

ASTM PHASE I ENVIRONMENTAL SITE ASSESSMENT & PHASE II LIMITED SITE INVESTIGATION

Hidden Trails Residential Subdivision Off County Road Wareham, Massachusetts (Lightship Project No. 1075.1)

February 27, 2024

Prepared for:

Sarajon Realty, LLC 2854 Cranberry Highway East Wareham, Massachusetts 02538 Prepared by:

Lightship Engineering, LLC 6 Resnik Road, Suite 207 Plymouth, Massachusetts 02360

6 Resnik Road • Suite 207 • Plymouth, Massachusetts 02360 • (508) 830-3344 • (508) 830-3360 www.LightshipEngineering.com

TABLE OF CONTENTS

1.0	INTRODUCTION
	1.1 PURPOSE
	1.1.1 Definitions1-1
	1.2 SIGNIFICANT ASSUMPTIONS
	1.3 LIMITATIONS AND EXCEPTIONS
	1.4 SPECIAL TERMS AND CONDITIONS
2.0	SCOPE OF SERVICES
3.0	SUBJECT PROPERTY DESCRIPTION
	3.1 LOCATION AND LEGAL DESCRIPTION
	3.2 SUBJECT PROPERTY AND VICINITY GENERAL CHARACTERISTICS 3-4
	3.3 CURRENT USE OF THE SUBJECT PROPERTY 3-4
	34 DESCRIPTION OF IMPROVEMENTS 3-5
	3.4.1 Sewage Disposal 3-5
	3.4.2 Water Supply 3-5
	3.4.3 Oil and/or Hazardous Materials 3-5
	3.4.4 Storage Tanks 3.5
	3.4.5 Odors Pools of Liquid Staining $3-5$
	3.4.6 Drums 3-6
	3.4.7 Floor Drains or Sumps 3-6
	3.4.8 Pits Ponds or Largoons 3.6
	3.4.0 Stained Soil or Stressed Vegetation 3.6
	2.5 CUPPENT USE OF A DIOINING PROPERTIES 2.6
	5.5 CORRENT USE OF ADJOINING FROMERTIES
4.0	USER PROVIDED INFORMATION
	4.1 TITLE RECORDS
	4.2 ENVIRONMENTAL LIENS, LIMITATIONS, AND PROPERTY VALUE 4-1
	4.3 SPECIALIZED KNOWLEDGE
	4.3.1 <u>Commonly Known or Reasonably Ascertainable Information</u>
	4.4 VALUATION REDUCTION FOR ENVIRONMENTAL ISSUES
	4.5 OWNER, PROPERTY MANAGER AND OCCUPANT INFORMATION 4-2
	4.6 REASON FOR COMMISSIONING PHASE I STUDY
5.0	SUBJECT PROPERTY RECONNAISSANCE AND INTERVIEWS
	5.1 METHODOLOGY AND LIMITING CONDITIONS
	5.2 EXTERIOR OBSERVATIONS
	5.3 OWNER REPRESENTATIVE INTERVIEW
	5.4 LOCAL GOVERNMENT OFFICIAL INTERVIEW
	5.5 INTERVIEWS WITH OTHERS
6.0	RECORDS REVIEW
	6.1 STANDARD ENVIRONMENTAL RECORDS SOURCES
	i

TABLE OF CONTENTS (Continued)

	6.2	ADDIT	IONAL ENVIRONMENTAL RECORD SOURCES	3
		6.2.1	Assessing Department	3
		6.2.2	Inspectional Services Department	7
		6.2.3	Health Department	7
		6.2.4	Water Department	7
		6.2.5	Planning Department	7
		6.2.6	Conservation Commission	l
		6.2.7	Fire Department	l
		6.2.8	Sanborn Fire Insurance Maps6-11	l
		6.2.9	Aerial Photos	l
		6.2.10	Historical Topographic Maps	2
		6.2.11	City Directory	2
	6.3	PHYSI	CAL SETTING SOURCE(S)6-13	3
		6.3.1	Regional Physiographic Conditions	3
		6.3.2	Soil Description	3
		6.3.3	Bedrock Description	3
		6.3.4	Groundwater	3
		6.3.5	Surface Water	3
		6.3.6	Flood Potential	3
		6.3.7	Sensitive Receptors	1
	6.4	HISTO	RICAL USE INFORMATION ON THE SUBJECT PROPERTY 6-15	5
	6.5	HISTO	RICAL USE INFORMATION FOR ADJOINING PROPERTIES 6-15	5
	6.6	HISTO	RICAL ENVIRONMENTAL INVESTIGATIONS	5
		6.6.1	Phase I Initial Site Assessment, Release Abatement Measure (RAM)	
			Completion Report, Response Action Outcome, prepared by East Coast	
			Engineering, Inc. dated January 17, 2001	5
7.0		C A DC		
7.0	DATA	<u>GAPS</u> .		Ĺ
0	EINIDU			1
8.0	FINDI	NUS AI	<u>ND OPINIONS</u>	Ĺ
9.0	CONC	LUSIO	NS 9-1	ł
2.0	91	RECO	GNIZED ENVIRONMENTAL CONDITIONS 9-1	ì
	9.2	CONTI	ROLLED RECOGNIZED ENVIRONMENTAL CONDITIONS	2
	9.3	HISTO	RICAL RECOGNIZED ENVIRONMENTAL CONDITIONS	2
10.0	PHASE	E II LIM	IITED SITE INVESTIGATION, DECEMBER 2023 &	
	<u>JANU</u>	ARY 20	<u>24</u> 10-1	l
	10.1	TEST H	PIT INVESTIGATION	l
	10.2	TEMPO	ORARY GROUNDWATER MONITORING	
		WELL	INSTALLATION AND SAMPLING 10-2	2

TABLE OF CONTENTS (Continued)

		10.2.1	MassDEP Groundwater Reporting Categories	
		10.2.2	Groundwater Analytical Results	
	10.3	SUSPE	ECTED ACM SAMPLING AND ANALYSIS	
	10.4	SURFA	ACE WATER AND SEDIMENT SAMPLING	
	10.5	LIMIT	ED SITE INVESTIGATION SUMMARY	
11.0	<u>REFE</u>	RENCE	<u>S</u>	11-1
12.0	SIGN	ATURE	AND ENVIRONMENTAL PROFESSIONAL STATEMEN	<u>NT</u> 12-1
13.0	LIMI	ΓΑΤΙΟΝ	1 <u>S</u>	

APPENDICES

APPENDIX A	FIGURES	
	Figure 1-1	Subject Property Locus Map
	Figure 3-1	Town of Wareham Assessor's Map
	Figure 6-1	MassGIS Map
	Figure 10-1	Sampling Location Map
	Figure 10-2	Groundwater Reporting Category Map
APPENDIX B	THE EDR RA	ADIUS MAP™ REPORT WITH GEOCHECK [®]
APPENDIX C	CERTIFIED	SANBORN [®] MAP REPORT
APPENDIX D	THE EDR AI	ERIAL PHOTO DECADE PACKAGE
APPENDIX E	EDR HISTO	RICAL TOPO MAP REPORT WITH QUADMATCH
APPENDIX F	THE EDR-C	ITY DIRECTORY IMAGE REPORT
APPENDIX G	TEST PIT AN CONSTRUC	ND GROUNDWATER MONITORING WELL TION LOGS
APPENDIX H	ANALYTICA	AL SUMMARY TABLES
	Table 10-1	Volatile Petroleum Hydrocarbons and Volatile Organic Compounds in Soil
	Table 10-2	Extractable Petroleum Hydrocarbons and Polynuclear Aromatic Hydrocarbons in Soil
	Table 10-3	Volatile Organic Compounds in Groundwater
	Table 10-4	PFAS in Groundwater Compounds

APPENDIX I LABORATORY ANALYTICAL DATA PACKAGES

1.0 INTRODUCTION

Pursuant to the scopes of work prepared by Lightship Engineering,, LLC ("Lightship Engineering") dated November 2, 2023 and December 7, 2023 (collectively, the "Scopes of Work"), Sarajon Realty, LLC ("Sarajon") retained Lightship Engineering to conduct a Phase I Environmental Site Assessment ("Phase I") and Phase II Limited Site Investigation ("Phase II") of the undeveloped property referred to as Hidden Trails located off County Road in Wareham, Massachusetts (the "Subject Property"). A Subject Property Locus Map is attached as Figure 1-1, Appendix A.

1.1 PURPOSE

The purpose of the Phase I was to investigate for evidence of "recognized environmental conditions" at the Subject Properties, as that term is defined by the ASTM International ("ASTM") Standard E 1527-21 *Phase I Environmental Site Assessment* (the "Standard").

1.1.1 Definitions

Recognized Environmental Conditions ("RECs") are defined by ASTM E 1527-21, Section 1.1.1 as, "the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property:

- (1) due to any release to the environment;
- (2) under conditions indicative of a release to the environment; or
- (3) under conditions that pose a material threat of a future release to the environment.

De minimis **Conditions** are defined by ASTM E 1527-21, Section 3.2.22 as a condition that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. Conditions determined to be *de minimis* are not recognized environmental conditions nor controlled recognized environmental conditions.

Controlled Recognized Environmental Conditions are defined by ASTM E 1527-21, Section 3.2.18 as recognized environmental conditions resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (*e.g.*, deed restriction). A condition considered by the environmental professional to be a Controlled REC shall be listed in the findings section of the Phase I Environmental Site Assessment report, and as a REC in the conclusions section of the Phase I Environmental Site Assessment report.

Historical Recognized Environmental Conditions are defined by ASTM E 1527-21, Section 3.2.42 as a past release of any hazardous substances or petroleum products that has

1-1

occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls. Before calling the past release a Historical REC, the environmental professional must determine whether the past release is a REC at the time the Phase I Environmental Site Assessment is conducted (*e.g.*, changes regulatory criteria). If the environmental professional considers the past release to be a REC at the time the Phase I Environmental Site Assessment is conducted, the condition shall be included in the conclusions section of the report as a REC.

Business Environmental Risks ("Environmental Issues") are defined by ASTM E 1527-21, Section 3.2.11 as a risk which can have a material environmentally or environmentallydriven impact on the business associated with the current or planned use of a parcel of commercial real estate, not necessarily limited to those environmental issues required to be investigated as part of ASTM E 1527-21. Consideration of Environmental Issues may involve addressing one or more non-scope considerations.

1.2 SIGNIFICANT ASSUMPTIONS

Information regarding operations, conditions, and other data provided by Sarajon, site contacts, third parties, and municipal agencies is assumed to be correct and complete.

1.3 LIMITATIONS AND EXCEPTIONS

The following limitations and exceptions to the Standard are noted with respect to this assessment:

- Lightship Engineering did not review Title Records for the Subject Property;
- Lightship Engineering did not conduct an evaluation of the purchase price of the Subject Property compared to the fair market value;
- Lightship Engineering did not obtain any historical information prior to 1888 with respect to the Subject Property;
- Lightship Engineering requested records associated with the use, storage, disposal, and/or release of oil and/or hazardous materials ("OHM") at the Subject Property from the Town of Wareham Health Department. At the time of this report, the Health Department has not responded to Lightship Engineering's request;
- Lightship Engineering requested records associated with the use, storage, disposal, and/or release of OHM at the Subject Property from the Wareham Fire and Water District. At the time of this report, the Wareham Fire and Water District has not responded to Lightship Engineering's request; and
- Portions of the Subject Property were covered with thick vegetation at the time of the reconnaissance that limited accessibility and visibility of conditions at the Subject

1-2

Property. Based on historical information reviewed by Lightship Engineering, it appears that the historic sand mining operations at the Subject Property primarily took place in the open area north of the pond as well as within the current location of the pond.

1.4 SPECIAL TERMS AND CONDITIONS

The Phase I and Phase II investigation was conducted by Lightship Engineering on behalf of Sarajon, consistent with the Scopes of Work dated November 2, 2023 and December 7, 2023, and the terms and conditions between Lightship Engineering and Sarajon dated November 2, 2023. No other special terms and conditions were established in connection with the Phase I and Phase II.

2.0 <u>SCOPE OF SERVICES</u>

The Phase I was conducted consistent with the Standard. The "List of Additional Issues" set forth in *Section 13 Non-Scope Considerations* of the Standard was not included in the assessment. Lightship Engineering conducted the following activities as part of the Phase I, consistent with the Scope of Work.

- Interviewed personnel and reviewed records regarding the past and present use of the Subject Property at the following municipal offices:
 - Assessing Department;
 - Inspectional Services Department;
 - Public Health Department;
 - ➢ Public Works;
 - ➢ Water Department;
 - Conservation Commission; and
 - ➢ Fire Department.
- Reviewed Federal and State environmental databases available through Environmental Data Resources, Inc. ("EDR") Radius Map TM with GeoCheck Report[®] ("EDR Report"), with respect to the Subject Property and surrounding properties, consistent with the distances set forth in ASTM E 1527-21. A copy of the EDR Report is included as Appendix B.
- Reviewed natural resource information available through the EDR Report with respect to the Subject Property and surrounding area.
- Reviewed historical use of the Subject Property and surrounding properties using historical sources available through EDR, including a city directory abstract, aerial photographs, and topographic maps.
- Reviewed portions of the plans titled *Hidden Trails Definitive Subdivision Plan of Land and Special Permit for a Residential Cluster Development in Wareham,* prepared by JC Engineering, Inc. ("JC Engineering") dated September 7, 2023.
- Conducted a Subject Property reconnaissance on November 15, 2023, to observe current Subject Property uses and conditions. Lightship Engineering was accompanied by Mr. Bradley Bertolo of JC Engineering.
- Conducted a Phase II that included the collection of select soil, groundwater, surface water, sediment, and building material samples for laboratory analysis to assess if former historic operations impacted soil and groundwater above applicable Chapter 21E, Massachusetts Contingency Plan ("MCP"), 310 CMR 40.0000, Reportable Concentrations for soil (RCS-1) and groundwater (RCGW-1 and RCGW-2).

The results of the Phase I and Phase II are set forth below.

3.0 SUBJECT PROPERTY DESCRIPTION

3.1 LOCATION AND LEGAL DESCRIPTION

The Town of Wareham Assessing Department identifies the Subject Property as the following parcels and addresses:

Parcel ID	*Address	Book/Page	Owner	Lot Size (acres)
63//1013//	0 County Road Off	48409/0297	Fearing Hill LLC	18.08
63//AA//	0 Allie's Lane	6459/0121	Wolcott, Walter S. C/O Lorusso & Grilli	0.01
63//C//	0 Allie's Lane	39458/013	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.74
63//F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.55
63//21//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//22//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//23//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.6
63//24//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//25//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.25
63//26//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.54
63//27//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//28//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.43
63//29//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38

Domael ID	* A ddmoog	Dools/Dogo	0	Lot Size
Parcel ID	*Address	DOOK/Page	Owner	(acres)
63//30//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//31//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//32//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//33//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
63//34//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.7
63//35//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.48
63//36//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
63//37//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.6
63//38//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//39//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.43
63//40//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//41//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//42//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.64
63//43//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.09
63//44//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.99
64//J//	0 Allie's Lane	36482/0130	Lorusso, Gerard C. & Grilli, Henry G. Trustee of County Rd 2004 Tr	0.4

Domael ID	* A ddmoor	Book/Page	0	Lot Size
Parcel ID	*Address		Owner	(acres)
64//K//	0 Allie's Lane	36482/0130	Lorusso, Gerard C. & Grilli, Henry G. Trustee of County Rd 2004 Tr	0.88
64//1F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.82
64//2F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.49
64//3F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.71
64//4//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.62
64//5//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.38
64//6//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.38
64//7//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.38
64//8//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.38
64//13//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.55
64//14//	0 Casey Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	2.27
64//15//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	1.53
64//16//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	2.1
64//17//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	3.4
64//18//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	2.18
64//19//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	2.26

Parcel ID	*Address	Book/Page	Owner	Lot Size (acres)
64//20//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	2.02
64//G//	0 County Road Off	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	35.64
64//H//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	7.21
64//I//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Tr	5.14
65//9//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//10//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//11//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
65//12//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//R//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.46

*Address per Town of Wareham Assessing Department

A portion of the Town of Wareham Assessor's Map containing the Subject Property is provided as Figure 3-1, Appendix A.

3.2 SUBJECT PROPERTY AND VICINITY GENERAL CHARACTERISTICS

The Subject Property is comprised of 54 vacant parcels, totaling approximately 153 acres of land off County Road in Wareham, Massachusetts. The Subject Property is located in a residential zoned area. According to the Town of Wareham, aerial photographs, and historical topographic maps, the parcel was formerly the location of a sand and gravel operation.

3.3 CURRENT USE OF THE SUBJECT PROPERTY

The Subject Property is currently comprised of 54 parcels and is undeveloped land.

3.4 DESCRIPTION OF IMPROVEMENTS

The Subject Property is not connected to any utility services. The following utilities serve the vicinity of the Subject Property:

<u>Utility</u>	<u>Provider</u>
Electricity	Eversource
Natural Gas	National Grid
Potable Water	Wareham Fire and Water District

3.4.1 <u>Sewage Disposal</u>

According to the records from the Town of Wareham Sewer Department, the Subject Property is not connected to the municipal sewer system and municipal sanitary sewer is not available in the area of the Subject Property. As set forth in Section 6.6, an on-site septic system was previously located on-Site as part of the historic sand and gravel operation. There was no information regarding the removal of the septic system.

3.4.2 Water Supply

According to the records from the Wareham Fire and Water District, the Subject Property is not connected to the municipal water supply. Based on information provided by JC Engineering, municipal water is available in the area of the Subject Property.

3.4.3 Oil and/or Hazardous Materials

No OHM was observed by Lightship Engineering during the reconnaissance.

3.4.4 Storage Tanks

No storage tanks were observed by Lightship Engineering during the reconnaissance. It should be noted that as set forth in Section 6.6, aboveground storage tanks ("ASTs") and underground storage tanks ("USTs") were historically located on-site as part of the historic sand and gravel operation.

3.4.5 Odors, Pools of Liquid, Staining

No unusual odors, pools of liquid or staining were observed by Lightship Engineering during the reconnaissance.

3.4.6 <u>Drums</u>

No drums were observed by Lightship Engineering during the reconnaissance.

3.4.7 Floor Drains or Sumps

No floor drains or sumps were observed by Lightship Engineering during the reconnaissance.

3.4.8 Pits, Ponds, or Lagoons

Lightship Engineering observed a pond in the central portion of the Subject Property. Based on historical topographic maps and aerial photographs, the pond appears to be man-made and was constructed sometime around 1950.

No pits or lagoons were observed at the Subject Property by Lightship Engineering during the reconnaissance.

3.4.9 Stained Soil or Stressed Vegetation

No evidence of stained soil or stressed vegetation was observed at the Subject Property during the reconnaissance.

3.5 CURRENT USE OF ADJOINING PROPERTIES

North: Undeveloped forested land and residences are located north of the Subject Property.
 South: Undeveloped forested land and residences are located south of the Subject Property.
 East: Undeveloped forested land with residential and agricultural properties located easterly abutting the Subject Property.
 West: Residential properties are located westerly abutting County Road with undeveloped forested land beyond the remainder of the western boundary of the Subject Property.

4.0 USER PROVIDED INFORMATION

A summary of user provided information is set forth below.

4.1 TITLE RECORDS

As set forth in Lightship Engineering's scope of work dated November 2, 2023, Lightship Engineering assumed that others would review title records. Therefore, no title information is included in this Phase I and Phase II report.

4.2 ENVIRONMENTAL LIENS, LIMITATIONS, AND PROPERTY VALUE

As set forth in Lightship Engineering's scope of work dated November 2, 2023, Lightship Engineering assumed that others would review environmental liens, limitations, and property value. Therefore, no environmental lien, limitation and property value information is included in this Phase I and Phase II report.

Lightship Engineering queried the Commonwealth of Massachusetts Department of Environmental Protection's ("MassDEP") on-line Waste Site/Reportable Release Look Up database (the "MassDEP Searchable Database") for Activity and Use Limitations ("AULs") associated with the Subject Property address. The MassDEP Searchable Database did not include an AUL for the Subject Property.

4.3 SPECIALIZED KNOWLEDGE

Sarajon did not provide any information regarding specialized knowledge of RECs at the Subject Property.

4.3.1 Commonly Known or Reasonably Ascertainable Information

With the exception of the documents provided by Sarajon, as set forth in Section 2.0, Sarajon did not provide Lightship Engineering with any commonly known or reasonably ascertainable information.

4.4 VALUATION REDUCTION FOR ENVIRONMENTAL ISSUES

As set forth in Lightship Engineering's scope of work dated November 2, 2023, Lightship Engineering assumed that others would review the sale price of the Subject Property in comparison of the expected value of the property if no environmental issues existed. Therefore, a comparison of the expected value of the Subject Property and the proposed sale price is not included in this Phase I and Phase II report.

4.5 OWNER, PROPERTY MANAGER AND OCCUPANT INFORMATION

According to the Town of Wareham Assessor's Office, the Subject Property is identified as the following parcels and is recorded at the Plymouth County Registry of Deeds:

Domael ID	* A ddmoog	Pool/Dogo	Owner	Lot Size
Parcei ID	*Audress	DOOK/Page	Owner	(acres)
63//1013//	0 County Road Off	48409/0297	Fearing Hill LLC	18.08
63//AA//	0 Allie's Lane	6459/0121	Wolcott, Walter S. C/O Lorusso & Grilli	0.01
63//C//	0 Allie's Lane	39458/013	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.74
63//F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.55
63//21//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//22//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//23//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.6
63//24//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//25//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.25
63//26//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.54
63//27//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//28//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.43
63//29//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//30//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//31//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38

Dorcol ID	* A ddr oss	Book/Dogo	Owner	Lot Size
I al cel ID	Auuress	DUUK/I age	Owner	(acres)
63//32//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//33//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
63//34//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.7
63//35//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.48
63//36//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
63//37//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.6
63//38//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//39//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.43
63//40//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//41//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//42//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.64
63//43//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.09
63//44//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.99
64//J//	0 Allie's Lane	36482/0130	Lorusso, Gerard C. & Grilli, Henry G. Trustee of County Rd 2004 Tr	0.4
64//K//	0 Allie's Lane	36482/0130	Lorusso, Gerard C. & Grilli, Henry G. Trustee of County Rd 2004 Tr	0.88
64//1F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.82

	Ownor	Lot Size		
I al cel ID	Audress	DUUK/I age	Owner	(acres)
64//2F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.49
64//3F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.71
64//4//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.62
64//5//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//6//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//7//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//8//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//13//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.55
64//14//	0 Casey Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.27
64//15//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.53
64//16//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.1
64//17//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	3.4
64//18//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.18
64//19//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.26
64//20//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.02
64//G//	0 County Road Off	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	35.64

Parcel ID *Address		Book/Page	Owner	Lot Size
	Auuress	DUUK/I age	0 wher	(acres)
64//H//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	7.21
64//I//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	5.14
65//9//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//10//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//11//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
65//12//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//R//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.46

*Address per Town of Wareham Assessing Department

The Subject Property is comprised of 54 vacant parcels, totaling approximately 153 acres of land off County Road in Wareham, Massachusetts.

4.6 REASON FOR COMMISSIONING PHASE I STUDY

Sarajon requested that a Phase I and Phase II be conducted in connection with the potential acquisition of the Subject Property.

5.0 SUBJECT PROPERTY RECONNAISSANCE AND INTERVIEWS

5.1 METHODOLOGY AND LIMITING CONDITIONS

Lightship Engineering conducted a reconnaissance of the Subject Property on November 15, 2023. A summary of the observations is set forth below.

5.2 EXTERIOR OBSERVATIONS

- The Subject Property includes 54 vacant parcels of land totaling approximately 153acres.
- Lightship Engineering accessed the Subject Property from County Road on the northwest corner of the Subject Property and traversed the Subject Property via existing pathways.
- The Subject Property is primarily wooded with the exception of sparsely vegetated sandy areas north of the pond and a sandy area on the southern edge of the pond. Based on historical topographic maps and aerial photographs, the pond appears to be man-made and constructed sometime around 1950.
- Lightship Engineering observed numerous tires, a hull of a boat, televisions, mattresses, an empty 5-gallon bucket labelled *general all-purpose solvent*, asphalt shingle pieces, and concrete in the wooded areas in the northwestern portion of the Subject Property. No visual and/or olfactory indications of a significant release of OHM were observed in these areas.
- Lightship Engineering observed utility poles and lines along the dirt path running perpendicular to County Road that service the residential properties north of the Subject Property. No visual and/or olfactory indications of a significant release of OHM were observed in this area.
- Lightship Engineering observed multiple apparently man-made earthen mounds throughout the Subject Property during the reconnaissance. The source and purpose of the mounds was not evident.
- Lightship Engineering observed portions of railroad tracks in the northern portion of the Subject Property and remnants of a foundation in the sandy area north of the pond. No visual and/or olfactory indications of a significant release of OHM were observed in these areas.
- As set forth above, portions of the Subject Property were covered with thick vegetation at the time of the reconnaissance that limited accessibility and visibility of conditions at the Subject Property.

5.3 OWNER REPRESENTATIVE INTERVIEW

Lightship Engineering interviewed and was accompanied during the reconnaissance by Mr. Bradley Bertolo of JC Engineering, Inc. Information provided to Lightship Engineering by Mr. Bertolo is summarized in this report.

5.4 LOCAL GOVERNMENT OFFICIAL INTERVIEW

As set forth in Section 6.2, Lightship Engineering interviewed personnel and/or reviewed records regarding the past and present use of the Subject Property at the following municipal offices: Town of Wareham Assessor's Office, Inspectional Services Department, Town Clerk, Sewer Department, Health Department, and Wareham Fire and Water District.

5.5 INTERVIEWS WITH OTHERS

No other interviews were conducted in connection with this Phase I and Phase II report.

6.0 <u>RECORDS REVIEW</u>

6.1 STANDARD ENVIRONMENTAL RECORDS SOURCES

Lightship Engineering reviewed Federal and State environmental databases as set forth in the EDR Report provided at Appendix B. The search radii used to generate the report were consistent with ASTM Method E 1527-21 standards. A copy of the EDR Report is provided in Appendix B, and a summary of the search findings is presented below.

National Priority List ("NPL")

There are no NPL sites listed within a 1.0-mile radius of the Subject Property.

Comprehensive Environmental Response, Compensation and Liability Information System ("CERCLIS")

There are no CERCLIS sites listed within a 0.5-mile radius of the Subject Property.

Resource Conservation and Recovery Act ("RCRA")

There are no RCRA treatment, storage, and/or disposal facilities ("TSD") sites listed within a 0.5-mile radius of the Subject Property.

There are no RCRA corrective action Sites ("CORRACTS") listed within a 1.0-mile radius of the Subject Property.

There are no RCRA Large Quantity Generators ("RCRA-LQG"), RCRA Small Quantity Generators ("RCRA-SQG"), or Very Small Quantity Generators ("RCRA-VSQG") within a 0.25-mile radius of the Subject Property.

RCRA NonGen/NLR

There are no RCRA NonGen/NLRs (waste generators that currently do not generate) within a 0.25-mile radius of the Subject Property.

Emergency Response Notification Site ("ERNS")

The Subject Property is not identified as ERNS.

Massachusetts Hazardous Waste and Waste Oil Generators ("HW GEN")

There are no HW GEN sites located within 0.25 miles of the Subject Property.

Leaking UST ("LUST") and Leaking AST ("LAST") Site

There are no LUST releases located within a 0.5-mile radius of the Subject Property.

There is one LAST release located within a 0.5-mile radius of the Subject Property. The closest LAST site is *Residential Property* located at 365 County Road and approximately 1,591 feet southwest of the Subject Property.

Registered UST Site ("UST") and AST Site ("AST")

There are no registered UST sites within a 0.25-mile radius of the Subject Property.

There are no registered AST sites within a 0.25-mile radius of the Subject Property.

Federal, State or Tribal Institutional Controls ("MA INST CONTROL")

There are no MA INST CONTROL sites identified within a 0.5-mile radius of the Subject Property.

Mines Mineral Resources Data System ("MINES MRDS")

The Subject Property is listed as a MINES MRDS site identified as Whitehead Brothers, Inc. According to the EDR report, Whitehead Brothers, Inc. operated a Sand & Gravel operation on a portion of the Subject Property.

Release/State Hazardous Waste ("RELEASE/SHWS") Sites

The Subject Property is listed as a State Release Site ("RELEASE") and State Hazardous Waste Site ("SHWS") identified as Whibco Plant located on Squirrel Island Road. Refer to section 6.6.1 for further information.

There are three other SHWS sites located within a 1.0-mile radius of the Subject Property.

A summary of select SHWS sites located at or near the Subject Property are set forth below. The summaries are based upon information available online through the MassDEP Searchable Database website and reviewed by Lightship Engineering.

Address	RTN	Regulatory Status	Location
365 County Road	4-0025950	PSNC (Residential AST release)	1,591 feet southwest

Address	RTN	Regulatory Status	Location
240 County Road	4-0023231	Class A-2 RAO (Fuel Tank release in roadway)	2,007 feet south southwest
583 Mary's Pond Road	4-0026158	PSNC (Fuel Tank release in roadway)	2,322 feet northwest

RTN – Release Tracking Number

RAO – Response Action Outcome

PSNC – Permanent Solution with No Conditions

6.2 ADDITIONAL ENVIRONMENTAL RECORD SOURCES

6.2.1 Assessing Department

The Town of Wareham Assessing Department identifies the Subject Property as the following parcels and addresses with the following owners and deed information identified:

Domool ID	*Addmaga	Ouman	Deed Book/Page*	Lot Size
Parcel ID	*Auuress	Owner	Sale Date	(acres)
(2//1012//	0 County		48409/0297	10.00
03//1013//	Road Off	Fearing Hin LLC	May 11, 2017	18.08
62// / //	0 Allie's	Wolcott, Walter S. C/O Lorusso &	6459/0121	0.01
03//AA//	Lane	Grilli	December 5, 1985	0.01
63//C//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	39458/0131	0.74
03//C//	Lane	G. Trustees	December 24, 2010	0.74
62//E//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	0.55
03//1//	Lane	G. Trustees	June 30, 2006	0.55
62//21//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 29
03//21//	Lane	G. Trustees	June 30, 2006	1.30
62//22//	0 Marissa	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 29
03//22//	Way	G. Trustees	June 30, 2006	1.30
62//22//	0 Marissa	Lorusso, Gerard C. & Grilli, Henry	32966/0082	16
03//23//	Way	G. Trustees	June 30, 2006	1.0
62//24//	0 Marissa	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 4
03//24//	Way	G. Trustees	June 30, 2006	1.4

Derreel ID	* • •] •] •• • • •	0	Deed Book/Page*	Lot Size	
Parcel ID	*Address	Owner	Sale Date	(acres)	
(2)/25//	0 Marissa	Lorusso, Gerard C. & Grilli, Henry	32966/0082	2.25	
63//25//	Way	G. Trustees	June 30, 2006	2.25	
(2)/2()/	0 Marissa	Lorusso, Gerard C. & Grilli, Henry	32966/0082	2.54	
03//20//	Way	G. Trustees	June 30, 2006	2.54	
(2//27//	0 Marissa	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.4	
63//21//	Way	G. Trustees	June 30, 2006	1.4	
62//28//	0 Marissa	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.42	
63//28//	Way	G. Trustees	June 30, 2006	1.43	
(2//20//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 20	
63//29//	Lane	G. Trustees	June 30, 2006	1.38	
(2//20//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.4	
63//30//	Lane	G. Trustees	June 30, 2006	1.4	
62//21//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 20	
03//31//	Lane	G. Trustees	June 30, 2006	1.38	
62//22//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 29	
03//32//	Lane	G. Trustees	June 30, 2006	1.38	
62/122/1	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 42	
03//33//	Lane	G. Trustees	June 30, 2006	1.42	
62//24//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	17	
03//34//	Lane	G. Trustees	June 30, 2006	1./	
62//25//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 49	
03//33//	Lane	G. Trustees	June 30, 2006	1.48	
62//26//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.42	
03//30//	Lane	G. Trustees	June 30, 2006	1.42	
62//27//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.6	
03//37//	Lane	G. Trustees	June 30, 2006	1.0	
62//29//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 29	
03//38//	Lane	G. Trustees	June 30, 2006	1.38	

Demol	* • • • • • • • • • •	0	Deed Book/Page*	Lot Size
Parcel ID	*Address	Owner	Sale Date	(acres)
62//20//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.42
03//39//	Lane	G. Trustees	June 30, 2006	1.43
62//40//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 20
63//40//	Lane	G. Trustees	June 30, 2006	1.38
62//41//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.20
03//41//	Lane	G. Trustees	June 30, 2006	1.38
62//42//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	29516/0311	1.64
03//42//	Lane	G. Trustees	November 23, 2004	1.04
62//12//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	29516/0311	2.00
03//43//	Lane	G. Trustees	November 23, 2004	2.09
62//44//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	29516/0311	1.00
03//44//	Lane	G. Trustees	November 23, 2004	1.77
64//1//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	36482/0130	0.4
04//J//	Lane	G. Trustee of County Rd 2004 Tr	October 28, 2008	0.4
61//V//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	36482/0130	0.88
04// K //	Lane	G. Trustee of County Rd 2004 Tr	October 28, 2008	0.88
64//1E//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.92
04//16//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.82
64//2007//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.40
04//26//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.49
64//2E//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 71
04//36//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1./1
61//1//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1.62
04//4//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.02
61/15/1	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 29
04//3//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.30
61//6//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 20
04//0//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.38

DerestID	* • • • • • • • • • • •	0	Deed Book/Page*	Lot Size
Parcel ID	*Address	Owner	Sale Date	(acres)
64//7//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 20
04// ///	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.38
64//9//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 20
04//8//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.38
64//12//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 55
04//13//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.55
64//14//	0 Casey	Lorusso, Gerard C. & Grilli, Henry	32966/0082	2 27
04//14//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	2.27
64//15//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	1 52
04//13//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	1.35
64//16//	0 Juliana	Lorusso, Gerard C. & Grilli, Henry	32966/0082	2.1
04//10//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	2.1
64//17//	0 Juliana	Lorusso, Gerard C. & Grilli, Henry	32966/0082	3.4
04//1///	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	5.4
64//18//	0 Juliana	Lorusso, Gerard C. & Grilli, Henry	32966/0082	2.18
04//10//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	2.10
64//10//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	2.26
04//19//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	2.20
64//20//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	2.02
04//20//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	2.02
64//G//	0 County	Lorusso, Gerard C. & Grilli, Henry	32966/0082	35.64
04//0//	Road Off	G. Tr County Rd 2004 Realty Trust	June 30, 2006	55.04
64//H//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	7 21
04//11//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	7.21
64//I//	0 Allie's	Lorusso, Gerard C. & Grilli, Henry	32966/0082	5 1/1
04//1//	Lane	G. Tr County Rd 2004 Realty Trust	June 30, 2006	5.14
65//0//	0 Casey	Lorusso, Gerard C. & Grilli, Henry	43600/0248	1 38
03// 7//	Lane	G. Trustees	September 13, 2013	1.30

Parcal ID	*Addrogg	Ownor	Deed Book/Page*	Lot Size
	Auuress	Owner	Sale Date	(acres)
65//10//	0 Casey	Lorusso, Gerard C. & Grilli, Henry	43600/0248	1 28
03//10//	Lane	G. Trustees	September 13, 2013	1.30
65//11//	0 Casey	Lorusso, Gerard C. & Grilli, Henry	43600/0248	1 42
03//11//	Lane	G. Trustees	September 13, 2013	1.42
65//12//	0 Casey	Lorusso, Gerard C. & Grilli, Henry	43600/0248	1 29
65//12// Lane G. Truste	G. Trustees	September 13, 2013	1.38	
65//R//	0 Casey L Lane C	Lorusso, Gerard C. & Grilli, Henry G. Trustees	43600/0248	0.46
			September 13, 2013	0.40

*Address per Town of Wareham Assessing Department

A portion of the Town of Wareham Assessor's Map containing the Subject Property is provided as Figure 3-1, Appendix A.

6.2.2 Inspectional Services Department

Lightship Engineering requested records associated with the use, storage, disposal, and/or release of OHM at the Subject Property from the Town of Wareham Inspectional Services Department. According to the Town of Wareham Inspectional Services Department there are no records available for review associated with the Subject Property.

6.2.3 <u>Health Department</u>

Lightship Engineering requested records associated with the use, storage, disposal, and/or release of OHM at the Subject Property from the Town of Wareham Health Department. At the time of this report, the Health Department has not responded to Lightship Engineering's request.

6.2.4 Water Department

Lightship Engineering requested water connection date for the Subject Property from the Wareham Fire and Water District. According to the Wareham Fire and Water District there are no records available for review associated with the Subject Property.

6.2.5 Planning Department

Lightship Engineering requested records from the Town of Wareham Planning Department. Records reviewed at the Planning Department included the following:

- A letter regarding *Fearing Hill, LLC & County Road 2004 Realty Trust, Hidden Trails off County Road, Wareham, MA –* To construct roadways, utilities, and storm water management systems associated with a proposed residential 56-lot cluster subdivision, dated October 18, 2023. The letter includes comments on behalf of the Community Land and Water Coalition ("CLWC") regarding the planned development of the Subject Property. As set forth in the letter, *On October 4, 2023, the Commission heard testimony about the disposal of "barrels", vehicles and of dumping on this site. One witness testified that vehicles were driven into the gravel pit pond for disposal. The witness reported to you that this pond is estimated to be 100 feet deep. Other witnesses testified that equipment was abandoned on site. The testimony presented to the Commission established that there is a release or threat of release of hazardous materials that mandates notification under the state Superfund law.*
- A report titled *Drainage Calculations & Supplemental Information for Hidden Trails* ("Drainage Report"), prepared by JC Engineering, Inc. ("JC Engineering") dated September 7, 2023. As set forth in the Drainage Report, *The total land area of the current project is approximately 153 acres, which includes a 30.5 acre manmade pond centrally located on the property. The manmade pond was created by a former sand mining operation that is no longer active. Besides the alteration that created the pond, there are approximately 27 acres of adjacent bordering vegetated wetlands and approximately 16.5 acres of unvegetated, previously disturbed property. The approximately 79 acres of the remainder of the property, besides some trails and a couple of former sand pits, is undeveloped woodland. The soil types found within the limits of the drainage analysis are classified as the following:*
 - 1.) Windsor Loamy Sand, 3 to 8 percent slopes (255B)
 - 2.) Deerfield Loamy Fine Sand, 0 to 3 percent slopes (256A)
 - 3.) Deerfield Loamy Fine Sand, 3 to 8 percent slopes (256B)
 - 4.) Carver Loamy Coarse Sand, 0 to 3 percent slopes (259A)
 - 5.) Aquepts, 0 to 3 percent slopes (657A)
 - 6.) Udipsamments, 0 to 8 percent slopes (665B)
- A report titled *Special Permit for Cluster Development and Site Plan Review Application* ("Special Permit Application"), prepared by JC Engineering, Inc. ("JC Engineering") dated September 7, 2023. As set forth in the Special Permit Application, *a proposed watermain will be installed along the entire length of all roadways, and hydrants will be installed at no greater than 500' intervals and at the end of each roadway. The new watermains will connect to the most recent Wareham Fire District water system expansion in Wareham. This development is not within 1,500 feet of a municipal sewer main, therefore, all houses will be serviced by an individual sewage disposal system on each lot.*
- A letter dated November 2, 2023 prepared by citizen Julie Abele-King. The letter includes comments regarding the planned development of the Subject Property. As set forth in the letter, *For the record, I frequented this area beginning in 1985 when my exhusband's parents purchased 163 Squirrel Island Road. Additionally, I resided at 163*

Squirrel Island Road from 2001 until 2007. This residence is the last house on Squirrel Island Road prior to the abandoned rail line and is in close proximity to the Whitehead property, which at that time included a man-made pond, the result of earth removal and excavation activities. During this entire period, spanning three decades, I witnessed the vehicles associated with Whitehead Company use Squirrel Island Road as their access. When Whitehead was not operating, mainly on nights and weekends, the pond transformed into a playground for my children, family, and friends, as well as other local residents. We went swimming, fishing, and enjoyed the pond for its recreational uses as well as sledding in the winter months from the mid-eighties until 2007. As such, I would consider myself a "credible eye witness". I attest that in the approximately 23 years described above, I was not witness to any of the conditions described in the comments (again, not testimony) of said witnesses. I never witnessed or observed evidence of "barrels", dumped vehicles or abandoned equipment. I never witnessed any contamination or had reason to believe the area was a hazardous waste dump site.

- A letter regarding 15-23 Sarajon Realty LLC Special Permit for Cluster Development and Site Plan Review, Hidden Trails – off County Road, Wareham, MA, dated November 8, 2023 prepared by citizen Kathy Pappalardo. The letter includes comments regarding the planned development of the Subject Property. As set forth in the letter, The site has numerous wetlands and streams. Another major concern was the slope of the pond. This "pond" is left over from the sand mining operation. Apparently, the industrial sand mining hit groundwater and that is how the "pond" was created. Many folks who grew up around here talk about the property, what's in the pond, what's buried on the property, etc. I would be very hesitant to permit residential units on a known industrial site without a major environmental examination.
- A letter regarding *Hidden Trails under Sarajon Realty, LLC Case No.: 15-23*, dated December 14, 2023 prepared by Robert L. Perry, J.D. The letter includes an Affidavit executed by Paul A. Tetrault in regard to the condition of the Whitehead property during the twenty (20) years Mr. Tetrault worked there. As set forth in the Affidavit:
 - 1. This Affidavit is being made to refute the false allegations of contamination of the Whitehead property through dumping of hazardous waste.
 - 2. My name is Paul A. Tetrault, and I have resided at all relevant times at 12 Burr Parkway, Wareham, Massachusetts.
 - 3. I worked for Whitehead Brothers, a New Jersey Corporation, for approximately Twenty (20) Years at the location known as the Whitehead property in West Wareham.
 - 4. For most of my tenure working for Whitehead I was in charge of the entire operation.
 - 5. The operation in West Wareham was solely to mine foundry sand, that was screened and immediately shipped out, originally by train then by truck to New Jersey.

