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Abstract: More than 78 million tons of photovoltaic modules (PVMs) will reach their end of life
(EOL) by 2050. If they are not responsibly managed, they can (a) pollute our terrestrial ecosystem,
(b) indirectly encourage continuous mining and extraction of Earth’s finite resources, and (c) diminish
the net environmental benefit of harvesting solar energy. Conversely, successfully recovering them
could reduce resource extraction and waste and generate sufficient economic return and value to
finance the production of another 2 billion PYMs by 2050. Therefore, EOL PVMs must participate in
the circular economy, and business and political leaders are actively devising strategies to enable their
participation. This article aims to facilitate and expedite their efforts by comprehensively reviewing
and presenting the latest progress and developments in EOL PVM recovery methods and processes.
It also identifies and thoroughly discusses several interrelated observations that impede or accelerate
their efforts. Overall, our approach to this article differs but synergistically complements and builds
upon existing life cycle assessment-based (LCA-based) contributions.

Keywords: life cycle; circular economy; circularity; end-of-life; solar energy; photovoltaics; energy
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1. Introduction

Renewable energy will be the future as the push for energy decarbonization accel-
erates. These energy sources are virtually inexhaustible and replenish naturally. They
also do not pollute the air or emit harmful greenhouse gases. The total renewable energy
produced worldwide grew by more than 75% in the preceding decade, from 4196.94 to
7443.81 Terawatt-hours (TWh) [1]. The International Energy Agency [?] projects that re-
newable energy systems will account for almost 95% of the increase in the global power
capacity over the next 5 years. Such accelerated growth is expected, with a more significant
and concerted push towards nef-zero emissions. By 2050, renewable energy systems will
likely replace fossil fuel-based energy systems as the dominant energy source [3,4].

1.1. Current State and Prospects of Solar Energy Systems

Among all, harvesting solar energy is one of the fastest-growing avenues and most
favored [5]. Solar energy systems accounted for over half of all renewable power expansion
in 2021 [2]. It experienced the most growth in the preceding decade among all renewable
energy systems. Its global output grew at a 38.8% compounded average growth rate,
implying that annual solar power generation doubled every few years. If solar energy
systems continued to grow at this rate, they would become the most significant contributor
to power generation growth [1,2,4,6].

Solar energy is one of the safest forms of energy on Earth [7]. Sunlight, the richest and
most abundant resource that reaches all parts of Earth’s surface [8], can be converted into
electricity using photovoltaics, solar heating and cooling, and concentrating solar power [9].
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efficiently extract high-purity recyclates from EOL PVMs without producing additional
waste and carbon emissions. The lesson learned is that planning for the EOL of the next-
generation PVMs should not be an afterthought. Hence, taking a step further, we encourage
scholars to explore the development of tools and frameworks to enable next-generation
PVMs to be designed for participation in the circular economy.

Our second observation relates to the scale of published works. We observed that
most works were conducted at a laboratory scale or trialed on a small scale. We speculate
that scholars might have limited opportunities to conduct large-scale investigations due
to the global lack of established PVM recovery facilities to collaborate. Similar to the
discontinuation of the FRELP project, the insufficient and inconsistent volume of EOL PVMs
could be the primary reason behind the lack of industrial-scale facilities. Nevertheless, we
believe this problem is transient and will gradually be resolved when annual EOL PVM
generation exceeds 130,000 tons, the estimated level by the “European Association for
the Recovery of PV Modules” required for PVM recovery activities to be sustainable [83].
In the meantime, the lack of access to realistic field tests remains a severe limitation to
advancing further research. Without empirical data and evidence, it is difficult for scholars
to continuously improve and propose readily adoptable solutions. Nevertheless, scholars
should creatively devise means to conduct realistic simulations and prepare for upcoming
field testing opportunities.

By extension of our second observation, our third observation relates to unit eco-
nomics. Today’s unit economic calculations for EOL PVM recovery processes are primarily
estimated and may not accurately represent future operations. Hence, similar to testing
and reporting the technical and sustainability performances of the proposed solutions, the
unit economics must be critically evaluated in a representative operational environment.
More importantly, the unit economics must be financially attractive for industry players to
participate. Presently, economic incentives for recovering EOL PVMs are severely limited
as there is much uncertainty about the dominant recovery process, related investments
required, and profitability. We believe that deriving representative unit economics will be
an emerging research area that directly affects the future direction of EOL PVM recovery
research.

In sum, for future works to add significant value, scholars must consider how their
proposed solutions can be integrated into a more extensive industrial-scale system. At
the same time, they must also consider its overall sustainability, operational feasibility,
and economic viability. We recommend that scholars adopt tools such as LCA and techno-
economic assessment to evaluate their technologies’ environmental and economic aspects
thoroughly. We firmly believe harmonizing these aspects is critical for any solution to scale
beyond laboratory scale and achieve widespread adoption. Scholars should also lead the
way in redesigning PVMs with their EOL in mind if given the opportunity.

7. Conclusions

In conclusion, we discussed the urgent need for energy decarbonization and how it
accelerates the world’s transition to adopting renewable energy sources. Solar energy is
highly favored and widely adopted. Silicon-based PVMs, the most used instrument to
capture and convert solar energy to electricity today, will continue to be rapidly deployed.

As all PVMs will eventually reach their end of life, this will create an abundance
of incoming EOL PVMs. We discussed the consequences of mismanagement of EOL
PVMs. This can result in (a) pollution across our terrestrial ecosystem, (b) indirectly
encourage continuous mining and extraction of Earth’s finite resources, and {(c} diminish
the net environmental benefit of harvesting solar energy. On the other hand, the successful
recovery of EOL PVMs could reduce resource extraction and waste and generate sufficient
economic return and value to finance the production of another 2 billion PVMs by 2050.

Despite several proposed EOL PVM recovery methods (physical, chemical, and mixed)
and processes (FRELP and ASU), none seemed to be a proven, effective, and responsible
industrial-scale solution to manage the incoming EOL PVMs and reclaim their valuable



Energies 2022, 15, 5113 13 0f 16

materials. While the current state-of-the-art demonstrated the technical and financial
possibility of EOL PVMs being responsibly and effectively recovered, more needs to
be done to ensure the desired outcome can be achieved at an industrial scale. To this
end, accessing realistic field testing opportunities is critical for scholars to evaluate the
practicality and implications of their proposals. Other critical variables such as its overall
sustainability, operational feasibility, and economic viability must also be considered.
Regardless, our review firmly suggests that scholars, the industry, and relevant stakeholders
have recognized the imperative for EOL PVMs to participate in the circular economy.
They also agree that ineffective EOL PVM management will become a black eye for the
supposedly clean industry.
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Abbreviations

The following abbreviations are used in this manuscript:

ARL Anti-Reflective Layer

ASU Arizona State University

CdTe Cadmium Telluride

CIGS Copper Indium Gallium Selenide

EOL End-of-Life

EU European Union

EVA Ethylene-Vinyl Acetate

FRELP  Full Recovery End of Life Photovoltaics
GaAs Gallium Arsenide

InP Indium Phosphide

LCA Life Cycle Assessment

PV Photovoltaics

PVM Photovoltaics Modules

TPT Tedlar Polyester Tedlar

TWh Terawatt-hours

WEEE  Waste Electrical and Electronic Equipment
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