volume	= 167 cf		
Outflow	=	0.05 cfs @	12.10 hrs, Volume	= 144 cf,	Atten= 0%, Lag= 0.5 mil	n
Primary	=	0.05 cfs @	12.10 hrs, Volume	= 144 cf	-	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.27' @ 12.10 hrs Surf.Area= 109 sf Storage= 25 cf

Plug-Flow detention time= 96.2 min calculated for 144 cf (86% of inflow) Center-of-Mass det. time= 36.1 min (824.0 - 787.9)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on		
#1	9.0	00'	144 cf	Custom Stage D	ata (Irregular) Lisi	ted below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
9.0 10.0)0)0	77 224	37.1 73.1	0 144	0 144	77 397	
Device	Routing	In	vert Outle	et Devices			
#1	Primary 9.25' 6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)						

Primary OutFlow Max=0.05 cfs @ 12.10 hrs HW=9.27' (Free Discharge) 1=Sharp-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.45 fps)
Stage-Area-Storage for Pond SFB2A: Sediment Forebay 2A

Elevation	Surface	Storage	Elevation (feet)	Surface	Storage
9.00	77	0	9.51	142	55
9.01	78	1	9.52	144	57
9.02	79	2	9.53	145	58
9.03	80	2	9.54	147	59
9.04	81	3	9.55	148	61
9.05	83	4	9.56	150	62
9.06	84	5	9.57	151	64
9.07	85	6	9.58	153	65
9.08	86	7	9.59	154	67
9.09	87	7	9.60	156	69
9.10	88	8	9.61	158	70
9.11	89	9	9.62	159	72
9.12	91	10	9.03	101	73
9.13	92	12	9.04	16/	73
9.14	94	12	9.66	165	78
9.16	95	14	9.67	167	80
9.17	97	15	9.68	169	82
9.18	98	16	9.69	170	83
9.19	99	17	9.70	172	85
9.20	100	18	9.71	173	87
9.21	102	19	9.72	175	88
9.22	103	20	9.73	177	90
9.23	104	21	9.74	178	92
9.24	105	22	9.75	180	94
9.25	107	23	9.76	182	96
9.26	108	24	9.77	183	97
9.27	109	20	9.78	100	99 101
9.20	110	20	9.79	107	101
9.30	112	28	9.80	190	105
9.31	114	20	9.82	192	100
9.32	116	31	9.83	194	109
9.33	117	32	9.84	195	111
9.34	118	33	9.85	197	113
9.35	120	34	9.86	199	115
9.36	121	35	9.87	201	117
9.37	122	37	9.88	202	119
9.38	124	38	9.89	204	121
9.39	125	39	9.90	206	123
9.40	127	40	9.91	208	125
9.41	128	42	9.92	209	127
9.42	129	43	9.93	211	129
9.43 9.44	132	44	9.94	215	131
9 45	134	40	9.96	210	135
9.46	135	48	9.97	218	137
9.47	137	50	9.98	220	140
9.48	138	51	9.99	222	142
9.49	139	52	10.00	224	144
9.50	141	54			

Summary for Pond SFB2B: Sediment Forebay 2B

Inflow Area	a =	13,337 sf,	45.50% Impervious,	Inflow Depth = 0.36	for WQV event
Inflow	=	0.12 cfs @	12.09 hrs, Volume=	400 cf	
Outflow	=	0.12 cfs @	12.10 hrs, Volume=	343 cf, Att	en= 2%, Lag= 0.5 min
Primary	=	0.12 cfs @	12.10 hrs, Volume=	343 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 9.48' @ 12.10 hrs Surf.Area= 184 sf Storage= 63 cf

Plug-Flow detention time= 99.2 min calculated for 343 cf (86% of inflow) Center-of-Mass det. time= 37.7 min (825.5 - 787.9)

Volume	Inv	ert Avai	I.Storage	Storage Description	on		
#1	9.0	00'	371 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)
Elevatio (fee	on t)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
9.0 10.0 10.1	00 00 0	82 339 3,786	34.6 88.4 373.0	0 196 175	0 196 371	82 612 11,062	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	g	.45' 6.0'	long Sharp-Crest	ed Rectangular V	Veir 2 End Contra	iction(s)