- 6. For the purposes of mining sand, we used excavators, loaders, conveyors and of course the trucks used to deliver the sand.
- 7. All equipment and vehicles were continuously checked for oil leaks since any contamination whatsoever would render the sand unfit for use therefore would be adverse to our best interest.
- 8. Oil changes were done on equipment on site and the waste oil was properly disposed of off-site. Oil changes on trucks were done off site.
- 9. Once again, we were very careful not to spill any oil doing oil changes since contaminated sand would have no value, and the supply of sand was limited.
- 10. In support of the fact that there is no contamination of the property, we had a minor leak from a fuel tank observed by the representative of the Wareham Fire Department during the annual tank inspection.
- 11. Based on the fuel leak, we performed a cleanup under the oversight of DEP and the Wareham Fire Department.
- 12. The cleanup was completed and approved resulting in a determination that any potential contamination was taken care of.
- 13. The pond on the property was created by us by mining sand below water table due to the fact that the sand on the property was limited and we wanted to recover as much of the fine sand as possible before the supply of sand on the Whitehead property was exhausted and the operation came to an end.
- 14. At no time did we ever dispose of cars or anything else in the pond, in fact we had nothing to dispose of.
- 15. Shortly after I left the job with Whitehead Brothers, the company closed the Wareham operation due to a lack of any more sand to be recovered.
- 16. Upon my knowledge and belief, based upon the condition of the property when I went to work there, when I left and when the operation ceased, there can't possibly be contamination by hazardous materials of any type on the Whitehead property, especially in light of the fuel clean up.
- A letter regarding *15-23 Sarajon Realty LLC*, "Hidden Trails", dated January 5, 2024 prepared by citizen Doreen Adams. The letter includes comments regarding the planned development of the Subject Property. As set forth in the letter, *PROPER DRAINAGE*. The houses must have adequate drainage for heavy rainfall and proper leeching fields. The Conservation Commission/Department will need to explain the leeching process. Those of us with wells would like to discuss the eventual impact on our wells and on the pond from excavation, the eventual grand disturbance of the topography due to the septic systems and fertilizer poisoning from lawn care from this new city being torn into open land.

6.2.6 Conservation Commission

According to the Town of Wareham Conservation Commission, there are no records available for review associated with the Subject Property.

6.2.7 Fire Department

Lightship Engineering requested records associated with the use, storage, disposal, and/or release of OHM at the Subject Property from the Wareham Fire and Water District. At the time of this report, the Fire Department has not responded to Lightship Engineering's request.

6.2.8 Sanborn Fire Insurance Maps

According to EDR, the Subject Properties and surrounding area is located in an unmapped area. Copies of the Sanborn Maps are attached as Appendix C.

6.2.9 Aerial Photos

Aerial photographs were obtained through EDR for various years between 1952 and 2018. Copies of the aerial photos are attached as Appendix D. The year and a review of each aerial photograph are set forth below.

1952	The Subject Property is mostly undeveloped with the exception of a clearing, some buildings and pond in the northeastern portion of the Subject Property. The area surrounding the Subject Property appears to be sparsely developed and improved with some roads, residences, and agricultural properties. The scale and quality of the aerial photo does not provide additional details of the Subject Property or surrounding area.
1961	The Subject Property appears similar to the previous aerial photograph with the exception that the pond and clearing are larger. Additional development has occurred in the area surrounding the Subject Property. The scale and quality of the aerial photo does not provide additional details of the Subject Property or surrounding area.
1970, 1980, 1985, 1995	The Subject Property appears similar to the previous aerial photograph with the exception that the pond is larger and additional areas have been cleared. Additional development has occurred in the surrounding area. The scale and quality of the aerial photo does not provide additional details of the Subject Property or surrounding area.

2006, 2010, The Subject Property appears similar to the previous aerial photograph
2014, 2018 with the exception that the buildings have been removed, the northern portion of the pond has been filled and/or drained and areas formerly cleared have been re-vegetated. Additional development has occurred in the surrounding area. The scale and quality of the aerial photo does not provide additional details of the Subject Property or surrounding area.

6.2.10 Historical Topographic Maps

Historical topographic maps were obtained through EDR for various years between 1888 and 2018. Copies of the topographic maps are attached as Appendix D. The year and a review of each topographic map are set forth below.

1888, 1889, 1893, 1915, 1916, 1918 1935, 1936, 1938, 1939, 1941, 1942 1943, 1944, 1946, 1947, 1948, 1949, 1953	The Subject Property appears undeveloped and the surrounding area appears to be sparsely developed with some roadways and the Old Colony Railroad located east of the Subject Property. The map does not provide any specific details regarding the Subject Property.
1957, 1962, 1977, 1985	The northeast portion of the Subject Property appears to be cleared, a pond is present in this area and map labels the area as a sand and gravel pit. A railroad spur is depicted entering the Subject Property in the northeast portion of the Subject Property. The surrounding area appears developed with some roadways and structures. The map does not provide any specific details regarding the Subject Property.
2012, 2015, 2018	The pond is present but the sand and gravel operations appear to have ceased. The map does not provide details regarding the Subject Property.

6.2.11 City Directory

Lightship Engineering reviewed an abstract of available City Directories provided by EDR for various years between 1992 and 2020 with respect to the Subject Property and surrounding area. A copy of the EDR-City Directory Abstract Report is provided in Appendix F. Based on a review of the City Directories abstract provided by EDR, the Subject Property is not listed on the City Directories reviewed.

6.3 PHYSICAL SETTING SOURCE(S)

A summary of the natural resource information provided in the EDR Report attached at Appendix B and obtained from information provided to and reviewed by Lightship Engineering is set forth below.

6.3.1 <u>Regional Physiographic Conditions</u>

According to the EDR Report, the Subject Property topography generally slopes in a south southeasterly direction and is located approximately 22 feet above mean sea level.

6.3.2 Soil Description

As set forth in the EDR Report, the soils in the area of the Subject Property are classified as Carver soils, coarse sand. As set forth in the Drainage Report, *the soil types found within the limits of the drainage analysis are classified as the following:*

- 1.) Windsor Loamy Sand, 3 to 8 percent slopes (255B)
- 2.) Deerfield Loamy Fine Sand, 0 to 3 percent slopes (256A)
- 3.) Deerfield Loamy Fine Sand, 3 to 8 percent slopes (256B)
- 4.) Carver Loamy Coarse Sand, 0 to 3 percent slopes (259A)
- 5.) Aquepts, 0 to 3 percent slopes (657A)
- 6.) Udipsamments, 0 to 8 percent slopes (665B)

6.3.3 Bedrock Description

As set forth in the EDR Report, bedrock in the area of the Subject Property is characterized as the Precambrian system in the Precambrian era. Information reviewed by Lightship Engineering did not include depth to bedrock.

6.3.4 Groundwater

As set forth in Section 6.6, the reported depth to groundwater in the vicinity of the Subject Property is approximately 10 to 18 feet below grade and approximate groundwater flow direction is to the south.

6.3.5 Surface Water

The nearest surface water body is the manmade pond located in the north central portion of the Subject Property.

6.3.6 Flood Potential

Based upon information available online from the Federal Emergency Management Agency ("FEMA"), the Subject Property is located in "Zone X" which represents an area of minimal flooding based on the Flood Insurance Rate Map, Community Panel No. 25023C0469K.

6.3.7 <u>Sensitive Receptors</u>

A summary of environmentally sensitive receptors within 0.5-mile radius of the Subject Properties, based upon the MassGIS MassMapper interactive mapping tool ("MassMapper"), is set forth below. The information obtained through MassMapper is included as Figure 6-1, Appendix A.

Resource	Present within 0.5 miles	Nearest Distance from Site
Open Water	Yes	An unnamed manmade pond is located on the Subject Property.
Wetland	Yes	Wetlands are present on, north, south, east, and west of the Subject Property.
Non-Potential Drinking Water Source Area	No	-
Protected Open Space	No	-
Areas of Critical Environmental Concern	No	-
Approved Wellhead Protection Area	No	-
Potentially Productive High Yield Aquifer	Yes	An EPA High Yield Aquifer is present southeast of the Subject Property.
Potentially Productive Medium Yield Aquifer	Yes	A Potentially Productive Medium Yield Aquifer is present on and north and east of the Subject Property.
NHESP Estimated Habitats of Rare Wildlife	No	-
NHESP Certified Vernal Pool	No	-
NHESP Potential Vernal Pool	No	-

Resource	Present within 0.5 miles	Nearest Distance from Site
FEMA 100-year Floodplain	Yes	A 100-year flood plain is located east of the Subject Property.
Solid Waste Landfill	No	-

NHESP - Natural Heritage & Endangered Species Program

6.4 HISTORICAL USE INFORMATION ON THE SUBJECT PROPERTY

Information regarding historical use of the Subject Property is set forth above in previous sections.

6.5 HISTORICAL USE INFORMATION FOR ADJOINING PROPERTIES

Information regarding historical use of adjacent properties is set forth above in previous sections.

6.6 HISTORICAL ENVIRONMENTAL INVESTIGATIONS

Lightship Engineering reviewed the following historical environmental reports associated with the Subject Property provided by Sarajon and available online through the MassDEP Searchable Database website as set forth below.

6.6.1 <u>Phase I Initial Site Assessment, Release Abatement Measure (RAM) Completion</u> <u>Report, Response Action Outcome, prepared by East Coast Engineering, Inc. dated</u> <u>January 17, 2001</u>

Lightship Engineering review of the *Phase I Initial Site Assessment, Release Abatement Measure (RAM) Completion Report, Response Action Outcome*, prepared by East Coast Engineering, Inc. dated January 17, 2001 (the "RAO report"), is set forth below.

- As set forth in the RAO report, *Currently, WHIBCO operates a sand and gravel* removal operation on about ten (10) acres of the site. The remainder of the land consists of undeveloped land and a large pond. According to the property owner, this property has been used for sand and gravel operations since the rnid-1930's. Prior to that time, the property was undeveloped.
- Existing structures include a drying operation for the sand as it is removed from the pond; a small garage used for business operations and equipment maintenance, and a screening plant for the earth removal operations. A 10,000 gallon aboveground storage tank (AST) (installed in 1995/1996) is located behind the dryer building on

the eastern portion of the property and is used for the storage of diesel fuel. A 500 gallon waste oil AST (installed in 1995/1996) is located west of the garage/office building. Both of these tanks have 110 percent volume containment. Two water supply wells are located on-site. A 250 foot deep well is located near the dryer and used for production water, and the second is a 20-foot deep well located east of the garage/office building and used for water in the washroom. This water supply well was installed in August 1995. Bottled water is used for drinking purposes.

- In June 1992, the Wareham Fire Department, conducting a routine permitting inspection of the aboveground (AST) and underground tanks (UST) at the WHIBCO facility identified petroleum staining on the ground surface in the vicinity of the 660 gallon aboveground tank. This tank was partially buried and used for the storage of gasoline.
- The Wareham Fire Department notified the Department of Environmental Protection (DEP) on June 22, 1992 of the petroleum-contaminated soil near the AST and the presence of a shallow water supply well on the property. The DEP conducted an inspection of the property and determined that remediation of the contaminated soil was required. The DEP required the excavation and removal of the underground and aboveground tanks on the property. Based on these conditions, DEP issued a Notice of Responsibility (NOR) on June 24, 1992. Release Tracking Number 4-06057 was assigned to the Site.
- An on-site septic system is used for the handling of domestic wastewater.
- The initial response actions were conducted in 1992. WHIBCO, Inc. contracted with Mason Environmental for the excavation and off-site removal of several aboveground and underground tanks and two former AST's which were abandoned and stored on the property. On November 9, 1992, a 1,000 gallon underground tank formerly used for the storage of gasoline was excavated and transported to James Grant Co., Inc. in Readville, Massachusetts. On January 15, 1993, Mason removed five additional tanks from the property including: a 1,000 gallon UST formerly containing diesel fuel; a 12,000 gallon AST formerly containing diesel fuel; an abandoned 8,000 gallon AST (former contents unknown; an abandoned 5,000 gallon AST (former contents unknown); and a 660 gallon AST formerly containing diesel fuel.
- During the course of tank removal, it is reported by WHIBCO that Mason excavated and stockpiled between 275 and 300 tons of contaminated soil on-site. This material was stockpiled and covered with plastic and located south of the office/maintenance building.
- The purpose of the RAM, dated March 30, 2000, was to develop a program for the removal and off-site management of the contaminated soil stockpiled on the property, to present reuse and disposal procedures to ensure the proper management of excavated soils, and to assess soil and groundwater conditions in the former locations of the tanks and stockpile area.

6-16

- On July 18, 2000, the stockpile of contaminated soil was excavated. It was found that the stockpiled soil was initially placed on sheets of plastic and covered with same. About six inches of soil beneath the plastic sheeting was also excavated and moved off-site. The volume of soil removed off-site was 377.85 tons (approximately 250 cubic yards). The excavated soils were shipped off-site for recycling.
- On August 15, 2000, five soil borings were advanced on the property and the soils characterized for petroleum constituents. The locations of these soil borings identified as B-1 through B-5.
- Two soil borings were advanced in the area of the former stockpile area (B-3 and 8-4), and one soil boring at each of the former tank locations (B-2 and B-5). An upgradient soil boring, B-1, was advanced to characterize background soil conditions.
- At each of these borings, soils were vertically characterized at two-foot intervals to the depth of and including the interface of the water table. (The depth to water was approximately 10 to 12 feet below the ground surface). At each of the two-foot core intervals, soil samples were prepared for laboratory analysis for Total Petroleum Hydrocarbons (TPH), and Volatile (VPH) and Extractable Petroleum Hydrocarbons (EPH). As a screening for petroleum hydrocarbons, each sample was laboratory analyzed for TPH. Based on the results of the TPH analysis, select soil samples were analyzed for VPH and EPH constituents.
- Eight groundwater monitoring wells were installed on the property. On August 22, 2000, groundwater samples were collected from each of the eight wells and analyzed each of the water samples for Extractable and Volatile Petroleum Hydrocarbons analysis.
- On August 22, 2000, a water sample was drawn from the existing water supply well located on the east side of the office/maintenance building. The sample was analyzed for volatile organic compounds (VOCs) by EPA Method 8260. The results of the analysis found non-detectable concentrations of petroleum compounds; 1.4 ug/1 of trichloroethene was reported in the water sample but was reported at a level below reportable concentrations.
- Based on the groundwater measurements and surface water elevation, collected on August 22 and 31, 2000, respectively, the groundwater flow is toward the south. Depth to groundwater ranged from 10.89 to 18.58 feet below grade.
- The concentrations of Total Petroleum Hydrocarbons (TPH) in the soil ranged between non-detect (ND) and 135 mg/kg. The concentration of 135 mg/kg was identified in the soil sample collected at 12 to 16 feet below the ground surface in the vicinity of the former soil stockpile, (i.e., soil boring B-3). Based on these TPH results, the soil samples exhibiting the highest TPH concentration at each boring location, and the soil sample collected at the groundwater interface from each boring, were analyzed for Volatile Petroleum Hydrocarbons (VPH) and Extractable

6-17

Petroleum Hydrocarbons (EPH) constituents. As shown on Table 2, concentrations of VPH and EPH carbon chain and target analytes were not detected in the any of the analyzed soil samples.

- The EPH and VPH carbon chain and target analytes were not detected in the groundwater samples collected from wells MW-1, MW-3, MW-4, MW-5, MW-6, and MW-7. At well MW-2, the laboratory reported an estimated value of 0.3 ug/1 of the C 19- C36 Aliphatic Hydrocarbons in the groundwater sample, and at well MW-8 the laboratory reported an estimated value of 0.8 ug/1 of the Cl l-C22 Aromatic Hydrocarbons in the groundwater. No other EPH and VPH analytes were detected in the groundwater at wells MW-2 andMW-8.
- To characterize the risk of harm to health, public welfare and the environment, a Method 1 Risk Characterization was prepared in accordance with 310 CMR 40.0970.
- Since the soi] and groundwater concentrations are below the soi] category S-1/GW-1 standard and groundwater category GW-1, a level of No Significant Risk has been achieved; an Activity and Use Limitation (AUL) on the site is not required.
- Based on the results of the analytical data and given the present and future uses of the site, and that remaining soils are less than the soil/groundwater applicable categories S-1/GW-1, S-1/GW-2 and S-1/GW-3 standards, a level of No Significant Risk is posed at the site. Therefore, no further action is necessary.
- The RAM activities have been completed in accordance with the approved RAM Plan and the requirements of 310 CMR 40.1000. The work conducted met the objectives of providing risk reduction measures to manage contaminated soils. The results of these measures qualify as a Class A-2 Response Action Outcome as defined in 310 CMR 40.1036(2).

7.0 DATA GAPS

- Lightship Engineering did not review Title Records for the Subject Property;
- Lightship Engineering did not conduct an evaluation of the purchase price of the Subject Property compared to the fair market value;
- Lightship Engineering did not obtain any historical information prior to 1888 with respect to the Subject Property;
- Lightship Engineering requested records associated with the use, storage, disposal, and/or release of OHM at the Subject Property from the Town of Wareham Health Department. At the time of this report, the Health Department has not responded to Lightship Engineering's request;
- Lightship Engineering requested records associated with the use, storage, disposal, and/or release of OHM at the Subject Property from the Wareham Fire and Water District. At the time of this report, the Wareham Fire and Water District has not responded to Lightship Engineering's request; and
- Portions of the Subject Property were covered with thick vegetation at the time of the reconnaissance that limited accessibility and visibility of conditions at the Subject Property. Based on historical information reviewed by Lightship Engineering, it appears that the historic sand mining operations at the Subject Property primarily took place in the open area north of the pond as well as within the current location of the pond.

The data gaps identified above are unlikely to significantly impact the conclusions of the Phase I investigation.

8.0 <u>FINDINGS AND OPINIONS</u>

Consistent with the Scopes of Work, Lightship Engineering conducted an ASTM Phase I environmental assessment of the Subject Property. The findings and opinions are summarized below.

• The Town of Wareham Assessing Department identifies the Subject Property as the following parcels and addresses:

Darcal ID	*Addross	Book/Dogo	Ownor	Lot Size
rarcei ID	Audress	DOOK/Fage	Owner	(acres)
63//1013//	0 County Road Off	48409/0297	Fearing Hill LLC	18.08
63//AA//	0 Allie's Lane	6459/0121	Wolcott, Walter S. C/O Lorusso & Grilli	0.01
63//C//	0 Allie's Lane	39458/013	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.74
63//F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.55
63//21//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//22//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//23//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.6
63//24//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//25//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.25
63//26//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.54
63//27//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//28//	0 Marissa Way	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.43
63//29//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38

Darcal ID	* Addross	Book/Dogo	Ownor	Lot Size
I al cel ID	Auuress	DUUK/I age	Owner	(acres)
63//30//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.4
63//31//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//32//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//33//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
63//34//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.7
63//35//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.48
63//36//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42
63//37//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.6
63//38//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//39//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.43
63//40//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//41//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
63//42//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.64
63//43//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	2.09
63//44//	0 Allie's Lane	29516/0311	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.99
64//J//	0 Allie's Lane	36482/0130	Lorusso, Gerard C. & Grilli, Henry G. Trustee of County Rd 2004 Tr	0.4

LIGHTSHIP ENGINEERING

Parcel ID	*Address	Book/Page	Owner	Lot Size
i ui cei ib	i iuui ess	Doon, i uge		(acres)
64//K//	0 Allie's Lane	36482/0130	Lorusso, Gerard C. & Grilli, Henry G. Trustee of County Rd 2004 Tr	0.88
64//1F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.82
64//2F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.49
64//3F//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.71
64//4//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.62
64//5//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//6//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//7//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//8//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.38
64//13//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.55
64//14//	0 Casey Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.27

Parcel ID	*Address	Book/Page	Owner	Lot Size
	Autress	DOON/1 age	Owner	(acres)
64//15//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	1.53
64//16//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.1
64//17//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	3.4
64//18//	0 Juliana Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.18
64//19//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.26
64//20//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	2.02
64//G//	0 County Road Off	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	35.64
64//H//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	7.21
64//I//	0 Allie's Lane	32966/0082	Lorusso, Gerard C. & Grilli, Henry G. Tr County Rd 2004 Realty Trust	5.14
65//9//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//10//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//11//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.42

Parcel ID	*Address	Book/Page	Owner	Lot Size (acres)
65//12//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	1.38
65//R//	0 Casey Lane	43600/0248	Lorusso, Gerard C. & Grilli, Henry G. Trustees	0.46

*Address per Town of Wareham Assessing Department

A portion of the Town of Wareham Assessor's Map containing the Subject Property is provided as Figure 3-1, Appendix A.

- The Subject Property is comprised of 54 vacant parcels, totaling approximately 153 acres of land off County Road in Wareham, Massachusetts. The Subject Property is located in a residential zoned area. According to the Town of Wareham, aerial photographs, and historical topographic maps, the parcel was formerly the location of a sand and gravel operation.
- According to the records from the Town of Wareham Sewer Department, the Subject Property is not connected to the municipal sewer system and municipal sanitary sewer is not available in the area of the Subject Property. As set forth in Section 6.6, an on-site septic system was previously located on-Site as part of the historic sand and gravel operation. There was no information regarding the removal of the septic system.
- According to the records from the Wareham Fire and Water District, the Subject Property is not connected to the municipal water supply. Based on information provided by JC Engineering, municipal water is available in the area of the Subject Property.
- No OHM and no indications of a significant release of OHM were observed by Lightship Engineering during the reconnaissance.
- No storage tanks were observed by Lightship Engineering during the reconnaissance. It should be noted that as set forth in Section 6.6, ASTs and USTs were historically located on-site as part of the historic sand and gravel operation.
- No odors, pools of liquid or significant staining were observed by Lightship Engineering during the reconnaissance.
- No drums were observed by Lightship Engineering during the reconnaissance.
- No floor drains or sumps were observed by Lightship Engineering during the reconnaissance.
- Lightship Engineering observed a pond in the central portion of the Subject Property. Based on historical topographic maps and aerial photographs, the pond appears to be man-made and was constructed sometime around 1950. No pits or lagoons were observed at the Subject Property by Lightship Engineering during the reconnaissance.

- No evidence of stained or stressed vegetation was observed at the Subject Property during the reconnaissance.
- The Subject Property is primarily wooded with the exception of sparsely vegetated sandy areas north of the pond and a sandy area on the southern edge of the pond. Based on historical topographic maps and aerial photographs, the pond appears to be man-made and constructed sometime around 1950.
- Lightship Engineering observed numerous tires, a hull of a boat, televisions, mattresses, an empty 5-gallon bucket labelled general all-purpose solvent, asphalt shingle pieces, and concrete in the wooded areas in the northwestern portion of the Subject Property. No visual and/or olfactory indications of a significant release of OHM were observed in these areas.
- Lightship Engineering observed utility poles and lines along the dirt path running perpendicular to County Road that service the residential properties north of the Subject Property. No visual and/or olfactory indications of a significant release of OHM were observed in this area.
- Lightship Engineering observed multiple apparently man-made earthen mounds throughout the Subject Property during the reconnaissance. The source and purpose of the mounds was not evident.
- Lightship Engineering observed portions of railroad tracks in the northern portion of the Subject Property and remnants of a foundation in the sandy area north of the pond. No visual and/or olfactory indications of a significant release of OHM were observed in these areas.
- As set forth above, portions of the Subject Property were covered with thick vegetation at the time of the reconnaissance that limited accessibility and visibility of conditions at the Subject Property.
- The Subject Property is listed as a RELEASE site and SHWS identified as Whibco Plant located on Squirrel Island Road. Refer to section 6.6.1 for further information. *The Site* (*RTN 4-06057*) is listed as closed with a Class A-2 Response Action Outcome (RAO).
- As set forth in Section 6.0, three state-listed sites are located within 1.0-mile of the Subject Property. Based on the nature, distance and/or groundwater flow direction, these releases appear unlikely to significantly impact the Subject Property.
- As set forth in Section 6.6, one or more releases of OHM were encountered at the Subject Property. Based on subsurface investigation activities, the OHM impacts from an on-site AST were excavated under a RAM. *The Site (RTN 4-06057) is listed as closed with a Class A-2 Response Action Outcome (RAO).*
- Lightship Engineering conducted a Phase II in December 2023, that included excavation of test pits and the collection of select soil, groundwater, building materials, surface water

and sediment samples for laboratory analysis at the locations, details are set forth in Section 10.0.

• Based on the results of the Phase II, OHM impacts from historic operations were detected below MCP reporting thresholds. In the event of future soil intrusive activities or redevelopment, soil and groundwater should be managed accordingly consistent with the MCP and relevant federal, state and local regulations.

9.0 <u>CONCLUSIONS</u>

RECs, Historical RECS, and potential RECs associated with the Subject Property are summarized below.

9.1 RECOGNIZED ENVIRONMENTAL CONDITIONS

Lightship Engineering has performed a Phase I and Phase II environmental assessment in general conformance with the scope and limitations of ASTM Practice E 1527-21 of the Subject Property. This assessment has revealed no evidence of RECs in connection with the Subject Property with the exception of the following:

- The historic use of the property as a sand and gravel operation dating back to the mid 1950's which included ASTs, USTs, wells, and an on-site septic system. Lightship Engineering obtained no documentation regarding the locations and/or decommissioning of the wells, USTs and/or septic tank which is a REC.
- Lightship Engineering observed multiple apparently man-made earthen mounds. The source and purpose of the mounds was not evident, which is a REC.
- Lightship Engineering observed numerous instances of solid waste disposal (e.g., tires, a hull of a boat, televisions, mattresses, an empty 5-gallon bucket labelled *general all-purpose solvent*, asphalt shingle pieces) in the wooded areas in the northwestern perimeter of the Site. Although solid waste is not considered a hazardous waste, improper solid waste disposal may be indicative of improper hazardous waste disposal. It should be noted that Lightship Engineering observed no visual and/or olfactory indications of a significant release of OHM in these areas during the reconnaissance.
- A portion of the man-made pond was partially filled and/or drained in the 1990s and Planning Department records include allegations of large-scale disposal in and around the pond which is a REC.
- As part of the AST/UST investigation and remediation activities, a water sample was collected from the sink in the washroom at the Site and was submitted to a Commonwealth of Massachusetts certified analytical laboratory for VOCs analysis. The concentrations of target analytes were all reported below the analytical reporting limit, with the exception of TCE which was reported at a concentration of 1.4 ug/l. The reported concentration is below the MassDEP reporting threshold, but TCE does not naturally occur in the environment. TCE is a common ingredient in cleaning/degreasing products which may have used as part of the historic sand mining operations at the Subject Property. The source of water in the washroom was an on-Site well. The presence of TCE in groundwater represents a REC.
- The Site is located in an area with numerous commercial cranberry bogs and commercial farming pesticides have been identified as containing PFAS. PFAS compounds are highly soluble and easily migrate in groundwater. Considering the numerous commercial

cranberry bogs adjacent to and nearby the Site, the potential for PFAS impacts at the Site is considered a REC.

• Apparent building materials (corrugated concrete) were observed in the area of the former sand and gravel operations that may contain asbestos. The potential presence of asbestos containing materials is considered a REC. Based on the volume of solid waste observed at the Site, ACM may be present at other locations of the Site. It should be noted that no visual and/or olfactory indications of a significant release of OHM were observed in these areas during the reconnaissance.

In an attempt to assess the RECs, set forth above, Lightship Engineering conducted a limited subsurface investigation that included excavation of test pits and the collection of select soil, groundwater, building materials, surface water and sediment samples for laboratory analysis at the locations, details are set forth in Section 10.0.

9.2 CONTROLLED RECOGNIZED ENVIRONMENTAL CONDITIONS

Lightship Engineering has performed a Phase I environmental assessment in general conformance with the scope and limitations of ASTM Practice E 1527-21 of the Subject Property. This assessment has revealed no evidence of Controlled RECs in connection with the Subject Property.

9.3 HISTORICAL RECOGNIZED ENVIRONMENTAL CONDITIONS

Lightship Engineering has performed a Phase I environmental assessment in general conformance with the scope and limitations of ASTM Practice E 1527-21 of the Subject Property. This assessment has revealed no evidence of Historical RECs in connection with the Subject Property with the exception of the following:

• A release of petroleum-related compounds ("PRCs") reportedly occurred at the Site in connection with former ASTs and/or USTs. The release was reported to the MassDEP and response actions included removal off the ASTs/USTs and the excavation and off-Site disposal of PRC impacted soils. The response actions reportedly achieved a Permanent Solution and a level of No Significant Risk, as those terms are defined by the MCP (310 CMR 40.0000). As a result, the release of PRCs is considered a Historical REC.

10.0 PHASE II LIMITED SITE INVESTIGATION, DECEMBER 2023 & JANUARY 2024

In an attempt to assess the RECs set forth in Section 9.1, Lightship Engineering conducted a limited subsurface investigation (the "Phase II investigation") that included the excavation of test pits and the collection of soil, groundwater, building materials, sediment and surface water samples at the locations indicated on Figure 10-1, Appendix A. The Phase II investigation activities are summarized below.

10.1 TEST PIT INVESTIGATION

On December 14 and 19, 2023, Lightship Engineering excavated 20 test pits in readily accessible areas of the former sand and gravel operations (LE-TP1 through LE-TP20) at the approximate locations indicated on Figure 10-1, Appendix A and excavated into the earthen mounds located northeast of the pond. No visual or olfactory evidence of a significant release of OHM was observed in the earthen mounds uncovered. The test pits were excavated to approximately 10 to 12 feet below grade and soils at each test pit location appeared to be native. Upon completion, each test pit was backfilled with the excavated material.

Based on visual and/or olfactory observations, soil samples were collected field screened for total organic vapor ("TOV") with a photoionization detector ("PID" 10.6 electron volt ["eV"]) utilizing the jar headspace method and were classified using the Unified Soil Classification System ("USCS"). TOV PID values ranged from below the instrument detection limit (<0.1 parts per million volume ["ppmv"]) to a maximum of 0.3 ppmv. Test pit logs are provided at Appendix G. With the exception of a moth ball like odor at LE-TP2 from four to six feet below grade, no visual, olfactory and/or TOV field screening data, indicative of a significant release of OHM, was encountered in the test pits.

At select test pit locations, soil samples were collected at or near the groundwater interface or at the location of the highest TOV concentration and submitted to a Commonwealth of Massachusetts certified analytical laboratory for volatile petroleum hydrocarbons ("VPH," fractions only), volatile organic compounds ("VOCs," Method 5035/8260) and/or extractable petroleum hydrocarbons ("EPH") with target polynuclear aromatic hydrocarbons ("PAH") analyses. The soil laboratory analytical results were compared to applicable MCP, (310 CMR 40.0000) Reporting Category RCS-1 thresholds. Select VPH, EPH, and/or PAHs were reported above the laboratory analytical results of compounds detected are summarized in Tables 10-1 and 10-2, Appendix H and the laboratory analytical data packages are provided as Appendix I.

10.2 TEMPORARY GROUNDWATER MONITORING WELL INSTALLATION AND SAMPLING

On December 14, 2023, temporary groundwater monitoring wells LE-TMW1 through LE-TMW4 were installed at test pits LE-TP4, LE-TP5, LE-TP6, and LE-TP7, respectively. The temporary groundwater monitoring wells were constructed of 2-inch polyvinyl chloride ("PVC") casing with 10 feet of 0.010-inch slotted screen positioned to roughly bisect the water table, consistent with MassDEP's Standard References for Monitoring Wells ("Standard References"). Temporary monitoring well construction logs are set forth in Appendix G.

On December 15, 2023, groundwater samples were collected from the temporary monitoring wells. Prior to sample collection, each temporary well was purged of five volumes of groundwater using a peristaltic pump utilizing the low flow purging methodology. Groundwater samples were collected and submitted to a Commonwealth of Massachusetts certified analytical laboratory for VOCs (Method 8260) and PFAS analyses. Groundwater samples collected for VOCs (Method 8260C) analysis were collected with dedicated disposal polyethylene bailers. The laboratory analytical results are summarized in Tables 10-3 and 10-4, Appendix H and the laboratory analytical data packages are provided in Appendix I.

Lightship Engineering returned to the Site on January 12, 2024, to re-sample the temporary groundwater monitoring wells. Prior to sample collection, each temporary well was purged of five volumes of groundwater using a peristaltic pump utilizing the low flow purging methodology. Groundwater samples were collected and submitted to a Commonwealth of Massachusetts certified analytical laboratory for VOCs (Method 8260) analyses. Groundwater samples collected for VOCs (Method 8260C) analysis were collected with dedicated disposal polyethylene bailers.

10.2.1 MassDEP Groundwater Reporting Categories

With respect to triggering a MCP reporting obligation, the MCP classifies groundwater in two categories, RCGW-1 and RCGW-2. Reporting category RCGW-1 is applicable to groundwater located within a Current or Potential Drinking Water Source area, as defined by the MCP. Reporting category RCGW-2 applies to all other groundwater in Massachusetts. Based on information reviewed by Lightship Engineering, the northern portion of the Subject Property is located within a medium yield potentially productive aquifer and, therefore, is subject to reporting category RCGW-1. Temporary groundwater monitoring wells LE-TMW3 and LE-TMW4 were installed within the limits of the medium yield potentially productive aquifer as indicated on Figure 10-2, Appendix A. Groundwater at the remaining portion of the Subject Property is subject to reporting category RCGW-2.

10.2.2 Groundwater Analytical Results

As set forth in Table 10-3, Appendix H, 1,1,2,2 – tetrachloroethane, 2-butanone and tetrahydrofuran were reported above the analytical reporting limit and above the applicable RCGW-1 reporting thresholds in groundwater samples collected in December 2023. As set forth above, the groundwater samples were less than 24-hours after the wells were installed in the test pit locations. Considering no apparent source of a release of OHM in the area of the monitoring wells (no VOCs were reported above the analytical reporting limit in any soil samples submitted for laboratory analysis) and that fine particulate matter was temporarily put into solution as a result of the test pit excavation and well installation activities, the reported concentrations appeared likely to be associated with soil particulates and not representative of groundwater quality. On January 12, 2024, four weeks after collecting the December groundwater samples, Lightship Engineering collected groundwater samples from the temporary groundwater monitoring wells. Concentrations of all target VOCs, including 1,1,2,2 – tetrachloroethane, 2butanone and tetrahydrofuran were reported below the laboratory analytical reporting limit and/or below the applicable reporting thresholds. Based on the January groundwater sampling analytical results, the December groundwater samples do not appear representative of groundwater quality and, therefore, do not trigger a MCP reporting obligation.

As set forth above, groundwater samples were collected from temporary monitoring wells LE-TMW1, LE-TMW2 and LE-TMW4 in December 2023 and were submitted to a Commonwealth of Massachusetts certified analytical laboratory for PFAS analysis. As set forth in Table 10-4, Appendix H, select PFAS concentrations were reported below the laboratory analytical reporting limit and/or below the applicable reporting thresholds.

10.3 SUSPECTED ACM SAMPLING AND ANALYSIS

On December 15, 2023, Lightship Engineering collected three samples of the suspected ACM building materials and submitted the samples to a Commonwealth of Massachusetts certified analytical laboratory for asbestos analysis. No asbestos was reported in the building material samples collected at the Site. The laboratory analytical data packages are provided as Appendix I.

10.4 SURFACE WATER AND SEDIMENT SAMPLING

On December 14, 2023, Lightship Engineering collected one surface water and one sediment sample from the manmade pond located on the Site. The samples were collected along the northern shoreline in a readily accessible area along the shoreline. The surface water and sediment samples were submitted to a Commonwealth of Massachusetts certified analytical laboratory for VPH (fractions only), VOCs (Method 8260C), EPH with target PAHs, E. Coli (surface water only) and/or PFAS analyses (surface water only) analyses.

The sediment sample results were compared to the applicable MCP Freshwater Sediment Screening Criteria¹ and Petroleum Hydrocarbon Sediment Toxicity Criteria². The surface water laboratory analytical results were compared to the applicable MCP Recommended Surface Water Quality Guidelines [Policy #WSC-02-411] - October 31, 2002, Connecticut Action Levels for PFAS³, and the Massachusetts Department of Public Health ("DPH") Water Quality Criteria. No concentrations of OHM were detected above the laboratory reporting limits and or the standards/thresholds noted above in either the surface water or sediment samples. The laboratory analytical data packages are provided as Appendix I.

10.5 LIMITED SITE INVESTIGATION SUMMARY

Based on the Phase II investigation, a large release of OHM was not evident at the Subject Property, and while evidence of illegal dumping of solid waste was observed, widespread, large scale illegal dumping was not evident. The visual, olfactory and/or TOV field screening data associated with the test pits is not indicative of a significant release of OHM. Concentrations of OHM reported in soil, groundwater, sediment and surface water samples were all below the analytical reporting limit and/or below the applicate reporting thresholds.

The elevated concentrations of select VOCs reported in groundwater samples collected in December 2023 appear to be the result of suspended soil particles and, therefore, are not representative of groundwater quality. Pursuant to 310 CMR 40.0317(14), the VOC concentrations reported in the December 2023 groundwater samples do not trigger an MCP reporting obligation.

Although no investigation can rule out the presence of environmental impacts, the field observations and laboratory analytical results indicate that the Subject Property has not been impacted by a large release of OHM. It should be noted that the detectable concentrations of OHM were reported in select soil and groundwater samples collected at the Subject Property. Although the Phase II investigation did not result in evidence of a large release of OHM at the Subject Property, the extent of the Phase II investigation was limited relative to the size of the property. Considering OHM was historically used at the Subject Property, that illegal dumping has occurred at the Subject Property and that OHM was detected in select samples, a potential exists for one or more releases of OHM to have significantly impacted discrete portions of the Subject Property. Additional investigation and laboratory analysis would be necessary to reduce the risk of significant OHM impacts being present at the Subject Property in areas beyond those assessed as part of the Phase II investigation.

^{1 -} DEP's Technical Update - Revised Sediment Screening Values, January 2006.

^{2 -} Sediment Toxicity of Petroleum Hydrocarbon Fractions, September 2007

^{3 -} It should be noted that while the MassDEP has not promulgated regulations or thresholds with respect to PFAS in swimming and/or bathing waters, the MassDEP has adopted the Connecticut Department of Public Health threshold of 210 parts per trillion PFAS for swimming and/or bathing waters.

11.0 <u>REFERENCES</u>

- Town of Wareham Assessing Department, Inspectional Services Department, Health Department, Sewer Department, Conservation Commission, and Wareham Fire and Water District.
- Environmental Data Resources, Inc., *The EDR Radius Map with GeoCheck*®, *Undeveloped Property, County Road, Wareham, Massachusetts 02576.*
- Environmental Data Resources, Inc., Aerial Photo Decade Package, Undeveloped Property, County Road, Wareham, Massachusetts 02576.
- Environmental Data Resources, Inc., City Directory-Abstract, Undeveloped Property, County Road, Wareham, Massachusetts 02576.
- Environmental Data Resources, Inc., Sanborn Map Report, Undeveloped Property, County Road, Wareham, Massachusetts 02576.
- Environmental Data Resources, Inc., EDR Historical Topographic Map Report, Undeveloped Property, County Road, Wareham, Massachusetts 02576.
- Plans titled *Hidden Trails Definitive Subdivision Plan of Land and Special Permit for a Residential Cluster Development in Wareham*, prepared by JC Engineering, Inc. ("JC Engineering") dated September 7, 2023.
- Drainage Calculations & Supplemental Information for Hidden Trails, prepared by JC Engineering, Inc. dated September 7, 2023.
- Special Permit for Cluster Development and Site Plan Review Application ("Special Permit Application"), prepared by JC Engineering, Inc. dated September 7, 2023.
- Phase I Initial Site Assessment, Release Abatement Measure (RAM) Completion Report, Response Action Outcome, prepared by East Coast Engineering, Inc. dated January 17, 2001.

12.0 SIGNATURE AND ENVIRONMENTAL PROFESSIONAL STATEMENT

The Environmental Professional responsible for preparing this report is set forth below.

Kristin Maloney

I, Kristin Maloney, declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312. I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. I have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Kristin Maloney

Kristin Maloney

February 27, 2024

Date

13.0 LIMITATIONS

Reliance on this report is subject to the terms and conditions between Lightship Engineering, LLC, and Sarajon dated November 2, 2023 (the "Agreement"), as summarized below. The terms and conditions of the Agreement supersede all other terms and conditions.

Lightship Engineering is not responsible for the accuracy of the information provided to Lightship Engineering by third parties. Except as otherwise stated in this report, Lightship Engineering has not attempted to verify the accuracy or completeness of any such information.

The data presented in this report, and Lightship Engineering's opinions based on such data, is provided in accordance with Lightship Engineering's proposal for professional services and the terms and conditions between Sarajon and Lightship Engineering pursuant to which the environmental professional services were rendered. The data reported and findings, observations, and conclusions expressed in this report are limited by Lightship Engineering's scopes of work, including the extent of subsurface exploration and other tests.

Any reuse or reliance on this report by any other third party shall be done only with the written consent of Lightship Engineering.

The findings, observations, opinions, conclusions, and recommendations are not intended to, and do not imply a warranty or a guarantee, and are based solely upon site conditions at the time of Lightship Engineering's investigation. The findings, observations, opinions, conclusions, and recommendations should not be considered an opinion concerning the compliance of any past or present owner or operator of the Site with any federal, state, or local law or regulation. Nothing in this report constitutes a legal opinion or legal service and should not be relied upon as such.

Environmental, geologic, and geotechnical conditions at the Site are subject to change over time as a result of natural and man-made processes, and the environmental assessment produced by Lightship Engineering may not be relied upon as a guaranteed representation of Site conditions, contamination or costs which can vary from those encountered at the times when and locations where data are obtained by Lightship Engineering.

The work to be performed by Lightship Engineering did not include any analysis, testing, or evaluation with respect to the presence of polychlorinated biphenyls, or any airborne pollutants.

Lightship Engineering does not assume any responsibilities or liability with respect to any aspect or condition of the Site, now existing or hereafter arising or discovered, nor shall any liability or responsibilities be implied or inferred by reason of Lightship Engineering's performance of the work.

Lightship Engineering has performed services in a manner consistent with that level of care and skill ordinarily exercised by other professional consultants performing such services, within the same time period, and under the same or similar circumstances and conditions (the "Required Standard of Care"). Lightship Engineering's services shall not be subject to any express or implied warranties whatsoever.

To the fullest extent permitted by law, the total liability, in the aggregate, of Lightship Engineering and of Lightship Engineering's members, officers, directors, employees, agents, and independent professional associates, and any of them, to anyone claiming any and all injuries, claims, losses, expenses, or damages whatsoever arising out of or in any way related to the work conducted by Lightship Engineering shall not exceed the total amount of \$50,000.

APPENDIX A

FIGURES

- Figure 1-1 Subject Property Locus Map
- Figure 3-1 Town of Wareham Assessor's Map
- Figure 6-1 MassGIS Map
- Figure 10-1 Sampling Location Map
- Figure 10-2 Groundwater Reporting Category Map

N W K S	TIGHTSHIP	ENGINEERING	ENVIRONMENTAL & LAND-USE	6 Resnik Road • Suite 207 • Plymouth, Massachusetts 02360
	FIGURE 10-1	Sampling Location	INTRP	
	PROJECT	Proposed Hidden Trails Residential Subdivision Off County Road	Wareham, Massachusetts	
ndwater Monitoring Well Location d Sediment Sample Location proximate. pprox. 280 feet	PREPARED FOR	Sarajon Realty, LLC 2854 Cranberry Highway	East warenam, Massachusetts	Source: Google Maps

APPENDIX B

EDR RADIUS MAP REPORT

Undeveloped Property

County Road West Wareham, MA 02576

Inquiry Number: 7489270.2s November 06, 2023

The EDR Radius Map[™] Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

FORM-LBC-BCS

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	8
Orphan Summary	15
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map	A-8
Physical Setting Source Map Findings	A-9
Physical Setting Source Records Searched	PSGR-1

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as provident professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E1527 - 21), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E2247 - 16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E1528 - 22) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

COUNTY ROAD WEST WAREHAM, MA 02576

COORDINATES

Latitude (North):	41.7546410 - 41° 45' 16.70"
Longitude (West):	70.7732110 - 70° 46' 23.55"
Universal Tranverse Mercator:	Zone 19
UTM X (Meters):	352577.3
UTM Y (Meters):	4623841.0
Elevation:	22 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map:	11711328 SNIPATUIT POND, MA
Version Date:	2018
Northeast Map:	11711338 WAREHAM, MA
Version Date:	2018
Southeast Map:	11711308 ONSET, MA
Version Date:	2018
Southwest Map:	11730677 MARION, MA
Version Date:	2018

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from:	20180930, 20180929
Source:	USDA

Target Property Address: COUNTY ROAD WEST WAREHAM, MA 02576

Click on Map ID to see full detail.

MAP

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
1	WHITEHEAD BROTHERS I		MINES MRDS	Higher	312, 0.059, ENE
2	RESIDENTIAL PROPERTY	365 COUNTY ROAD	LAST, RELEASE	Higher	1591, 0.301, SW
3	NEAR 240 COUNTY RD	240 COUNTY ROAD	SHWS, RELEASE	Lower	2007, 0.380, SSW
4	ROADWAY	583 MARY'S POND ROAD	SHWS, RELEASE	Higher	2322, 0.440, NW

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
NPL LIENS	Federal Superfund Liens

Lists of Federal Delisted NPL sites

Delisted NPL_____ National Priority List Deletions

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY______ Federal Facility Site Information listing SEMS______ Superfund Enterprise Management System

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE_____ Superfund Enterprise Management System Archive

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS..... Corrective Action Report

Lists of Federal RCRA TSD facilities

RCRA-TSDF..... RCRA - Treatment, Storage and Disposal

Lists of Federal RCRA generators

RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-VSQG	RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity
	Generators)

Federal institutional controls / engineering controls registries

LUCIS...... Land Use Control Information System

US ENG CONTROLS	Engineering Controls Sites List
US INST CONTROLS	Institutional Controls Sites List

Federal ERNS list

ERNS_____ Emergency Response Notification System

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF..... Solid Waste Facility Database/Transfer Stations

Lists of state and tribal leaking storage tanks

LUST......Leaking Underground Storage Tank Listing INDIAN LUST.....Leaking Underground Storage Tanks on Indian Land

Lists of state and tribal registered storage tanks

FEMA UST______Underground Storage Tank Listing UST______Summary Listing of all the Tanks Registered in the State of Massachusetts AST______Aboveground Storage Tank Database INDIAN UST______Underground Storage Tanks on Indian Land

State and tribal institutional control / engineering control registries

INST CONTROL..... Sites With Activity and Use Limitation

Lists of state and tribal voluntary cleanup sites

INDIAN VCP...... Voluntary Cleanup Priority Listing

Lists of state and tribal brownfield sites

BROWNFIELDS..... Completed Brownfields Covenants Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI	Report on the Status of Open Dumps on Indian Lands
DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations
ODI	Open Dump Inventory
IHS OPEN DUMPS	Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL_____ Delisted National Clandestine Laboratory Register US CDL_____ National Clandestine Laboratory Register

Local Land Records

LIENS_____ Liens Information Listing

LIENS 2_____ CERCLA Lien Information

Records of Emergency Release Reports

HMIRS	Hazardous Materials Information Reporting System
RELEASE	Reportable Releases Database
SPILLS	Historical Spill List
SPILLS 90	SPILLS 90 data from FirstSearch
SPILLS 80	SPILLS 80 data from FirstSearch

Other Ascertainable Records

RCRA NonGen / NLR	RCRA - Non Generators / No Longer Regulated
FUDS	Formerly Used Defense Sites
DOD	Department of Defense Sites
SCRD DRYCLEANERS	State Coalition for Remediation of Drycleaners Listing
US FIN ASSUR	Financial Assurance Information
EPA WATCH LIST	EPA WATCH LIST
2020 COR ACTION	2020 Corrective Action Program List
TSCA	Toxic Substances Control Act
TRIS	Toxic Chemical Release Inventory System
SSTS	Section 7 Tracking Systems
ROD	Records Of Decision
RMP	Risk Management Plans
RAATS	RCRA Administrative Action Tracking System
PRP	Potentially Responsible Parties
PADS	PCB Activity Database System
ICIS	Integrated Compliance Information System
FTTS	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide
	Act)/TSCA (Toxic Substances Control Act)
MLTS	Material Licensing Tracking System
COAL ASH DOE	Steam-Electric Plant Operation Data
COAL ASH EPA	Coal Combustion Residues Surface Impoundments List
PCB TRANSFORMER	PCB Transformer Registration Database
RADINFO	Radiation Information Database
HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing
DOT OPS	Incident and Accident Data
CONSENT	Superfund (CERCLA) Consent Decrees
INDIAN RESERV	Indian Reservations
FUSRAP	Formerly Utilized Sites Remedial Action Program
UMTRA	Uranium Mill Tailings Sites
LEAD SMELTERS	Lead Smelter Sites
US AIRS	Aerometric Information Retrieval System Facility Subsystem
US MINES	Mines Master Index File
ABANDONED MINES	Abandoned Mines
FINDS	Facility Index System/Facility Registry System
UXO	Unexploded Ordnance Sites
DOCKET HWC	Hazardous Waste Compliance Docket Listing
ECHO	Enforcement & Compliance History Information
FUELS PROGRAM	EPA Fuels Program Registered Listing
PFAS NPL	Superfund Sites with PFAS Detections Information
PFAS FEDERAL SITES	Federal Sites PFAS Information
PFAS TRIS	List of PFAS Added to the TRI
PFAS TSCA	PFAS Manufacture and Imports Information
PFAS RCRA MANIFEST	PFAS Transfers Identified In the RCRA Database Listing
EXECUTIVE SUMMARY

PFAS ATSDR. PFAS WQP. PFAS NPDES. PFAS ECHO. PFAS ECHO FIRE TRAINING. PFAS PART 139 AIRPORT. AQUEOUS FOAM NRC. BIOSOLIDS. PFAS. AIRS. ASBESTOS. DRYCLEANERS. ENF. Financial Assurance.	PFAS Contamination Site Location Listing Ambient Environmental Sampling for PFAS Clean Water Act Discharge Monitoring Information Facilities in Industries that May Be Handling PFAS Listing All Certified Part 139 Airports PFAS Information Listing Aqueous Foam Related Incidents Listing ICIS-NPDES Biosolids Facility Data PFAS Contaminated Sites Listing Permitted Facilities Listing ASBESTOS Regulated Drycleaning Facilities Enforcement Action Cases Financial Assurance Information Listing
GWDP	Ground Water Discharge Permits
HW GEN	List of Massachusetts Hazardous Waste Generators
MERCURY	Mercury Product Recyling Drop-Off Locations Listing
NPDES	NPDES Permit Listing
TIER 2	Tier 2 Information Listing
TSD	TSD Facility
UIC	Underground Injection Control Listing

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
EDR Hist Auto	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS______ Recovered Government Archive State Hazardous Waste Facilities List RGA LUST______ Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in *bold italics* are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

EXECUTIVE SUMMARY

STANDARD ENVIRONMENTAL RECORDS

Lists of state- and tribal hazardous waste facilities

SHWS: Contains information on releases of oil and hazardous materials that have been reported to DEP.

A review of the SHWS list, as provided by EDR, and dated 07/06/2023 has revealed that there are 2 SHWS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
ROADWAY Current Status: PSNC Release Tracking Number: 4-0026158	583 MARY'S POND ROAD	NW 1/4 - 1/2 (0.440 mi.)	4	13
Lower Elevation	Address	Direction / Distance	Map ID	Page
NEAR 240 COUNTY RD Current Status: RAO Release Tracking Number: 4-0023231	240 COUNTY ROAD	SSW 1/4 - 1/2 (0.380 mi.)	3	11

Lists of state and tribal leaking storage tanks

LAST: The Leaking Aboveground Storage Tanks database

A review of the LAST list, as provided by EDR, and dated 07/06/2023 has revealed that there is 1 LAST site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
RESIDENTIAL PROPERTY	365 COUNTY ROAD	SW 1/4 - 1/2 (0.301 mi.)	2	9
Release Tracking Number / Current S	Status: 4-0025950 / PSNC			

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

MINES MRDS: Mineral Resources Data System

A review of the MINES MRDS list, as provided by EDR, and dated 08/23/2022 has revealed that there is 1 MINES MRDS site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WHITEHEAD BROTHERS I		ENE 0 - 1/8 (0.059 mi.)	1	8

EXECUTIVE SUMMARY

Due to poor or inadequate address information, the following sites were not mapped. Count: 3 records.

Site Name

WEST OF WALNUT PLAIN TRANSFORMER RELEASE - BLIZZARD WHIBCO PLANT Database(s)

SHWS, RELEASE SHWS, RELEASE SHWS, RELEASE **OVERVIEW MAP - 7489270.2S**

SITE NAME:	Undeveloped Property	CLIENT:	Lightship Engineering
ADDRESS:	County Road	CONTACT:	Kristin Maloney
	West Wareham MA 02576	INQUIRY #:	7489270.2s
LAT/LONG:	41.754641 / 70.773211	DATE:	November 06, 2023 12:56 pm

Copyright © 2023 EDR, Inc. © 2015 TomTom Rel. 2015.

DETAIL MAP - 7489270.2S

SITE NAME: ADDRESS: LAT/LONG:	Undeveloped Property County Road West Wareham MA 02576 41.754641 / 70.773211	CLIENT: CONTACT: INQUIRY #: DATE:	Lightship Engineering Kristin Maloney 7489270.2s November 06, 2023 12:56 pm

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Lists of Federal NPL (S	uperfund) site	s						
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Lists of Federal Deliste	d NPL sites							
Delisted NPL	1.000		0	0	0	0	NR	0
Lists of Federal sites su CERCLA removals and	ıbject to CERCLA orde	ers						
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Lists of Federal CERCL	A sites with N	FRAP						
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Lists of Federal RCRA f undergoing Corrective	acilities Action							
CORRACTS	1.000		0	0	0	0	NR	0
Lists of Federal RCRA	TSD facilities							
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Lists of Federal RCRA	generators							
RCRA-LQG RCRA-SQG RCRA-VSQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional col engineering controls re	ntrols / gistries							
LUCIS US ENG CONTROLS US INST CONTROLS	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
Lists of state- and triba hazardous waste faciliti	l ies							
SHWS	1.000		0	0	2	0	NR	2
Lists of state and tribal and solid waste dispose	landfills al facilities							
SWF/LF	0.500		0	0	0	NR	NR	0
Lists of state and tribal	leaking storag	ge tanks						
LUST	0.500		0	0	0	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
LAST INDIAN LUST	0.500 0.500		0 0	0 0	1 0	NR NR	NR NR	1 0
Lists of state and tribal	registered sto	orage tanks						
FEMA UST UST AST INDIAN UST	0.250 0.250 0.250 0.250		0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal instituti control / engineering co	ional ontrol registrie	s						
INST CONTROL	0.500		0	0	0	NR	NR	0
Lists of state and tribal	voluntary clea	anup sites						
INDIAN VCP	0.500		0	0	0	NR	NR	0
Lists of state and tribal	brownfield sit	tes						
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONME	NTAL RECORD	<u>s</u>						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / Waste Disposal Sites	Solid							
INDIAN ODI	0.500		0	0	0	NR	NR	0
DEBRIS REGION 9	0.500		0	0	0			0
IHS OPEN DUMPS	0.500		0	0	0	NR	NR	0
Local Lists of Hazardou Contaminated Sites	is waste /							
US HIST CDL	TP		NR	NR	NR	NR	NR	0
US CDL	TP		NR	NR	NR	NR	NR	0
Local Land Records								
LIENS LIENS 2	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Records of Emergency	Release Repo	orts						
HMIRS	TP		NR	NR	NR	NR	NR	0
RELEASE SPILLS								0
SPILLS 90	TP		NR	NR	NR	NR	NR	0
SPILLS 80	TP		NR	NR	NR	NR	NR	0
Other Ascertainable Re	cords							
RCRA NonGen / NLR	0.250		0	0	NR	NR	NR	0
FUDS	1.000		0	0	0	0	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
DOD	1.000		0	0	0	0	NR	0
SCRD DRYCLEANERS	0.500		0	0	0	NR	NR	0
US FIN ASSUR	TP		NR	NR	NR	NR	NR	0
EPA WATCH LIST	TP		NR	NR	NR	NR	NR	0
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	TP		NR	NR	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	0
SSTS	TP		NR	NR	NR	NR	NR	0
ROD	1.000		0	0	0	0	NR	0
RMP	TP		NR	NR	NR	NR	NR	0
RAATS	TP		NR	NR	NR	NR	NR	0
PRP	TP		NR	NR	NR	NR	NR	0
PADS	TP		NR	NR	NR	NR	NR	0
ICIS	TP		NR	NR	NR	NR	NR	0
FTTS	TP		NR	NR	NR	NR	NR	0
MLTS	TP		NR	NR	NR	NR	NR	0
COAL ASH DOE	TP		NR	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	0
HIST FTTS	TP		NR	NR	NR	NR	NR	0
DOT OPS	TP		NR	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	0
US AIRS	TP		NR	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
MINES MRDS	0.250		1	0	NR	NR	NR	1
ABANDONED MINES	0.250		0	0	NR	NR	NR	0
FINDS	TP		NR	NR	NR	NR	NR	0
UXO	1.000		0	0	0	0	NR	0
DOCKET HWC	TP		NR	NR	NR	NR	NR	0
ECHO	TP		NR	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
PFAS NPL	0.250		0	0	NR	NR	NR	0
PFAS FEDERAL SITES	0.250		0	0	NR	NR	NR	0
PFAS TRIS	0.250		0	0	NR	NR	NR	0
PFAS TSCA	0.250		0	0	NR	NR	NR	0
PFAS RCRA MANIFEST	0.250		0	0	NR	NR	NR	0
PFAS ATSDR	0.250		0	0	NR	NR	NR	0
PFAS WQP	0.250		0	0	NR	NR	NR	0
PFAS NPDES	0.250		0	0	NR	NR	NR	0
PFAS ECHO	0.250		0	0	NR	NR	NR	0
PFAS ECHO FIRE TRAININ	G 0.250		0	0	NR	NR	NR	0
PFAS PART 139 AIRPORT	0.250		0	0	NR	NR	NR	0
AQUEOUS FOAM NRC	0.250		0	0	NR	NR	NR	0
BIOSOLIDS	TP		NR	NR	NR	NR	NR	0
PFAS	0.250		0	0	NR	NR	NR	0
AIRS	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
ASBESTOS	TP		NR	NR	NR	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
ENF	TP		NR	NR	NR	NR	NR	0
Financial Assurance	IP		NR	NR	NR	NR	NR	0
GWDP	12		NR	NR	NR	NR		0
	0.250		0	0	NR			0
	0.500 TD							0
								0
	0 500					NR	NR	0
UIC	TP		NR	NŘ	NŘ	NR	NR	0
EDR HIGH RISK HISTORIC	S							
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		0	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOVE	RNMENT ARCHIV	VES						
Exclusive Recovered C	Govt. Archives							
RGA HWS	TP		NR	NR	NR	NR	NR	0
RGA LUST	TP		NR	NR	NR	NR	NR	0
- Totals		0	1	0	3	0	0	4

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Database(s)

EDR ID Number EPA ID Number

1 ENE	WHITEHEAD BROTHERS INC	MINES MRDS 1025566793 N/A
< 1/8 0.059 mi. 312 ft.	PLYMOUTH (County), MA	
< 1/8 0.059 mi. 312 ft. Relative: Higher Actual: 23 ft.	 MINES MRDS: Name: Address: Deposit identification Number: City,State,Zip: URL: MRDS Identification Number: MAS/MILS Identification Number: Region: Country: Primary Commodities: Secondary Commodities: Tertiary Commodities: Operation Type: Deposit Type: Production Size: Development Status: Ore Minerals or Materials: Other Minerals or Materials: Ore Body Form: Workings Type: Mineral Deposit Model: Alteration Processes: Concentration Processes: Previous Names: Ore Controls: Reporter: Host Rock Unit Name: Host Rock Unit Name: Host Rock Type: Associated Rock Unit Name: Associated Rock Unit Name: Associated Rock Type Code: Structural Characteristics: Tectonic Setting: References: First Production Year: Began Before/After FPY: Last Production Year: Began Before/After LPY: 	WHITEHEAD BROTHERS INC Not reported 10073924 MASSACHUSETTS https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10073924 W020107 Not reported NA United States Sand and Gravel, Construction Not reported Unknown Sedimentary S - Small amount of material produced (we do not know what criteria are used to make this determination) Past Producer Sand and Gravel Not reported Not reported No
	Year Discovered: Found Before/After YD: Production History: Discovery Information: Latitude:	Not reported Not reported Not reported Not reported 41.75581
	Longitude:	-70.76835

Database(s)

EDR ID Number EPA ID Number

2 SW 1/4-1/2 0.301 mi. 1591 ft.	RESIDENTIAL PROPERTY 365 COUNTY ROAD MARION, MA 02738		LAST RELEASE	S118562904 N/A
Relative: Higher Actual: 32 ft.	LAST: Name: Address: City,State,Zip: Release Tracking Number/Current Status: Source Type: Release Town: Notification Date: Category: Associated ID: Status Date: Phase: Response Action Outcome: Oil Or Haz Material:	RESIDENTIAL PROPERTY 365 COUNTY ROAD MARION, MA 027380000 4-0025950 / PSNC AST MARION 01/19/2016 TWO HR Not reported 04/29/2016 Not reported PN - PN Not reported		
	Chemicals: Chemical: Quantity: Location Type: Source:	Not reported Not reported RESIDNTIAL AST		
	Actions: Action Type: Action Status: Action Date: Response Action Outcome:	RLFA FLDD1A 1/19/2016 PN		
	Action Type: Action Status: Action Date: Response Action Outcome:	Release Disposition Reportable Release under MGL 21E 1/19/2016 PN		
	Action Type: Action Status: Action Date: Response Action Outcome:	RLFA FLDRAN 1/22/2016 PN		
	Action Type: Action Status: Action Date: Response Action Outcome:	BOL Transmittal, Notice, or Notification Received 1/29/2016 PN		
	Action Type: Action Status: Action Date: Response Action Outcome:	A Notice sent to a Potentially Responsible Party A MassDEP piece of correspondence was issue 2/17/2016 PN	(PRP) d (approvals,	NORs, etc.
	Action Type: Action Status: Action Date: Response Action Outcome:	Immediate Response Action Written Plan Received 3/18/2016 PN		
	Action Type: Action Status:	BOL SHPFAC		

3/18/2016 ΡN

3/18/2016

RNFE

ΡN

Database(s)

EDR ID Number **EPA ID Number**

RESIDENTIAL PROPERTY (Continued)

Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Release:

Name: **RESIDENTIAL PROPERTY** Address: 365 COUNTY ROAD City,State,Zip: MARION, MA 027380000 Release Tracking Number/Current Status: 4-0025950 / PSNC Primary ID: Not reported Official City: MARION Notification: 01/19/2016 Category: TWO HR Status Date: 04/29/2016 Phase: Not reported Response Action Outcome: PN - PN Oil / Haz Material Type: Not reported

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:** RLFA FLDD1A 1/19/2016 ΡN

Release Disposition Reportable Release under MGL 21E 1/19/2016 ΡN

RLFA FLDRAN 1/22/2016 PN

S118562904

Transmittal, Notice, or Notification Received

Immediate Response Action Level I - Technical Screen Audit 3/25/2016 ΡN

Response Action Outcome - RAO PSNRCD 4/29/2016 ΡN

Response Action Outcome - RAO Level I - Technical Screen Audit 5/19/2016 PN

TC7489270.2s Page 10

EDR ID Number Database(s) EPA ID Number

RESIDENTIAL PROPERTY (Continued)

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Chemicals: Chemical: Quantity: Location Type: Source: BOL Transmittal, Notice, or Notification Received 1/29/2016 PN

A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 2/17/2016 PN

Immediate Response Action Written Plan Received 3/18/2016 PN

BOL SHPFAC 3/18/2016 PN

RNFE Transmittal, Notice, or Notification Received 3/18/2016 PN

Immediate Response Action Level I - Technical Screen Audit 3/25/2016 PN

Response Action Outcome - RAO PSNRCD 4/29/2016 PN

Response Action Outcome - RAO Level I - Technical Screen Audit 5/19/2016 PN

Not reported Not reported RESIDNTIAL AST

3 NEAR 240 COUNTY RD SSW 240 COUNTY ROAD 1/4-1/2 MARION, MA

0.380 mi. 2007 ft. Relative:

Lower Actual: 20 ft. SHWS: Name: Address: City,State,Zip: Facility ID:

NEAR 240 COUNTY RD 240 COUNTY ROAD MARION, MA 4-0023231 SHWS S111022540 RELEASE N/A

S118562904

Database(s)

EDR ID Number **EPA ID Number**

S111022540

NEAR 240 COUNTY RD (Continued)

Source Type:	FUELTANK
Release Town:	MARION
Notification Date:	05/05/2011
Category:	TWO HR
Associated ID:	Not reported
Current Status:	RAO
Status Date:	06/08/2011
Phase:	Not reported
Response Action Outcome:	A2
Oil Or Haz Material:	Oil

Re

lease:	
Name:	NEAR 240 COUNTY RD
Address:	240 COUNTY ROAD
City,State,Zip:	MARION, MA
Release Tracking Number/Current Status:	4-0023231 / RAO
Primary ID:	Not reported
Official City:	MARION
Notification:	05/05/2011
Category:	TWO HR
Status Date:	06/08/2011
Phase:	Not reported
Response Action Outcome:	A2 - A permanent solution has been achieved. Contamination has not
	been reduced to background.
Oil / Haz Material Type:	Oil

Response Action Outcome - RAO

Level I - Technical Screen Audit

1/10/2012

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date:

reduced to background. BOL Transmittal, Notice, or Notification Received 5/16/2011

A permanent solution has been achieved. Contamination has not been

A permanent solution has been achieved. Contamination has not been reduced to background.

A Notice sent to a Potentially Responsible Party (PRP) A MassDEP piece of correspondence was issued (approvals, NORs, etc. 5/19/2011 A permanent solution has been achieved. Contamination has not been reduced to background.

RLFA FLDD1U 5/5/2011 A permanent solution has been achieved. Contamination has not been reduced to background.

Release Disposition Reportable Release under MGL 21E 5/5/2011

EDR ID Number Database(s) **EPA ID Number**

S111022540

NEAR 240 COUNTY RD (Continued)

Response Action Outcome:

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Action Type: Action Status: Action Date: **Response Action Outcome:**

Chemicals: Chemical: Quantity: Location Type: Location Type: Source:

A permanent solution has been achieved. Contamination has not been reduced to background.

A Notice sent to a Potentially Responsible Party (PRP) FLDISS 5/5/2011 A permanent solution has been achieved. Contamination has not been reduced to background.

Immediate Response Action Oral Approval of Plan or Action 5/5/2011 A permanent solution has been achieved. Contamination has not been reduced to background.

RNFE Transmittal, Notice, or Notification Received 6/8/2011 A permanent solution has been achieved. Contamination has not been reduced to background.

Response Action Outcome - RAO **RAO Statement Received** 6/8/2011 A permanent solution has been achieved. Contamination has not been reduced to background.

DIESEL FUEL 10 gallons OPENSPACE ROADWAY FUELTANK

ROADWAY NW 583 MARY'S POND ROAD ROCHESTER, MA 1/4-1/2 0.440 mi.

SHWS:

Name:

2322 ft.

4

Relative: Higher

Actual: 40 ft.

Address: City,State,Zip: Facility ID: Source Type: Release Town: Notification Date: Category: Associated ID: **Current Status:** Status Date: Phase: Response Action Outcome: Oil Or Haz Material:

ROADWAY 583 MARY'S POND ROAD ROCHESTER, MA 4-0026158 FUELTANK ROCHESTER 06/16/2016 TWO HR Not reported PSNC 07/19/2016 Not reported PN Not reported

SHWS S118643447 RELEASE N/A

Database(s)

EDR ID Number EPA ID Number

ROADWAY (Continued)

S118643447

Release: ROADWAY Name: 583 MARY'S POND ROAD Address: City,State,Zip: ROCHESTER, MA Release Tracking Number/Current Status: 4-0026158 / PSNC Primary ID: Not reported Official City: ROCHESTER Notification: 06/16/2016 Category: TWO HR Status Date: 07/19/2016 Phase: Not reported Response Action Outcome: PN - PN Oil / Haz Material Type: Not reported

Click here to access the MA DEP site for this facility:

Actions: Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Action Type: Action Status: Action Date: Response Action Outcome:

Chemicals: Chemical: Quantity:

Location Type: Source: Release Disposition Reportable Release under MGL 21E 6/16/2016 PN

Immediate Response Action NOAPP 6/16/2016 PN

RLFA FOLFLD 6/16/2016 PN

RNFE Transmittal, Notice, or Notification Received 7/19/2016 PN

Response Action Outcome - RAO PSNRCD 7/19/2016 PN

Response Action Outcome - RAO Level I - Technical Screen Audit 8/4/2016 PN

Not reported Not reported ROADWAY FUELTANK Count: 3 records.

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
ROCHESTER	S103812404	WEST OF WALNUT PLAIN	MARYS POND RD	02770	SHWS, RELEASE
WAREHAM	S113411836	TRANSFORMER RELEASE - BLIZZARD	INTERSECTION BARLOW AVE AND	02571	SHWS, RELEASE
WAREHAM	S101696616	WHIBCO PLANT	SQUIRREL ISLAND RD	02571	SHWS, RELEASE

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal NPL (Superfund) sites

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023 Number of Days to Update: 16 Source: EPA Telephone: N/A Last EDR Contact: 11/01/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Quarterly

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

EPA Region 5 Telephone 312-886-6686

EPA Region 10 Telephone 206-553-8665 EPA Region 6 Telephone: 214-655-6659

EPA Region 7 Telephone: 913-551-7247

EPA Region 8 Telephone: 303-312-6774

EPA Region 9 Telephone: 415-947-4246

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023 Number of Days to Update: 16 Source: EPA Telephone: N/A Last EDR Contact: 11/01/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994 Number of Days to Update: 56 Source: EPA Telephone: 202-564-4267 Last EDR Contact: 08/15/2011 Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Lists of Federal Delisted NPL sites

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023 Number of Days to Update: 16 Source: EPA Telephone: N/A Last EDR Contact: 11/01/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Quarterly

Lists of Federal sites subject to CERCLA removals and CERCLA orders

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Source: Environmental Protection Agency
Telephone: 703-603-8704
Last EDR Contact: 09/26/2023
Next Scheduled EDR Contact: 01/08/2024
Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023 Number of Days to Update: 16 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 11/02/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Quarterly

Lists of Federal CERCLA sites with NFRAP

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that. based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023 Number of Days to Update: 16 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 11/02/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Quarterly

Lists of Federal RCRA facilities undergoing Corrective Action

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 07/24/2023	Source: EPA
Date Data Arrived at EDR: 07/31/2023	Telephone: 800-424-9346
Date Made Active in Reports: 08/14/2023	Last EDR Contact: 09/20/2023
Number of Days to Update: 14	Next Scheduled EDR Contact: 01/01/2024
	Data Release Frequency: Quarterly

Lists of Federal RCRA TSD facilities

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 07/24/2023 Date Data Arrived at EDR: 07/31/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly

Lists of Federal RCRA generators

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 07/24/2023 Date Data Arrived at EDR: 07/31/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 07/24/2023 Date Data Arrived at EDR: 07/31/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly

RCRA-VSQG: RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators) RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 07/24/2023 Date Data Arrived at EDR: 07/31/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 08/03/2023Source: Department of the NavyDate Data Arrived at EDR: 08/07/2023Telephone: 843-820-7326Date Made Active in Reports: 10/10/2023Last EDR Contact: 11/02/2023Number of Days to Update: 64Next Scheduled EDR Contact: 02/19/2024Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 05/22/2023	Source: Environmental Protection Agency
Date Data Arrived at EDR: 05/23/2023	Telephone: 703-603-0695
Date Made Active in Reports: 07/24/2023	Last EDR Contact: 08/21/2023
Number of Days to Update: 62	Next Scheduled EDR Contact: 12/04/2023
	Data Release Frequency: Varies

US INST CONTROLS: Institutional Controls Sites List

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 05/22/2023 Date Data Arrived at EDR: 05/23/2023 Date Made Active in Reports: 07/24/2023 Number of Days to Update: 62 Source: Environmental Protection Agency Telephone: 703-603-0695 Last EDR Contact: 08/21/2023 Next Scheduled EDR Contact: 12/04/2023 Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 06/12/2023 Date Data Arrived at EDR: 06/20/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 55 Source: National Response Center, United States Coast Guard Telephone: 202-267-2180 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly

Lists of state- and tribal hazardous waste facilities

SHWS: Site Transition List

Contains information on releases of oil and hazardous materials that have been reported to DEP.

Date of Government Version: 07/06/2023	Source: Department of Environmental Protection
Date Data Arrived at EDR: 07/07/2023	Telephone: 617-292-5990
Date Made Active in Reports: 09/25/2023	Last EDR Contact: 10/05/2023
Number of Days to Update: 80	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Quarterly

Lists of state and tribal landfills and solid waste disposal facilities

SWF/LF: Solid Waste Facility Database/Transfer Stations

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 06/09/2023 Date Data Arrived at EDR: 06/26/2023 Date Made Active in Reports: 09/14/2023 Number of Days to Update: 80 Source: Department of Environmental Protection Telephone: 617-292-5989 Last EDR Contact: 09/28/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Annually

LF PROFILES: Landfill Profiles Listing

This spreadsheet describes landfills that have actively accepted waste or have closed under MassDEP Solid Waste Regulations first adopted in 1971 (310 CMR 16.00 and 310 CMR 19.00). The list does not include landfills that closed before 1971 (and which never had a MassDEP permit or approval), or for which agency data is incomplete.

Date of Government Version: 07/01/2015 Date Data Arrived at EDR: 10/27/2015 Date Made Active in Reports: 12/14/2015 Number of Days to Update: 48 Source: Department of Environmental Protection Telephone: 617-292-5868 Last EDR Contact: 09/28/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Varies

Lists of state and tribal leaking storage tanks

LAST: Leaking Aboveground Storage Tank Sites

Sites within the Releases Database that have a AST listed as its source.

Date of Government Version: 07/06/2023 Date Data Arrived at EDR: 07/07/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 80 Source: Department of Environmental Protection Telephone: 617-292-5500 Last EDR Contact: 10/05/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Quarterly

LUST: Leaking Underground Storage Tank Listing Sites within the Leaking Underground Storage Tank Listing that have a UST listed as its source.			
Date of Government Version: 07/06/2023 Date Data Arrived at EDR: 07/07/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 80	Source: Department of Environmental Protection Telephone: 617-292-5990 Last EDR Contact: 10/05/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Quarterly		
INDIAN LUST R1: Leaking Underground Storage T A listing of leaking underground storage tank lo	anks on Indian Land ocations on Indian Land.		
Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66	Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies		
INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.			
Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66	Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies		
INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.			
Date of Government Version: 04/19/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66	Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies		
INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Iowa, Kansas, and Nebraska			
Date of Government Version: 04/25/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66	Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies		
INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada			
Date of Government Version: 04/19/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66	Source: Environmental Protection Agency Telephone: 415-972-3372 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies		
INDIAN LUST R5: Leaking Underground Storage Table Leaking underground storage tanks located on	anks on Indian Land I Indian Land in Michigan, Minnesota and Wisconsin.		
Date of Government Version: 04/14/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66	Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024		

Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land
LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 04/26/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66 Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Source: EPA Region 10
Telephone: 206-553-2857
Last EDR Contact: 10/11/2023
Next Scheduled EDR Contact: 01/29/2024
Data Release Frequency: Varies

Lists of state and tribal registered storage tanks

FEMA UST: Underground Storage Tank Listing A listing of all FEMA owned underground storage tanks.

Date of Government Version: 03/08/2023	Source: FEMA
Date Data Arrived at EDR: 03/09/2023	Telephone: 202-646-5797
Date Made Active in Reports: 05/30/2023	Last EDR Contact: 10/10/2023
Number of Days to Update: 82	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Varies

UST: Summary Listing of all the Tanks Registered in the State of Massachusetts Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

	Date of Government Version: 07/06/2023 Date Data Arrived at EDR: 07/10/2023 Date Made Active in Reports: 08/31/2023 Number of Days to Update: 52	Source: Department of Fire Services, Office of the Public Safety Telephone: 617-556-1035 Last EDR Contact: 10/04/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Quarterly
AST	: Aboveground Storage Tank Database Registered Aboveground Storage Tanks.	
	Date of Government Version: 03/24/2023 Date Data Arrived at EDR: 04/13/2023 Date Made Active in Reports: 06/30/2023 Number of Days to Update: 78	Source: Department of Public Safety Telephone: 617-556-1035 Last EDR Contact: 10/10/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: No Update Planned
AST	2: Aboveground Storage Tanks Aboveground storage tanks	
	Date of Government Version: 07/07/2023 Date Data Arrived at EDR: 07/10/2023 Date Made Active in Reports: 09/29/2023 Number of Days to Update: 81	Source: Department of Fire Services Telephone: 978-567-3181 Last EDR Contact: 10/04/2023 Next Scheduled EDR Contact: 01/22/2024

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Data Release Frequency: Varies

Date of Government Version: 04/20/2023
Date Data Arrived at EDR: 05/09/2023
Date Made Active in Reports: 07/14/2023
Number of Days to Update: 66

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 04/25/2023	Source: EPA Region 7
Date Data Arrived at EDR: 05/09/2023	Telephone: 913-551-7003
Date Made Active in Reports: 07/14/2023	Last EDR Contact: 10/11/2023
Number of Days to Update: 66	Next Scheduled EDR Contact: 01/29/2024
	Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 04/19/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Source: EPA Region 4
Telephone: 404-562-9424
Last EDR Contact: 10/11/2023
Next Scheduled EDR Contact: 01/29/2024
Data Release Frequency: Varies

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 04/26/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/14/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 04/20/2023 Date Data Arrived at EDR: 05/09/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 66

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/11/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

State and tribal institutional control / engineering control registries

INST CONTROL: Sites With Activity and Use Limitation

Activity and Use Limitations establish limits and conditions on the future use of contaminated property, and therefore allow cleanups to be tailored to these uses.

Date of Government Version: 07/06/2023	Source: Department of Environmental Protection
Date Data Arrived at EDR: 07/07/2023	Telephone: 617-292-5990
Date Made Active in Reports: 09/25/2023	Last EDR Contact: 10/05/2023
Number of Days to Update: 80	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Quarterly

Lists of state and tribal voluntary cleanup sites

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015	Source: EPA, Region 1
Date Data Arrived at EDR: 09/29/2015	Telephone: 617-918-1102
Date Made Active in Reports: 02/18/2016	Last EDR Contact: 09/12/2023
Number of Days to Update: 142	Next Scheduled EDR Contact: 01/01/2024
	Data Release Frequency: Varies

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008	Source: EPA, Region 7
Date Data Arrived at EDR: 04/22/2008	Telephone: 913-551-7365
Date Made Active in Reports: 05/19/2008	Last EDR Contact: 07/08/2021
Number of Days to Update: 27	Next Scheduled EDR Contact: 07/20/2009
	Data Release Frequency: Varies

Lists of state and tribal brownfield sites

BROWNFIELDS 2: Potential Brownfields Listing A listing of potential brownfields site locations in the state.

Date of Government Version: 07/11/2023	Source: Department of Environmental Protection
Date Data Arrived at EDR: 07/27/2023	Telephone: 617-556-1007
Date Made Active in Reports: 10/16/2023	Last EDR Contact: 10/28/2023
Number of Days to Update: 81	Next Scheduled EDR Contact: 02/05/2024
	Data Release Frequency: Varies

BROWNFIELDS: Completed Brownfields Covenants Listing

Under Massachusetts law, M.G.L. c. 21E is the statute that governs the cleanup of releases of oil and/or hazardous material to the environment. The Brownfields Act of 1998 amended M.G.L. c. 21E by establishing significant liability relief and financial incentives to spur the redevelopment of brownfields, while ensuring that the Commonwealth's environmental standards are met. Most brownfields are redeveloped with the benefit of liability protections that operate automatically under M.G.L. c. 21E.

Date of Government Version: 04/05/2017 Date Data Arrived at EDR: 08/03/2017 Date Made Active in Reports: 10/10/2017 Number of Days to Update: 68 Source: Office of the Attorney General Telephone: 617-963-2423 Last EDR Contact: 10/28/2023 Next Scheduled EDR Contact: 02/05/2024 Data Release Frequency: Annually

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 04/06/2023 Date Data Arrived at EDR: 04/13/2023 Date Made Active in Reports: 04/19/2023 Number of Days to Update: 6 Source: Environmental Protection Agency Telephone: 202-566-2777 Last EDR Contact: 08/30/2023 Next Scheduled EDR Contact: 12/25/2023 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands Location of open dumps on Indian land.

Date of Government Version: 12/31/1998	Source: Environmental Protection Agency
Date Data Arrived at EDR: 12/03/2007	Telephone: 703-308-8245
Date Made Active in Reports: 01/24/2008	Last EDR Contact: 10/23/2023
Number of Days to Update: 52	Next Scheduled EDR Contact: 02/05/2024
	Data Release Frequency: Varies

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004 Number of Days to Update: 39 Source: Environmental Protection Agency Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Date Data Arrived at EDR: 05/07/2009 Date Made Active in Reports: 09/21/2009 Number of Days to Update: 137 Source: EPA, Region 9 Telephone: 415-947-4219 Last EDR Contact: 10/10/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014	Source: Department of Health & Human Serivces, Indian Health Service
Date Data Arrived at EDR: 08/06/2014	Telephone: 301-443-1452
Date Made Active in Reports: 01/29/2015	Last EDR Contact: 10/28/2023
Number of Days to Update: 176	Next Scheduled EDR Contact: 02/05/2024
	Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 05/22/2023 Date Data Arrived at EDR: 05/23/2023 Date Made Active in Reports: 07/10/2023 Number of Days to Update: 48 Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 08/21/2023 Next Scheduled EDR Contact: 12/04/2023 Data Release Frequency: No Update Planned

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 05/22/2023 Date Data Arrived at EDR: 05/23/2023 Date Made Active in Reports: 07/10/2023 Number of Days to Update: 48 Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 08/21/2023 Next Scheduled EDR Contact: 12/04/2023 Data Release Frequency: Quarterly

Local Land Records

LIENS: Liens Information Listing A listing of environmental liens.