Primary OutFlow Max=0.12 cfs @ 12.10 hrs HW=9.48' (Free Discharge) ☐ 1=Sharp-Crested Rectangular Weir (Weir Controls 0.12 cfs @ 0.59 fps)

Stage-Area-Storage for Pond SFB2B: Sediment Forebay 2B

Elevation (feet)	Surface (sɑ-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sɑ-ft)	Storage (cubic-feet)
9.00	82		10.02	731	206
9.02	85	2	10.04	1.272	226
9.04	89	3	10.06	1.961	258
9.06	92	5	10.08	2,799	306
9.08	96	7	10.10	3.786	371
9.10	100	9		-,	
9.12	104	11			
9.14	107	13			
9.16	111	15			
9.18	115	18			
9.20	119	20			
9.22	124	22			
9.24	128	25			
9.26	132	28			
9.28	136	30			
9.30	141	33			
9.32	145	36			
9.34	150	39			
9.30	154	42			
9.30	109	40			
9.40	169	40 52			
9.42	174	55			
9.46	178	58			
9.48	184	62			
9.50	189	66			
9.52	194	70			
9.54	199	74			
9.56	204	78			
9.58	210	82			
9.60	215	86			
9.62	221	90			
9.64	226	95			
9.66	232	99			
9.08	238	104			
9.70	244	109			
9.72	249	114			
9.74	200	173			
9.78	267	129			
9.80	274	135			
9.82	280	140			
9.84	286	146			
9.86	292	152			
9.88	299	158			
9.90	305	164			
9.92	312	170			
9.94	319	176			
9.96	325	183			
9.98	332	189			
10.00	339	196			
			I		

Summary for Pond SFB3A: Sediment Forebay 3A

Inflow Are	ea =	16,792 sf, 70.28% Impervious,	Inflow Depth = 0.56" for WQV event
Inflow	=	0.22 cfs @ 12.11 hrs, Volume=	778 cf
Outflow	=	0.22 cfs @ 12.12 hrs, Volume=	723 cf, Atten= 1%, Lag= 0.5 min
Primary	=	0.22 cfs @ 12.12 hrs, Volume=	723 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.80' @ 12.12 hrs Surf.Area= 171 sf Storage= 63 cf

Plug-Flow detention time= 60.1 min calculated for 723 cf (93% of inflow) Center-of-Mass det. time= 22.9 min (812.4 - 789.5)

Volume	Inv	ert Avai	I.Storage	Storage Description	on		
#1	9.	00'	103 cf	Custom Stage Da	ata (Irregular)List	ed below (Recalc))
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
9.0 10.0)0)0	15 236	74.3 96.9	0 103	0 103	15 335	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	g	.75' 6.0'	long Sharp-Creste	ed Rectangular V	Veir 2 End Contra	ction(s)

Primary OutFlow Max=0.22 cfs @ 12.12 hrs HW=9.80' (Free Discharge) ←1=Sharp-Crested Rectangular Weir (Weir Controls 0.22 cfs @ 0.73 fps)