> Date of Government Version: 03/07/2018 Date Data Arrived at EDR: 03/09/2018 Date Made Active in Reports: 06/21/2018 Number of Days to Update: 104

Source: Department of Environmental Protection Telephone: 617-292-5628 Last EDR Contact: 08/09/2023 Next Scheduled EDR Contact: 11/27/2023 Data Release Frequency: Varies

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 09/19/2023 Date Data Arrived at EDR: 10/03/2023 Date Made Active in Reports: 10/19/2023 Number of Days to Update: 16 Source: Environmental Protection Agency Telephone: 202-564-6023 Last EDR Contact: 11/01/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.		
Date of Government Version: 06/19/2023 Date Data Arrived at EDR: 06/23/2023 Date Made Active in Reports: 09/20/2023 Number of Days to Update: 89	Source: U.S. Department of Transportation Telephone: 202-366-4555 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly	
RELEASE: Reportable Releases Contains information on all releases of oil and	hazardous materials that have been reported to DEP	
Date of Government Version: 07/06/2023 Date Data Arrived at EDR: 07/07/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 80	Source: Department of Environmental Protection Telephone: 617-292-5990 Last EDR Contact: 10/05/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Quarterly	
MA SPILLS: Historical Spill List The Spills Database was the release notification tracking system for spills that occurred prior to October 1, 1993. This information should be considered to be primarily of historical interest since all of the listed spills have either been cleaned up or assigned new tracking numbers and moved to the Reportable Releases or Sites Transition List databases.		
Date of Government Version: 09/30/1993 Date Data Arrived at EDR: 12/03/2003 Date Made Active in Reports: 12/31/2003 Number of Days to Update: 28	Source: Department of Environmental Protection Telephone: 617-292-5720 Last EDR Contact: 12/03/2003 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned	
SPILLS 90: SPILLS90 data from FirstSearch Spills 90 includes those spill and release reco they may include chemical, oil and/or hazardo already included in EDR incident and release	rds available exclusively from FirstSearch databases. Typically, ous substance spills recorded after 1990. Duplicate records that are records are not included in Spills 90.	
Date of Government Version: 12/11/2012 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 02/08/2013 Number of Days to Update: 36	Source: FirstSearch Telephone: N/A Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned	
SPILLS 80: SPILLS80 data from FirstSearch Spills 80 includes those spill and release records available from FirstSearch databases prior to 1990. Typically, they may include chemical, oil and/or hazardous substance spills recorded before 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 80.		
Date of Government Version: 03/10/1998 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 03/05/2013 Number of Days to Update: 61	Source: FirstSearch Telephone: N/A Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned	

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 07/24/2023 Date Data Arrived at EDR: 07/31/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 14 Source: Environmental Protection Agency Telephone: (888) 372-7341 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 08/07/2023
Date Data Arrived at EDR: 08/15/2023
Date Made Active in Reports: 10/10/2023
Number of Days to Update: 56

Source: U.S. Army Corps of Engineers Telephone: 202-528-4285 Last EDR Contact: 08/15/2023 Next Scheduled EDR Contact: 11/27/2023 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 06/07/2021 Date Data Arrived at EDR: 07/13/2021 Date Made Active in Reports: 03/09/2022 Number of Days to Update: 239 Source: USGS Telephone: 888-275-8747 Last EDR Contact: 10/09/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Varies

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 04/02/2018 Date Data Arrived at EDR: 04/11/2018 Date Made Active in Reports: 11/06/2019 Number of Days to Update: 574 Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 10/04/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 07/30/2021 Date Data Arrived at EDR: 02/03/2023 Date Made Active in Reports: 02/10/2023 Number of Days to Update: 7 Source: Environmental Protection Agency Telephone: 615-532-8599 Last EDR Contact: 08/01/2023 Next Scheduled EDR Contact: 11/20/2023 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 06/19/2023 Date Data Arrived at EDR: 06/20/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 55 Source: Environmental Protection Agency Telephone: 202-566-1917 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/21/2014	Telephone: 617-520-3000
Date Made Active in Reports: 06/17/2014	Last EDR Contact: 10/31/2023
Number of Days to Update: 88	Next Scheduled EDR Contact: 02/12/2024
	Data Release Frequency: Quarterly

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018 Number of Days to Update: 73

Source: Environmental Protection Agency Telephone: 703-308-4044 Last EDR Contact: 11/03/2023 Next Scheduled EDR Contact: 02/12/2024 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 06/14/2022 Date Made Active in Reports: 03/24/2023 Number of Days to Update: 283

Source: EPA Telephone: 202-260-5521 Last EDR Contact: 09/15/2023 Next Scheduled EDR Contact: 12/25/2023 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2021	Source: EPA
Date Data Arrived at EDR: 02/16/2023	Telephone: 202-566-0250
Date Made Active in Reports: 05/02/2023	Last EDR Contact: 08/18/2023
Number of Days to Update: 75	Next Scheduled EDR Contact: 11/27/2023
	Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 07/17/2023	Source: EPA
Date Data Arrived at EDR: 07/18/2023	Telephone: 202-564-4203
Date Made Active in Reports: 10/10/2023	Last EDR Contact: 10/20/2023
Number of Days to Update: 84	Next Scheduled EDR Contact: 01/29/2024
	Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 09/19/2023	Sourc
Date Data Arrived at EDR: 10/03/2023	Telep
Date Made Active in Reports: 10/19/2023	Last E
Number of Days to Update: 16	Next \$

e FPA hone: 703-416-0223 EDR Contact: 11/01/2023 Scheduled EDR Contact: 12/11/2023 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 05/09/2023 Date Data Arrived at EDR: 06/29/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 88

Source: Environmental Protection Agency Telephone: 202-564-8600 Last EDR Contact: 09/26/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995 Number of Days to Update: 35

Source: EPA Telephone: 202-564-4104 Last EDR Contact: 06/02/2008 Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 09/19/2023	Source: EPA
Date Data Arrived at EDR: 10/03/2023	Telephone: 202-564-6023
Date Made Active in Reports: 10/19/2023	Last EDR Contact: 11/01/2023
Number of Days to Update: 16	Next Scheduled EDR Contact: 02/12/2024
	Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 03/20/2023 Date Data Arrived at EDR: 04/04/2023	Source: EPA Telephone: 202-566-0500
Date Made Active in Reports: 06/09/2023	Last EDR Contact: 10/06/2023
Number of Days to Update: 66	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016	Source: Environmental Protection Agency
Date Data Arrived at EDR: 11/23/2016	Telephone: 202-564-2501
Date Made Active in Reports: 02/10/2017	Last EDR Contact: 09/27/2023
Number of Days to Update: 79	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009 So	urce: EPA/Office of Prevention, Pesticides and Toxic Substances
Date Data Arrived at EDR: 04/16/2009 Te	ephone: 202-566-1667
Date Made Active in Reports: 05/11/2009 Lat	st EDR Contact: 08/18/2017
Number of Days to Update: 25 Ne	xt Scheduled EDR Contact: 12/04/2017
Da	ta Release Frequency: No Update Planned

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009	Source: EPA
Date Data Arrived at EDR: 04/16/2009	Telephone: 202-566-1667
Date Made Active in Reports: 05/11/2009	Last EDR Contact: 08/18/2017
Number of Days to Update: 25	Next Scheduled EDR Contact: 12/04/2017
	Data Release Frequency: No Update Planned

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 07/20/2023 Date Data Arrived at EDR: 09/01/2023 Date Made Active in Reports: 09/20/2023 Number of Days to Update: 19 Source: Nuclear Regulatory Commission Telephone: 301-415-0717 Last EDR Contact: 10/10/2023 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2021	Source: Department of Energy
Date Data Arrived at EDR: 04/14/2023	Telephone: 202-586-8719
Date Made Active in Reports: 07/10/2023	Last EDR Contact: 09/01/2023
Number of Days to Update: 87	Next Scheduled EDR Contact: 12/11/2023
	Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 01/12/2017	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/05/2019	Telephone: N/A
Date Made Active in Reports: 11/11/2019	Last EDR Contact: 08/28/2023
Number of Days to Update: 251	Next Scheduled EDR Contact: 12/11/2023
	Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database
The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 09/13/2019 Date Data Arrived at EDR: 11/06/2019 Date Made Active in Reports: 02/10/2020 Number of Days to Update: 96 Source: Environmental Protection Agency Telephone: 202-566-0517 Last EDR Contact: 11/03/2023 Next Scheduled EDR Contact: 02/12/2024 Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 07/01/2019 Date Data Arrived at EDR: 07/01/2019 Date Made Active in Reports: 09/23/2019 Number of Days to Update: 84 Source: Environmental Protection Agency Telephone: 202-343-9775 Last EDR Contact: 09/22/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 40 Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2007 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 40

Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 12/17/2008 Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 01/02/2020SourdDate Data Arrived at EDR: 01/28/2020TelepDate Made Active in Reports: 04/17/2020Last INumber of Days to Update: 80Next

Source: Department of Transporation, Office of Pipeline Safety Telephone: 202-366-4595 Last EDR Contact: 10/04/2023 Next Scheduled EDR Contact: 02/05/2024 Data Release Frequency: Quarterly

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 06/30/2023 Date Data Arrived at EDR: 07/19/2023 Date Made Active in Reports: 10/10/2023 Number of Days to Update: 83 Source: Department of Justice, Consent Decree Library Telephone: Varies Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2021 Date Data Arrived at EDR: 03/09/2023 Date Made Active in Reports: 03/20/2023 Number of Days to Update: 11 Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 07/14/2015 Date Made Active in Reports: 01/10/2017 Number of Days to Update: 546 Source: USGS Telephone: 202-208-3710 Last EDR Contact: 10/02/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 03/03/2023 Date Data Arrived at EDR: 03/03/2023 Date Made Active in Reports: 06/09/2023 Number of Days to Update: 98 Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 10/25/2023 Next Scheduled EDR Contact: 02/12/2024 Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 08/30/2019	Source: Department of Energy
Date Data Arrived at EDR: 11/15/2019	Telephone: 505-845-0011
Date Made Active in Reports: 01/28/2020	Last EDR Contact: 08/10/2023
Number of Days to Update: 74	Next Scheduled EDR Contact: 11/27/2023
	Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 09/19/2023	
Date Data Arrived at EDR: 10/03/2023	
Date Made Active in Reports: 10/19/2023	
Number of Days to Update: 16	

Source: Environmental Protection Agency Telephone: 703-603-8787 Last EDR Contact: 11/01/2023 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010 Number of Days to Update: 36 Source: American Journal of Public Health Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Date of Government Version: 10/12/2016	Source: EPA
Date Data Arrived at EDR: 10/26/2016	Telephone: 202-564-2496
Date Made Active in Reports: 02/03/2017	Last EDR Contact: 09/26/2017
Number of Days to Update: 100	Next Scheduled EDR Contact: 01/08/2018
	Data Release Frequency: Annually

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

> Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017 Number of Days to Update: 100

Source: EPA Telephone: 202-564-2496 Last EDR Contact: 09/26/2017 Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

MINES VIOLATIONS: MSHA Violation Assessment Data

Mines violation and assessment information. Department of Labor, Mine Safety & Health Administration.

Date of Government Version: 07/05/2023	Source: DOL, Mine Safety & Health Admi
Date Data Arrived at EDR: 07/05/2023	Telephone: 202-693-9424
Date Made Active in Reports: 09/25/2023	Last EDR Contact: 10/04/2023
Number of Days to Update: 82	Next Scheduled EDR Contact: 11/20/2023
	Data Release Frequency: Quarterly

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 05/01/2023	Source: Department of Labor, Mine Safety and Health Administration
Date Data Arrived at EDR: 05/24/2023	Telephone: 303-231-5959
Date Made Active in Reports: 07/24/2023	Last EDR Contact: 08/22/2023
Number of Days to Update: 61	Next Scheduled EDR Contact: 12/04/2023
	Data Release Frequency: Semi-Annually

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 01/07/2022	Source: USGS
Date Data Arrived at EDR: 02/24/2023	Telephone: 703-648-7709
Date Made Active in Reports: 05/17/2023	Last EDR Contact: 08/24/2023
Number of Days to Update: 82	Next Scheduled EDR Contact: 12/04/2023
	Data Release Frequency: Varies
US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011 Number of Days to Update: 97 Source: USGS Telephone: 703-648-7709 Last EDR Contact: 08/24/2023 Next Scheduled EDR Contact: 12/04/2023 Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 06/13/2023 Date Data Arrived at EDR: 06/14/2023 Date Made Active in Reports: 08/14/2023 Number of Days to Update: 61 Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 09/12/2023 Next Scheduled EDR Contact: 12/18/2023 Data Release Frequency: Quarterly

MINES MRDS: Mineral Resources Data System Mineral Resources Data System

> Date of Government Version: 08/23/2022 Date Data Arrived at EDR: 11/22/2022 Date Made Active in Reports: 02/28/2023 Number of Days to Update: 98

Source: USGS Telephone: 703-648-6533 Last EDR Contact: 08/24/2023 Next Scheduled EDR Contact: 12/04/2023 Data Release Frequency: Varies

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 05/04/2023 Date Data Arrived at EDR: 05/25/2023 Date Made Active in Reports: 07/24/2023 Number of Days to Update: 60 Source: EPA Telephone: (617) 918-1111 Last EDR Contact: 09/28/2023 Next Scheduled EDR Contact: 12/11/2023 Data Release Frequency: Quarterly

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 06/24/2023 Date Data Arrived at EDR: 06/29/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 88 Source: Environmental Protection Agency Telephone: 202-564-2280 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

	Date of Government Version: 05/06/2021 Date Data Arrived at EDR: 05/21/2021 Date Made Active in Reports: 08/11/2021 Number of Days to Update: 82	Source: Environmental Protection Agency Telephone: 202-564-0527 Last EDR Contact: 08/15/2023 Next Scheduled EDR Contact: 12/04/2023 Data Release Frequency: Varies
UXC	 Unexploded Ordnance Sites A listing of unexploded ordnance site locations 	
	Date of Government Version: 11/09/2021 Date Data Arrived at EDR: 10/20/2022 Date Made Active in Reports: 01/10/2023 Number of Days to Update: 82	Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 09/13/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Varies
FUE	LS PROGRAM: EPA Fuels Program Registered This listing includes facilities that are registered Programs. All companies now are required to s	l Listing I under the Part 80 (Code of Federal Regulations) EPA Fuels ubmit new and updated registrations.
	Date of Government Version: 08/14/2023 Date Data Arrived at EDR: 08/15/2023 Date Made Active in Reports: 10/19/2023 Number of Days to Update: 65	Source: EPA Telephone: 800-385-6164 Last EDR Contact: 08/15/2023 Next Scheduled EDR Contact: 11/27/2023 Data Release Frequency: Quarterly
PFA	S NPL: Superfund Sites with PFAS Detections I EPA's Office of Land and Emergency Manager about site investigations, contamination, and re Compensation, and Liability Act (CERCLA) who	nformation nent and EPA Regional Offices maintain data describing what is known medial actions under the Comprehensive Environmental Response, ere PFAS is present in the environment.

Date of Government Version: 07/05/2023 Date Data Arrived at EDR: 07/05/2023 Date Made Active in Reports: 10/02/2023 Number of Days to Update: 89 Source: Environmental Protection Agency Telephone: 703-603-8895 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

PFAS FEDERAL SITES: Federal Sites PFAS Information

Several federal entities, such as the federal Superfund program, Department of Defense, National Aeronautics and Space Administration, Department of Transportation, and Department of Energy provided information for sites with known or suspected detections at federal facilities.

Date of Government Version: 07/05/2023	Source: Environmental Protection Agency
Date Data Arrived at EDR: 07/05/2023	Telephone: 202-272-0167
Date Made Active in Reports: 10/02/2023	Last EDR Contact: 10/03/2023
Number of Days to Update: 89	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Varies

PFAS TSCA: PFAS Manufacture and Imports Information

EPA issued the Chemical Data Reporting (CDR) Rule under the Toxic Substances Control Act (TSCA) and requires chemical manufacturers and facilities that manufacture or import chemical substances to report data to EPA. EPA publishes non-confidential business information (non-CBI) and includes descriptive information about each site, corporate parent, production volume, other manufacturing information, and processing and use information.

Date of Government Version: 07/05/2023 Date Data Arrived at EDR: 07/05/2023 Date Made Active in Reports: 10/02/2023 Number of Days to Update: 89 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

PFAS TRIS: List of PFAS Added to the TRI

Section 7321 of the National Defense Authorization Act for Fiscal Year 2020 (NDAA) immediately added certain per- and polyfluoroalkyl substances (PFAS) to the list of chemicals covered by the Toxics Release Inventory (TRI) under Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) and provided a framework for additional PFAS to be added to TRI on an annual basis.

Date of Government Version: 07/05/2023	Source: Environmental Protection Agency
Date Data Arrived at EDR: 07/05/2023	Telephone: 202-566-0250
Date Made Active in Reports: 10/02/2023	Last EDR Contact: 10/03/2023
Number of Days to Update: 89	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Varies

PFAS RCRA MANIFEST: PFAS Transfers Identified In the RCRA Database Listing

To work around the lack of PFAS waste codes in the RCRA database, EPA developed the PFAS Transfers dataset by mining e-Manifest records containing at least one of these common PFAS keywords: PFAS, PFOA, PFOS, PERFL, AFFF, GENX, GEN-X (plus the VT waste codes). These keywords were searched for in the following text fields: Manifest handling instructions (MANIFEST_HANDLING_INSTR), Non-hazardous waste description (NON_HAZ_WASTE_DESCRIPTION), DOT printed information (DOT_PRINTED_INFORMATION), Waste line handling instructions (WASTE_LINE_HANDLING_INSTR), Waste residue comments (WASTE_RESIDUE_COMMENTS).

Date of Government Version: 07/05/2023	Source: Environmental Protection Agency
Date Data Arrived at EDR: 07/05/2023	Telephone: 202-272-0167
Date Made Active in Reports: 10/02/2023	Last EDR Contact: 10/03/2023
Number of Days to Update: 89	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Varies

PFAS ATSDR: PFAS Contamination Site Location Listing

PFAS contamination site locations from the Department of Health & Human Services, Center for Disease Control & Prevention. ATSDR is involved at a number of PFAS-related sites, either directly or through assisting state and federal partners. As of now, most sites are related to drinking water contamination connected with PFAS production facilities or fire training areas where aqueous film-forming firefighting foam (AFFF) was regularly used.

Date of Government Version: 06/24/2020 Date Data Arrived at EDR: 03/17/2021 Date Made Active in Reports: 11/08/2022 Number of Days to Update: 601 Source: Department of Health & Human Services Telephone: 202-741-5770 Last EDR Contact: 10/23/2023 Next Scheduled EDR Contact: 02/05/2024 Data Release Frequency: Varies

PFAS WQP: Ambient Environmental Sampling for PFAS

The Water Quality Portal (WQP) is a part of a modernized repository storing ambient sampling data for all environmental media and tissue samples. A wide range of federal, state, tribal and local governments, academic and non-governmental organizations and individuals submit project details and sampling results to this public repository. The information is commonly used for research and assessments of environmental guality.

Date of Government Version: 09/23/2023	Source: Environmental Protection Agency
Date Data Arrived at EDR: 10/03/2023	Telephone: 202-272-0167
Date Made Active in Reports: 10/10/2023	Last EDR Contact: 10/03/2023
Number of Days to Update: 7	Next Scheduled EDR Contact: 01/15/2024
	Data Release Frequency: Varies

PFAS NPDES: Clean Water Act Discharge Monitoring Information

Any discharger of pollutants to waters of the United States from a point source must have a National Pollutant Discharge Elimination System (NPDES) permit. The process for obtaining limits involves the regulated entity (permittee) disclosing releases in a NPDES permit application and the permitting authority (typically the state but sometimes EPA) deciding whether to require monitoring or monitoring with limits. Caveats and Limitations: Less than half of states have required PFAS monitoring for at least one of their permittees and fewer states have established PFAS effluent limits for permittees. New rulemakings have been initiated that may increase the number of facilities monitoring for PFAS in the future.

Date of Government Version: 07/05/2023 Date Data Arrived at EDR: 07/05/2023 Date Made Active in Reports: 10/02/2023 Number of Days to Update: 89 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

PFAS ECHO: Facilities in Industries that May Be Handling PFAS Listing

Regulators and the public have expressed interest in knowing which regulated entities may be using PFAS. EPA has developed a dataset from various sources that show which industries may be handling PFAS. Approximately 120,000 facilities subject to federal environmental programs have operated or currently operate in industry sectors with processes that may involve handling and/or release of PFAS.

Date of Government Version: 07/05/2023 Date Data Arrived at EDR: 07/05/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 82 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

PFAS ECHO FIRE TRAINING: Facilities in Industries that May Be Handling PFAS Listing

A list of fire training sites was added to the Industry Sectors dataset using a keyword search on the permitted facilitys name to identify sites where fire-fighting foam may have been used in training exercises. Additionally, you may view an example spreadsheet of the subset of fire training facility data, as well as the keywords used in selecting or deselecting a facility for the subset. as well as the keywords used in selecting facilities that may use fire-fighting foam in training exercises, however, due to the lack of a required reporting field in the data systems for designating fire training sites, this methodology may not identify all fire training sites or may potentially misidentify them.

Date of Government Version: 07/05/2023 Date Data Arrived at EDR: 07/05/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 82 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

PFAS PART 139 AIRPORT: All Certified Part 139 Airports PFAS Information Listing

Since July 1, 2006, all certified part 139 airports are required to have fire-fighting foam onsite that meet military specifications (MIL-F-24385) (14 CFR 139.317). To date, these military specification fire-fighting foams are fluorinated and have been historically used for training and extinguishing. The 2018 FAA Reauthorization Act has a provision stating that no later than October 2021, FAA shall not require the use of fluorinated AFFF. This provision does not prohibit the use of fluorinated AFFF at Part 139 civilian airports; it only prohibits FAA from mandating its use. The Federal Aviation Administration?s document AC 150/5210-6D - Aircraft Fire Extinguishing Agents provides guidance on Aircraft Fire Extinguishing Agents, which includes Aqueous Film Forming Foam (AFFF).

Date of Government Version: 07/05/2023 Date Data Arrived at EDR: 07/05/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 82 Source: Environmental Protection Agency Telephone: 202-272-0167 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

AQUEOUS FOAM NRC: Aqueous Foam Related Incidents Listing

The National Response Center (NRC) serves as an emergency call center that fields initial reports for pollution and railroad incidents and forwards that information to appropriate federal/state agencies for response. The spreadsheets posted to the NRC website contain initial incident data that has not been validated or investigated by a federal/state response agency. Response center calls from 1990 to the most recent complete calendar year where there was indication of Aqueous Film Forming Foam (AFFF) usage are included in this dataset. NRC calls may reference AFFF usage in the ?Material Involved? or ?Incident Description? fields.

Date of Government Version: 07/05/2023 Date Data Arrived at EDR: 07/06/2023 Date Made Active in Reports: 09/25/2023 Number of Days to Update: 81 Source: Environmental Protection Agency Telephone: 202-267-2675 Last EDR Contact: 10/03/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies

PCS: Permit Compliance System PCS is a computerized management information system that contains data on National Pollutant Discharge Elimination System (NPDES) permit holding facilities. PCS tracks the permit, compliance, and enforcement status of NPDES facilities. Date of Government Version: 07/14/2011 Source: EPA, Office of Water Date Data Arrived at EDR: 08/05/2011 Telephone: 202-564-2496 Date Made Active in Reports: 09/29/2011 Last EDR Contact: 09/28/2023 Number of Days to Update: 55 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: No Update Planned PCS ENF: Enforcement data No description is available for this data Date of Government Version: 12/31/2014 Source: EPA Date Data Arrived at EDR: 02/05/2015 Telephone: 202-564-2497 Last EDR Contact: 09/28/2023 Date Made Active in Reports: 03/06/2015 Next Scheduled EDR Contact: 01/15/2024 Number of Days to Update: 29 Data Release Frequency: Varies BIOSOLIDS: ICIS-NPDES Biosolids Facility Data The data reflects compliance information about facilities in the biosolids program. Date of Government Version: 07/16/2023 Source: Environmental Protection Agency Date Data Arrived at EDR: 07/18/2023 Telephone: 202-564-4700 Date Made Active in Reports: 08/28/2023 Last EDR Contact: 10/03/2023 Number of Days to Update: 41 Next Scheduled EDR Contact: 01/29/2024 Data Release Frequency: Varies PFAS: PFAS Contaminated Sites Listing Detection of Per- and Polyfluoroalkyl Substances (PFAS) in drinking water. Date of Government Version: 06/01/2023 Source: Department of Environmental Protection Date Data Arrived at EDR: 06/26/2023 Telephone: 617-292-6770 Date Made Active in Reports: 07/11/2023 Last EDR Contact: 09/21/2023 Number of Days to Update: 15 Next Scheduled EDR Contact: 01/08/2024 Data Release Frequency: Varies AIRS: Permitted Facilities Listing A listing of Air Quality permit applications. Date of Government Version: 07/11/2023 Source: Department of Environmental Protection Date Data Arrived at EDR: 07/12/2023 Telephone: 617-292-5789 Date Made Active in Reports: 10/03/2023 Last EDR Contact: 10/04/2023 Number of Days to Update: 83 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Varies ASBESTOS: Asbestos Notification Listing Asbestos sites Date of Government Version: 08/15/2023 Source: Department of Environmental Protection Date Data Arrived at EDR: 08/16/2023 Telephone: 617-292-5982 Last EDR Contact: 08/09/2023 Date Made Active in Reports: 11/02/2023 Number of Days to Update: 78 Next Scheduled EDR Contact: 11/27/2023 Data Release Frequency: Varies

DRYCLEANERS: Regulated Drycleaning Facilities

A listing of Department of Environmental Protection regulated drycleaning facilities that use perchloroethylene under the Environmental Results Program.

Date of Government Version: 07/07/2023 Date Data Arrived at EDR: 07/10/2023 Date Made Active in Reports: 10/02/2023 Number of Days to Update: 84	Source: Department of Environmental Protection Telephone: 617-292-5633 Last EDR Contact: 10/04/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Varies	
ENFORCEMENT: Enforcement Action Cases A listing of enforcement action cases tracked by Department of Environmental Protection programs, including So Waste and Hazardous Waste.		
Date of Government Version: 07/07/2023 Date Data Arrived at EDR: 07/10/2023 Date Made Active in Reports: 09/29/2023 Number of Days to Update: 81	Source: Department of Environmental Quality Telephone: 617-292-5979 Last EDR Contact: 10/04/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Varies	
Financial Assurance 1: Financial Assurance Information Listing Information for hazardous waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.		
Date of Government Version: 12/01/2010 Date Data Arrived at EDR: 12/23/2010 Date Made Active in Reports: 02/03/2011 Number of Days to Update: 42	Source: Department of Environmental Protection Telephone: 617-292-5970 Last EDR Contact: 08/30/2023 Next Scheduled EDR Contact: 12/18/2023 Data Release Frequency: Varies	
Financial Assurance 2: Financial Assurance Information Listing A listing of financial assurance information for underground storage tanks. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.		
Date of Government Version: 07/06/2023 Date Data Arrived at EDR: 07/10/2023 Date Made Active in Reports: 08/31/2023 Number of Days to Update: 52	Source: Office of State Fire Marshal Telephone: 978-567-3100 Last EDR Contact: 10/04/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Varies	
Financial Assurance 3: Financial Assurance Information listing Information for solid waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay		
Date of Government Version: 10/24/2022 Date Data Arrived at EDR: 01/12/2023 Date Made Active in Reports: 03/07/2023 Number of Days to Update: 54	Source: Department of Environmental Protection Telephone: 617-292-5970 Last EDR Contact: 09/27/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Varies	
GWDP: Ground Water Discharge Permits The Ground Water Discharge Permits datalayer (formerly known as Groundwater Discharge Points) is a statewide point dataset containing approximate locations of permitted discharges to groundwater.		
Date of Government Version: 03/30/2023 Date Data Arrived at EDR: 04/25/2023 Date Made Active in Reports: 07/14/2023 Number of Days to Update: 80	Source: MassGIS Telephone: 617-556-1150 Last EDR Contact: 10/24/2023 Next Scheduled EDR Contact: 02/05/2024 Data Release Frequency: Varies	

HW GEN: List of Massachusetts Hazardous Waste Generators

Permanent generator identification numbers for all Massachusetts generators of hazardous waste and waste oil that have registered with or notified MassDEP of their hazardous waste activities.

Date of Government Version: 06/09/2023	Source: Department of Environmental Protection
Date Data Arrived at EDR: 06/15/2023	Telephone: 617-292-5500
Date Made Active in Reports: 09/07/2023	Last EDR Contact: 09/20/2023
Number of Days to Update: 84	Next Scheduled EDR Contact: 01/01/2024
	Data Release Frequency: Semi-Annually

MERCURY: Mercury Product Recyling Drop-Off Locations Listing

A listing of locations, collecting and recycling for mercury-added products. Mercury is toxic to the human nervous system, as well as fish and animals. Mercury can enter the body either through skin absorption or through inhalation of mercury vapors. At room temperature, small beads of mercury will vaporize.

Date of Government Version: 07/12/2023	Source: Department of Environmental Protection
Date Data Arrived at EDR: 08/10/2023	Telephone: 617-292-5632
Date Made Active in Reports: 10/27/2023	Last EDR Contact: 08/09/2023
Number of Days to Update: 78	Next Scheduled EDR Contact: 11/27/2023
	Data Release Frequency: Varies

NPDES: NPDES Permit Listing

Listing of treatment plants in Massachusetts that hold permits to discharge to groundwater.

Date of Government Version: 12/16/2022	Source: Department of Environmental Protection
Date Data Arrived at EDR: 02/07/2023	Telephone: 508-767-2781
Date Made Active in Reports: 02/14/2023	Last EDR Contact: 08/10/2023
Number of Days to Update: 7	Next Scheduled EDR Contact: 11/20/2023
	Data Release Frequency: Varies

TIER 2: Tier 2 Information Listing

A listing of facilities which store or manufacture hazardous materials and submit a chemical inventory report

Date of Government Version: 12/31/2019	Source: Massachusetts Emergency Management Agency
Date Data Arrived at EDR: 07/19/2021	Telephone: 508-820-2019
Date Made Active in Reports: 08/17/2021	Last EDR Contact: 11/02/2023
Number of Days to Update: 29	Next Scheduled EDR Contact: 01/22/2024
	Data Release Frequency: Annually

TSD: TSD Facility

List of Licensed Hazardous Waste Treatment, Storage Disposal Facilities (TSDFs) in Massachusetts.

Date of Government Version: 06/09/2023 Date Data Arrived at EDR: 06/15/2023 Date Made Active in Reports: 09/07/2023 Number of Days to Update: 84 Source: Department of Environmental Protection Telephone: 617-292-5580 Last EDR Contact: 09/20/2023 Next Scheduled EDR Contact: 01/01/2024 Data Release Frequency: Varies

UIC: Underground Injection Control Listing A list of UIC registration data and their locations

Date of Government Version: 02/13/2023 Date Data Arrived at EDR: 02/15/2023 Date Made Active in Reports: 05/11/2023 Number of Days to Update: 85 Source: Department of Environmental Protection Telephone: 617-566-1172 Last EDR Contact: 11/02/2023 Next Scheduled EDR Contact: 02/19/2024 Data Release Frequency: Varies

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS: Recovered Government Archive State Hazardous Waste Facilities List

The EDR Recovered Government Archive State Hazardous Waste database provides a list of SHWS incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Protection in Massachusetts.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/24/2013 Number of Days to Update: 176 Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Protection in Massachusetts.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/24/2013 Number of Days to Update: 176 Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

CT MANIFEST: Hazardous Waste Manifest Data

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a tsd facility.

	Date of Government Version: 08/07/2023 Date Data Arrived at EDR: 08/08/2023 Date Made Active in Reports: 10/24/2023 Number of Days to Update: 77	Source: Department of Energy & Environmental Protection Telephone: 860-424-3375 Last EDR Contact: 08/08/2023 Next Scheduled EDR Contact: 11/20/2023 Data Release Frequency: No Update Planned
NJ	MANIFEST: Manifest Information Hazardous waste manifest information.	
	Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 04/10/2019 Date Made Active in Reports: 05/16/2019 Number of Days to Update: 36	Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 09/28/2023 Next Scheduled EDR Contact: 01/15/2024 Data Release Frequency: Annually
NY	MANIFEST: Facility and Manifest Data Manifest is a document that lists and tracks ha facility.	azardous waste from the generator through transporters to a TSD
	Date of Government Version: 01/01/2019 Date Data Arrived at EDR: 10/29/2021 Date Made Active in Reports: 01/19/2022 Number of Days to Update: 82	Source: Department of Environmental Conservation Telephone: 518-402-8651 Last EDR Contact: 10/28/2023 Next Scheduled EDR Contact: 02/05/2024 Data Release Frequency: Quarterly
PA	MANIFEST: Manifest Information Hazardous waste manifest information.	
	Date of Government Version: 06/30/2018	Source: Department of Environmental Protection

Date of Government Version: 06/30/2018 Date Data Arrived at EDR: 07/19/2019 Date Made Active in Reports: 09/10/2019 Number of Days to Update: 53 Source: Department of Environmental Protection Telephone: 717-783-8990 Last EDR Contact: 10/05/2023 Next Scheduled EDR Contact: 01/22/2024 Data Release Frequency: Annually

RI MANIFEST: Manifest information Hazardous waste manifest information

Telephone: 401-222-2797

Telephone: 802-241-3443

Last EDR Contact: 10/05/2023

Data Release Frequency: Annually

Last EDR Contact: 08/10/2022

Next Scheduled EDR Contact: 11/27/2023 Data Release Frequency: Annually

Next Scheduled EDR Contact: 01/22/2024

Date of Government Version: 12/31/2020 Date Data Arrived at EDR: 11/30/2021 Date Made Active in Reports: 02/18/2022 Number of Days to Update: 80

VT MANIFEST: Hazardous Waste Manifest Data Hazardous waste manifest information.

> Date of Government Version: 10/28/2019 Date Data Arrived at EDR: 10/29/2019 Date Made Active in Reports: 01/09/2020 Number of Days to Update: 72

WI MANIFEST: Manifest Information Hazardous waste manifest information.

Date of Government Version: 05/31/2018SDate Data Arrived at EDR: 06/19/2019Date Made Active in Reports: 09/03/2019Number of Days to Update: 76

Source: Department of Natural Resources Telephone: N/A Last EDR Contact: 08/30/2023 Next Scheduled EDR Contact: 12/18/2023 Data Release Frequency: Annually

Source: Department of Environmental Management

Source: Department of Environmental Conservation

Oil/Gas Pipelines

Source: Endeavor Business Media

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Electric Power Transmission Line Data

Source: Endeavor Business Media

This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical

database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools Source: National Center for Education Statistics Telephone: 202-502-7300 The National Center for Education Statistics' primary database on private school locations in the United States.

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: MassDEP Telephone: 617-292-5907

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

UNDEVELOPED PROPERTY COUNTY ROAD WEST WAREHAM, MA 02576

TARGET PROPERTY COORDINATES

Latitude (North):	41.754641 - 41° 45' 16.71"
Longitude (West):	70.773211 - 70° 46' 23.56"
Universal Tranverse Mercator:	Zone 19
UTM X (Meters):	352577.3
UTM Y (Meters):	4623841.0
Elevation:	22 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map:	11711328 SNIPATUIT POND, MA
Version Date:	2018
Northeast Map:	11711338 WAREHAM, MA
Version Date:	2018
Southeast Map:	11711308 ONSET, MA
Version Date:	2018
Southwest Map:	11730677 MARION, MA
Version Date:	2018

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General SSE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property	FEMA Source Type
25023C0469J	FEMA FIRM Flood data
Additional Panels in search area:	FEMA Source Type
25023C0468J 25005C0425F	FEMA FIRM Flood data FEMA FIRM Flood data
NATIONAL WETLAND INVENTORY	NWI Electronic
NWI Quad at Target Property SNIPATUIT POND	Data Coverage YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID Not Reported LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:	Precambrian Catego	ry: Plutonic and Intrusive Rocks
System:	Precambrian	
Series:	Z ganitic rocks	
Code:	Zg (decoded above as Era, System & Series)	

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name:	CARVER
Soil Surface Texture:	coarse sand
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.
Soil Drainage Class:	Excessively. Soils have very high and high hydraulic conductivity and low water holding capacity. Depth to water table is more than 6 feet.
Hydric Status: Soil does not meet the	requirements for a hydric soil.
Corrosion Potential - Uncoated Steel:	LOW
Depth to Bedrock Min:	> 60 inches

Depth to Bedrock Max: > 60 inches

Soil Layer Information							
	Boundary Classification						
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	7 inches	coarse sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 20.00 Min: 20.00	Max: 6.00 Min: 3.60
2	7 inches	29 inches	coarse sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 20.00 Min: 20.00	Max: 5.50 Min: 3.60
3	29 inches	50 inches	coarse sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Clean Sands, Poorly graded sand.	Max: 20.00 Min: 20.00	Max: 5.50 Min: 3.60

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures:	fine sand loamy fine sand loamy sand
Surficial Soil Types:	fine sand loamy fine sand loamy sand
Shallow Soil Types:	No Other Soil Types
Deeper Soil Types:	very fine sand sand

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH DISTANCE (miles)
Federal USGS Federal FRDS PWS	1.000 Nearest PWS within 1 mile
State Database	1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
1	USGS40000459872	1/8 - 1/4 Mile NNW
2	USGS40000459881	1/8 - 1/4 Mile North
3	USGS40000459899	1/4 - 1/2 Mile NE
4	USGS40000459882	1/4 - 1/2 Mile WNW
5	USGS40000459769	1/4 - 1/2 Mile ESE
A6	USGS40000459804	1/4 - 1/2 Mile West
A7	USGS40000459790	1/4 - 1/2 Mile WSW
8	USGS40000459909	1/4 - 1/2 Mile WNW
9	USGS40000459928	1/2 - 1 Mile NW
10	USGS40000459945	1/2 - 1 Mile NW
B11	USGS40000459740	1/2 - 1 Mile WSW
B12	USGS40000459741	1/2 - 1 Mile WSW
B13	USGS40000459742	1/2 - 1 Mile WSW
14	USGS40000459749	1/2 - 1 Mile WSW
15	USGS40000459840	1/2 - 1 Mile West
C16	USGS40000459922	1/2 - 1 Mile WNW
C17	USGS40000459937	1/2 - 1 Mile WNW
18	USGS40000459910	1/2 - 1 Mile WNW
19	USGS40000459631	1/2 - 1 Mile SSW
20	USGS40000459597	1/2 - 1 Mile SSW
21	USGS40000460016	1/2 - 1 Mile NE
22	USGS40000460110	1/2 - 1 Mile North
D23	USGS40000460121	1/2 - 1 Mile NNE
24	USGS40000460109	1/2 - 1 Mile NNE
D25	USGS40000460132	1/2 - 1 Mile NNE
26	USGS40000459876	1/2 - 1 Mile East
E27	USGS40000459778	1/2 - 1 Mile WSW
28	USGS40000459943	1/2 - 1 Mile WNW
F29	USGS40000460102	1/2 - 1 Mile NNE
F30	USGS40000460092	1/2 - 1 Mile NE

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
No PWS System Found		

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID E31 WELL ID MA110000000025 LOCATION FROM TP 1/2 - 1 Mile West

PHYSICAL SETTING SOURCE MAP - 7489270.2s

SITE NAME: Undeveloped Property CLIE	LIENT: Lightship Engineering
ADDRESS: County Road COM	ONTACT: Kristin Maloney
West Wareham MA 02576 INQ	NQUIRY #: 7489270.2s
LAT/LONG: 41.754641 / 70.773211 DAT	DATE: November 06, 2023 12:56 pm

Map ID Direction Distance Elevation			Database	EDR ID Number
1 NNW 1/8 - 1/4 Mile Higher			FED USGS	USGS40000459872
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Science MA-WFW 172 Not Reported Not Reported Not Reported Not Reported S3 Not Reported	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 0109 Not F Not F 1969 ft Not F	0002 Reported Reported Reported
Ground water levels,Number of M Feet below surface: Note:	feasurements: 1 11.00 Not Reported	Level reading date: Feet to sea level:	1969 Not F	-08-01 Reported
2 North 1/8 - 1/4 Mile Higher			FED USGS	USGS40000459881
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Science MA-WFW 171 Not Reported Not Reported Not Reported Not Reported 58 Not Reported	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 0109 Not F Not F Not F 1969 ft Not F	0002 Reported Reported Reported
Ground water levels,Number of M Feet below surface: Note:	leasurements: 1 6.00 Not Reported	Level reading date: Feet to sea level:	1969 Not F	-08-01 Reported
3 NE 1/4 - 1/2 Mile Higher			FED USGS	USGS40000459899
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Science MA-WFW 161 Not Reported Not Reported Not Reported Not Reported Not Reported 23 Not Reported	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Un Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 0109 Not F Not F Not F Not F ft Not F	0002 Reported Reported Reported Reported

Map ID Direction					
Distance Elevation			[Database	EDR ID Number
4 WNW 1/4 - 1/2 Mile Higher			F	ED USGS	USGS40000459882
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachu MA-MFW 31 Not Reported Not Reported Not Reported Not Reported 94 Not Reported	isetts Water Science	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Uni Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R ts: Not R Bedro 1963 ft Not F	0002 Reported Reported ock Reported
Ground water levels,Number of Feet below surface: Note:	Measurements: 15.00 Not Reported	1	Level reading date: Feet to sea level:	1963- Not R	-11-01 Reported
5 ESE 1/4 - 1/2 Mile Lower			F	ED USGS	USGS40000459769
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachu MA-WFA 6 Not Reported Not Reported Not Reported Not Reported 49 Not Reported	setts Water Science	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Uni Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R ts: Not R Not R 1959 ft Not R	0002 Reported Reported Reported
Ground water levels,Number of Feet below surface: Note:	Measurements: 10.00 Not Reported	1	Level reading date: Feet to sea level:	1959- Not R	-10-01 Reported
A6 West 1/4 - 1/2 Mile Higher			F	ED USGS	USGS40000459804
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachu MA-MFW 24 Not Reported Not Reported Not Reported Not Reported 36 Not Reported	isetts Water Science	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Uni Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R ts: Not R Not R 1940 ft Not F	0002 Reported Reported Reported

Map ID Direction				
Distance Elevation		C	Database	EDR ID Number
A7 WSW 1/4 - 1/2 Mile Higher		F	ED USGS	USGS40000459790
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Science MA-MFW 38 419 COUNTY RD. Not Reported Not Reported Not Reported Unconfined single aquifer 110 110	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unt Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R s: Not R Bedrc 19750 ft ft	0002 eported eported ick 0909
Ground water levels,Number of Feet below surface: Note:	Measurements: 1 13.0 Not Reported	Level reading date: Feet to sea level:	1975- Not R	09-09 eported
8 WNW 1/4 - 1/2 Mile Higher		F	ED USGS	USGS40000459909
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Science MA-MFW 23 Not Reported Not Reported Not Reported Not Reported 50 Not Reported	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unt Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R S: Not R Not R 1940 ft Not R	0002 eported eported eported
9 NW 1/2 - 1 Mile Higher		F	ED USGS	USGS40000459928
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Science MA-MFW 22 Not Reported Not Reported Not Reported Not Reported 36 Not Reported	e Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unt Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R S: Not R Not R 1940 ft Not R	0002 eported eported eported eported

Map ID Direction				
Elevation		Data	abase	EDR ID Number
10 NW 1/2 - 1 Mile Higher		FED	USGS	USGS40000459945
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Sc MA-MFA 3 Not Reported Not Reported Not Reported Not Reported 73 Not Reported	ience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R Not R Not R 1959 ft Not R	0002 eported eported eported eported
Ground water levels,Number o Feet below surface: Note:	f Measurements: 1 10.00 Not Reported	Level reading date: Feet to sea level:	1959- Not R	10-01 eported
B11 WSW 1/2 - 1 Mile Higher		FED	USGS	USGS40000459740
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Sc MA-MFW 39 2 TUCKER LN. Not Reported Not Reported Not Reported Unconfined single aquifer 320 320	ience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R Not R Bedro 19910 ft	0002 eported eported ick 0807
Ground water levels,Number o Feet below surface: Note:	f Measurements: 1 30.0 Not Reported	Level reading date: Feet to sea level:	1991- Not R	08-07 eported
B12 WSW 1/2 - 1 Mile Higher		FED	USGS	USGS40000459741
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Sc MA-MFW 40 12 TUCKER LN. Not Reported Not Reported Not Reported Unconfined single aquifer 260 260	ience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090 Not R Not R Bedro 19890 ft ft	0002 eported eported ick 9921

Ground water levels,Number Feet below surface: Note:	of Measurements: 1 10.0 Not Reported	Level reading date: Feet to sea level:	1989-09-21 Not Reported
B13 WSW 1/2 - 1 Mile Higher		FED	USGS USGS40000459742
Organization ID:	USGS-MA	or Solonoo Contor	
Monitor Location:			Well
Description:		туре. НПС:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Not Reported	Formation Type:	Bedrock
Aquifer Type:	Unconfined single aquifer	Construction Date:	19890920
Well Depth:	220	Well Depth Units:	ft
Well Hole Depth:	220	Well Hole Depth Units:	ft
Ground water levels Number	of Measurements: 1	Level reading date:	1989-09-20
Feet below surface:	10.0	Feet to sea level:	Not Reported
Note:	Not Reported		
14 WSW 1/2 - 1 Mile Higher		FED	USGS USGS40000459749
Organization ID:	USGS-MA		
Organization Name:	USGS Massachusetts Wate	er Science Center	
Monitor Location:	MA-MFW 42	Туре:	Well
Description:	TUCKER LN	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts:	Not Reported
Aquifer:	Not Reported	Formation Type:	Bedrock
Aquifer Type: Wall Dopth:	Uncontined single aquiter	Well Dopth Unite:	19910226 ft
Well Hole Depth:	320	Well Hole Depth Units:	ft
Ground water lougle Number	of Moosuromonto:	Lougi roading data:	1001 02 26
Siguina water levels, Nulliber	UI MEASUICITICITIS.	Level reading date.	
Feet below surface:	20.0	Feet to sea level:	Not Reported
Feet below surface: Note:	20.0 Not Reported	Feet to sea level:	Not Reported
Feet below surface: Note: 15 West 1/2 - 1 Mile	20.0 Not Reported	Feet to sea level:	Not Reported
Feet below surface: Note: 15 West 1/2 - 1 Mile Higher	20.0 Not Reported	Feet to sea level:	USGS USGS40000459840
Feet below surface: Note: 15 West 1/2 - 1 Mile Higher Organization ID:	20.0 Not Reported	Feet to sea level:	USGS USGS40000459840
Feet below surface: Note: 15 West 1/2 - 1 Mile Higher Organization ID: Organization Name:	20.0 Not Reported USGS-MA USGS Massachusetts Wate	Feet to sea level:	USGS USGS40000459840
Feet below surface: Note: 15 West 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description:	20.0 Not Reported USGS-MA USGS Massachusetts Wate MA-MFW 33	Feet to sea level: FED to FED	USGS USGS40000459840
Feet below surface: Note: 15 West 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description: Description:	20.0 Not Reported USGS-MA USGS Massachusetts Wate MA-MFW 33 Not Reported Not Reported	Feet to sea level: FED FED FED FED FED FED FED FED FED FED	VSGS USGS40000459840 Well 01090002 Not Percented
Feet below surface: Note: 15 West 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area:	20.0 Not Reported USGS-MA USGS Massachusetts Wate MA-MFW 33 Not Reported Not Reported Not Reported	Feet to sea level: FED (er Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units:	VSGS USGS40000459840 Well 01090002 Not Reported Not Reported
Feet below surface: Note: 15 West 1/2 - 1 Mile Higher Organization ID: Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer:	20.0 Not Reported USGS-MA USGS Massachusetts Wate MA-MFW 33 Not Reported Not Reported Not Reported Not Reported	Feet to sea level: FED (Pr Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units: Formation Type:	Vell USGS USGS40000459840 Well 01090002 Not Reported Not Reported Not Reported

Organization Name: Monitor Location: Description:	USGS Massachuse MA-RFW 60 Not Reported	etts Water Sci	ience Center Type: HUC:	Well 0109	0002
18 WNW 1/2 - 1 Mile Higher Organization ID:	USGS-MA		FED	USGS	USGS40000459910
Ground water levels,Numbe Feet below surface: Note:	er of Measurements: 4.00 Not Reported	1	Level reading date: Feet to sea level:	1964 Not F	-06-01 Reported
VIVV 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachuse MA-RFW 61 Not Reported Not Reported Not Reported Not Reported Not Reported 76 Not Reported	etts Water Sci	FED Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 0109 Not F Not F 1964 ft Not F	0002 Reported Reported Reported Reported
Ground water levels,Number Feet below surface: Note: C17	r of Measurements: 3.00 Not Reported	1	Level reading date: Feet to sea level:	1964 Not F	-06-01 Reported
1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachuse MA-RFW 62 Not Reported Not Reported Not Reported Not Reported 57 Not Reported	etts Water Sci	ience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 0109 Not F Not F Not F 1964 ft Not F	0002 Reported Reported Reported
Ground water levels,Number Feet below surface: Note: C16 WNW	er of Measurements: 2.00 Not Reported	1	Level reading date: Feet to sea level: FED	1964 Not F	-11-01 Reported
Well Depth: Well Hole Depth:	63 Not Reported		Well Depth Units: Well Hole Depth Units:	ft Not F	Reported

Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	Not Reported Not Reported Not Reported Not Reported 76 Not Reported		Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Not Reported Not Reported Not Reported 1964 ft Not Reported
Ground water levels,Number Feet below surface: Note:	r of Measurements: 2.00 Not Reported	1	Level reading date: Feet to sea level:	1964-06-01 Not Reported
19 SSW 1/2 - 1 Mile Lower			FED	USGS USGS40000459631
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachus MA-MFA 1 Not Reported Not Reported Not Reported Not Reported 64 Not Reported	etts Water Sci	ence Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090002 Not Reported Not Reported 1959 ft Not Reported
Ground water levels,Number Feet below surface: Note:	r of Measurements: 7.00 Not Reported	1	Level reading date: Feet to sea level:	1959-09-01 Not Reported
20 SSW 1/2 - 1 Mile Lower			FED	USGS USGS40000459597
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachus MA-MFA 2 Not Reported Not Reported Not Reported Not Reported 72 Not Reported	etts Water Sci	ence Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090002 Not Reported Not Reported 1960 ft Not Reported
Ground water levels,Number Feet below surface: Note:	r of Measurements: 5.00 Not Reported	1	Level reading date: Feet to sea level:	1960-10-01 Not Reported

Map ID Direction				
Distance Elevation			Database	EDR ID Number
21 NE 1/2 - 1 Mile Higher			FED USGS	USGS40000460016
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Wat MA-WFA 5 Not Reported Not Reported Not Reported Not Reported 14 Not Reported	er Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units	Well 0109 Not F a Unts: Not F Not F 1959 ft :: Not F	0002 Reported Reported Reported
Ground water levels,Number of N Feet below surface: Note:	Measurements: 1 5.00 Not Reported	Level reading date: Feet to sea level:	1959 Not F	-10-01 Reported
22 North 1/2 - 1 Mile Higher			FED USGS	USGS40000460110
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Wat MA-WFW 151 Not Reported Not Reported Not Reported Not Reported 310 Not Reported	er Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units	Well 0109 Not F a Unts: Not F Bedr 1967 ft s: Not F	0002 Reported Reported ock
Ground water levels,Number of N Feet below surface: Note:	Measurements: 1 15.00 Not Reported	Level reading date: Feet to sea level:	1967 Not F	-10-01 Reported
D23 NNE 1/2 - 1 Mile Higher			FED USGS	USGS40000460121
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Wat MA-WFW 481 FEARING HILL RD. Not Reported Not Reported Unconfined single aquifer 200 200	er Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units	Well 0109 Not F a Unts: Not F Bedr 1982 ft ft	0002 Reported Reported ock 0715

Ground water levels,Number Feet below surface: Note:	r of Measurements: 1 12.0 Not Reported	Level reading date: Feet to sea level:	1982-07-15 Not Reported
24 NNE 1/2 - 1 Mile Higher		FED	USGS USGS40000460109
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water So MA-WFW 482 116 FEARING HILL RD. Not Reported Not Reported Unconfined single aquifer 300 300	tience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090002 Not Reported Not Reported Bedrock 19900410 ft ft
D25 NNE 1/2 - 1 Mile Higher		FED	USGS USGS40000460132
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water Sc MA-WFW 480 121 FEARING HILL RD. Not Reported Not Reported Not Reported Unconfined single aquifer 225 225	tience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090002 Not Reported Not Reported Bedrock 19890327 ft ft
Ground water levels,Number Feet below surface: Note:	r of Measurements: 1 4.0 Not Reported	Level reading date: Feet to sea level:	1989-03-30 Not Reported
26 East 1/2 - 1 Mile Higher		FED	USGS USGS40000459876
- Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Water So MA-WFW 143 Not Reported Not Reported Not Reported Not Reported Not Reported 127 Not Reported	ience Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090002 Not Reported Not Reported Bedrock 1964 ft Not Reported

Feet below surface: Note:	of Measurements: 3.00 Not Reported	1 Level reading date: Feet to sea level:	1964-05-01 Not Reported
E27 WSW 1/2 - 1 Mile Higher		FE	ED USGS USGS40000459778
Organization ID:			
Organization Name:	USGS Massachusetts Wa	ater Science Center	
Monitor Location:	MA-RFW 411	Type:	Well
Description:	79 PERRY'S LN	HUC:	01090002
Drainage Area:	Not Reported	Drainage Area Units:	Not Reported
Contrib Drainage Area:	Not Reported	Contrib Drainage Area Unts	: Not Reported
Aquifer:	Not Reported	Formation Type:	Bedrock
Aquiler Type. Well Depth:		Well Depth Units:	196009 ft
Well Hole Depth:	400	Well Hole Depth Units:	ft
Ground water levels.Number	of Measurements:	1 Level reading date:	1986-09
Feet below surface:	2.0	Feet to sea level:	Not Reported
Note:	Not Reported		
28 WNW 1/2 - 1 Mile Higher		FE	ED USGS USGS40000459943
Organization ID:	USGS-MA		
Organization ID: Organization Name:	USGS-MA USGS Massachusetts Wa	ater Science Center	
Organization ID: Organization Name: Monitor Location:	USGS-MA USGS Massachusetts Wa MA-RFW 84	ater Science Center Type:	Well
Organization ID: Organization Name: Monitor Location: Description:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported	ater Science Center Type: HUC: Droipogo Area Unite:	Well 01090002
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units	Well 01090002 Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type:	Well 01090002 Not Reported : Not Reported Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date:	Well 01090002 Not Reported : Not Reported Not Reported Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported Not Reported 26	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units:	Well 01090002 Not Reported : Not Reported Not Reported Not Reported ft
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer: Well Depth: Well Hole Depth:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units:	Well 01090002 Not Reported : Not Reported Not Reported ft Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Ground water levels,Number	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported 26 Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date:	Well 01090002 Not Reported : Not Reported Not Reported ft Not Reported ft Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported of Measurements: 22.00 Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level:	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported 26 Not Reported of Measurements: 22.00 Not Reported	Ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level: Feet to sea level:	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported of Measurements: 22.00 Not Reported	Ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level: Feet to sea level:	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note: F29 NNE 1/2 - 1 Mile Higher Organization ID:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported 26 Not Reported 26 Not Reported of Measurements: 22.00 Not Reported	Ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level: Feet to sea level:	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note: F29 NNE 1/2 - 1 Mile Higher Organization ID: Organization Name:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported of Measurements: 22.00 Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Level reading date: Feet to sea level: Feet to sea level:	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note: F29 NNE 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported 26 Not Reported 26 Not Reported 07 Measurements: 22.00 Not Reported USGS-MA USGS Massachusetts Wa MA-WFW 153	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level: Feet to sea level:	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported DUSGS USGS40000460102
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note: F29 NNE 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported of Measurements: 22.00 Not Reported USGS-MA USGS Massachusetts Wa MA-WFW 153 Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level: Feet to sea level: Feet to sea level: Feet to sea level: FE	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported USGS USGS40000460102
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note: F29 NNE 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported of Measurements: 22.00 Not Reported USGS-MA USGS Massachusetts Wa MA-WFW 153 Not Reported Not Reported Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level: Feet to sea level: Feet to sea level: Feet to sea level: Feet Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units:	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported ED USGS USGS40000460102 Well 01090002 Not Reported
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Well Hole Depth: F29 NNE 1/2 - 1 Mile Higher Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer:	USGS-MA USGS Massachusetts Wa MA-RFW 84 Not Reported Not Reported Not Reported Not Reported 26 Not Reported of Measurements: 22.00 Not Reported USGS-MA USGS Massachusetts Wa MA-WFW 153 Not Reported Not Reported Not Reported Not Reported	ater Science Center Type: HUC: Drainage Area Units: Contrib Drainage Area Units: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: 1 Level reading date: Feet to sea level: Feet to sea level	Well 01090002 Not Reported Not Reported Not Reported ft Not Reported 1959-07-01 Not Reported ED USGS USGS40000460102 Well 01090002 Not Reported Sedrock

Well Depth: Well Hole Depth:	78 Not Reported		Well Depth Units: Well Hole Depth Units:	ft Not F	Reported
F30 NE 1/2 - 1 Mile Higher			FE	DUSGS	USGS40000460092
Organization ID: Organization Name: Monitor Location: Description: Drainage Area: Contrib Drainage Area: Aquifer: Aquifer Type: Well Depth: Well Hole Depth: Well Hole Depth: Ground water levels,Number Feet below surface: Note:	USGS-MA USGS Massach MA-WFW 154 Not Reported Not Reported Not Reported Not Reported 80 Not Reported 80 Not Reported	usetts Water Scie	ence Center Type: HUC: Drainage Area Units: Contrib Drainage Area Unts: Formation Type: Construction Date: Well Depth Units: Well Hole Depth Units: Level reading date: Feet to sea level:	Well 0109 Not F Not F Bedru 1969 ft Not F 1969 Not F	0002 Reported Reported ock Reported -01-01 Reported
E31 West 1/2 - 1 Mile Higher			MA	WELLS	 MA1100000000025
WELLS: PWS Source ID: Site Name: PWS Type: DEP Region: Zone II #:		4250010-01G PERRYS CAM Transient Non- 4 0	IPGROUND -Community		
DWP Water Quality Testing S	ystem (WQTS) Inform	nation:			
Water Supplier Name: Source Name: Water Supplier Status: Source Status: Source Classification: Source Availability:		PERRYS CAM WELL 1 Inactive Inactive Transient Non Inactive	IPGROUND Community		

AREA RADON INFORMATION

State Database: MA Radon

Radon Test Results

County	% of sites>4 pCi/L	Median
PLYMOUTH	12	1.4

Federal EPA Radon Zone for PLYMOUTH County: 2

Note: Zone 1 indoor average level > 4 pCi/L. : Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L. : Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for PLYMOUTH COUNTY, MA

Number of sites tested: 113

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	1.032 pCi/L	95%	5%	0%
Living Area - 2nd Floor	0.700 pCi/L	100%	0%	0%
Basement	3.990 pCi/L	87%	12%	1%

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Telephone: 877-336-2627 Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory Source: MassDEP Telephone: 617-292-5907

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS) Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Massachusetts Geographic Information System (MassGIS) Datalayers Source: Executive Office of Environmental Affairs Telephone:

Public Water Supply Database

Telephone:

The Public Water Supply datalayer contains the locations of public community surface and groundwater supply sources and public non-community supply sources as defined in 310 CMR 22.00.

Areas of Critical Environmental Concern

Telephone:

The Areas of Critical Environmental Concern (ACEC) datalayer shows the location of areas that have been designated ACECs by the Secretary of Environmental Affairs. ACEC designation requires greater environmental review of certain kinds of proposed development under state jurisdiction within the ACEC boundaries. The ACEC Program is administered by the Department of Environmental Management (DEM) on behalf of the Secretary of Environmental Affairs. The Massachusetts Coastal Zone Management (MCZM) Office managed the original Coastal ACEC Program from 1978 to 1993, and continues to play a key role in monitoring coastal ACECs. Procedures for ACEC designation and the general policies governing the effects of designation are contained in the ACEC regulations (301 CMR 12.00). The ACEC datalayer has been compiled by MCZM and DEM and includes both coastal and inland areas.

EPA Designated Sole Source Aquifers

Telephone:

The Sole Source Aquifer datalayer was compiled by the Department of Environmental Protection (DEP) Division of Water Supply (DWS). Seven Sole Source Aquifers have been designated by the US Environmental Protection Agency (EPA) for Massachusetts. A Sole Source Aquifer (SSA) is an aquifer designated by US EPA as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for that area and for which there are no reasonably available alternative sources should that aquifer become contaminated. The aquifers were defined by an EPA hydrogeologist.

Aquifers

Telephone:

MassGIS produced an aquifer datalayer composed of 20 individual panels, generally based on the boundaries of the major drainage basins. Areas of high and medium yield were mapped. This datalayer includes polygon attribute coding to help in the identification of areas in which cleanup of hazardous waste sites must meet drinking water standards, as defined in the Massachusetts Contingency Plan (MCP) (310 CMR 40.00000).

PHYSICAL SETTING SOURCE RECORDS SEARCHED

Non-Potential Drinking Water Source Areas

Telephone:

Non-Potential Drinking Water Source Areas (NPDWSA) are regulatory in nature representing one of many considerations used in determining the standards to which ground water must be cleaned in the event of a release of oil or hazardous material. NPDWSAs are not based on existing water quality and do not indicate poor ambient conditions.

DEP Approved Zone IIs

Telephone:

The Department of Environmental Protection (DEP) approved Zone IIs datalayer was compiled by the DEP Division of Water Supply (DWS). The database contains 281 approved Zone IIs statewide. As stated in 310 CMR 22.02, a Zone II is 'that area of an aquifer which contributes water to a well under the most severe pumping and recharge conditions that can be realistically anticipated (180 days of pumping at safe yield, with no recharge from precipitation.) It is bounded by the groundwater divides which result from pumping the well and by the contact of the aquifer with less permeable materials such as till or bedrock. In some cases, streams or lakes may act as recharge boundaries. In all cases, Zone IIs shall extend up gradient to its point of intersection with prevailing hydrogeologic boundaries (a groundwater flow divide, a contact with till or bedrock, or a recharge boundary).' These data are used in association with the Public Water Supplies datalayer. The following describes certain unique features of this association.\n - Any proposed new well which will pump at least 100,000 gallons per day must have a Zone II delineation completed and approved by DEP prior to the well coming on line. \n - Additionally, a new source may not be on-line yet, but other, older wells may fall within its Zone II boundary.\n - Further, existing wells must have a Zone II delineated as a condition of receiving a water withdrawal permit under the Water Management Act.

OTHER STATE DATABASE INFORMATION

RADON

State Database: MA Radon Source: Department of Health Telephone: 413-586-7525 Radon Test Results

Area Radon Information Source: USGS Telephone: 703-356-4020 The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared in 1975 by the United State Geological Survey

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX C

CERTIFIED SANBORN® MAP REPORT
Undeveloped Property County Road West Wareham, MA 02576

Inquiry Number: 7489270.3 November 06, 2023

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

Site Name:

Undeveloped Property County Road West Wareham, MA 02576 EDR Inquiry # 7489270.3

Client Name:

Lightship Engineering 39 Industrial Park Road Plymouth, MA 02360 Contact: Kristin Maloney

11/06/23

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Lightship Engineering were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 6DB2-42D3-A0AB

PO # 1075.1

Project West Wareham

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results Certification #: 6DB2-42D3-A0AB

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

	Library of Congress	
--	---------------------	--

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Lightship Engineering (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

APPENDIX D

THE EDR AERIAL PHOTO DECADE PACKAGE

Undeveloped Property

County Road West Wareham, MA 02576

Inquiry Number: 7489270.8 November 06, 2023

The EDR Aerial Photo Decade Package

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

EDR Aerial Photo Decade Package

Site Name:

1952

1"=750'

Client Name:

11/06/23

Undeveloped Property County Road West Wareham, MA 02576 EDR Inquiry # 7489270.8

Lightship Engineering 39 Industrial Park Road Plymouth, MA 02360 Contact: Kristin Maloney

USDA

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results: Scale Source Year Details 2018 1"=750' Flight Year: 2018 USDA/NAIP 2014 1"=750' Flight Year: 2014 USDA/NAIP 1"=750' 2010 Flight Year: 2010 USDA/NAIP 2006 1"=750' Flight Year: 2006 USDA/NAIP 1995 1"=750' Acquisition Date: March 29, 1995 USGS/DOQQ 1985 1"=750' Flight Date: March 26, 1985 USDA 1980 1"=750' Flight Date: September 09, 1980 USDA 1970 1"=750' Flight Date: September 20, 1970 USDA 1961 1"=750' Flight Date: March 31, 1961 USGS

Flight Date: August 20, 1952

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

INQUIRY #: 7489270.8

YEAR: 1980

= 750'

APPENDIX E

EDR HISTORICAL TOPO MAP REPORT WITH QUADMATCH

Undeveloped Property County Road West Wareham, MA 02576

Inquiry Number: 7489270.4 November 06, 2023

EDR Historical Topo Map Report with QuadMatch™

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

EDR Historical Topo Map Report

Site Name:

Client Name:

11/06/23

Undeveloped Property County Road West Wareham, MA 02576 EDR Inquiry # 7489270.4

Lightship Engineering 39 Industrial Park Road Plymouth, MA 02360 Contact: Kristin Maloney

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by Lightship Engineering were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Results:		Coordinates:	
P.O.#	1075.1	Latitude:	41.754641 41° 45' 17" North
Project:	West Wareham	Longitude:	-70.773211 -70° 46' 24" West
		UTM Zone:	Zone 19 North
		UTM X Meters:	352581.39
		UTM Y Meters:	4624054.27
		Elevation:	22.00' above sea level
Maps Provided	:		
2018	1944, 1947, 1948		
2015	1943		
2012	1939, 1941, 1942		
1985	1935, 1936, 1938		
1977	1916, 1918		
1957, 1962	1915		
1949, 1953	1893		
1946, 1949	1888. 1889		

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2018 Source Sheets

Snipatuit Pond 2018 7.5-minute, 24000

2018 7.5-minute, 24000

Wareham 2018 7.5-minute, 24000

Onset 2018 7.5-minute, 24000

2015 Source Sheets

Snipatuit Pond 2015 7.5-minute, 24000

Marion 2015 7.5-minute, 24000

Wareham 2015 7.5-minute, 24000

Onset 2015 7.5-minute, 24000

2012 Source Sheets

Snipatuit Pond 2012 7.5-minute, 24000

2012 7.5-minute, 24000

Wareham 2012 7.5-minute, 24000

Onset 2012 7.5-minute, 24000

1985 Source Sheets

BRIDGEWATER 1985 15-minute, 50000

NEW BEDFORD 1985 15-minute, 50000

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1977 Source Sheets

Onset 1977 7.5-minute, 25000 Aerial Photo Revised 1977

7.5-minute, 25000

Aerial Photo Revised 1974

Marion

1977

Wareham 1957 7.5-minute, 24000

Snipatuit Pond 1962 7.5-minute, 24000

Snipatuit Pond 1977 7.5-minute, 25000 Aerial Photo Revised 1974

Wareham 1977 7.5-minute, 25000 Aerial Photo Revised 1977

Marion 1962 7.5-minute, 24000

1949, 1953 Source Sheets

Snipatuit Pond 1949 7.5-minute, 24000

1953 7.5-minute, 24000

1946, 1949 Source Sheets

Wareham 1946 7.5-minute, 31680

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1944, 1947, 1948 Source Sheets

MARION 1944 7.5-minute, 25000

SNIPATUIT POND 1947 7.5-minute, 25000

1948 7.5-minute, 25000

1943 Source Sheets

Marion 1943 7.5-minute, 24000

1939, 1941, 1942 Source Sheets

Wareham 1939 7.5-minute, 31680

Marion 1941 7.5-minute, 31680

Onset 1941 7.5-minute, 31680

Snipatuit Pond 1942 7.5-minute, 31680

7.5-minute, 24000

1935, 1936, 1938 Source Sheets

Wareham 1935 7.5-minute, 24000

Onset 1936 7.5-minute, 24000

7.5-minute, 24000

1936

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1916, 1918 Source Sheets

Middleboro 1916 15-minute, 62500

New Bedford 1918 15-minute, 62500

1915 Source Sheets

Falmouth 1915 15-minute, 62500

1893 Source Sheets

PLYMOUTH 1915 15-minute, 62500

MIDDLEBORO 1915 15-minute, 62500

Falmouth 1893 15-minute, 62500

New Bedford 1893 15-minute, 62500

Fairhaven 1893 15-minute, 62500

Middleboro 1893 15-minute, 62500

Plymouth 1889 15-minute, 62500

1888, 1889 Source Sheets

New Bedford 1888 15-minute, 62500

Falmouth 1888 15-minute, 62500

Middleboro 1888 15-minute, 62500

0 Miles

0.25

TP, Snipatuit Pond, 2018, 7.5-minute NE, Wareham, 2018, 7.5-minute SE, Onset, 2018, 7.5-minute SW, Marion, 2018, 7.5-minute

SITE NAME:	Undeveloped Property
ADDRESS:	County Road
	West Wareham, MA 02576
CLIENT:	Lightship Engineering

0.5

1.5

SW

S

SE

7489270 - 4 page 8

W

SW

S

SE

SITE NAME:Undeveloped PropertyADDRESS:County Road
West Wareham, MA 02576CLIENT:Lightship Engineering

SITE NAME:	Undeveloped Property
ADDRESS:	County Road
	West Wareham, MA 02576
CLIENT:	Lightship Engineering

SE

SW

S

TP, Snipatuit Pond, 1977, 7.5-minute NE, Wareham, 1977, 7.5-minute SE, Onset, 1977, 7.5-minute SW, Marion, 1977, 7.5-minute SITE NAME: Undeveloped Property ADDRESS: County Road West Wareham, MA 02576 CLIENT: Lightship Engineering

TP, Snipatuit Pond, 1962, 7.5-minute NE, Wareham, 1957, 7.5-minute SW, Marion, 1962, 7.5-minute

SITE NAME:	Undeveloped Property
ADDRESS:	County Road
	West Wareham, MA 02576
CLIENT:	Lightship Engineering

SW

S

SE

S

7489270 - 4 page 14

NE, WAREHAM, 1948, 7.5-minute SW, MARION, 1944, 7.5-minute

W

SW

S

SE

 SITE NAME:
 Undeveloped Property

 ADDRESS:
 County Road

 West Wareham, MA 02576
 Lightship Engineering

SW

S

SE

7489270 - 4

page 16

TP, Snipatuit Pond, 1942, 7.5-minute NE, Wareham, 1939, 7.5-minute SE, Onset, 1941, 7.5-minute E SW, Marion, 1941, 7.5-minute

SITE NAME:	Undeveloped Property
ADDRESS:	County Road
	West Wareham, MA 02576
CLIENT:	Lightship Engineering

TP, Snipatuit Pond, 1938, 7.5-minute NE, Wareham, 1935, 7.5-minute SE, Onset, 1936, 7.5-minute E SW, Marion, 1936, 7.5-minute

SITE NAME:	Undeveloped Property
ADDRESS:	County Road
	West Wareham, MA 02576
CLIENT:	Lightship Engineering

E

SE

W

SW

S

West Wareham, MA 02576

Lightship Engineering

CLIENT:

SE

7489270 - 4 page 20

SW, New Bedford, 1893, 15-minute E SW, Fairhaven, 1893, 15-minute

W

SW

S

SE

Lightship Engineering

West Wareham, MA 02576

CLIENT:

SW

S

SE

APPENDIX F

THE EDR-CITY DIRECTORY IMAGE REPORT

Undeveloped Property County Road West Wareham, MA 02576

Inquiry Number: 7489270.5 November 07, 2023

The EDR-City Directory Image Report

6 Armstrong Road Shelton, CT 06484 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES. LLC OR ITS SUBSIDIARIES. AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT. INCIDENTAL, INDIRECT, SPECIAL. CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities.EDR's City Directory Report includes a search of available business directory data at approximately five year intervals.

RECORD SOURCES

The EDR City Directory Report accesses a variety of business directory sources, including Haines, InfoUSA, Polk,Cole, Bresser, and Stewart. Listings marked as EDR Digital Archive access Cole and InfoUSA records. The various directory sources enhance and complement each other to provide a more thorough and accurate report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	<u>Target Street</u>	<u>Cross Street</u>	<u>Source</u>
2020	\checkmark		EDR Digital Archive
2017	\checkmark		Cole Information
2014	\checkmark		Cole Information
2010	\checkmark		Cole Information
2005	\checkmark		Cole Information
2000	\checkmark		Cole Information
1995	\checkmark		Cole Information
1992	\checkmark		Cole Information

FINDINGS

TARGET PROPERTY STREET

County Road West Wareham, MA 02576

<u>Year</u>	<u>CD Image</u>	<u>Source</u>	
ALLIE'S LN	ALLIE'S LN		
2020	-	EDR Digital Archive	Street not listed in Source
2017	-	Cole Information	Street not listed in Source
2014	-	Cole Information	Street not listed in Source
2010	-	Cole Information	Street not listed in Source
2005	-	Cole Information	Street not listed in Source
2000	-	Cole Information	Street not listed in Source
1995	-	Cole Information	Street not listed in Source
1992	-	Cole Information	Street not listed in Source

2020	pg A2	EDR Digital Archive
2017	pg A8	Cole Information
2014	pg A9	Cole Information
2010	pg A13	Cole Information
2005	pg A16	Cole Information
2000	pg A19	Cole Information
1995	pg A21	Cole Information
1992	pg A23	Cole Information

FINDINGS

CROSS STREETS

No Cross Streets Identified

City Directory Images

-

9	Jessica Lynch
	Max Debord
15	Jeannette Barboza
	Scot MacHos
19	David Murphy
	Deborah Stapel
	Jacob Stapel
	Michael Murphy
26	BARNICOAT ASSOCIATED MEMORIALS
35	Michael Murphy
	MURPHY'S AUTO SALVAGE INC
95	Raymond Green
103	Harry Smith
	Jason Smith
111	Haily Saccone
	Jeremy Saccone
	Kristin Saccone
134	Janet Raymond
138	Grady Connor
	Samantha Connor
	Thomas Connor
146	William Loughman
153	Barbara Dziuba
	Joseph Dziuba
	Robert Sundby
	Ruth Sundby
173	Haley Chandler
186	Dorothy Malinoski
196	Doris Cobb
197	Kerstin Santos
	Michael Santos
	Steven Santos
202	David Pajunen
	Robert Pajunen
	Wendi Pajunen
203	Andrea Laing
	Annette Laing
	Douglas Conlon
	Maryellen Conlon
213	Joann Drabble
223	Carol Morris
	Earl Almeida
240	Marjorie Reed
	Michael Reed
	Ralph Reed
253	Bethany Riggs
	Danielle Riggs
	Edward Riggs
260	Victor Brier

-

Source EDR Digital Archive

(Cont'd)

261	Deborah Prince
	Heather Prince
	Lanny Prince
	Nolan Prince
307	David Menard
	Kathleen Menard
333	Gary Florindo
336	Brian Belli
	Cassi Belli
341	Marguerite McCormack
	Robert McCormack
362	Daniel Miller
	Katherine Zimmer
	Patricia Zimmer
370	Patricia Zimmer
373	Antonio Carneiro
	Laurie Carneiro
375	Christine Hebert
377	Debra Gifford
	Patricia Kloster
379	Amber Nunes
	Michael Mealey
397	David Ivester
402	Jessica Brodeur
	Jessica Casev
	Joshua Casev
404	Michael Healv
405	Joann Oliveira
	Jonathan Rezendes
418	Alaina Landry
	Melody Landry
	Thomas Hurrie
421	Gregory Sousa
	Marian Sousa
435	Alex Wheeler
100	ALEX'S PET SALON & LODGING
437	Douglas Tiernan
	Frik Tiernan
	Lillian Tiernan
439	Stephen Bancroft
100	
440	Autumn Boy
440	Christopher Roy
	Colleen Roy
	Sheldon Roy
115	
	Liea Brown
118	Andrew Morss
- 0	Angela Butler
	Kathleen Brum

-

Source EDR Digital Archive

cont'd)
cont'd

454 461	Henry Pennington Alfred Hamer MY PRIVATE PRACTICE THRPTC
	Sally Hamer
473	Paula Johnson
489	Christopher Roach
	Melinda Roach
	Thomas Roach
	Timothy Roach
490	Janice Ellis
494	Garv Germoni
	Germoni Gerv
	Jessica Germoni
518	Linda Wolcott
010	Melissa Doran
	Pamela Michaelis
519	Amy Pistone
520	Donna Wolcott
020	Walter Wolcott
528	Clarence Ripley
020	Laurie Ripley
	Matt Ripley
531	Melissa Easton
001	Nicholas Bessev
539	Jan Cote
552	Donald Nunes
002	Dvaughn Nunes
	Naomi Nunes
	Nichole Nunes
	Ross Pires
553	Richard Ambroult
558	Alice Godbout
000	Alice Rathbun
	Jonathan Rathbun
	Nicholas Jeronimo
	Richard Paulino
	Ronald Godbout
559	Alice Halunen
560	David Leroux
562	Andrea Campos
002	Andrea Compos
	Andrea Dossantos
	Antonio Campos
	Jose Dossantos
	Magda Dossantos
563	Aarron Baptiste
	Heather Hanby
	Stephenie MacKerron
564	Andrew Carroll
	Luke Carroll

-

Source EDR Digital Archive

|--|

564	Michael Carroll
583	Charles Knudsen
	CHURCH IN THE PINES PARSONAGE
	Corey Knudsen
	Joel Knudsen
	Linda Knudsen
	Mary Anderson
585	Kevin Feaster
	Linda Feaster
590	Catherine Murphy
	Paula Ladoucer
	Paula Ventura
	Scott Ladoucer
	Troy Ladoucer
592	Charles Steffy
	John Carter
500	Susan Bachinger
596	Cynthia Pires
	Kevin Pires
617	lagueling Hobert
017	Jacqueille Liebert
	Timothy Hebert
619	Adelina Jadlowic
628	BARBOZA TOM CONSTRUCTION
020	Shirley Barboza
	Thomas Barboza
631	Carol Clemishaw
	Charles Clemishaw
634	BARBOZA JOSEPH E & SONS TRUCKG
	Joseph Barboza
	Lorraine Barboza
	SANITARY ENG INC
	Todd Barboza
637	Kelly Baker
638	Frederick Bates
	Sara Bates
	Sara Sanders
644	Andrew Salmeri
648	Jason Gonneville
050	Marie Frehulfer
658	
	Daniel King
	Note King
660	Indie Milly Ion Sporles
000	Pauline Searles
	Richard Searles

-

Source EDR Digital Archive

(Cont'd)

661	Catherine Alves
667	Jennifer Condon
672	Stephen Beranger
	Theresa Beranger
676	John Barboza
680	Henrietta Semedo
	Kenneth Semedo
684	Deborah Andrade
	Jessica Andrade
	Kristin Andrade
	Manuel Andrade
692	JEHOVAH'S WITNESSES
702	Brenda Leighton
	John Leighton
	Terri Leighton
706	Cynthia Gonsalves
	David Gonsalves
	John Gonsalves
	T Gonsalves
	Yvonne Gonsalves
712	Hailie Prien
	Samantha Pierce
714	Virginia Mattos
715	Evan Butler
718	Sherry Miller
738	Robert Krystofolski
	Rosemary Krystofolski
742	David Griffin
744	John lannuzzo
	Kimberly Ranieri
748	Elizabeth Bessey
	Francis Bessey
750	Danielle Lavoie
754	Lisa Heleen
	Peter Heleen
756	Barbara Mobilia
	Guy Mobilia
766	Deirdre Halpin
	Robert Halpin
768	Judith Gibbs
774	Lamaile Williams
	Loraine Williams
776	Barry Violette
	Jenna Gosson
	John Holmes
778	Nicole Moore
	Thomas Bancroft
780	David Shea
782	Kenneth Barrows
	Pearl Barrows

-

Source EDR Digital Archive

(Cont'd)

786	Timothy Berriault
802	Nancy Andrews
	Richard Andrews
806	Anthony Tantillo
	Mary Steffanson
	Sueellen Tantillo
808	Paul Baker
836	James Peirce
	Michael MacHicote
	Michaela Silva
	Tyrell Silva
838	Megan Boutin
	Michael Boutin
840	Graham Gertridge
	Joan Carol
842	David Blanchette
	Linda Blanchette
844	Sally Davis
846	Allison Rutledge
	Ashley Rutledge
	Derek Rutledge
	Wayne Rutledge
850	Angela Monaghan
	Christopher Bell
	Jason Tassi
	Mark Monaghan
852	Debra Boudreau
	Gerard Boudreau
856	Gail Deehan
	Waldo Roby
866	James Saintgermaine
872	Germaine Saint
	Logan Stgermaine
	Randy St. Germaine
878	ROBY'S PROPANE GAS INC
906	Patricia Sample
	Ronald Monteiro
	Susan Knute
910	Robert Monteiro

-

Source Cole Information

26	BARNICOAT ASSOCIATED MEMORIALS INC
111	SACCONE, JEREMY T
153	SUNDBY, ROBERT J
197	SANTOS, MICHAEL C
203	CONLON, DOUGLAS F
213	DRABBLE, JOANN M
223	ALMEIDA, EARL J
253	RIGGS, EDWARD J
307	MENARD, DAVID M
317	BUCKLEY, KERRY J
333	FLORINDO, GARY F
351	TOBIN, JASON M
373	CARNEIRO, ANTONIO P
377	KLOSTER, PATRICIA A
381	ZWICKER, DONALD E
389	THEARLE, SARAH J
397	IVESTERS, DAVID A
405	REZENDES, JONATHAN W
417	WALKER, AMANDA
421	SOUSA, GREGORY M
437	TIERNAN, ERIK R
439	WAINIO, GERALD J
445	PAVAO, LISA H
461	HAMER, ALFRED L
	MY PRIVATE PRACTICE THERAPEUTIC MASS
473	JOHNSON, PAULA A
489	ROACH, TOM E
498	SEVEN HILLS FOUNDATION
519	WOODWARD, MARK
531	BESSEY, NICK A
539	COTE, JAN E
559	HALUNEN, ALICEO D
569	CHADWICK, HARTLAND A
577	GRIMSLEY, ANDREA C
583	KNUDSEN, CHARLES
585	FEASTER, KEVIN P
628	TOM BARBOZA CONSTRUCTION INC
634	BARBOZA JOSEPH E & SONS
	BARBOZA SANITARY ENGINEERING
692	JEHUVAHS WITNESS
850	
878	

-

3	3	BAPTISTE, AMY
ę	9	MURPHY, ADAM
1	15	BARBOZA, VINCENT J
	19	HARRINGTON, TIM
2	20	STGERMAINE, RICHARD C
2	26	BARNICOAT ASSOCIATED MEMORIALS INC
3	35	MURPHYS AUTOMOBILE SALVAGE INC
2	14	PEIRCE, ANNE T
ę	95	GREEN, RAYMOND A
	103	SMITH, JASON M
1	111	SACCONE, THOMAS G
	138	CONNOR, THOMAS J
	142	BUNKER, JAMES A
1	146	DEANE, JEROME J
1	153	SUNDBY, ROBERT J
	170	NOLAN, JOHN J
	173	OCCUPANT UNKNOWN,
	182	SHIPPEY, SCOTT C
	196	COBB, DORIS L
	197	SANTOS, MICHAEL C
2	202	PAJUNEN, ROBERT F
2	203	LAING, DONALD J
2	213	DRABBLE, JOANN M
2	223	OCCUPANT UNKNOWN,
2	240	REED, MICHAEL J
2	253	MOYER, JOSEPH T
2	260	OCCUPANT UNKNOWN,
2	261	OCCUPANT UNKNOWN,
2	295	BARROWS, DWAYNE
3	302	MALINOSKI, DOROTHY B
3	304	BRIGGS, DAVID A
3	307	MENARD, DAVID M
3	317	OCCUPANT UNKNOWN,
3	333	FLORINDO, GARY F
3	336	BELLI, BRIAN A
3	341	HARRINGTON, JUSTIN
3	351	TOBIN, JASON M
3	362	ZIMMER, KATHERINE I
3	367	MACNEILL, GARY R
3	370	ZIMMER, PATRICIA H
3	373	CARNEIRO, ANTONIO P
3	375	HEBERT, STEVEN
3	377	OCCUPANT UNKNOWN,
3	381	MUNSELL, EVA J
3	389	THEARLE, SARAH
3	390	OCCUPANT UNKNOWN,
3	397	IVESTERS, DAVID A
2	102	CASEY, JOSHUA J
2	404	HEALY, MICHAEL E
2	405	MCGAFFEY, MICHELE L

-

(Cont'd)

405	OCCUPANT UNKNOWN,
417	WALKER, AMANDA
418	BURNETT, CHARLES E
419	OCCUPANT UNKNOWN.
421	SOUSA, GREGORY M
435	LEONHARDT. DEE
437	TIERNAN, DOUGLAS D
439	BANCROFT, DEBORAH A
440	ROY, CHRISTOPHER J
445	PAVAO, LISA
448	MORSS ANDREW J
454	PENNINGTON. HENRY B
461	HAMER, ALFRED L
	MY PRIVATE PRACTICE THERAPEUTIC MASS
473	JOHNSON, ALLAN S
489	BOACH TOM F
490	
492	BRAGA, MARIO A
494	GERMONI, GARY
498	INGRAM. CLIFFORD B
500	GAYDOU. MICHAEL W
508	POLCARO, B J
518	MCDARBY, PAULA
	WOLCOTT, WALTER S
519	CROOKER, TIM
520	WOLCOTT, WALTER S
528	RIPLEY, CLARENCE W
531	BESSEY, NICK A
539	COTE, JAN E
540	OCCUPANT UNKNOWN,
544	OCCUPANT UNKNOWN,
547	OCCUPANT UNKNOWN,
552	NUNES, DONALD N
553	OCCUPANT UNKNOWN,
558	RATHBUN, JON M
559	OCCUPANT UNKNOWN,
560	LEROUX, DAVID A
562	PAIM, ANTONIO R
563	HANBY, HEATHER J
564	CARROLL, MICHAEL J
569	CHADWICK, HARTLAND A
577	GUSTAFSON, JEAN D
583	KNUDSEN, JOEL R
585	FEASTER, KEVIN P
590	VENTURA, PAULA J
592	GREENLAW, JUDITH A
596	PIRES, CINDY L
611	COPELAND, KENNETH H
617	HEBERT, LOUISE A
621	ZORA, ROBERT J

-

Source Cole Information

(Cont'd)

	COUNTERD 2	U
628	TOM BARBOZA CONSTRUCTION INC	
631	CLEMISHAW, CHARLES W	
634	BARBOZA JOSEPH E & SONS TRUCKG	
	BARBOZA SANITARY ENGINEERING	
	BARBOZA, JOSEPH E	
638	BATES, FREDERICK	
644	REGAN, MICHAEL D	
648	PATTEN, SHAWN	
655	RINTA, LILLIAN J	
656	FINK, WENKUN C	
658	KING, DANIEL P	
660	SEARLES, RICHARD B	
661	FERRO, CATHERINE R	
667	DETRANI, KAREN P	
672	BERANGER, STEPHEN D	
676	BARBOZA, JOSEPH E	
680	SEMEDO, KENNETH J	
684	ANDRADE, MANUEL D	
692	JEHOVAHS WITNESS	
702	LEIGHTON, JOHN S	
706	GONSALVES, RYAN C	
712	ALVES, RANAE M	
714	OCCUPANT UNKNOWN,	
718	MILLER, JEFFREY N	
720	OCCUPANT UNKNOWN,	
726	SEMEDO, DOROTHY R	
738	KRYSTOFOLSKI, ROBERT J	
742	WILLIAMS, GAVIN J	
744	OCCUPANT UNKNOWN,	
748		
750		
754		
756		
766		
768		
774		
710		
700		
782		
100		
002 906		
000 909	BAKED DALL S	
000	SILVA MADO	
030		
	TUCY SHAWNA	
838	BOUTIN MICHAEL	
840		
842	BLANCHETTE DAVID H	
844	DAVIS SALLY A	
0 - -		

_

Source Cole Information

(Cont'd)

COUNTY RD 2014

846 RUTLEDGE, WAYNE H 848 **BITHER, PATTY A** 850 BELL, ROBERT T COSTA, MANUEL E OCCUPANT UNKNOWN, ROBY, WALDO N STANDARD LIGHT COMPANY TASSI, JASON 852 BOUDREAU, JERRY T 856 OCCUPANT UNKNOWN, 866 GERMAINE, JAMES L STGERMAINE, RANDY 872 878 TRUCK CAP UNLIMITED 906 MONTEIRO, RONALD 910 OCCUPANT UNKNOWN,