Stage-Area-Storage for Pond SFB3A: Sediment Forebay 3A

Elevation (feet)	Surface (sg-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sg-ft)	Storage (cubic-feet)
9.00	15	0	9.51	95	25
9.01	16	0	9.52	97	26
9.02	17	0	9.53	99	27
9.03	18	0	9.54	102	28
9.04	19	1	9.55	104	29
9.05	20	1	9.56	106	30
9.06	21	1	9.57	109	31
9.07	22	1	9.50	111	১∠ ৫৫
9.00 9.00	23	2	9.59	115	35
9.10	25	2	9.61	118	36
9.11	26	2	9.62	121	37
9.12	28	3	9.63	123	38
9.13	29	3	9.64	126	39
9.14	30	3	9.65	129	41
9.15	31	3	9.66	131	42
9.16	33	4	9.67	134	43
9.17	34	4	9.68	137	45
9.18	35	4	9.69	139	46
9.19	38	5	9.70	142	47
9.20	40	6	9.71	143	49 50
9.22	41	6	9.73	150	52
9.23	42	6	9.74	153	53
9.24	44	7	9.75	156	55
9.25	45	7	9.76	159	56
9.26	47	8	9.77	162	58
9.27	49	8	9.78	165	60
9.28	50	9	9.79	168	61
9.29	52	9	9.80	171	63
9.30	04 55	10	9.01	174	60 66
9.31	57	10	9.02	180	68 68
9.33	59	11	9.84	183	70
9.34	61	12	9.85	186	72
9.35	62	13	9.86	189	74
9.36	64	13	9.87	192	76
9.37	66	14	9.88	196	78
9.38	68	15	9.89	199	80
9.39	70	15	9.90	202	82
9.40	72	10	9.91	205	84
9.41	74	17	9.92	209	88
9.43	78	18	9.94	212	90
9.44	80	19	9.95	219	92
9.45	82	20	9.96	222	94
9.46	84	21	9.97	226	97
9.47	86	21	9.98	229	99
9.48	88	22	9.99	232	101
9.49	90	23	10.00	236	103
9.00	92	۷4			

Summary for Pond SFB3B: Sediment Forebay 3B

Inflow Area	a =	6,418 sf,	73.30% Impervious	, Inflow Depth = 0	.58" for WQV event
Inflow	=	0.09 cfs @	12.09 hrs, Volume=	310 cf	
Outflow	=	0.09 cfs @	12.09 hrs, Volume=	289 cf,	Atten= 0%, Lag= 0.2 min
Primary	=	0.09 cfs @	12.09 hrs, Volume=	289 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 9.58' @ 12.09 hrs Surf.Area= 59 sf Storage= 23 cf

Plug-Flow detention time= 57.5 min calculated for 289 cf (93% of inflow) Center-of-Mass det. time= 21.6 min (809.5 - 787.9)

Volume	Inv	ert Ava	il.Storage	Storage Descripti	on		
#1	9.	00'	55 cf	Custom Stage D	ata (Irregular)Lis	ted below (Recalc)
Elevatic (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
9.0 10.0	00 00	22 98	19.9 39.1	0 55	0 55	22 117	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	ç	9.55' 6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				

Primary OutFlow Max=0.09 cfs @ 12.09 hrs HW=9.58' (Free Discharge) ☐ 1=Sharp-Crested Rectangular Weir (Weir Controls 0.09 cfs @ 0.55 fps)

Stage-Area-Storage for Pond SFB3B: Sediment Forebay 3B

Elevation (feet)	Surface (sɑ-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sɑ-ft)	Storage (cubic-feet)
9.00	22	0	9.51	54	<u>19</u>
9.01	22	0	9.52	55	19
9.02	23	0	9.53	56	20
9.03	23	1	9.54	56	20
9.04	24	1	9.55	57	21
9.05	25	1	9.56	58	22
9.06	25	1	9.57	59	22
9.07	26	2	9.58	59	23
9.08	26	2	9.59	60	23
9.09	27	2	9.60	01	24
9.10	21	∠ 3	9.01	02 63	20
9.11	20	ວ ເ	9.02	64 64	25
9.12	20	3	9.64	64	20
9.14	29	4	9.65	65	27
9.15	30	4	9.66	66	28
9.16	31	4	9.67	67	28
9.17	31	4	9.68	68	29
9.18	32	5	9.69	69	30
9.19	32	5	9.70	70	30
9.20	33	5	9.71	70	31
9.21	33	6	9.72	71	32
9.22	34	6	9.73	72	33
9.23	35	6	9.74	73	33
9.24	35	1	9.75	74	34
9.20	30 27	/ 0	9.70	75	30 36
9.20	37	0 8	9.77	70	36
9.27	38	8	9.70	78	37
9 29	38	9	9.80	78	38
9.30	39	9	9.81	79	39
9.31	40	9	9.82	80	39
9.32	40	10	9.83	81	40
9.33	41	10	9.84	82	41
9.34	42	11	9.85	83	42
9.35	42	11	9.86	84	43
9.36	43	12	9.87	85	44
9.37	44	12	9.88	86	44
9.38	44	12	9.89	87	45
9.39	40	13	9.90	00	40
9.40 9.41	40	13	9.91	90	47
9 42	47	14	9.93	91	49
9.43	48	15	9.94	92	50
9.44	49	15	9.95	93	51
9.45	49	16	9.96	94	52
9.46	50	16	9.97	95	53
9.47	51	17	9.98	96	54
9.48	52	17	9.99	97	55
9.49	52	18	10.00	98	55
9.50	53	18			