-

Q	
9 15	
20	STGERMAINE RICHARD C
20	
35	
30	
78	
97 07	ENZIAN BARBARA A
100	
116	MILLER SHERRY
148	CAPOZZI MARY
153	SUNDBY ROBERT I
170	
173	WHITTAKER MARC
182	SHIPPEY SCOTT C
196	
197	SANTOS MICHAEL C
202	PAILINEN ROBERT F
202	
200	DRABBLE IOANNIM
240	
240	FLORINDO GARY F
253	MOYER JOSEPH T
266	BELLI BRIAN A
295	BARROWS DWAYNE
304	BRIGGS DAVID A
307	
317	
333	FLORINDO GARY F
336	BELLI BRIAN
341	SWEENEY MATHEW K
351	DEMERS PATRICK
370	
373	CARNEIRO ANTONIO P
375	HAMMOND ORI
377	WESTGATE, CHARLES S
379	TORRES. MARIA
381	ZWICKER, DONOVAN
389	BLAKE, BRUCE A
397	IVESTERS, DAVID A
402	FLORINDA, GARY F
404	HEALY. MICHAEL E
405	MCGAFFEY, DAN A
418	BURNETT, CHARLES E
421	SOUSA, GREGORY M
435	WHEELER, LEWIS A
437	TIERNAN, DOUGLAS D
439	WAINIO, GERALD J
440	ROY, CHRISTOPHER J
445	PAVAO, JANICE
	-

-

(Cont'd)

448	MORSS, ANDREW J
454	PENNINGTON, HENRY B
461	HAMER, ALFRED L
	MY PRIVATE PRACTICE THRPTC
473	JOHNSON, ALLAN S
489	ROACH, TOM A
490	ELLIS, JANICE L
492	BRAGA MARIO A
494	PETRONELLLCM
101	
500	
508	
500	
510	
518	WOLCOTT, WALTER 5
519	
528	
531	BESSEY, NICK A
539	COTE, JAN E
547	PROFFIT, JENNIFER
552	SILVA, JOHN J
558	GODBOUT, ALICE R
559	HALUNEN, ERNEST T
560	LEROUX, DAVID A
562	PAIM, ANTONIO R
563	MORRISON, H G
564	CARROLL, MICHAEL J
577	GUSTAFSON, PHILIP C
583	KNUDSEN, JOEL D
585	FEASTER, KEVIN P
590	VENTURA, PAULA
592	TAYLOR, LINDA F
596	PIRES, CHALON L
611	COPELAND, KENNETH H
617	HEBERT LOUISE A
619	LUKENS WILLIAM H
621	ZORA ROBIN J
628	BARBOZA THOMAS H
020	
631	CLEMISHAW CHARLES W
634	BARBOZA SANITARY ENGINEERING
627	
037	
620	
030	DATES, FREDERICK
644 050	
656	
658	KING, DANIEL P
660	SEARLES, RICHARD B
661	
667	BORGES, JAMES
672	BERANGER, STEPHEN D

-

Source Cole Information

(Cont'd)

676	BARBOZA, JOSEPH E
680	SEMEDO, KENNETH J
684	ANDRADE, MANUEL D
692	JEHOVAHS WITNESSES
702	LEIGHTON, JOHN S
706	GONSALVES, DAVID A
712	PINA, ERIKA
715	BANNO, STEPHEN A
718	MILLER, JEFFREY N
726	SEMEDO, ANTONE J
738	KRYSTOFOLSKI, ROBERT J
742	WILLIAMS, GAVIN J
744	IANNUZZO, PETER T
748	BESSEY, FRANCIS W
754	HELEEN, PETER C
756	MOBILIA. GUY M
766	HALPIN, ROBERT
768	GIBBS, ALVIN P
774	HONKONEN, HENRY E
776	GOSSON, JENNA
778	BANCROFT, THOMAS E
780	REED, JOYCE L
	SWIFT SCRIPTS
782	BARROWS, KENNETH P
786	NOLAND, JAMES E
802	ANDREWS, RICHARD H
806	TANTILLO, ANTHONY A
808	BAKER, PAUL S
836	GONSALVES, JOSIE E
	PEIRCE, JAMES E
838	BOUTIN, MICHAEL J
840	DELONG, DALE R
842	BLANCHETTE, DAVID H
844	DAVIS, SALLY A
846	RUTLEDGE, DERRICK
848	BITHER, PATTY A
850	BELL, MICHELE
852	BOUDREAU, JERRY T
856	ROBY, WALDO N
866	STGERMAINE, JAMES L
872	STGERMAINE, RANDY J
906	MONTEIRO, RONALD

-

Source Cole Information

3	MOTT, MARION L
6	MONTEIRO, ROBERT D
19	MURPHY, MICHAEL C
	PAULS AUTOMOTIVE
20	STGERMAINE, JAMES L
26	BARNICOAT ASSOCIATED MEMORIALS INC
35	MURPHY, CHESLEY T
	MURPHYS AUTO SALVAGE INC
36	DAVIS, SALLY A
38	DAVID BLANCHETTE
78	BANCROFT, STEPHEN P
80	HOLMES, JOHN E
84	GIBBS, ALVIN P
86	AKINS, DEIRDRE
92	HELEEN, PETER C
94	ENZIAN, BARBARA A
100	IANNUZZO, PETER T
103	SMITH, JASON M
116	MILLER, JEFFREY
130	JEHOVAHS WITNESSES
148	CAPOZZI, JOHN J
150	REGAN, MICHAEL D
162	BARBOZA, THOMAS H
182	BRIGGS, DAVID A
202	DELUCA, PAUL N
203	LAING, DONALD J
240	REED, MICHAEL J
244	FLORINDO, GARY F
253	MOYER, JOSEPH T
260	ZIMMER, PHILIP T
266	BELLI, BRIAN A
292	REED. MIKE
296	PAJUNEN. ROBERT F
300	COBB. DORIS L
302	MALINOSKI, DOROTHY
304	BRIGGS. DAVID A
307	MENARD, DAVID M
317	BUCKLEY, KERRY J
•	BUTLER, RICHARD L
333	FLORINDO, GARY F
336	BELLI, BRIAN
341	PITCHER, MARION E
351	PECK. GEORGE E
362	
002	SIMON. THOMAS
367	MACNEILL, GARY
373	CARNEIRO, ANTONIO P
375	PEIRCE, A
377	WESTGATE CHARLES F
381	MUNSELL WILLIAM I
001	

Source Cole Information

COUNTY RD 2005

-

(Cont'd)

402	FLORINDA, GARY F
404	HEALY, MICHAEL E
405	MCGAFFEY, DAN A
419	ASHLEY, JAMES E
421	SOUSA, MARIAN
435	WHEELER, LEWIS A
437	TIERNAN, LILLIAN E
440	ROY, CHRISTOPHER J
445	BROWN, LISA P
448	MORSS, MICHAEL S
454	PENNINGTON, HENRY B
473	JOHNSON, ALLAN S
489	ROACH, TOM A
490	ELLIS, JANICE L
508	POLCARO, B J
516	GUARD, JOSEPH M
519	BOHLKEN, JO A
531	GILMORE, GARY
539	COTE, JAN E
540	DELUCA, PAUL N
552	SILVA, JOHN J
553	TOMASIK, STEVEN J
558	GODBOUT, ALICE R
559	HALUNEN, ERNEST T
560	LEROUX, DAVID A
564	CARROLL, MICHAEL J
569	WAINIO, MELISSA E
577	GUSTAFSON, PHILIP C
583	CHURCH IN THE PINES PARSONAGE
	KNUDSEN, JOEL D
585	FEASTER, KEVIN
590	AYS SOLUTIONS
	LADOUCER, SCOTT M
592	GREENLAW, JUDITH A
611	SHURTLEFF, RICHARD A
617	HEBERT, ALBERT R
619	LUKENS, WILLIAM H
621	ZORA, ROBIN J
628	BARBOZA, THOMAS H
	TOM BARBOZA CONSTRUCTION INC
631	CLEMISHAW, CHARLES W
634	BARBOZA SANITARY ENGINEERING
648	DECARLOS PIZZA
656	FINK, GLENDA S
658	KING, DANIEL P
660	SEARLES, RICHARD B
661	FERRO, CATHERINE R
667	DETRANI, JOSEPH R
672	BERANGER, STEPHEN D
676	BARBOZA, JOSEPH E

Source Cole Information

COUNTY RD 2005

-

(Cont'd)

680	SEMEDO, KENNETH J
702	LEIGHTON, JOHN S
706	NELSON, ELLEN M
712	HORSFORD, LEONARD L
714	SCECINA, ALISON L
718	MILLER, JEFFREY N
726	SEMEDO, ANTONE J
738	KRYSTOFOLSKI, ROBERT J
742	WILLIAMS, GAVIN J
744	IANNUZZO, PETER T
748	BESSEY, FRANCIS W
766	HALPIN, ROBERT
774	HONKONEN, HENRY E
778	BANCROFT, THOMAS E
780	REED, JOYCE L
782	BARROWS, KENNETH P
786	NOLAND, JAMES E
802	ANDREWS, RICHARD H
806	TANTILLO, ANTHONY A
808	BAKER, PAUL S
836	RICCELLI, RACHEL M
838	BOUTIN, MICHAEL J
840	DELONG, DALE R
842	BLANCHETTE, DAVID H
844	DAVIS, SALLY
846	RUTLEDGE, WAYNE H
848	BITHER, PATTY A
850	BARITEAU, CHAD F
	BELL, CHRISTOPHER R
852	BOUDREAU, JERRY T
856	ROBY, WALDO N
866	STGERMAINE, RICHARD C
872	STGERMAINE, RANDY A
906	VALKIO, ULLA M
910	MORRELL, BRENDA L

-

3	MOTT, M L
9	MURPHY, DAVID C
16	STGERMAINE, RANDY
19	MURPHY, AMY
20	CLICKNER, JACOB
26	ATWOOD C E SONS INCORPORATED
28	BOUDREAU, JERRY T
30	SILVIA, M V
34	RUTLEDGE, WAYNE
38	BLANCHETTE, DAVID H
44	PEIRCE, A
	RICCELLI, R
56	BAKER, PAUL S
58	DECOSTA, K
	MENOR, YVONNE
60	ANDREWS, RICHARD
73	MONIZ. SHERI L
74	BARROWS, RONDA L
84	GIBBS, ALVIN P
95	GREEN, RAYMOND
110	SEMEDO, ANTONE
111	DELANO, TRACY J
120	HORSFORD, LEONARD
126	GONSALUES, DAVID A
128	LEIGHTON, JOHN S
134	BARBOZA, J
138	PINA. R J
140	
142	KING DANIEL P
144	FINK, W C
172	LADOUCER. SCOTT
190	LEROUX, DAVID
192	GODBOUT, ALICE R
204	RIPLEY I
220	FUIS KENNETHI
224	PENNINGTON HENRY B
266	BELLI BRIAN A
295	SHEEHAN CAROL M
317	BUTIER R
017	BUTLER, RICHARD I
322	
333	FLORINDO GARY
3/1	PITCHER MARION F
367	DUSTIN HERBERT E
373	
275	
313	WETGATE CHADIES
370	DIEDOE EMILVI
201	
201	
209	DEMERO, JUT

Source Cole Information

(Cont'd)

COUNTY RD 2000

-

402	ERIQUEZZO, J J
405	MCGAFFEY, DAN A
417	CATUNTO, SERAFIM M
419	ASHLEY, JAS E
421	GIBBSWEST, CHARLES
437	TIERNAN, DOUGLAS
439	BANCROFT, STEPHEN P
473	JOHNSON, DANA C
497	JOHNSON, ROSANNE A
510	DWYER, M
531	BESSEY, KATHY A
539	COTE, JANICE E
559	HALUNEN, ERNEST T
569	WAINIO, MELISSA E
577	GUSTAFSON, PHILIP C
583	CHURCH, I
585	FERREIRA, ROBERT
621	ZORA, F L
631	CLEMISHAW, CHARLES W
637	HELEEN, VILJO E
661	FERRO, C R
738	KRYSTOFOLSKI, ROBERT J
856	TERRY, MELANIE A
860	SEMEDO, KENNETH
910	MONTEIRO, ROBERT

-

Source Cole Information

3	MOTT, M L
6	MORRELL, BRENDA
9	PARADIS, ROLAND A
11	MALONEY, DALE
16	ST GERMAINE RANDY
18	MORRILL WENDY
19	MURPHY'S AUTO SALVAGE
10	
20	
26	HARRIS JULIE
20	ROBY WALDON
28	BLANCHETTE DAVID H COMLARTST
20	BOUDREAU JERRY T & DEBRA
30	
32	BITHER D
34	DITIER, I DITIERCE WAYNE
20	
30 42	MC MULLEN THOS SP
42	DEDDY ANITA I
44	
FG	
50	MENOD VVONNE
00 60	
00 72	
73	
74 70	
/ O 00	DESLAURIERS, ALDERT R
00	
04	
92 110	RELEEN, PETER
110	SEMEDO, ANTONE, JR
111	
114	BARBUZA SANITARY ENGINEERING
128	
130	JEHOVAH'S, WITNESSES
132	
400	
130	
140	
4.40	
142	
144	
148	NUTCE, KURT & ALISON
162	
400	
100	
1/2	
192	
200	
220	
224	PEININING I UN, HENKY B

-

COUNTY RD 1995

(Cont'd)

256	HARJU, EINO
260	ZIMMER, K
	ZIMMER, P
266	BELLI, BRIAN A
333	FLORINDO, GARY
341	PITCHER, M E
367	DUSTIN, HERBERT E
373	STRONG, CHARLOTTE
379	PIERCE T V SERVICE
	PIERCE, WALTER A
381	PAQUIN, DAVID
389	DEMERS, JOY
	WELLER, RUDLOPH C & JOYCE C
405	MCGAFFEY, DAN A & KATHRYN
	MCGAFFEY, DAN A & KATHRYN-FAX NUMBER
	MCGAFFEY, DAN J
417	PERRY, MERRILL A
419	ASHLEY, JAS E
437	TIERNAN, DOUGLAS
	TIERNAN, LILLIAN & DOUGLAS
439	BANCROFT, STEPHEN PAUL
473	JOHNSON, DANA C
510	GATES, ERNIE W
539	COTE, CHRISTOPHER
	COTE, J
553	GOMES, PATRICIA
559	HALUNEN, ERNEST T
577	GUSTAFSON, PHILIP C
583	CHURCH, IN THE PINES PARSONAGE
	KNUDSEN, JOEL
585	ROCHA, D
617	HEBERT, ALBERT R
619	LUKENS, WM
	MARTIN, ROLAND, JR
631	CLEMISHAW, CHAS W & CAROL
637	HELEEN, AILIE
661	ALVES, C R
667	HOWES, JOSHUA

-

Source Cole Information

2	MOTT MI
3	
9	
10	STGERMAINE, D & M
40	
19	
26	
28	BOUDREAU, JERRY I & DEBRA
30	
34	RUILEDGE, WAYNE
38	BLANCHETTE, DAVID H, COML ARTST-RES
42	MC MULLEN, THOS, SR
44	COUTO, GILBERT
	MORRELL, RICHARD A
58	MENOR, YVONNE
60	ANDREWS, RICHARD
74	
78	DESLAURIERS, ALBERT R
84	GIBBS, ALVIN P
102	ATWOOD, B I
110	SEMEDO, ANTONE, JR
114	SANITARY ENGINEERING
128	LEIGHTON, JOHN S
130	JEHOVAH'S, WITNESSES
132	SEMEDO, KENNETH
138	GOMES, JOS G
140	LANCZYCKI, J
142	KING, DANL P & LUCIA
148	NOYCE, KURT & ALISON
162	BARBOZA TOM CONSTRUCTION
	TOM BARBOZA CONSTRUCTION INC
192	ALLEN, GEORGIANNA
224	PENNINGTON, HENRY B
295	BARROWS, RONDA L
333	CAIRNS, JONATHAN D & SARAH
341	PITCHER, M E
367	MACNEILL, CRAIG
379	PIERCE, WALTER A
381	PAQUIN, DAVID
	ZWICKER, JOHN E SR & MILDRED E
389	DEMERS, JOY
	WELLER, RUDLOPH C & JOYCE C
392	PIERCE, RALPH R
405	MCGAFFEY, DAN A & KATHRYN
437	TIERNAN, DOUGLAS
	TIERNAN, LILLIAN & DOUGLAS
439	SEARLES, RICHARD B
553	GOMES, PATRICIA
577	GUSTAFSON, PHILIP C
583	CHURCH, IN THE PINES PARSONAGE
	KNUDSEN, JOEL

-

Source Cole Information

COUNTY RD 1992 (Cont'd)

- 619 LUKENS, WM
- MARTIN, ROLAND, JR
- 631 CLEMINSHAW, CHAS W
- 637 HELEEN, AILIE
- 661 ALVES, C R

APPENDIX G

TEST PIT AND GROUNDWATER MONITORING WELL CONSTRUCTION LOGS

Boring ID: LE-TP1

Monitoring Well ID: N/A Page 1 of 1

Project #: 1075.1.2

ENVIRONMENTAL & LAND-USE CONSULTANTS							Start Date:	December 14, 2023		End Date:	December 14, 2023		
	Client Name: Project Name: Site Address: City:	Sarajon Realty, Proposed Hidd 2854 Cranberry Wareham	, LLC en Tr y Hig	C rails l hway	Resi y	denti	al Subdivision State:	Massachusetts	Drilling Co.: J Drilling Method: Driller: Lightship Rep.: J		JC Engineering Excavator Kristin Maloney		
<u>Ca</u> : Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	SamplerType:N/ASize:N/AHammer:N/AFall:N/A					Groundwater Date: N/A Well Elev.: N/A WL (bgs): N/A GW Elev.: N/A		Core Surv Type: N/A Lat. Size: N/A Long. Length: N/A Elev.		Survey Lat. N/A Long. N/A Elev. N/A		
Start Depth	art Depth Finish Depth Sample ID Blow Count				Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Description					
0	2	LE-TP1-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND. Dry.			
2	4	LE-TP1-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND. Dry.			
4	6	LE-TP1-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND. Dry.			
6	8	LE-TP1-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND, some gravel. Dry.			
8	10	LE-TP1-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND. Dry.			
10	11	LE-TP1-10/11	N/A	N/A	N/A	N/A	N/A	<0.1	SW Tan, medium to coarse SAND. Dry.				
							Test Pit complet	ted at 11 feet below grad	le.				
Notes:	bgs - Below Gro	ound Surface				USC	S - Unified Soil	Classification System					

ppmv - Parts Per Million by Volume N/A - Not applicable

GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

TOVs: total organic vapors as measured using jar headspace with photo-ionization detector using a 10.6 electron volt bulb with a benzene response factor of 0.6.

Boring ID: LE-TP2

Monitoring	
Well ID:	N/A

Project #:

1075.1.2

Page 1 of 1

ENVIRONMENTAL & LAND-USE CONSULTANTS						ļ	Start Date:	December 14, 2023		End Date:	December 14, 2023	
ENVIRONMENT	AL & LAND-03L	CONSULTANTS			—							
	Client Name: Project Name:	Sarajon Realty, Proposed Hidde	<u>LLC</u> en Ti	<u>]</u> rails	Resi	denti	al Subdivision		Drilling Co.: JC I Drilling Method: Fxc		JC Engineering Excavator	
	Site Address:	2854 Cranberry	V Hig	hwa	V		II Duourvision			Driller:	Endurator	
	City:	Wareham					State:	Massachusetts	Lightship Rep.: Kristin Maloney			
Cas	sing	Sa	mple	er			Gro	oundwater		<u>Core</u> <u>Survey</u>		
Type:	N/A	Type:		Ν	/A		Date:	N/A	Type:	Type: N/A Lat. N/A		
Size:	N/A	Size:		N	/A		Well Elev .:	N/A	Size:	N/A	Long. N/A	
Hammer:	N/A	Hammer:		N	/A		WL (bgs):	N/A	Length: N/A		Elev. N/A	
Fall:	N/A	Fall:		N	/A		GW Elev.:	GW Elev.: N/A				
Start Depth	Finish Depth	Sample ID Blow Count				nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)		Description	
				—								
0	2	LE-TP2-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND, some gravel. Dry.		
2	4	LE-TP2-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND, some gravel. Dry.		
4	6	LE-TP2-4/6	N/A	. N/A	N/A	N/A	N/A	0.3	SW	Tan, medium to coarse SAND, some gravel and charred wood. Slight moth ball odor. Dry.		
6	8	LE-TP2-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND, some gravel. Dry.		
	10					NT/ A	N7/A	N/A	CW			
8	10	LE-1P2-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SW Tan, medium to coarse SAND, some gravel. Dry			
10	12	LE-TP2-10/12	N/A	. N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coarse SAND, some gravel. Dry.		
							Test Pit complet	ted at 12 feet below grad	ie.			
Notes: Bold indicates soil sample LE-TP2-4/6 was submitted for laboratory analysis. bgs - Below Ground Surface USCS - Unified Soil Classification System ppmv - Parts Per Million by Volume GW Elev - Groundwater Elevation N/A - Not applicable WL - Water Level												
1						ND	No Decession			electron voit bulb with a benzene response factor of 0.6.		

WL - Water Level NR - No Recovery

Boring ID: LE-TP3

Monitoring Well ID: N/A Page 1 of 1

1075.1.2 Project #:

ENVIRONMENTAL & LAND-USE CONSULTANTS							Start Date:	December 14, 2023		End Date:	December 14, 2023	
	Client Name: Project Name: Site Address: City:	Sarajon Realty, Proposed Hidd 2854 Cranberry Wareham	, LLO en Ti y Hig	C rails i ghway	Resi y	denti	al Subdivision State:	Massachusetts	Drilling Co.: Drilling Method: Driller: Lightship Rep.:		JC Engineering Excavator Kristin Maloney	
<u>Cas</u> Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	Sampler Type: N/A Size: N/A Hammer: N/A Fall: N/A					<u>Gro</u> Date: Well Elev.: WL (bgs): GW Elev.:	N/A N/A N/A N/A N/A	Type: Size: Length:	<u>N/A</u> N/A N/A	Survey Lat. N/A Long. N/A Elev. N/A	
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Description		
0	2	LE-TP3-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Brown to tan, mediur	n SAND. Dry.	
2	4	LE-TP3-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
4	6	LE-TP3-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
6	8	LE-TP3-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
8	10	LE-TP3-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
10	12	LE-TP3-10/12	N/A	N/A	N/A	N/A	N/A	0.2	SM Tan, fine to medium SAND. Dry.			
							Test Pit complet	ted at 12 feet below grad	le.			
Notes:	has Palow Cr	und Surface				USC	C Unified Soil	Classification System				

- Below Grou nd Surf bgs ppmv - Parts Per Million by Volume N/A - Not applicable

USCS - Unified Soil Cl ion System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

TOVs: total organic vapors as measured using jar headspace with photo-ionization detector using a 10.6 electron volt bulb with a benzene response factor of 0.6.
LIGHTSHIP
ENGINEERING
ENVIRONMENTAL & LAND-USE CONSULTANTS

Well ID: LE-TMW1

Start Date: December 14, 2023

Monitoring

Page 1 of 1

Project #: <u>1075.1.2</u> End Date: December 14, 2023

Client Name: Sarajon Realty, LLC Drilling Co.: JC Engineering Project Name: Proposed Hidden Trails Residential Subdivision Excavator Drilling Method: Site Address: 2854 Cranberry Highway Driller: Kristin Maloney Wareham State: Massachusetts Lightship Rep.: Casing Groundwater Core Survey Sampler Type: Type: Type: N/A N/A Date: 12/15/2023 N/A Lat. N/A Size: N/A Size: N/A Well Elev.: N/A Size: N/A Long. N/A Length: N/A Hammer: N/A Hammer: N/A WL (bgs): 8.68 Elev. N/A Fall: N/A Fall: N/A GW Elev .: N/A Recovery TOVs Lithology Start Depth Finish Depth Sample ID Blow Count Description Well Const. (inches) (USCS) (ppmv) Brown medium to coarse SAND. Dry. 0 2 LE-TP4-0/2 N/A N/A N/A N/A N/A N/A SW Tan medium to coarse SAND. Dry. 2 LE-TP4-2/4 N/A N/A N/A N/A SW 4 N/A N/A Tan fine to medium SAND. Dry. 4 6 LE-TP4-4/6 N/A N/A N/A N/A N/A N/A SM Tan fine to medium SAND. Moist. N/A N/A N/A N/A 6 8 LE-TP4-6/8 N/A N/A SM $\overline{\Delta}$ Tan fine to medium SAND. Wet. 8 10 LE-TP4-8/10 N/A N/A N/A N/A N/A N/A SM Tan fine to medium SAND. Wet. LE-TP4-10/12 N/A N/A N/A N/A 1012 N/A 0.3 SM Tan fine to medium SAND. Wet. 12 14 LE-TP4-12/14 N/A N/A N/A N/A N/A SM N/A Test Pit completed at 14 feet below grade. Notes: Monitoring Well Construction Specifications: 10 feet of 2" Schedule 40 0.010" Slot Screen PVC from 14 to 4 feet below grade, 2" Schedule 40 PVC riser from 4 feet to 3 feet above grade. The annular space between the borehole and the well was filled with native sand. bgs - Below Ground Surface USCS - Unified Soil Classification System TOVs: total organic vapors as measured using jar headspace with photo-ionization detector using a 10.6 electron volt bulb ppm - Parts Per Million GW Elev - Groundwater Elevation with a benzene response factor of 0.6. N/A - Not Applicable WL - Water Level

ppm - Parts Per Million

N/A - Not Applicable

Boring ID: LE-TP5

Well ID: LE-TMW2

Start Date: December 14, 2023

Monitoring

Page 1 of 1

Project #: <u>1075.1.2</u>

End Date: December 14, 2023

	Client Name: Project Name: Site Address:	Sarajon Realty, Proposed Hidde 2854 Cranberry	LLC en Ti / Hig	ails hwa	Resi y	dentia	al Subdivision			Drilling Co.: Drilling Method: Driller:	JC Engineering Excavator	7		
Ca	•	Wareham					State: N	Massachusetts	- - T	Lightship Rep.:	Kristin Malone	y	_	
<u>Ca</u> Type: Size: Hammer: Fall:	N/A N/A N/A N/A	<u>San</u> Type: Size: Hammer: Fall:		er N/A N/A N/A N/A			Date: _ Well Elev.: _ WL (bgs): _ GW Elev.: _	<u>11dwater</u> 12/15/2023 N/A 9.73 N/A	Type: Size: Length:	N/A N/A N/A	<u>ey</u> N/A N/A N/A			
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Descri	otion	Well	Cor	ıst.
0	2	LE-TP5-0/2	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	AND. Dry.			
2	4	LE-TP5-2/4	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	AND. Dry.			
4	6	LE-TP5-4/6	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	GAND. Dry.			
6	8	LE-TP5-6/8	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	AND. Dry.			
8	10	LE-TP5-8/10	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	AND. Moist.			Į
10	12	LE-TP5-10/12	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium §	AND. Wet.		****	
12	14	LE-TP5-12/14	N/A	N/A	N/A	. N/A	N/A	0.2	SM	Tan fine to medium S	AND. Wet.			
	<u></u>		<u> </u>		<u> </u>	<u> </u>	Test Pit comple	eted at 14 feet below	grade.			1 î	<u></u>	_
lotes:	Monitoring Wel feet above grade	<u>l Construction Sp</u> . The annular sp	<u>ecific</u> ace b	cation etwee	<u>15:</u> 10 en the	0 feet e borel	of 2" Schedule 40 hole and the well	0 0.010" Slot Screen I was filled with native	PVC from 14 to 4 e sand.	4 feet below grade, 2"	Schedule 40 PVC r	iser from	4 fee	t to :

USCS - Unified Soil Classification Sy GW Elev - Groundwater Elevation WL - Water Level

Monitoring Well ID: LE-TMW3 Page 1 of 1

Project #: 1075.1.2

ENVIRONMEN	TAL & LAND-USI	E CONSULTANTS	1				Start Date:	December 14, 2023		End Date:	December 14, 2	023	_
	Client Name: Project Name: Site Address:	Sarajon Realty, Proposed Hidde 2854 Cranberry Wareham	LLC en Ti Hig	ails l hway	Resi	denti	al Subdivision	Massachusetts		Drilling Co.: Drilling Method: Driller: Lightshin Rep.	JC Engineering Excavator Kristin Maloney	J	
<u>Ca</u> Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	<u>Sa</u> Type: Size: Hammer: Fall:	mple	r N N N	/A /A /A /A		Grac Date: Well Elev.: WL (bgs): GW Elev.:	Nassachisetts <u>Dundwater</u> 12/15/2023 N/A 14.04 N/A	Type: Size: Length:	Core N/A N/A N/A	<u>Surve</u> Lat. Long. Elev.	ey N/A N/A N/A	
Start Depth	Finish Depth	Sample ID	E	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Descri	ption	Well Co	onst.
0	2	LE-TP6-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan fine to coarse SA	AND. Dry.		
2	4	LE-TP6-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium s	SAND. Dry.		
4	6	LE-TP6-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium !	SAND. Dry.		
6	8	LE-TP6-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium !	SAND. Dry.		
8	10	LE-TP6-8/10	N/A	N/A	N/A	N/A	N/A	0.2	SM	Tan fine to medium of black to tan SILT	SAND with a layer and SAND. Dry.		
10	12	LE-TP6-10/12	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium Moist.	SAND.		
12	14	LE-TP6-12/14	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium !	SAND. Wet.		Ā
14	16	LE-TP6-14/16	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium s	SAND. Wet.		-
							Test Pit comp	bleted at 16 feet below g	rade.				
Notes:	Monitoring Wel feet above grade	ll Construction Sp e. The annular sp	ecific ace b	cation etwee	us: 10 en the	0 feet e bore	of 2" Schedule 4 hole and the wel	40 0.010" Slot Screen PV Il was filled with native	VC from 16 to 6 sand.	feet below grade, 2"	Schedule 40 PVC ris	er from 6 fe	et to 3
	Bold indicates s bgs - Below Gro ppm - Parts Per N/A - Not Appl	oil sample LE-TF ound Surface Million icable	6-8/1	0 wa	s sub	mitte USC GW WL	d for laboratory a S - Unified Soil Elev - Groundwa - Water Level	analysis. Classification System ater Elevation		TOVs: total organic with photo-ionization bulb with a benzene	vapors as measured to a detector using a 10 response factor of 0.	using jar hea .6 electron v 6.	adspace volt

Monitoring Well ID: LE-TMW3 Page 1 of 1

Project #: 1075.1.2

ENVIRONMEN	TAL & LAND-USI	E CONSULTANTS	5			Į	Start Date:	December 14, 2023	3 End Date: December 14, 2023			2023	_		
	Client Name: Project Name: Site Address:	Sarajon Realty, Proposed Hidde 2854 Cranberry Wareham	, LLC en Ti / Hig] rails] hway	Resi y	dentia	al Subdivision State:	Massachusetts		Drilling Co.: Drilling Method: Driller: Lightship Rep.:	JC Engineerin Excavator Kristin Malon	JC Engineering Excavator Kristin Maloney			
<u>Ca</u> : Type: Size: Hammer: Fall:	N/A N/A N/A N/A	<u>Sar</u> Type: Size: Hammer: Fall:	mple	n N N	/A /A /A /A		<u>Gre</u> Date: Well Elev.: WL (bgs): GW Elev.:	Groundwater Type: Date: 12/15/2023 Type: Well Elev.: N/A Size: WL (bgs): 14.04 Length: GW Elev.: N/A Length:			<u>Surv</u> Lat. Long Elev.	<u>vey</u> <u>N/A</u> <u>N/A</u> <u>N/A</u>	\ \ \	- - -	
Start Depth	Finish Depth	Sample ID	E	Blow	Cou	int	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Descri	ption	Wel	l Cor	nst.	
0	2	LE-TP7-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium S	SAND. Dry.				
2	4	LE-TP7-2/4	N/A	. N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium S	SAND. Dry.				
4	6	LE-TP7-4/6	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	SAND. Dry.				
6	8	LE-TP7-6/8	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	SAND. Dry.				
8	10	LE-TP7-8/10	N/A	. N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	SAND. Dry.				
10	12	LE-TP7-10/12	N/A	N/A	N/A	. N/A	N/A	N/A	SM	Tan fine to medium S	SAND. Moist.			Ā	
12	14	LE-TP7-12/14	N/A	. N/A	N/A	. N/A	N/A	0.3	SM	Tan fine to medium S	SAND. Wet.				
	·		<u> </u>	<u> </u>		<u> </u>	Test Pit comp	pleted at 14 feet below g	rade.	·		<u> </u>	<u> </u>	<u> </u>	
Notes:	Monitoring Wel feet above grade	<u>l Construction Sp</u> . The annular sp	ecific ace b	cation etwee	<u>15:</u> 10 en the	0 feet e bore	of 2" Schedule 4 hole and the we	40 0.010" Slot Screen P Il was filled with native	VC from 14 to 4 sand.	4 feet below grade, 2" S	Schedule 40 PVC r	iser from	4 fee	t to 3	

ied Soil C with photo-ionization detector using a 10.6 electron volt bulb with a benzene response factor of 0.6. ppm - Parts Per Million GW Elev - Groundwater Elevation N/A - Not Applicable WL - Water Level

Client Name: Sarajon Realty, LLC

Boring ID: LE-TP8

Monitoring	
Well ID:	N/A

Project #:

1075.1.2

Page 1 of 1

Start Date: December 14, 2023 End Date: December 14, 2023 JC Engineering Drilling Co.: Project Name: Proposed Hidden Trails Residential Subdivision Site Address: 2854 Cranberry Highway Drilling Method: Excavator Driller:

	City:	Wareham					State:	Massachusetts	- -	Lightship Rep.: Kristin Maloney			
<u>Ca:</u> Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	<u>Sa</u> Type: Size: Hammer: Fall:	mple	er N N N	/A //A //A		<u>Gro</u> Date: Well Elev.: WL (bgs): GW Elev.:	N/A N/A N/A N/A N/A	Type: Size: Length:	Survey N/A Lat. N/A N/A Long. N/A N/A Elev. N/A			
Start Depth	Finish Depth	Sample ID	Blow Count				Recovery (inches)	TOVs (ppmv)	Lithology (USCS)		Description		
0	2	LE-TP8-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Fan, fine to medium SAND. Dry.			
2	4	LE-TP8-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	n SAND. Dry.		
4	6	LE-TP8-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.			
6	8	LE-TP8-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	n SAND, some gravel. Dry.		
8	10	LE-TP8-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	n SAND. Dry.		
10	12	LE-TP8-10/12	N/A	N/A	N/A	N/A	N/A	0.2	SM	Tan, fine to medium	a SAND. Dry.		
							Test Pit complet	ted at 12 feet below gra	de.				
Notes:	bgs - Below Gro	ound Surface				USC	S - Unified Soil	Classification System		TOVastatal			

ppmv - Parts Per Million by Volume N/A - Not applicable

GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Page 1 of 1

		ни					0				rage 1 01 1		
LIU	1110	and					Monitoring Wall ID:	NI/A		Project #	1075 1 2		
ENG	INEEI	RING						N/A		Fioject #.	<u>1073.1.2</u>		
ENVIRONMENT	AL & LAND-USE	CONSULTANTS	1			L	Start Date:	December 14, 2023		End Date:	December 14, 2023		
	Client Name:	Saraion Realty	110	7						Drilling Co :	IC Engineering		
	Project Name:	Proposed Hidd	en Ti	rails	Resi	denti	al Subdivision			Drilling Method: Excavator			
	Site Address:	2854 Cranberry	y Hig	ghwa	у					Driller:			
	City:	Wareham					State:	Massachusetts		Lightship Rep.:	Kristin Maloney		
Cas	sing	Sa	mple	er			Gro	undwater		Core	Survey		
Type:	N/A	Type:		N	/A		Date:	N/A	Type:	N/A	Lat. N/A		
Size:	N/A	Size:		N	/A		Well Elev.:	N/A	Size:	N/A	Long. <u>N/A</u>		
Hammer:	N/A N/A	Hammer:		N	/A		WL (bgs):	N/A N/A	Length:	N/A	Elev. N/A		
Fall:	IN/A	Fall.		IN	/A		Gw Elev.:	IN/A					
Start Depth	Finish Depth	Sample ID	E	Blow	Cou	nt	Recovery	TOVs	Lithology		Description		
	_	_		1	1		(inches)	(ppmv)	(USCS)				
0	2	LE-TP9-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan medium to coarse SAND, some gravel. Dry.			
2	4	LE-TP9-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan medium to coarse SAND, some gravel. Dry.			
4	6	LE-TP9-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.			
6	8	LE-TP9-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.		
8	10	LE-TP9-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.		
10	12	LE-TP9-10/12	N/A	N/A	N/A	N/A	N/A	0.1	SM	Tan, fine to medium	SAND. Dry.		
							Test Pit complet	ed at 12 feet below grad	le.				
Notes:	høs - Below Gro	und Surface				USC	S - Unified Soil (Classification System					

ppmv - Parts Per Million by Volume N/A - Not applicable

GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Monitoring	
Well ID:	N/A

Start Date: December 19, 2023

Page 1 of 1

 Project #:
 1075.1.2

 End Date:
 December 19, 2023

INVIDONMENT	AL & LAND US	CONSULTANTS							-		· · · · · · · · · · · · · · · · · · ·				
ENVIRONMENT	TAL & LAND-03	E CONSULTANTS				-									
	Client Name:	Sarajon Realty,	LLC	2						Drilling Co.:	JC Engineering				
	Project Name:	Proposed Hidde	en Ti	rails	Resi	dentia	al Subdivision		-	Drilling Method:	Excavator				
	Site Address:	2854 Cranberry	y Hig	ghwa	у				-	Driller:					
	City:	Wareham					State:	Massachusetts	-	Lightship Rep.:	Kristin Maloney				
Ca	sing	Sa	mple	er			Gro	undwater		Core	Survey				
Type:	N/A	Type:		Ν	/A		Date:	N/A	Type:	N/A	Lat. N/A				
Size:	N/A	Size:		N	[/A		Well Elev .:	N/A	Size:	N/A	Long. N/A				
Hammer:	N/A	Hammer:		Ν	[/A		WL (bgs):	N/A	Length:	N/A	Elev. N/A				
Fall:	N/A	Fall:		Ν	[/A		GW Elev .:	N/A							
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)		Description				
0	2	LE-TP10-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, fine to medium	ı, fine to medium SAND. Dry.				
2	4	LE-TP10-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.					
4	6	LE-TP10-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND, some gravel. Dry.				
6	8	LE-TP10-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.				
8	10	LE-TP10-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND, some gravel. Dry.				
10	12	LE-TP10-10/12	N/A	N/A	N/A	N/A	N/A	0.2	SM	Tan, fine to medium	SAND, some gravel. Dry.				
							Test Pit complet	ed at 12 feet below gra	ade.						
Notes:															

bgs - Below Ground Surface ppmv - Parts Per Million by Volume N/A - Not applicable USCS - Unified Soil Classification System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Monitoring Well ID: N/A Page 1 of 1

Project #: 1075.1.2

ENVIRONMENT							Start Date: December 19, 2023 End Date				December 19, 2023			
	Client Name: Project Name: Site Address:	Sarajon Realty, Proposed Hidd 2854 Cranberry	, LLO en Ti y Hig	C rails ghwa	Resi y	denti	al Subdivision			Drilling Co.: Drilling Method: Driller:	JC Engineering Excavator			
	City:	Wareham					State:	Massachusetts		Lightship Rep.:	Kristin Maloney			
Ca Type: Size: Hammer: Fall:	N/A N/A N/A N/A	<u>Sa</u> Type: Size: Hammer: Fall:	mple	er N N N	/A /A /A		Gro Date: Well Elev.: WL (bgs): GW Elev.:	N/A N/A N/A N/A N/A	Type: Size: Length:	<u>Core</u> N/A N/A N/A	Survey Lat. <u>N/A</u> Long. <u>N/A</u> Elev. <u>N/A</u>			
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Description				
0	2	LE-TP11-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan medium to coarse SAND, some gravel. Dry.				
2	4	LE-TP11-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan medium to coarse SAND, some gravel. Dry.				
4	6	LE-TP11-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	Tan, fine to medium SAND, some gravel. Dry.			
6	8	LE-TP11-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.			
8	10	LE-TP11-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.			
10	12	LE-TP11-10/12	N/A	N/A	N/A	N/A	N/A	0.3	SM	Tan, fine to medium	SAND. Dry.			
							Test Pit complet	ted at 12 feet below grad	de.					
Notes:	bgs - Below Gro	ound Surface				USC	S - Unified Soil	Classification System		TOVs: total organic	vanore as massured using for			

ppmv - Parts Per Million by Volume N/A - Not applicable

GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Boring ID: LE-TP12 Monitoring

Page 1 of 1

	SINEE	RING					Well ID: Start Date:	N/A December 19, 2023		Project #: End Date:	1075.1.2 December 19, 2023		
	Client Name: Project Name: Site Address: City:	Sarajon Realty, Proposed Hidd 2854 Cranberry Wareham	LLC en Ti 7 Hig] rails ghwa	Resi y	denti	al Subdivision State:	Massachusetts		Drilling Co.: JC Engineering Drilling Method: Excavator Driller: Lightship Rep.: Kristin Maloney			
<u>Ca</u> Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	<u>Sa</u> Type: Size: Hammer: Fall:		er N N N	/A //A //A		<u>Gro</u> Date: Well Elev.: WL (bgs): GW Elev.:	oundwater N/A N/A N/A N/A	Type: Size: Length:	Survey Lat. N/A Long. N/A Elev. N/A			
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Description			
0	2	LE-TP12-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.			
2	4	LE-TP12-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.			
4	6	LE-TP12-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.			
6	8	LE-TP12-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.		
8	10	LE-TP12-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	SM Tan, fine to medium SAND. Dry.			
10	12	LE-TP12-10/12	N/A	N/A	N/A	N/A	N/A	0.1	SM	Tan, fine to medium	SAND. Dry.		
							Test Pit complet	ted at 12 feet below grad	de.				
Notes:	Bold indicates s	oil sample LE-TP	12-10)/12 v	was s	ubmit	ted for laborator	y analysis.					
	bgs - Below Gro ppmv - Parts Pe N/A - Not appli	ound Surface r Million by Volu cable	me			USC GW WL NR -	S - Unified Soil Elev - Groundwa - Water Level - No Recovery	Classification System ater Elevation		vapors as measured using jar p-ionization detector using a 10.6 th a benzene response factor of 0.6.			

Boring ID: LE-TP13

Monitoring	
Well ID:	N/A

Start Date: December 19, 2023

Page 1 of 1

1075.1.2 Project #:

December 19, 2023 End Date:

ENVIRONMEN	FAL & LAND-USE	CONSULTANTS				L						
	Client Name: Project Name:	Sarajon Realty, Proposed Hidde	LLC en Ti] rails		Drilling Co.: Drilling Method:	JC Engineering Excavator					
	City:	Wareham	/ mg	,liwa	<u>у</u>		State:	Massachusetts	Lightship Rep.: Kristin Maloney			
<u>Ca</u> Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	<u>San</u> Type: Size: Hammer: Fall:	Sampler Type: N/A Size: N/A Hammer: N/A Fall: N/A				<u>Gro</u> Date: Well Elev.: WL (bgs): GW Elev.:	N/A N/A N/A N/A N/A	Type: Size: Length:	<u>Core</u> N/A N/A N/A	Survey Lat. N/A Long. N/A Elev. N/A	
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)		Description	
0	2	LE-TP13-0/2	N/A	. N/A	N/A	. N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
2	4	LE-TP13-2/4	N/A	. N/A	N/A	. N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
4	6	LE-TP13-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
6	8	LE-TP13-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
8	10	LE-TP13-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
10	12	LE-TP13-10/12	N/A	. N/A	N/A	. N/A	N/A	<0.1	SM	Tan, fine to medium	SAND. Dry.	
				_	_	_	Test Pit complet	ted at 12 feet below gra	ıde.			
Notes: bgs - Below Ground Surface US0 ppmv - Parts Per Million by Volume GW N/A - Not applicable WL							S - Unified Soil Elev - Groundwa - Water Level	Classification System ater Elevation		TOVs: total organic vapors as measured using jar headspace with photo-ionization detector using a 10.6 electron volt bulb with a benzene response factor of 0.6.		

WL - Water Level NR - No Recovery

Monitoring	
Well ID:	N/A

Page 1 of 1

1075.1.2

Project #:

Start Date: December 19, 2023 End Date: December 19, 2023 ENVIRONMENTAL & LAND-USE CONSULTANTS Drilling Co.: Client Name: Sarajon Realty, LLC JC Engineering Project Name: Proposed Hidden Trails Residential Subdivision Drilling Method: Excavator Site Address: 2854 Cranberry Highway Driller: City: Wareham State: Massachusetts Lightship Rep.: Kristin Maloney Casing Sampler Groundwater Core Survey N/A Lat. N/A N/A N/A Type: Type: Date: N/A Type: Size: N/A Size: N/A Well Elev .: N/A Size: N/A Long. N/A N/A Hammer: N/A N/A WL (bgs): N/A Length: N/A Elev. Hammer: Fall: N/A Fall: N/A GW Elev .: N/A Recovery TOVs Lithology Blow Count Description Start Depth Finish Depth Sample ID (inches) (USCS) (ppmv) 0 2 LE-TP14-0/2 N/A N/A N/A N/A N/A N/A SM Tan, fine to medium SAND. Dry. 2 4 LE-TP14-2/4 N/A N/A N/A N/A N/A N/A SM Tan, fine to medium SAND. Dry. 4 6 LE-TP14-4/6 N/A N/A N/A N/A SM N/A N/A Tan, fine to medium SAND. Dry. 6 8 LE-TP14-6/8 N/A N/A N/A N/A N/A N/A SMTan, fine to medium SAND. Dry. 8 10 LE-TP14-8/10 N/A N/A N/A N/A N/A SM Tan, fine to medium SAND. Dry. N/A LE-TP14-10/12 N/A 10 12 N/A N/A N/A N/A 0.1 SM Tan, fine to medium SAND. Dry.

Test Pit completed at 12 feet below grade.

Notes:

bgs - Below Ground Surface ppmv - Parts Per Million by Volume N/A - Not applicable

USCS - Unified Soil Classification System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Monitoring	
Well ID:	N/A

Start Date: December 19, 2023

Page 1 of 1

Project #: <u>1075.1.2</u>

End Date: December 19, 2023

ENVIRONMENT	TAL & LANDUS	CONSULTANTS									
ENVIRONMEN	TAL & LAND-03	CONSULTANTS				-					
	Client Name:	Sarajon Realty,	LLC	2						Drilling Co.:	JC Engineering
	Project Name:	Proposed Hidd	en Tı	rails	Resi	denti	al Subdivision			Drilling Method:	Excavator
	Site Address:	2854 Cranberry	y Hig	hwa	у				Driller:		
	City:	Wareham					State:	Massachusetts		Lightship Rep.:	Kristin Maloney
Ca	sing	Sa	mple	er			Gro	oundwater		Core	Survey
Type:	N/A	Type: N/A					Date:	N/A	Type	N/A	Lat. N/A
Size:	N/A	Size:		Ν	/A		Well Elev .:	N/A	Size	N/A	Long. N/A
Hammer:	N/A	Hammer:		N	/A		WL (bgs):	N/A	Length	N/A	Elev. N/A
Fall:	N/A	Fall:		Ν	/A		GW Elev .:	N/A	-		
							2	TOUL			
Start Depth	Finish Depth	Sample ID	E	Blow	Cou	nt	Recovery	TOVs	Lithology		Description
							(inches)	(ppmv)	(USCS)		*
0	2	LE-TP15-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.
2	4	LE-TP15-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan fine to medium	SAND Dry
2	-	EE 1115 2/4					10/11	10/11	5111	run, rine to medium	britte. biy.
4	6	LE-TP15-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.
6	8	LE-TP15-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.
8	10	LE-TP15-8/10	N/Δ	N/Δ	N/Δ	N/A	N/A	N/A	SM	Tan fine to medium	SAND Dry
0	10	LL 11 15 0/10	1.0/11	1 1/ 1 1	1 1/ 1 1	10/11	10/11	10/11	5111	run, rine to medium	britte. biy.
			-								
10	10								<i></i>		
10	12	LE-TP15-10/12	N/A	N/A	N/A	N/A	N/A	0.2	SM	Tan, fine to medium	SAND. Dry.
							Test Pit complet	ted at 12 feet below grad	de.		
Notes:											
	bgs - Below Gro	ound Surface				USC	S - Unified Soil	Classification System		TOVs: total organic	vapors as measured using jar

bgs - Below Ground Surface ppmv - Parts Per Million by Volume N/A - Not applicable USCS - Unified Soil Classification System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Monitoring	
Well ID:	N/A

Start Date: December 19, 2023

Page 1 of 1

 Project #:
 1075.1.2

 End Date:
 December 19, 2023

ENVIRONMENT	AL& LAND-USE	CONSULTANTS				-						
	Client Name:	Sarajon Realty,	LLC	r)					-	Drilling Co.:	JC Engineering	
	Project Name:	Proposed Hidde	en Ti	rails	Resi	dentia	al Subdivision		-	Drilling Method:	Excavator	
	Site Address:	2854 Cranberry	/ Hig	ghwa	у				_	Driller:		
	City:	Wareham					State:	Massachusetts	-	Lightship Rep.:	Kristin Maloney	
Cas	sing	Sa	mple	er			Gro	undwater		Core	Survey	
Type:	N/A	Type:		Ν	/A		Date:	N/A	Type:	N/A	Lat. N/A	
Size:	N/A	Size:		N	/A		Well Elev .:	N/A	Size:	N/A	Long. N/A	
Hammer:	N/A	Hammer:		N	/A		WL (bgs):	N/A	Length:	N/A	Elev. N/A	
Fall:	N/A	Fall:		Ν	/A		GW Elev.:	N/A	_			
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Description		
0	2	LE-TP16-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
2	4	LE-TP16-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
4	6	LE-TP16-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
6	8	LE-TP16-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
8	10	LE-TP16-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
10	12	LE-TP16-10/12	N/A	N/A	N/A	N/A	N/A	0.2	SM	Tan, fine to medium	SAND. Dry.	
							Test Pit complet	ed at 12 feet below gra	de.			
Notes:												

bgs - Below Ground Surface ppmv - Parts Per Million by Volume N/A - Not applicable USCS - Unified Soil Classification System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Monitoring	
Well ID: 1	N/A

Start Date: December 19, 2023

Page 1 of 1

1075.1.2

End Date: December 19, 2023

Project #:

ENVIRONMENT	AL & LAND-USE	CONSULTANTS				Ľ						
	Client Name: Project Name:	Sarajon Realty, Proposed Hidd	LLC en Ti	C rails	Resi		-	Drilling Co.: Drilling Method:	JC Engineering Excavator			
	Site Address: City:	2854 Cranberry Wareham	/ Hig	shwa	у		State:	Massachusetts	Driller: Lightship Rep.: Kristin Maloney			
Cas	sing N/A	<u>Sa</u>	mple	er N	/ •		Gro	undwater	<u>Core</u> <u>Survey</u>			
Hammer:	N/A N/A N/A N/A	Size: Hammer: Fall		N N N	/A /A /A		Well Elev.: WL (bgs):	N/A N/A N/A N/A	Type: N/A Size: N/A Length: N/A		Lat. <u>N/A</u> Long. <u>N/A</u> Elev. <u>N/A</u>	
Start Depth	Finish Depth	Sample ID	F	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Description		
0	2	LE-TP17-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
2	4	LE-TP17-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
4	6	LE-TP17-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
6	8	LE-TP17-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
8	10	LE-TP17-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
10	12	LE-TP17-10/12	N/A	N/A	N/A	N/A	N/A	0.1	SM	Tan, fine to medium	SAND. Dry.	
							Test Pit complet	ed at 12 feet below gra	ade.			
Notes:												

bgs - Below Ground Surface ppmv - Parts Per Million by Volume N/A - Not applicable USCS - Unified Soil Classification System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Monitoring	
------------	--

Page 1 of 1

							Boring iD.	LL-1110	Page 1 of 1			
ENC							Monitoring Well ID:	N/A	Project #:		1075.1.2	
ENVIRONMENT	TAL & LAND-USE	CONSULTANTS	1				Start Date:	December 19, 2023	End Date: December 19		December 19, 2023	
	Client Name: Project Name: Site Address: City:	Sarajon Realty, Proposed Hidd 2854 Cranberry Wareham	LLC en Ti 7 Hig	C rails hwa	Resi y	denti	al Subdivision State:	Massachusetts		Drilling Co.: Drilling Method: Driller: Lightship Rep.:	JC Engineering Excavator Kristin Maloney	
<u>Ca</u> Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	<u>Sa</u> Type: Size: Hammer: Fall:	mple	er N N N	/A /A /A /A		<u>Gro</u> Date: Well Elev.: WL (bgs): GW Elev.:	N/A N/A N/A N/A N/A	Type: Size: Length:	Core N/A N/A N/A	Survey Lat. N/A Long. N/A Elev. N/A	
Start Depth	Finish Depth	Sample ID	E	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)		Description	
0	2	LE-TP18-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SW	Brown to tan, mediu	m to coarse SAND, some SILT. Dry	
2	4	LE-TP18-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coar	se SAND, some gravel. Dry.	
4	6	LE-TP18-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coar	se SAND, some gravel. Dry.	
6	8	LE-TP18-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coar	se SAND, some gravel. Dry.	
8	10	LE-TP18-8/10	N/A	N/A	N/A	N/A	N/A	N/A	SW	Tan, medium to coar	se SAND, some gravel. Dry.	
10	12	LE-TP18-10/12	N/A	N/A	N/A	N/A	N/A	0.1	SW	Tan, medium to coar	se SAND, some gravel. Dry.	
							Test Pit comple	ted at 12 feet below grad	de.			
Notes:	has Balow Gr	ound Surface				USC	S Unified Soil	Classification System				

- Below Ground Surface bg ppmv - Parts Per Million by Volume N/A - Not applicable

USCS - Unified Soil Cla ification System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

Monitoring	
Well ID:	N/A

Project #: 1075.1.2

Page 1 of 1

ENU	IINEEI	UNU	_				Start Date: December 19, 2023			End Date:	December 19, 2023	
ENVIRONMENT	TAL & LAND-USE	CONSULTANTS				Ľ						
	Client Name: Project Name: Site Address:	Sarajon Realty, Proposed Hidd	LLC en Ti / Hio	cails hwa	Resi	dentia	al Subdivision		Drilling Co.: JC Engineering Drilling Method: Excavator			
	City:	Wareham	1112	iiiiu	,		State:	Massachusetts	Lightship Rep.: Kristin Maloney			
<u>Ca</u> : Type: Size: Hammer: Fall:	sing N/A N/A N/A N/A	SamplerType:N/ASize:N/AHammer:N/AFall:N/A					<u>Gro</u> Date: Well Elev.: WL (bgs): GW Elev	n/A N/A N/A N/A N/A	Core Survey Type: N/A Lat. N/A Size: N/A Long. N/A Length: N/A Elev. N/A		Survey Lat. N/A Long. N/A Elev. N/A	
Start Depth	Finish Depth	Sample ID	E	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)	Description		
0	2	LE-TP19-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
2	4	LE-TP19-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
4	6	LE-TP19-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Moist.		
6	8	LE-TP19-6/8	N/A	N/A	N/A	N/A	N/A	0.2	SM	Tan, fine to medium SAND. Wet.		
							Test Pit comple	eted at 8 feet below grad	e.			
Notes: bgs - Below Ground Surface USCS - Unified Soil Classification System TOVs: total organic vapors as measured using jar ppmv - Parts Per Million by Volume GW Elev - Groundwater Elevation headspace with photo-ionization detector using a 10.6 N/A - Not applicable NR - No Recovery RR - No Recovery											vapors as measured using jar -ionization detector using a 10.6 h a benzene response factor of 0.6.	

Monitoring	
Well ID:	N/A

1075.1.2 Project #:

Page 1 of 1

ENVIRONMENTAL & LAND-USE CONSULTANTS					Start Date:	December 19, 2023		End Date:	December 19, 2023			
ENVIRONMENT	Client Name:	Saraion Realty	110	-						Drilling Co :	IC Engineering	
	Project Name:	Proposed Hidd	en Tr		Resi	denti	al Subdivision		Drilling Method: Excavator			
	Site Address: 2854 Cranberry Highway							Driller	Enduration			
	City: Wareham					State:	Massachusetts		Lightship Rep.:	Kristin Maloney		
Cosing Somplor						Gra			Com	Survoy		
<u>Ca</u> Tuno:	sing N/A	<u></u> Tupo:	mpie	<u>r</u> N	/ A		Date: N/A		Tuno	<u>N/A</u>	$\frac{Survey}{V}$	
Type.	IN/A N/A	Type.		N	$\frac{A}{A}$		Wall Flow		Type.	N/A N/A	Lat. N/A	
Hammer	N/A N/A	Hammer:		N	/ <u>A</u>		WI (bgs):		Jize.	N/A N/A	Elev N/A	
Eally		Fall:		N	$\frac{A}{\Lambda}$		GW Elay		Leligui.	11//71	LICV. IN/A	
Faii.	IN/A	1°an.		14/	A		Gw Elev	1N/A				
Start Depth	Finish Depth	Sample ID	P	Blow	Cou	nt	Recovery (inches)	TOVs (ppmv)	Lithology (USCS)		Description	
0	2	LE-TP20-0/2	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium SAND. Dry.		
2	4	LE-TP20-2/4	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
4	6	LE-TP20-4/6	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
6	8	LE-TP20-6/8	N/A	N/A	N/A	N/A	N/A	N/A	SM	Tan, fine to medium	SAND. Dry.	
8	10	LE-TP20-8/10	N/A	N/A	N/A	N/A	N/A	0.1	SM	Tan, fine to medium	SAND. Dry.	
		<u>.</u>		<u> </u>		<u> </u>	Test Pit complet	ted at 10 feet below grad	le.	<u>I</u>		
Notes:												

bgs - Below Ground Surface ppmv - Parts Per Million by Volume N/A - Not applicable

USCS - Unified Soil Classification System GW Elev - Groundwater Elevation WL - Water Level NR - No Recovery

APPENDIX H

ANALYTICAL SUMMARY TABLES

Table 10-1	Volatile Petroleum Hydrocarbons and Volatile Organic Compounds in Soil
Table 10-2	Extractable Petroleum Hydrocarbons and Polynuclear Aromatic Hydrocarbons in Soil
Table 10-3	Volatile Organic Compounds in Groundwater
Table 10-4	PFAS in Groundwater Compounds

Table 10-1 Volatile Petroleum Hydrocarbons and Volatile Organic Compounds in Soil Proposed Hidden Trails Residential Subdivision Off County Road Wareham, Massachusetts (mg/Kg)

			Vol	atile Petroleum Hydrocarb	ons
Sample ID.	Sample Date	Sample Depth (Feet Below Ground Surface)	CS-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 Aromatics
LE-TP2 (4-6)	12/14/2023	4-6	60.3	60.3	75.4
LE-TP6 (8-10)	12/14/2023	8-10	BRL<38.4	BRL<48	BRL<48
LE-TP12 (10-12)	12/19/2023	10-12	BRL<29.1	BRL<36.4	BRL<36.4
		Reportable Concentratio	ns (310 CMR 40.1600); I	May 23, 2014	
RCS-1			100	1,000	100

Notes:

mg/Kg - milligrams per kilogram, dry weight.

BRL<0.552 indicates concentration, if any, is below reporting limit for analyte (reporting limit = 0.552).

NS - No Standard.

RCS-1 - Reportable Concentrations ("RC") for soil in Reporting Category RCS-1 under the Massachusetts Contingency Plan ("MCP").

Table 10-2 Extractable Petroleum Hydrocarbons and Polynuclear Aromatic Hydrocarbons in Soil Proposed Hidden Trails Residential Subdivision Off County Road Wareham, Massachusetts (mg/Kg)

			Extractable	Petroleum Hy	drocarbons	Polynuclear Aromatic Hydrocarbons								
Sample ID.	Sample Date	Sample Depth (Feet Below Ground Surface)	C9-C18 Aliphatics	C19-C36 Aliphatics	C11-C22 Aromatics	Fluoranthene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Benzo(g,h,i) perylene	Indeno(1,2,3-cd)pyrene	Pyrene
LE-TP2 (4-6)	12/14/2023	4-6	BRL<14.9	BRL<19.5	BRL<15.2	1.14	0.68	0.48	0.71	0.66	0.75	0.37	0.40	0.87
LE-TP6 (8-10)	12/14/2023	8-10	BRL<14.9	32.1	BRL<15.2	BRL<0.48	BRL<0.48	BRL<0.48	BRL<0.48	BRL<0.48	BRL<0.48	BRL<0.48	BRL<0.48	BRL<0.48
LE-TP12 (10-12)	12/19/2023	10-12	BRL<7.47	14.9	BRL<7.64	BRL<0.38	BRL<0.38	BRL<0.38	BRL<0.38	BRL<0.38	BRL<0.38	BRL<0.38	BRL<0.38	BRL<0.38
				Reporta	ble Concentr	ations (310 C	CMR 40.1600); May 23, 2	014					
RCS-1			1,000	3,000	1,000	1,000	7	2	7	70	70	1,000	7	1,000

Notes:

mg/Kg - milligrams per kilogram, dry weight.

BRL<0.552 indicates concentration, if any, is below reporting limit for analyte (reporting limit = 0.552).

NS - No Standard.

RCS-1 - Reportable Concentrations ("RC") for soil in Reporting Category S-1 under the Massachusetts Contingency Plan ("MCP").

Table 10-3 Volatile Organic Compounds in Groundwater Proposed Hidden Trails Residential Subdivision Off County Road Wareham, Massachusetts (ug/L)

			Vola	tile Organic Compo	unds						
Sample ID.	Sample Date	Groundwater Reporting Category Sample is Subject to	1,1,2,2-Tetrachloroethane	2-Butanone	Tetrahydrofuran						
	December 2023										
LE-TMW1	12/15/2023	RCGW-2	BRL<20	3,200	1,360						
LE-TMW2	12/15/2023	RCGW-2	BRL<20	2,590	1,020						
LE-TMW3	12/15/2023	RCGW-1	BRL<50	6,340	4,620						
LE-TMW4	12/15/2023	RCGW-1	67	12,100	9,990						
		January 2024									
LE-TMW1	1/12/2024	RCGW-2	BRL<1	BRL<100	BRL<5						
LE-TMW2	1/12/2024	RCGW-2	BRL<1	BRL<100	6						
LE-TMW3	1/12/2024	RCGW-1	BRL<1	BRL<100	BRL<5						
LE-TMW4	1/12/2024	RCGW-1	BRL<1	BRL<100	BRL<5						
	Reportable Con	ncentrations (310 CMR 4	0.1600); May 23, 2	2014							
RCGW-1			2	4,000	5,000						
RCGW-2			9	50,000	50,000						

Notes:

 $\mu g/L$ - micrograms per liter.

BRL<0.552 indicates concentration, if any, is below reporting limit for analyte (reporting limit = 0.552).

NS - No Standard.

RCGW-1 - Reportable Concentrations ("RC") for groundwater in Reporting Category GW-1 under the Massachusetts Contingency Plan ("MCP").

RCGW-2 - RC for groundwater in Reporting Category GW-2 under the MCP.

Bold indicates concentration meets or exceeds applicable MCP RC for groundwater in Reporting Category RCGW-1.

Italicize indicates concentration meets or exceeds applicable MCP RC for groundwater in Reporting Category RCGW-2.

Table 10-4 PFAS in Groundwater Proposed Hidden Trails Residential Subdivision Off County Road Wareham, Massachusetts (ng/L)

			MCP r	egulated Perfl	ourinated Alky	yl Acids by EP	Perflourinated Alkyl Acids by EPA 537.1				
Sample ID.	Sample Date	Groundwater Reporting Category Sample is Subject to	Total MCP-Regulated PFAS (6)*	Perfluoroheptanoic Acid (PFHpA)	Perfluorooctanoic Acid (PFOA)	Perfluorononanoic Acid (PFNA)	Perfluorooctanesulfonic Acid (PFOS)	Perfluorobutanoic Acid (PFBA)	Perfluoropentanoic Acid (PFPeA)	Perfluorobutanesulfonic Acid (PFBS)	Perfluorohexanoic Acid (PFHxA)
				Surface	e Water Sam	ple					
LE-SW1	12/14/2023	Not Applicable	BRL	BRL<1.48	BRL<1.48	BRL<1.48	BRL<1.48	BRL<5.91	BRL<2.96	BRL<1.48	BRL<1.48
				Ground	lwater Samp	les					
LE-TMW1	12/15/2023	RCGW-2	34.7	8.19	18.9	5.50	2.14	20.8	7.22	BRL<1.60	5.75
LE-TMW2	12/15/2023	RCGW-2	16.6	8.51	6.57	BRL<1.42	1.56	16.3	6.81	1.89	9.18
LE-TMW3	12/15/2023	RCGW-1	BRL	BRL<1.41	BRL<1.41	BRL<1.41	BRL<1.41	BRL<5.66	BRL<2.83	BRL<1.41	BRL<1.41
LE-TMW4	12/15/2023	RCGW-1	15.3	7.61	7.64	BRL<1.41	BRL<1.41	14.90	6.03	BRL<1.41	7.37
		Re	eportable Co	oncentrations	(310 CMR 4	0.1600); May	23, 2014 ¹				
RCGW-1			20	20	20	20	20	NS	NS	NS	NS
RCGW-2			NS	40,000	40,000	40,000	500	NS	NS	NS	NS

Notes:

ng/L - nanograms per liter.

NA - Not Analyzed/Not Applicable.

NA¹ - Sample submitted for analysis but not Analyzed by laboratory due to a QA/QC failure.

BRL<0.552 indicates concentration, if any, is below reporting limit for analyte (reporting limit = 0.552).

NS - No Standard.

PFAS - Per- and Polyfluoroalkyl Substances

RCGW-1 - Reportable Concentrations ("RC") for groundwater in Reporting Category GW-1 under the Massachusetts Contingency Plan ("MCP").

RCGW-2 - RC for groundwater in Reporting Category GW-2 under the MCP.

Bold indicates concentration meets or exceeds applicable MCP RC for groundwater in Reporting Category RCGW-1.

1 - DEP's Final PFAS-related Amendments to the MCP, December 13, 2019.

* The Per- and Polyfluoroalkyl Substances (PFAS) standard for GW-1 is for the sum of the concentrations of the following PFAS compounds:

perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS),

perfluorononanoic acid (PFNA), perfluorooctanesulfonic acid (PFOS), and perfluorooctanoic acid (PFOA).

APPENDIX I

ANALYTICAL DATA PACKAGES

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 3L18035 Client Project: 1075 - Wareham

Report Date: 26-December-2023

Prepared for:

Kevin Paradise Lightship Engineering 6 Resnik Raod, Suite 207 Plymouth, MA 02360

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted :

The samples listed below were submitted to New England Testing Laboratory on 12/18/23. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 3L18035. Custody records are included in this report.

Lab ID	Sample	Sample Matrix Date		Date Received
3L18035-01	LE-TMW1	Water	12/15/2023	12/18/2023
3L18035-02	LE-TMW2	Water	12/15/2023	12/18/2023
3L18035-03	LE-TMW3	Water	12/15/2023	12/18/2023
3L18035-04	LE-TMW4	Water	12/15/2023	12/18/2023

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

LE-TMW1 (Lab Number: 3L18035-01)	
Analysis	<u>Method</u>
Volatile Organic Compounds	EPA 8260C
LE-TMW2 (Lab Number: 3L18035-02)	
Analysis	<u>Method</u>
Volatile Organic Compounds	EPA 8260C
LE-TMW3 (Lab Number: 3L18035-03)	
Analysis	<u>Method</u>
Volatile Organic Compounds	EPA 8260C
LE-TMW4 (Lab Number: 3L18035-04)	
<u>Analysis</u>	<u>Method</u>
Volatile Organic Compounds	EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Volatile Organic Compounds

Sample: LE-TMW1

Lab Number: 3L18035-01 (Water)

	Reporting									
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed					
Acetone	ND	2000	ug/l	12/21/23	12/21/23					
Benzene	ND	20	ug/l	12/21/23	12/21/23					
Bromobenzene	ND	20	ug/l	12/21/23	12/21/23					
Bromochloromethane	ND	20	ug/l	12/21/23	12/21/23					
Bromodichloromethane	ND	20	ug/l	12/21/23	12/21/23					
Bromoform	ND	20	ug/l	12/21/23	12/21/23					
Bromomethane	ND	20	ug/l	12/21/23	12/21/23					
2-Butanone	3200	2000	ug/l	12/21/23	12/21/23					
tert-Butyl alcohol	ND	100	ug/l	12/21/23	12/21/23					
sec-Butylbenzene	ND	20	ug/l	12/21/23	12/21/23					
n-Butylbenzene	ND	20	ug/l	12/21/23	12/21/23					
tert-Butylbenzene	ND	20	ug/l	12/21/23	12/21/23					
Methyl t-butyl ether (MTBE)	ND	20	ug/l	12/21/23	12/21/23					
Carbon Disulfide	ND	20	ug/l	12/21/23	12/21/23					
Carbon Tetrachloride	ND	20	ug/l	12/21/23	12/21/23					
Chlorobenzene	ND	20	ug/l	12/21/23	12/21/23					
Chloroethane	ND	20	ug/l	12/21/23	12/21/23					
Chloroform	ND	20	ug/l	12/21/23	12/21/23					
Chloromethane	ND	20	ug/l	12/21/23	12/21/23					
4-Chlorotoluene	ND	20	ug/l	12/21/23	12/21/23					
2-Chlorotoluene	ND	20	ug/l	12/21/23	12/21/23					
1,2-Dibromo-3-chloropropane (DBCP)	ND	20	ug/l	12/21/23	12/21/23					
Dibromochloromethane	ND	20	ug/l	12/21/23	12/21/23					
1,2-Dibromoethane (EDB)	ND	20	ug/l	12/21/23	12/21/23					
Dibromomethane	ND	20	ug/l	12/21/23	12/21/23					
1,2-Dichlorobenzene	ND	20	ug/l	12/21/23	12/21/23					
1,3-Dichlorobenzene	ND	20	ug/l	12/21/23	12/21/23					
1,4-Dichlorobenzene	ND	20	ug/l	12/21/23	12/21/23					
1,1-Dichloroethane	ND	20	ug/l	12/21/23	12/21/23					
1,2-Dichloroethane	ND	20	ug/l	12/21/23	12/21/23					
1,2 Dichloroethene, Total	ND	20	ug/l	12/21/23	12/21/23					
trans-1,2-Dichloroethene	ND	20	ug/l	12/21/23	12/21/23					
cis-1,2-Dichloroethene	ND	20	ug/l	12/21/23	12/21/23					
1,1-Dichloroethene	ND	20	ug/l	12/21/23	12/21/23					
1,2-Dichloropropane	ND	20	ug/l	12/21/23	12/21/23					
2,2-Dichloropropane	ND	20	ug/l	12/21/23	12/21/23					
cis-1,3-Dichloropropene	ND	20	ug/l	12/21/23	12/21/23					
trans-1,3-Dichloropropene	ND	20	ug/l	12/21/23	12/21/23					
1,1-Dichloropropene	ND	20	ug/l	12/21/23	12/21/23					
1,3-Dichloropropene (cis + trans)	ND	40	ug/l	12/21/23	12/21/23					
Diethyl ether	ND	100	ug/l	12/21/23	12/21/23					
1,4-Dioxane	ND	2000	ug/l	12/21/23	12/21/23					
Ethylbenzene	ND	20	ug/l	12/21/23	12/21/23					
Hexachlorobutadiene	ND	20	ug/l	12/21/23	12/21/23					
2-Hexanone	ND	2000	ug/l	12/21/23	12/21/23					
Isopropylbenzene	ND	20	ug/l	12/21/23	12/21/23					
p-Isopropyltoluene	ND	20	ug/l	12/21/23	12/21/23					
Methylene Chloride	ND	20	ug/l	12/21/23	12/2 Page 5 of 20					

Results: Volatile Organic Compounds (Continued)

Sample: LE-TMW1 (Continued)

Lab Number: 3L18035-01 (Water)

- -

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
4-Methyl-2-pentanone	ND		2000	ug/l	12/21/23	12/21/23
Naphthalene	ND		20	ug/l	12/21/23	12/21/23
n-Propylbenzene	ND		20	ug/l	12/21/23	12/21/23
Styrene	ND		20	ug/l	12/21/23	12/21/23
1,1,1,2-Tetrachloroethane	ND		20	ug/l	12/21/23	12/21/23
Tetrachloroethene	ND		20	ug/l	12/21/23	12/21/23
Tetrahydrofuran	1360		100	ug/l	12/21/23	12/21/23
Toluene	ND		20	ug/l	12/21/23	12/21/23
1,2,4-Trichlorobenzene	ND		20	ug/l	12/21/23	12/21/23
1,2,3-Trichlorobenzene	ND		20	ug/l	12/21/23	12/21/23
1,1,2-Trichloroethane	ND		20	ug/l	12/21/23	12/21/23
1,1,1-Trichloroethane	ND		20	ug/l	12/21/23	12/21/23
Trichloroethene	ND		20	ug/l	12/21/23	12/21/23
1,2,3-Trichloropropane	ND		20	ug/l	12/21/23	12/21/23
1,3,5-Trimethylbenzene	ND		20	ug/l	12/21/23	12/21/23
1,2,4-Trimethylbenzene	ND		20	ug/l	12/21/23	12/21/23
Vinyl Chloride	ND		20	ug/l	12/21/23	12/21/23
o-Xylene	ND		20	ug/l	12/21/23	12/21/23
m&p-Xylene	ND		40	ug/l	12/21/23	12/21/23
Total xylenes	ND		20	ug/l	12/21/23	12/21/23
1,1,2,2-Tetrachloroethane	ND		20	ug/l	12/21/23	12/21/23
tert-Amyl methyl ether	ND		20	ug/l	12/21/23	12/21/23
1,3-Dichloropropane	ND		20	ug/l	12/21/23	12/21/23
Ethyl tert-butyl ether	ND		20	ug/l	12/21/23	12/21/23
Diisopropyl ether	ND		20	ug/l	12/21/23	12/21/23
Trichlorofluoromethane	ND		20	ug/l	12/21/23	12/21/23
Dichlorodifluoromethane	ND		20	ug/l	12/21/23	12/21/23
Surrogate(s)	Recovery%		Limit	S		
4-Bromofluorobenzene	97.0%		70-13	0	12/21/23	12/21/23
1,2-Dichloroethane-d4	102%		70-13	0	12/21/23	12/21/23
Toluene-d8	96.7%		70-13	20	12/21/23	12/21/23

Results: Volatile Organic Compounds

Sample: LE-TMW2

Lab Number: 3L18035-02 (Water)

		Reporting		Reporting								
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed							
Acetone	ND	2000	ug/l	12/21/23	12/21/23							
Benzene	ND	20	ug/l	12/21/23	12/21/23							
Bromobenzene	ND	20	ug/l	12/21/23	12/21/23							
Bromochloromethane	ND	20	ug/l	12/21/23	12/21/23							
Bromodichloromethane	ND	20	ug/l	12/21/23	12/21/23							
Bromoform	ND	20	ug/l	12/21/23	12/21/23							
Bromomethane	ND	20	ug/l	12/21/23	12/21/23							
2-Butanone	2590	2000	ug/l	12/21/23	12/21/23							
tert-Butyl alcohol	ND	100	ug/l	12/21/23	12/21/23							
sec-Butylbenzene	ND	20	ug/l	12/21/23	12/21/23							
n-Butylbenzene	ND	20	ug/l	12/21/23	12/21/23							
tert-Butylbenzene	ND	20	ug/l	12/21/23	12/21/23							
Methyl t-butyl ether (MTBE)	ND	20	ug/l	12/21/23	12/21/23							
Carbon Disulfide	ND	20	ug/l	12/21/23	12/21/23							
Carbon Tetrachloride	ND	20	ug/l	12/21/23	12/21/23							
Chlorobenzene	ND	20	ug/l	12/21/23	12/21/23							
Chloroethane	ND	20	ug/l	12/21/23	12/21/23							
Chloroform	ND	20	ug/l	12/21/23	12/21/23							
Chloromethane	ND	20	ug/l	12/21/23	12/21/23							
4-Chlorotoluene	ND	20	ug/l	12/21/23	12/21/23							
2-Chlorotoluene	ND	20	ug/l	12/21/23	12/21/23							
1,2-Dibromo-3-chloropropane (DBCP)	ND	20	ug/l	12/21/23	12/21/23							
Dibromochloromethane	ND	20	ug/l	12/21/23	12/21/23							
1,2-Dibromoethane (EDB)	ND	20	ug/l	12/21/23	12/21/23							
Dibromomethane	ND	20	ug/l	12/21/23	12/21/23							
1,2-Dichlorobenzene	ND	20	ug/l	12/21/23	12/21/23							
1,3-Dichlorobenzene	ND	20	ug/l	12/21/23	12/21/23							
1,4-Dichlorobenzene	ND	20	ug/l	12/21/23	12/21/23							
1,1-Dichloroethane	ND	20	ug/l	12/21/23	12/21/23							
1,2-Dichloroethane	ND	20	ug/l	12/21/23	12/21/23							
1,2 Dichloroethene, Total	ND	20	ug/l	12/21/23	12/21/23							
trans-1,2-Dichloroethene	ND	20	ug/l	12/21/23	12/21/23							
cis-1,2-Dichloroethene	ND	20	ug/l	12/21/23	12/21/23							
1,1-Dichloroethene	ND	20	ug/l	12/21/23	12/21/23							
1,2-Dichloropropane	ND	20	ug/l	12/21/23	12/21/23							
2,2-Dichloropropane	ND	20	ug/l	12/21/23	12/21/23							
cis-1,3-Dichloropropene	ND	20	ug/l	12/21/23	12/21/23							
trans-1,3-Dichloropropene	ND	20	ug/l	12/21/23	12/21/23							
1,1-Dichloropropene	ND	20	ug/l	12/21/23	12/21/23							
1,3-Dichloropropene (cis + trans)	ND	40	ug/l	12/21/23	12/21/23							
Diethyl ether	ND	100	ug/l	12/21/23	12/21/23							
1,4-Dioxane	ND	2000	ug/l	12/21/23	12/21/23							
Ethylbenzene	ND	20	ug/l	12/21/23	12/21/23							
Hexachlorobutadiene	ND	20	ug/l	12/21/23	12/21/23							
2-Hexanone	ND	2000	ug/l	12/21/23	12/21/23							
Isopropylbenzene	ND	20	ug/l	12/21/23	12/21/23							
p-Isopropyltoluene	ND	20	ug/l	12/21/23	12/21/23							
Methylene Chloride	ND	20	ug/l	12/21/23	12/2 Page 7							

Page 7 of 20

Results: Volatile Organic Compounds (Continued)

Sample: LE-TMW2 (Continued)

Lab Number: 3L18035-02 (Water)

- -

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
4-Methyl-2-pentanone	ND		2000	ug/l	12/21/23	12/21/23	
Naphthalene	ND		20	ug/l	12/21/23	12/21/23	
n-Propylbenzene	ND		20	ug/l	12/21/23	12/21/23	
Styrene	ND		20	ug/l	12/21/23	12/21/23	
1,1,1,2-Tetrachloroethane	ND		20	ug/l	12/21/23	12/21/23	
Tetrachloroethene	ND		20	ug/l	12/21/23	12/21/23	
Tetrahydrofuran	1020		100	ug/l	12/21/23	12/21/23	
Toluene	ND		20	ug/l	12/21/23	12/21/23	
1,2,4-Trichlorobenzene	ND		20	ug/l	12/21/23	12/21/23	
1,2,3-Trichlorobenzene	ND		20	ug/l	12/21/23	12/21/23	
1,1,2-Trichloroethane	ND		20	ug/l	12/21/23	12/21/23	
1,1,1-Trichloroethane	ND		20	ug/l	12/21/23	12/21/23	
Trichloroethene	ND		20 ug/l 12/21/23		12/21/23		
1,2,3-Trichloropropane	ND		20	ug/l	12/21/23	12/21/23	
1,3,5-Trimethylbenzene	ND	ND		ug/l	12/21/23	12/21/23	
1,2,4-Trimethylbenzene	ND		20	ug/l	12/21/23	12/21/23	
Vinyl Chloride	ND		20 ug/l 1		12/21/23	12/21/23	
o-Xylene	ND		20 ug/l		12/21/23	12/21/23	
m&p-Xylene	ND		40 ug		12/21/23	12/21/23	
Total xylenes	ND		20	20 ug/l 12/21/		12/21/23	
1,1,2,2-Tetrachloroethane	ND		20 ug/l		12/21/23	12/21/23	
tert-Amyl methyl ether	ND		20	ug/l	12/21/23	12/21/23	
1,3-Dichloropropane	ND		20	ug/l	12/21/23	12/21/23	
Ethyl tert-butyl ether	ND		20	ug/l	12/21/23	12/21/23	
Diisopropyl ether	ND		20	ug/l	12/21/23	12/21/23	
Trichlorofluoromethane	ND		20	ug/l	12/21/23	12/21/23	
Dichlorodifluoromethane	ND		20	ug/l	12/21/23	12/21/23	
Surrogate(s)	Recovery%		Limit	S			
4-Bromofluorobenzene	98.7%		70-13	0	12/21/23	12/21/23	
1,2-Dichloroethane-d4	104%		70-13	0	12/21/23	12/21/23	
Toluene-d8	91.2%		70-13	0	12/21/23	12/21/23	

Results: Volatile Organic Compounds

Sample: LE-TMW3

Lab Number: 3L18035-03 (Water)

	Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Acetone	ND		5000	ua/l	12/21/23	12/21/23			
Benzene	ND		50	ug/l	12/21/23	12/21/23			
Bromobenzene	ND		50	ug/l	12/21/23	12/21/23			
Bromochloromethane	ND		50	ug/l	12/21/23	12/21/23			
Bromodichloromethane	ND		50	ug/l	12/21/23	12/21/23			
Bromoform	ND		50	ug/l	12/21/23	12/21/23			
Bromomethane	ND		50	ug/l	12/21/23	12/21/23			
2-Butanone	6340		5000	ug/l	12/21/23	12/21/23			
tert-Butyl alcohol	ND		250	ug/l	12/21/23	12/21/23			
sec-Butylbenzene	ND		50	ug/l	12/21/23	12/21/23			
n-Butylbenzene	ND		50	ug/l	12/21/23	12/21/23			
tert-Butylbenzene	ND		50	ug/l	12/21/23	12/21/23			
Methyl t-butyl ether (MTBE)	ND		50	ug/l	12/21/23	12/21/23			
Carbon Disulfide	ND		50	ug/l	12/21/23	12/21/23			
Carbon Tetrachloride	ND		50	ug/l	12/21/23	12/21/23			
Chlorobenzene	ND		50	ug/l	12/21/23	12/21/23			
Chloroethane	ND		50	ug/l	12/21/23	12/21/23			
Chloroform	ND		50	ug/l	12/21/23	12/21/23			
Chloromethane	ND		50	ug/l	12/21/23	12/21/23			
4-Chlorotoluene	ND		50	ug/l	12/21/23	12/21/23			
2-Chlorotoluene	ND		50	ug/l	12/21/23	12/21/23			
1,2-Dibromo-3-chloropropane (DBCP)	ND		50	ug/l	12/21/23	12/21/23			
Dibromochloromethane	ND		50	ug/l	12/21/23	12/21/23			
1,2-Dibromoethane (EDB)	ND		50	ug/l	12/21/23	12/21/23			
Dibromomethane	ND		50	ug/l	12/21/23	12/21/23			
1,2-Dichlorobenzene	ND		50	ug/l	12/21/23	12/21/23			
1,3-Dichlorobenzene	ND		50	ug/l	12/21/23	12/21/23			
1,4-Dichlorobenzene	ND		50	ug/l	12/21/23	12/21/23			
1,1-Dichloroethane	ND		50	ug/l	12/21/23	12/21/23			
1,2-Dichloroethane	ND		50	ug/l	12/21/23	12/21/23			
1,2 Dichloroethene, Total	ND		50	ug/l	12/21/23	12/21/23			
trans-1,2-Dichloroethene	ND		50	ug/l	12/21/23	12/21/23			
cis-1,2-Dichloroethene	ND		50	ug/l	12/21/23	12/21/23			
1,1-Dichloroethene	ND		50	ug/l	12/21/23	12/21/23			
1,2-Dichloropropane	ND		50	ug/l	12/21/23	12/21/23			
2,2-Dichloropropane	ND		50	ug/l	12/21/23	12/21/23			
cis-1,3-Dichloropropene	ND		50	ug/l	12/21/23	12/21/23			
trans-1,3-Dichloropropene	ND		50	ug/l	12/21/23	12/21/23			
1,1-Dichloropropene	ND		50	ug/l	12/21/23	12/21/23			
1,3-Dichloropropene (cis + trans)	ND		100	ug/l	12/21/23	12/21/23			
Diethyl ether	ND		250	ug/l	12/21/23	12/21/23			
1,4-Dioxane	ND		5000	ug/l	12/21/23	12/21/23			
Ethylbenzene	ND		50	ug/l	12/21/23	12/21/23			
Hexachlorobutadiene	ND		50	ug/l	12/21/23	12/21/23			
2-Hexanone	ND		5000	ug/l	12/21/23	12/21/23			
Isopropylbenzene	ND		50	ug/l	12/21/23	12/21/23			
p-Isopropyltoluene	ND		50	ug/l	12/21/23	12/21/23			
Methylene Chloride	ND		50	ug/l	12/21/23	12/2 Page 9 of 20			

Results: Volatile Organic Compounds (Continued)

Sample: LE-TMW3 (Continued)

Lab Number: 3L18035-03 (Water)