Reign Car Wash

TSS Removal Worksheets

TSS Removal Calculation Worksheet

VI	IR
V	

Vanasse Hangen Brustlin, Inc. Consulting Engineers and Planners 101 Walnut Street Watertown, MA 02471 (617) 924-1770

Project Name:	Reign Car Wash	Sheet:	1 of 1
Project Number:	73170.00	Date:	21-Jun-2021
Location:	Wareham, MA	Computed by:	SAP
Discharge Point:		Checked by:	КС
Drainage Area(s):			

1. Pre-Treatment prior to Infiltration

BMP*	TSS Removal Rate*	Starting TSS Load**	Amount Removed (B*C)	Remaining Load (D-E)
Street Sweeping - 2%	2%	100%	2%	98%
Sediment Forebay	25%	98%	25%	74%
	0%	74%	0%	74%

Pre-Treatment TSS Removal =

27%

2. Total TSS Removal including Pretreatment 1.

BMP*	TSS Removal Rate*	Starting TSS Load**	Amount Removed (B*C)	Remaining Load (D-E)
Infiltration Basin	80%	100%	80%	20%
	0%	20%	0%	20%
	0%	20%	0%	20%
	0%	20%	0%	20%

* BMP and TSS Removal Rate Values from the MassDEP Stormwater Handbook Vol. 1. Removal rates for proprietary devices are from approved studies and/or manufacturer data (attach study or data source, or remove this sentence if not applicable).

** Equals remaining load from previous BMP (E)

*** Stormceptor sizing calculation gives a TSS removal rate of 87%. To be conservative, 75% removal is used for this calculation based upon the NJCAT study provided on the MA STEP website. (Change name of device and the claimed removal rate shown on the calc. sheet. ALSO provide backup documentation to support TSS removal rate from the MA STEP website. Remove this sentence if not applicable.)

Appendix E - Standard 8 Supporting Information

Erosion and Sedimentation Control Measures

The following erosion and sedimentation controls are for use during the earthwork and construction phases of the project. The following controls are provided as recommendations for the site contractor and do not constitute or replace the final Storm water Pollution Prevention Plan that must be fully implemented by the Contractor and owner in Compliance with EPA NPDES regulations.

Siltsock

Filter socks filled with compost will be placed to trap sediment transported by runoff before it reaches the drainage system or leaves the construction site.

Catch Basin Protection

Newly constructed and existing catch basins will be protected with hay bale barriers (where appropriate) or silt sacks throughout construction.

Gravel and Construction Entrance/Exit

A temporary crushed-stone construction entrance/exit will be constructed. A cross slope will be placed in the entrance to direct runoff to a protected catch basin inlet or settling area. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving the project site.

Diversion Channels

Diversion channels will be used to collect runoff from construction areas and discharge to either sedimentation basins or protected catch basin inlets.

Maintenance

- The contractor or subcontractor will be responsible for implementing each control shown on the Sedimentation and Erosion Control Plan. In accordance with EPA regulations, the contractor must sign a copy of a certification to verify that a plan has been prepared and that permit regulations are understood.
- > The on-site contractor will inspect all sediment and erosion control structures periodically and after each rainfall event. Records of the inspections will be prepared and maintained on-site by the contractor.

- Silt shall be removed from behind barriers if greater than 6-inches deep or as needed.
- > Damaged or deteriorated items will be repaired immediately after identification.
- Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.
- ➤ Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be regraded and stabilized as necessary.