- -

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
4-Methyl-2-pentanone	ND		5000	ug/l	12/21/23	12/21/23	
Naphthalene	ND		50	ug/l	12/21/23	12/21/23	
n-Propylbenzene	ND		50	ug/l	12/21/23	12/21/23	
Styrene	ND		50	ug/l	12/21/23	12/21/23	
1,1,1,2-Tetrachloroethane	ND		50	ug/l	12/21/23	12/21/23	
Tetrachloroethene	ND		50	ug/l	12/21/23	12/21/23	
Tetrahydrofuran	4620		250	ug/l	12/21/23	12/21/23	
Toluene	ND		50	ug/l	12/21/23	12/21/23	
1,2,4-Trichlorobenzene	ND		50	ug/l	12/21/23	12/21/23	
1,2,3-Trichlorobenzene	ND		50	ug/l	12/21/23	12/21/23	
1,1,2-Trichloroethane	ND		50	ug/l	12/21/23	12/21/23	
1,1,1-Trichloroethane	ND		50	ug/l	12/21/23	12/21/23	
Trichloroethene	ND		50 ug/l 12/21/23		12/21/23		
1,2,3-Trichloropropane	ND		50	ug/l	12/21/23	12/21/23	
1,3,5-Trimethylbenzene	ND	ND		ug/l	12/21/23	12/21/23	
1,2,4-Trimethylbenzene	ND		50	ug/l	12/21/23	12/21/23	
Vinyl Chloride	ND		50 ug/l 12/21		12/21/23	12/21/23	
o-Xylene	ND		50 ug/l		12/21/23	12/21/23	
m&p-Xylene	ND		100 ug/l		12/21/23	12/21/23	
Total xylenes	ND		50 ug/l		12/21/23	12/21/23	
1,1,2,2-Tetrachloroethane	ND		50 ug/l		12/21/23	12/21/23	
tert-Amyl methyl ether	ND		50	ug/l	12/21/23	12/21/23	
1,3-Dichloropropane	ND		50	ug/l	12/21/23	12/21/23	
Ethyl tert-butyl ether	ND		50	ug/l	12/21/23	12/21/23	
Diisopropyl ether	ND		50	ug/l	12/21/23	12/21/23	
Trichlorofluoromethane	ND		50	ug/l	12/21/23	12/21/23	
Dichlorodifluoromethane	ND		50	ug/l	12/21/23	12/21/23	
Surrogate(s)	Recovery%		Limit	s			
4-Bromofluorobenzene	96.9%		70-13	0	12/21/23	12/21/23	
1,2-Dichloroethane-d4	105%		70-13	0	12/21/23	12/21/23	
Toluene-d8	94.4%		70-13	0	12/21/23	12/21/23	

Results: Volatile Organic Compounds

Sample: LE-TMW4

Lab Number: 3L18035-04 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Acetone	ND		5000	ug/l	12/21/23	12/21/23	
Benzene	ND		50	ug/l	12/21/23	12/21/23	
Bromobenzene	ND		50	ug/l	12/21/23	12/21/23	
Bromochloromethane	ND		50	ug/l	12/21/23	12/21/23	
Bromodichloromethane	ND		50	ug/l	12/21/23	12/21/23	
Bromoform	ND		50	ug/l	12/21/23	12/21/23	
Bromomethane	ND		50	ug/l	12/21/23	12/21/23	
2-Butanone	12100		5000	ug/l	12/21/23	12/21/23	
tert-Butyl alcohol	ND		250	ug/l	12/21/23	12/21/23	
sec-Butylbenzene	ND		50	ug/l	12/21/23	12/21/23	
n-Butylbenzene	ND		50	ug/l	12/21/23	12/21/23	
tert-Butylbenzene	ND		50	ug/l	12/21/23	12/21/23	
Methyl t-butyl ether (MTBE)	ND		50	ug/l	12/21/23	12/21/23	
Carbon Disulfide	ND		50	ug/l	12/21/23	12/21/23	
Carbon Tetrachloride	ND		50	ug/l	12/21/23	12/21/23	
Chlorobenzene	ND		50	ug/l	12/21/23	12/21/23	
Chloroethane	ND		50	ug/l	12/21/23	12/21/23	
Chloroform	ND		50	ug/l	12/21/23	12/21/23	
Chloromethane	ND		50	ug/l	12/21/23	12/21/23	
4-Chlorotoluene	ND		50	ug/l	12/21/23	12/21/23	
2-Chlorotoluene	ND		50	ug/l	12/21/23	12/21/23	
1,2-Dibromo-3-chloropropane (DBCP)	ND		50	ug/l	12/21/23	12/21/23	
Dibromochloromethane	ND		50	ug/l	12/21/23	12/21/23	
1,2-Dibromoethane (EDB)	ND		50	ug/l	12/21/23	12/21/23	
Dibromomethane	ND		50	ug/l	12/21/23	12/21/23	
1,2-Dichlorobenzene	ND		50	ug/l	12/21/23	12/21/23	
1,3-Dichlorobenzene	ND		50	ug/l	12/21/23	12/21/23	
1,4-Dichlorobenzene	ND		50	ug/l	12/21/23	12/21/23	
1,1-Dichloroethane	ND		50	ug/l	12/21/23	12/21/23	
1,2-Dichloroethane	ND		50	ug/l	12/21/23	12/21/23	
1,2 Dichloroethene, Total	ND		50	ug/l	12/21/23	12/21/23	
trans-1,2-Dichloroethene	ND		50	ug/l	12/21/23	12/21/23	
cis-1,2-Dichloroethene	ND		50	ug/l	12/21/23	12/21/23	
1,1-Dichloroethene	ND		50	ug/l	12/21/23	12/21/23	
1,2-Dichloropropane	ND		50	ug/l	12/21/23	12/21/23	
2,2-Dichloropropane	ND		50	ug/l	12/21/23	12/21/23	
cis-1,3-Dichloropropene	ND		50	ug/l	12/21/23	12/21/23	
trans-1,3-Dichloropropene	ND		50	ug/l	12/21/23	12/21/23	
1,1-Dichloropropene	ND		50	ug/l	12/21/23	12/21/23	
1,3-Dichloropropene (cis + trans)	ND		100	ug/l	12/21/23	12/21/23	
Diethyl ether	ND		250	ug/l	12/21/23	12/21/23	
1,4-Dioxane	ND		5000	ug/l	12/21/23	12/21/23	
Ethylbenzene	ND		50	ug/l	12/21/23	12/21/23	
Hexachlorobutadiene	ND		50	ug/l	12/21/23	12/21/23	
2-Hexanone	ND		5000	ug/l	12/21/23	12/21/23	
Isopropylbenzene	ND		50	ug/l	12/21/23	12/21/23	
p-Isopropyltoluene	ND		50	ug/l	12/21/23	12/21/23	
Methylene Chloride	ND		50	ug/l	12/21/23	12/2 Page 11 of 20	

Results: Volatile Organic Compounds (Continued)

Sample: LE-TMW4 (Continued)

Lab Number: 3L18035-04 (Water)

- -

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
4-Methyl-2-pentanone	ND		5000	ug/l	12/21/23	12/21/23		
Naphthalene	ND		50	ug/l	12/21/23	12/21/23		
n-Propylbenzene	ND		50	ug/l	12/21/23	12/21/23		
Styrene	ND		50	ug/l	12/21/23	12/21/23		
1,1,1,2-Tetrachloroethane	ND		50	ug/l	12/21/23	12/21/23		
Tetrachloroethene	ND		50	ug/l	12/21/23	12/21/23		
Tetrahydrofuran	9990		250	ug/l	12/21/23	12/21/23		
Toluene	ND		50	ug/l	12/21/23	12/21/23		
1,2,4-Trichlorobenzene	ND		50	ug/l	12/21/23	12/21/23		
1,2,3-Trichlorobenzene	ND		50	ug/l	12/21/23	12/21/23		
1,1,2-Trichloroethane	ND		50	ug/l	12/21/23	12/21/23		
1,1,1-Trichloroethane	ND		50	ug/l	12/21/23	12/21/23		
Trichloroethene	ND	ID 50		ug/l	12/21/23	12/21/23		
1,2,3-Trichloropropane	ND	D 50 ug		ug/l	12/21/23	12/21/23		
1,3,5-Trimethylbenzene	ND		50	ug/l	12/21/23	12/21/23		
1,2,4-Trimethylbenzene	ND		50	ug/l	12/21/23	12/21/23		
Vinyl Chloride	ND		50	ug/l	12/21/23	12/21/23		
o-Xylene	ND		50		12/21/23	12/21/23		
m&p-Xylene	ND		100 ug/l		12/21/23	12/21/23		
Total xylenes	ND		50 ug/l		12/21/23	12/21/23		
1,1,2,2-Tetrachloroethane	67		50	ug/l	12/21/23	12/21/23		
tert-Amyl methyl ether	ND		50	ug/l	12/21/23	12/21/23		
1,3-Dichloropropane	ND		50	ug/l	12/21/23	12/21/23		
Ethyl tert-butyl ether	ND		50	ug/l	12/21/23	12/21/23		
Diisopropyl ether	ND		50	ug/l	12/21/23	12/21/23		
Trichlorofluoromethane	ND		50	ug/l	12/21/23	12/21/23		
Dichlorodifluoromethane	ND		50	ug/l	12/21/23	12/21/23		
Surrogate(s)	Recovery%		Limits	5				
4-Bromofluorobenzene	97.8%		70-130	9	12/21/23	12/21/23		
1,2-Dichloroethane-d4	104%		70-130	2	12/21/23	12/21/23		
Toluene-d8	91.6%		70-130)	12/21/23	12/21/23		

Quality Control

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L1016 - Purge-Trap										
Blank (B3L1016-BLK1)					Prepared 8	Analyzed: 12	2/21/23			
Acetone	ND		100	ug/l						
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		100	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
1,2 Dichloroethene, Total	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		100	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		100	ug/i						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/i						
Methylene Chloride	ND		1	ug/l						
4-Methyl-2-pentanone	ND		100	ug/I						
	ND		1	ug/l						
n-Propyidenzene	ND		1	ug/i						
	ND		1	ug/I						
1,1,1,2-1 etrachioroethane	ND		1	ug/I						
retrachioroethene	ND		1	ug/i				1		
			Quality (Conti	Control						
----------------------------------	-------------	------	--------------------	---------	------------	----------------	---------	---------	-----	--------------
Volatile Organic Compounds (Continued)									
Analyte	Result	Qual	Reporting Limit	Units	Spike	Source	%REC	%REC	RPD	RPD Limit
Andryce	Result			011103	Level	Result	JUILEE	LITIICS	N D	Linit
Batch: B3L1016 - Purge-Trap	(Continued)									
Blank (B3L1016-BLK1)					Prepared 8	& Analyzed: 12	2/21/23			
Tetrahydrofuran	ND		5	ug/l						
Toluene	ND		1	ug/l						
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,3,5-Trimethylbenzene	ND		1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND		1	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
Ethyl tert-butyl ether	ND		1	ug/l						
Diisopropyl ether	ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
Surragte: 4.Bromofluorabenzene			 		 50 0		06.0	70_130		
Surrogate: 1 2-Dichloroethane-d4			-0.4 50.6	ug/l	50.0		101	70-130		
Surrogate: Toluene-da			48 0	ug/l	50.0		96.0	70-130		
			40.0		Duamawad	0 Ameli 11		70-130		
LCS (B3L1016-BS1)	20		-		Prepared a	& Analyzed: 12	2/21/23	50 4 50		
Acetone	28		5	ug/i	50.0		55.1	50-150		
Benzene	48		1	ug/i	50.0		95.1	70-130		
Bromobenzene	4/		1	ug/i	50.0		93.0	70-130		
Bromocniorometnane	45		1	ug/i	50.0		90.3	70-130		
Bromodicnioromethane	48		1	ug/i	50.0		96.5	/0-130		
Bromotorm	41		1	ug/i	50.0		81.4	/0-130		
Bromomethane	66		1	ug/I	50.0		133	50-150		
2-Butanone	34		5	ug/l	50.0		68.9	50-150		
tert-Butyl alcohol	51		5	ug/l	50.0		103	70-130		
sec-Butylbenzene	49		1	ug/l	50.0		98.1	70-130		

ug/l

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

107

97.4

101

106

100

96.3

116

102

83.2

102

96.1

77.9

89.0

91.5

93.9

101

102

92.3

103

109

100

70-130

70-130

70-130

50-150

70-130

70-130

50-150

70-130

50-150

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

54

49

51

53

50

48

58

51

42

51

48

39

44

46

47

50

51

46

52

54

50

n-Butylbenzene

tert-Butylbenzene Methyl t-butyl ether (MTBE)

Carbon Disulfide

Chlorobenzene

Chloromethane

4-Chlorotoluene

2-Chlorotoluene

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

trans-1,2-Dichloroethene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,2-Dibromo-3-chloropropane (DBCP)

Chloroethane

Chloroform

Carbon Tetrachloride

Volatile Organic Compounds (Continued)

Analute	Pocult	Qual	Reporting	Unite	Spike	Source	%PEC	%REC	PDD	RPD Limit
Analyte	Result	Quui	Linit	Offics	Level	Result	JUNEC	LITIICS	KI D	
Batch: B3L1016 - Purge-Trap (Cont	inued)									
LCS (B3L1016-BS1)				_	Prepared 8	& Analyzed: 12	2/21/23			
cis-1,2-Dichloroethene	42		1	ug/l	50.0		84.4	70-130		
1,1-Dichloroethene	48		1	ug/l	50.0		96.1	70-130		
1,2-Dichloropropane	50		1	ug/l	50.0		101	70-130		
2,2-Dichloropropane	50		1	ug/l	50.0		99.3	70-130		
cis-1,3-Dichloropropene	47		1	ug/l	50.0		93.9	70-130		
trans-1,3-Dichloropropene	51		1	ug/l	50.0		102	70-130		
1,1-Dichloropropene	48		1	ug/l	50.0		95.1	70-130		
Diethyl ether	58		5	ug/l	50.0		116	70-130		
1,4-Dioxane	201		100	ug/l	250		80.4	50-150		
Ethylbenzene	50		1	ug/l	50.0		100	70-130		
Hexachlorobutadiene	50		1	ug/l	50.0		99.0	70-130		
2-Hexanone	37		5	ug/l	50.0		73.5	50-150		
Isopropylbenzene	49		1	ug/l	50.0		98.1	70-130		
p-Isopropyltoluene	50		1	ug/l	50.0		101	70-130		
Methylene Chloride	52		1	ug/l	50.0		104	70-130		
4-Methyl-2-pentanone	48		5	ug/l	50.0		96.4	50-150		
Naphthalene	45		1	ug/l	50.0		89.1	70-130		
n-Propylbenzene	52		1	ug/l	50.0		103	70-130		
Styrene	49		1	ug/i	50.0		97.5	70-130		
1,1,1,2-Tetrachloroethane	47		1	ug/i	50.0		93.3	70-130		
letrachloroethene	45		1	ug/i	50.0		90.6	/0-130		
l etrahydrofuran	45		5	ug/i	50.0		90.4	50-150		
loluene	4/		1	ug/i	50.0		94.5	/0-130		
1,2,4- I richlorobenzene	52		1	ug/i	50.0		103	/0-130		
1,2,3-Irichlorobenzene	50		1	ug/i	50.0		100	/0-130		
1,1,2-I richloroethane	48		1	ug/i	50.0		96.0	/0-130		
1,1,1-1 richloroethane	52		1	ug/i	50.0		104	70-130		
1 2 2 Tricklessensens	43		1	ug/i	50.0		86.3	70-130		
1,2,3-1 richloropropane	51		1	ug/i	50.0		102	70-130		
1,3,5-i rimetnyibenzene	50		1	ug/i	50.0		99.5	70-130		
1,2,4- i rimetnyibenzene	50		1	ug/i	50.0		99.9	70-130		
	44		1	ug/l	50.0		87.7	50-150 70 120		
0-Xylene	4/		1	ug/l	100		94.0 06 F	70-130		
1 1 2 2 Totrashleroothano	90 40		2	ug/l	100		90.5	70-130		
1,1,2,2-1 et del lioi dell'idile	40 40		1	ug/l	50.0		95.0	70-130		
1.2 Dichloropropage	40 40		1	ug/l	50.0		90.7	70-130		
1,3-Dichloropropane	49		1	ug/l	50.0		98.5	70-130		
	51		1	ug/l	50.0		101	70-150		
l richlorofluoromethane	55		1	ug/l	50.0		109	50-150		
	33 		1	uy/i	50.0		5.00	50-150		
Surrogate: 4-Bromofluorobenzene			50.2	ug/l	50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.4	ug/l	50.0		98.7	70-130		
Surrogate: Toluene-d8			49.7	ug/l	50.0		99.5	70-130		

Volatile Organic Compounds (Continued)

			D- ''		c "	6		0/ 55 -		
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		•	-							
Batch: B3L1016 - Purge-Trap (Con	tinued)				_					
LCS Dup (B3L1016-BSD1)	-		_		Prepared 8	& Analyzed: 12	2/21/23			
Acetone	27		5	ug/l	50.0		53.4	50-150	3.06	20
Benzene	48		1	ug/l	50.0		96.1	70-130	1.03	20
Bromobenzene	47		1	ug/l	50.0		94.1	70-130	1.13	20
Bromochloromethane	47		1	ug/l	50.0		93.2	70-130	3.23	20
Bromodichloromethane	47		1	ug/l	50.0		93.3	70-130	3.37	20
Bromoform	41		1	ug/l	50.0		82.4	70-130	1.22	20
Bromomethane	67		1	ug/l	50.0		134	50-150	1.35	20
2-Butanone	33		5	ug/l	50.0		66.9	50-150	2.91	20
tert-Butyl alcohol	52		5	ug/l	50.0		104	70-130	0.969	20
sec-Butylbenzene	50		1	ug/l	50.0		100	70-130	2.16	20
n-Butylbenzene	55		1	ug/l	50.0		110	70-130	2.43	20
tert-Butylbenzene	50		1	ug/l	50.0		99.1	70-130	1.73	20
Methyl t-butyl ether (MTBE)	50		1	ug/l	50.0		99.9	70-130	1.47	20
Carbon Disulfide	54		1	ug/l	50.0		108	50-150	2.07	20
Carbon Tetrachloride	51		1	ug/l	50.0		102	70-130	1.53	20
Chlorobenzene	49		1	ug/l	50.0		98.2	70-130	1.91	20
Chloroethane	59		1	ug/l	50.0		118	50-150	1.56	20
Chloroform	51		1	ug/l	50.0		102	70-130	0.314	20
Chloromethane	41		1	ug/l	50.0		82.1	50-150	1.31	20
4-Chlorotoluene	52		1	ug/l	50.0		104	70-130	2.01	20
2-Chlorotoluene	48		1	ug/l	50.0		96.8	70-130	0.726	20
1,2-Dibromo-3-chloropropane (DBCP)	41		1	ug/l	50.0		81.6	70-130	4.64	20
Dibromochloromethane	44		1	ug/l	50.0		87.3	70-130	1.88	20
1,2-Dibromoethane (EDB)	44		1	ug/l	50.0		87.6	70-130	4.33	20
Dibromomethane	46		1	ug/l	50.0		92.2	70-130	1.74	20
1,2-Dichlorobenzene	51		1	ug/l	50.0		101	70-130	0.792	20
1,3-Dichlorobenzene	51		1	ug/l	50.0		103	70-130	0.763	20
1,4-Dichlorobenzene	47		1	ug/l	50.0		93.5	70-130	1.33	20
1,1-Dichloroethane	51		1	ug/l	50.0		101	70-130	1.84	20
1,2-Dichloroethane	54		1	ug/l	50.0		108	70-130	0.925	20
trans-1,2-Dichloroethene	49		1	ug/l	50.0		98.4	70-130	2.11	20
cis-1,2-Dichloroethene	45		1	ug/l	50.0		90.9	70-130	7.48	20
1,1-Dichloroethene	49		1	ug/l	50.0		98.7	70-130	2.73	20
1,2-Dichloropropane	50		1	ug/l	50.0		101	70-130	0.0397	20
2,2-Dichloropropane	50		1	ug/l	50.0		99.9	70-130	0.642	20
cis-1,3-Dichloropropene	47		1	ug/l	50.0		93.8	70-130	0.170	20
trans-1,3-Dichloropropene	48		1	ug/l	50.0		95.2	70-130	6.40	20
1,1-Dichloropropene	49		1	ug/l	50.0		98.1	70-130	3.11	20
Diethyl ether	57		5	ug/l	50.0		114	70-130	1.74	20
1,4-Dioxane	200		100	ug/l	250		79.9	50-150	0.574	20
Ethylbenzene	51		1	ug/l	50.0		102	70-130	1.78	20
Hexachlorobutadiene	53		1	ug/l	50.0		107	70-130	7.33	20
2-Hexanone	36		5	ug/l	50.0		71.5	50-150	2.68	20
Isopropylbenzene	50		1	ug/l	50.0		101	70-130	2.75	20
p-Isopropyltoluene	51		1	ug/l	50.0		103	70-130	2.12	20
Methylene Chloride	51		- 1	ua/l	50.0		102	70-130	2.11	20
4-Methyl-2-pentanone	49		- 5	ua/l	50.0		98.9	50-150	2.56	20
Nanhthalene	52		1	ua/l	50.0		105	70-130	16.3	20
n-Pronvlbenzene	53		1	ua/l	50.0		105	70-130	2 95	20
Styrene	49		1	ua/l	50.0		97.5	70-130	0.0205	20
1.1.1.2-Tetrachloroethane	48		1	ua/l	50.0		95.1	70-130	1.97	20
Tetrachloroethene	0ד 46		1	ua/l	50.0		92.1	70-130	1.57	20
Tetrahydrofuran	от 46		5	a,i	50.0		92.0 Q1 Q	50-150	1 40	20
Toluene	40		J 1	ug/i	50.0		02 E	70-120	0.024	20
1 2 4-Trichlorobenzono	4/ E7		1	ug/i	50.0		117	70-130	0.70	20
	5/		1	ug/I	50.0		120	70-130	J.20	20
	6U 40		1	ug/l	50.0		120	70-130	17.9	20
	40		Ţ	ugn	50.0		93.0	70-130	Page	16 of 20

Volatile Organic Compounds (Continued)

	ontinaca)									
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3L1016 - Purge-Trap (Continued)									
LCS Dup (B3L1016-BSD1)					Prepared 8	& Analyzed: 12	2/21/23			
1,1,1-Trichloroethane	53		1	ug/l	50.0		106	70-130	2.04	20
Trichloroethene	46		1	ug/l	50.0		91.8	70-130	6.18	20
1,2,3-Trichloropropane	51		1	ug/l	50.0		101	70-130	0.668	20
1,3,5-Trimethylbenzene	51		1	ug/l	50.0		102	70-130	2.79	20
1,2,4-Trimethylbenzene	51		1	ug/l	50.0		101	70-130	1.39	20
Vinyl Chloride	44		1	ug/l	50.0		88.7	50-150	1.13	20
o-Xylene	49		1	ug/l	50.0		97.2	70-130	3.33	20
m&p-Xylene	99		2	ug/l	100		98.8	70-130	2.33	20
1,1,2,2-Tetrachloroethane	49		1	ug/l	50.0		97.3	70-130	1.62	20
tert-Amyl methyl ether	48		1	ug/l	50.0		95.9	70-130	0.872	20
1,3-Dichloropropane	50		1	ug/l	50.0		99.7	70-130	1.45	20
Ethyl tert-butyl ether	51		1	ug/l	50.0		101	70-130	0.0593	20
Trichlorofluoromethane	55		1	ug/l	50.0		109	50-150	0.238	20
Dichlorodifluoromethane	33		1	ug/l	50.0		66.0	50-150	0.664	20
Surrogate: 4-Bromofluorobenzene			50.1	ug/l	50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4			53.5	ug/l	50.0		107	70-130		
Surrogate: Toluene-d8			48.6	ug/l	50.0		97.2	70-130		

Item	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

New England Testing Laboratory 59 Greenhill Street

West Warwick, RI 02893

1-88**8-86**3-8522

Chain of Custody Record

Page 19 of 20

Project No. 1075-1-2	Project N Wal	ame/	Loca	ation:										Fest	s**		
Client: Lig	htship.	Eng	ìnea	ening		Matri	x						Τ				
Report To:	Kevin À	Dar	adi	se					ativ					1			
kparadiscelightshipengineering-com Involce To: Kevin Paradise						No. of	reserva	8260									
Date	Time	Comp	Grab	Sample I.D.	Aqueous	Soil	Other	Containers	<u>Ē</u>	V DCS (
12/15/23	945		X	LE-THWI	X			2	HCI	X							
	1000		\mathbf{X}	LE-TMWZ .	X			2		×							
	900	<u> </u>	X	IE-TMW3 .				2		\star			_	_		L	
V_	845		\times	LE-TMWY	1×			2	$-\psi$	4		_	_	_			
															+	ļ	
		+															
		+											_	_	+		
	<u></u>					+								-	┿╾		
		+	<u> </u>			+									+		
	<u> </u>	1		· · · · · · · · · · · · · · · · · · ·		<u> </u>							+-	+-	1		
															1	<u> </u>	
Sampled By:		Date	/Time	Received By:	Date	ITIme	Lat	poratory Remar	ks:	Spe	cial Ins	structi	ons:				
K-Halov	very	12/11 14	8/23 30	Gr	10	130											
Relinquished	By:	Date,	/Time		Date 12/	/Time 18/22		01	n ice								
	\mathcal{N}^{\prime}	14	ζQ	Engine Pourige	18	:00	Ter	np. Received:	5								
**Netlab/Subcontracts the following tests: Radiologicals, Radon, TO				OC,	Asbe	stos	s, UCMRs, Perc	chlorate,									
Bromate/Bro	mide, Sieve	e, Sal	mon	ella, Carbamates	_		_			Turnaround Time [Business Days]: 5 Days				Days			
\bigvee																	

	MassDEP Analytical Protocol Certification Form									
Labo	oratory Na	me: New England	d Testing Laboratory	, Inc.	Project #: 1075.1.	2				
Proje	ect Locatio	on: Wareham, MA	١		RTN:					
This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 3L18035										
Matrices: I Groundwater/Surface Water I Soil/Sediment I Drinking Water I Air I Other:										
CAM Protocol (check all that apply below):										
8260 CAM	VOC II A ⊠	7470/7471 Hg CAM III B □	MassDEP VPH (GC/PID/FID) CAM IV A □	8082 PCB CAM V A □	9014 Total Cyanide/PAC CAM VI A □	6860 Perchlorate CAM VIII B □				
8270 CAM	8270 SVOC CAM II B □ 7010 Metals CAM III C □ MassDEP VPH (GC/MS) CAM IV C □ 8081 Pesticides CAM V B □ 7196 Hex Cr CAM VI B □ MassDEP APH CAM VI B □									
6010 CAM	6010 Metals 6020 Metals MassDEP EPH 8151 Herbicides 8330 Explosives TO-15 VOC CAM III A CAM III D CAM IV B CAM V C CAM VIII A CAM IX B									
4	Affirmativ	ve Responses to	Questions A throug	gh F are required f	for "Presumptive Ce	rtainty" status				
А	A Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and ⊠ Yes □ No Prepared/analyzed within method holding times?									
в	B Were the analytical method(s) and all associated QC requirements specified in the selected ⊠ Yes □ No									
с	Were all CAM pro	required corrective tocol(s) implemente	e actions and analyticaed for all identified perf	al response actions s ormance standard no	specified in the selecter n-conformances?	d ⊠ Yes □ No				
D	Does the "Quality Analytica	a laboratory report Assurance and G Il Data"?	comply with all the re Quality Control Guide	porting requirements lines for the Acquis	specified in CAM VII A ition and Reporting c	a, of ⊠Yes ⊡No				
Е	VPH, EP a. VPH, modificat b. APH a	H, APH, and TO-15 EPH, and APH I ion(s)? (Refer to th ind TO-15 Methods	only Methods only: Was e individual method(s) only: Was the complet	each method condu for a list of significant te analyte list reported	icted without significar modifications). d for each method?	nt □ Yes □ No □ Yes □ No				
F	Were all and eval	applicable CAM prused in a laborator	rotocol QC and perfor y narrative (including a	mance standard non- all "No" responses to C	-conformances identifie Questions A through E)?	d ⊠ Yes □ No				
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	tatus				
G	Were the protocol(e reporting limits at o s)?	or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No ¹				
<u>Da</u> re	<u>ata User No</u> presentati	<u>ote</u> : Data that achiev veness requirements	ve "Presumptive Certail s described in 310 CMR	nty" status may not ne 240. 1056 (2)(k) and WS	cessarily meet the data (SC-07-350.	usability and				
Н	Were all	QC performance st	andards specified in th	ne CAM protocol(s) ac	chieved?	⊠ Yes □ No ¹				
I	Were res	sults reported for the	e complete analyte list	specified in the select	ted CAM protocol(s)?	⊠ Yes □ No ¹				
¹ All r	negative r	esponses must be	addressed in an attac	ched laboratory narra	ative.					
<i>I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.</i>										
Sign	Signature: Marcula Position: Laboratory Director									
Print	Printed Name: Richard Warila Date: 12/26/2023									
<u> </u>						Page 20 of 20				

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 3L20029 Client Project: 1075 - Wareham

Report Date: 28-December-2023

Prepared for:

Kevin Paradise Lightship Engineering 6 Resnik Raod, Suite 207 Plymouth, MA 02360

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted :

The samples listed below were submitted to New England Testing Laboratory on 12/20/23. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 3L20029. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
3L20029-01	LE-TP2 (4-6)	Soil	12/14/2023	12/20/2023
3L20029-02	LE-TP6 (8-10)	Soil	12/14/2023	12/20/2023
3L20029-03	LE-TP12 (10-12)	Soil	12/19/2023	12/20/2023

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

LE-TP12 (10-12) (Lab Number: 3L20029-03)

Analysis	<u>Method</u>
MADEP EPH MADEP VPH Volatile Organic Compounds	Madep eph Madep vph Epa 8260C
LE-TP2 (4-6) (Lab Number: 3L20029-01)	
Analysis	<u>Method</u>
MADEP EPH MADEP VPH Volatile Organic Compounds	Madep eph Madep vph Epa 8260C
LE-TP6 (8-10) (Lab Number: 3L20029-02)	
Analysis	<u>Method</u>
MADEP EPH	MADEP EPH

MADEP VPH Volatile Organic Compounds MADEP VPH

EPA 8260C

Method References

Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2004

Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2018

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Volatile Organic Compounds 8260C (5035-LL)

Sample: LE-TP2 (4-6)

Lab Number: 3L20029-01 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		101	ug/kg	12/26/23	12/26/23
Benzene	ND		5	ug/kg	12/26/23	12/26/23
Bromobenzene	ND		5	ug/kg	12/26/23	12/26/23
Bromochloromethane	ND		5	ug/kg	12/26/23	12/26/23
Bromodichloromethane	ND		5	ug/kg	12/26/23	12/26/23
Bromoform	ND		5	ug/kg	12/26/23	12/26/23
Bromomethane	ND		5	ug/kg	12/26/23	12/26/23
2-Butanone	ND		101	ug/kg	12/26/23	12/26/23
tert-Butyl alcohol	ND		5	ug/kg	12/26/23	12/26/23
sec-Butylbenzene	ND		5	ug/kg	12/26/23	12/26/23
n-Butylbenzene	ND		5	ug/kg	12/26/23	12/26/23
tert-Butylbenzene	ND		5	ug/kg	12/26/23	12/26/23
Methyl t-butyl ether (MTBE)	ND		5	ug/kg	12/26/23	12/26/23
Carbon Disulfide	ND		5	ug/kg	12/26/23	12/26/23
Carbon Tetrachloride	ND		5	ug/kg	12/26/23	12/26/23
Chlorobenzene	ND		5	ug/kg	12/26/23	12/26/23
Chloroethane	ND		5	ug/kg	12/26/23	12/26/23
Chloroform	ND		5	ug/kg	12/26/23	12/26/23
Chloromethane	ND		5	ug/kg	12/26/23	12/26/23
4-Chlorotoluene	ND		5	ug/kg	12/26/23	12/26/23
2-Chlorotoluene	ND		5	ug/kg	12/26/23	12/26/23
1,2-Dibromo-3-chloropropane (DBCP)	ND		5	ug/kg	12/26/23	12/26/23
Dibromochloromethane	ND		5	ug/kg	12/26/23	12/26/23
1,2-Dibromoethane (EDB)	ND		5	ug/kg	12/26/23	12/26/23
Dibromomethane	ND		5	ug/kg	12/26/23	12/26/23
1,2-Dichlorobenzene	ND		5	ug/kg	12/26/23	12/26/23
1,3-Dichlorobenzene	ND		5	ug/kg	12/26/23	12/26/23
1,4-Dichlorobenzene	ND		5	ug/kg	12/26/23	12/26/23
1,1-Dichloroethane	ND		5	ug/kg	12/26/23	12/26/23
1,2-Dichloroethane	ND		5	ug/kg	12/26/23	12/26/23
1,2 Dichloroethene, Total	ND		5	ug/kg	12/26/23	12/26/23
trans-1,2-Dichloroethene	ND		5	ug/kg	12/26/23	12/26/23
cis-1,2-Dichloroethene	ND		5	ug/kg	12/26/23	12/26/23
1,1-Dichloroethene	ND		5	ug/kg	12/26/23	12/26/23
1,2-Dichloropropane	ND		5	ug/kg	12/26/23	12/26/23
2,2-Dichloropropane	ND		5	ug/kg	12/26/23	12/26/23
cis-1,3-Dichloropropene	ND		5	ug/kg	12/26/23	12/26/23
trans-1,3-Dichloropropene	ND		5	ug/kg	12/26/23	12/26/23
1,1-Dichloropropene	ND		5	ug/kg	12/26/23	12/26/23
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg	12/26/23	12/26/23
Diethyl ether	ND		5	ug/kg	12/26/23	12/26/23
1,4-Dioxane	ND		101	ug/kg	12/26/23	12/26/23
Ethylbenzene	ND		5	ug/kg	12/26/23	12/26/23
Hexachlorobutadiene	ND		5	ug/kg	12/26/23	12/26/23
2-Hexanone	ND		101	ug/kg	12/26/23	12/26/23
Isopropylbenzene	ND		5	ug/kg	12/26/23	12/26/23
p-Isopropyltoluene	ND		5	ug/kg	12/26/23	12/26/23

Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: LE-TP2 (4-6) (Continued)

Lab Number: 3L20029-01 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Methylene Chloride	ND		15	ug/kg	12/26/23	12/26/23
4-Methyl-2-pentanone	ND		101	ug/kg	12/26/23	12/26/23
Naphthalene	ND		5	ug/kg	12/26/23	12/26/23
n-Propylbenzene	ND		5	ug/kg	12/26/23	12/26/23
Styrene	ND		5	ug/kg	12/26/23	12/26/23
1,1,1,2-Tetrachloroethane	ND		5	ug/kg	12/26/23	12/26/23
Tetrachloroethene	ND		5	ug/kg	12/26/23	12/26/23
Tetrahydrofuran	ND		5	ug/kg	12/26/23	12/26/23
Toluene	ND		5	ug/kg	12/26/23	12/26/23
1,2,4-Trichlorobenzene	ND		5	ug/kg	12/26/23	12/26/23
1,2,3-Trichlorobenzene	ND		5	ug/kg	12/26/23	12/26/23
1,1,2-Trichloroethane	ND		5	ug/kg	12/26/23	12/26/23
1,1,1-Trichloroethane	ND		5	ug/kg	12/26/23	12/26/23
Trichloroethene	ND		5	ug/kg	12/26/23	12/26/23
1,2,3-Trichloropropane	ND		5	ug/kg	12/26/23	12/26/23
1,3,5-Trimethylbenzene	ND		5	ug/kg	12/26/23	12/26/23
1,2,4-Trimethylbenzene	ND		5	ug/kg	12/26/23	12/26/23
Vinyl Chloride	ND		5	ug/kg	12/26/23	12/26/23
o-Xylene	ND		5	ug/kg	12/26/23	12/26/23
m&p-Xylene	ND		10	ug/kg	12/26/23	12/26/23
Total xylenes	ND		5	ug/kg	12/26/23	12/26/23
1,1,2,2-Tetrachloroethane	ND		5	ug/kg	12/26/23	12/26/23
tert-Amyl methyl ether	ND		5	ug/kg	12/26/23	12/26/23
1,3-Dichloropropane	ND		5	ug/kg	12/26/23	12/26/23
Ethyl tert-butyl ether	ND		5	ug/kg	12/26/23	12/26/23
Diisopropyl ether	ND		5	ug/kg	12/26/23	12/26/23
Trichlorofluoromethane	ND		5	ug/kg	12/26/23	12/26/23
Dichlorodifluoromethane	ND		5	ug/kg	12/26/23	12/26/23
Surrogate(s)	Recovery%		Limits			
4-Bromofluorobenzene	102%		70-130)	12/26/23	12/26/23
1,2-Dichloroethane-d4	109%		70-130)	12/26/23	12/26/23
Toluene-d8	102%		70-130	7	12/26/23	12/26/23

Results: Volatile Organic Compounds 8260C (5035-LL)

Sample: LE-TP6 (8-10)

Lab Number: 3L20029-02 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		130	ug/kg	12/28/23	12/28/23
Benzene	ND		7	ug/kg	12/28/23	12/28/23
Bromobenzene	ND		7	ug/kg	12/28/23	12/28/23
Bromochloromethane	ND		7	ug/kg	12/28/23	12/28/23
Bromodichloromethane	ND		7	ug/kg	12/28/23	12/28/23
Bromoform	ND		7	ug/kg	12/28/23	12/28/23
Bromomethane	ND		7	ug/kg	12/28/23	12/28/23
2-Butanone	ND		130	ug/kg	12/28/23	12/28/23
tert-Butyl alcohol	ND		7	ug/kg	12/28/23	12/28/23
sec-Butylbenzene	ND		7	ug/kg	12/28/23	12/28/23
n-Butylbenzene	ND		7	ug/kg	12/28/23	12/28/23
tert-Butylbenzene	ND		7	ug/kg	12/28/23	12/28/23
Methyl t-butyl ether (MTBE)	ND		7	ug/kg	12/28/23	12/28/23
Carbon Disulfide	ND		7	ug/kg	12/28/23	12/28/23
Carbon Tetrachloride	ND		7	ug/kg	12/28/23	12/28/23
Chlorobenzene	ND		7	ug/kg	12/28/23	12/28/23
Chloroethane	ND		7	ug/kg	12/28/23	12/28/23
Chloroform	ND		7	ug/kg	12/28/23	12/28/23
Chloromethane	ND		7	ug/kg	12/28/23	12/28/23
4-Chlorotoluene	ND		7	ug/kg	12/28/23	12/28/23
2-Chlorotoluene	ND		7	ug/kg	12/28/23	12/28/23
1,2-Dibromo-3-chloropropane (DBCP)	ND		7	ug/kg	12/28/23	12/28/23
Dibromochloromethane	ND		7	ug/kg	12/28/23	12/28/23
1,2-Dibromoethane (EDB)	ND		7	ug/kg	12/28/23	12/28/23
Dibromomethane	ND		7	ug/kg	12/28/23	12/28/23
1,2-Dichlorobenzene	ND		7	ug/kg	12/28/23	12/28/23
1,3-Dichlorobenzene	ND		7	ug/kg	12/28/23	12/28/23
1,4-Dichlorobenzene	ND		7	ug/kg	12/28/23	12/28/23
1,1-Dichloroethane	ND		7	ug/kg	12/28/23	12/28/23
1,2-Dichloroethane	ND		7	ug/kg	12/28/23	12/28/23
1,2 Dichloroethene, Total	ND		7	ug/kg	12/28/23	12/28/23
trans-1,2-Dichloroethene	ND		7	ug/kg	12/28/23	12/28/23
cis-1,2-Dichloroethene	ND		7	ug/kg	12/28/23	12/28/23
1,1-Dichloroethene	ND		7	ug/kg	12/28/23	12/28/23
1,2-Dichloropropane	ND		7	ug/kg	12/28/23	12/28/23
2,2-Dichloropropane	ND		7	ug/kg	12/28/23	12/28/23
cis-1,3-Dichloropropene	ND		7	ug/kg	12/28/23	12/28/23
trans-1,3-Dichloropropene	ND		7	ug/kg	12/28/23	12/28/23
1,1-Dichloropropene	ND		7	ug/kg	12/28/23	12/28/23
1,3-Dichloropropene (cis + trans)	ND		7	ug/kg	12/28/23	12/28/23
Diethyl ether	ND		7	ug/kg	12/28/23	12/28/23
1,4-Dioxane	ND		130	ug/kg	12/28/23	12/28/23
Ethylbenzene	ND		7	ug/kg	12/28/23	12/28/23
Hexachlorobutadiene	ND		7	ug/kg	12/28/23	12/28/23
2-Hexanone	ND		130	ug/kg	12/28/23	12/28/23
Isopropylbenzene	ND		/	ug/kg	12/28/23	12/28/23
p-1sopropyltoluene	ND		7	ug/kg	12/28/23	12/28/23

Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: LE-TP6 (8-10) (Continued)

Lab Number: 3L20029-02 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Methylene Chloride	ND		13	ug/kg	12/28/23	12/28/23
4-Methyl-2-pentanone	ND		130	ug/kg	12/28/23	12/28/23
Naphthalene	ND		7	ug/kg	12/28/23	12/28/23
n-Propylbenzene	ND		7	ug/kg	12/28/23	12/28/23
Styrene	ND		7	ug/kg	12/28/23	12/28/23
1,1,1,2-Tetrachloroethane	ND		7	ug/kg	12/28/23	12/28/23
Tetrachloroethene	ND		7	ug/kg	12/28/23	12/28/23
Tetrahydrofuran	ND		7	ug/kg	12/28/23	12/28/23
Toluene	ND		7	ug/kg	12/28/23	12/28/23
1,2,4-Trichlorobenzene	ND		7	ug/kg	12/28/23	12/28/23
1,2,3-Trichlorobenzene	ND		7	ug/kg	12/28/23	12/28/23
1,1,2-Trichloroethane	ND		7	ug/kg	12/28/23	12/28/23
1,1,1-Trichloroethane	ND		7	ug/kg	12/28/23	12/28/23
Trichloroethene	ND		7	ug/kg	12/28/23	12/28/23
1,2,3-Trichloropropane	ND		7	ug/kg	12/28/23	12/28/23
1,3,5-Trimethylbenzene	ND		7	ug/kg	12/28/23	12/28/23
1,2,4-Trimethylbenzene	ND		7	ug/kg	12/28/23	12/28/23
Vinyl Chloride	ND		7	ug/kg	12/28/23	12/28/23
o-Xylene	ND		7	ug/kg	12/28/23	12/28/23
m&p-Xylene	ND		13	ug/kg	12/28/23	12/28/23
Total xylenes	ND		7	ug/kg	12/28/23	12/28/23
1,1,2,2-Tetrachloroethane	ND		7	ug/kg	12/28/23	12/28/23
tert-Amyl methyl ether	ND		7	ug/kg	12/28/23	12/28/23
1,3-Dichloropropane	ND		7	ug/kg	12/28/23	12/28/23
Ethyl tert-butyl ether	ND		7	ug/kg	12/28/23	12/28/23
Diisopropyl ether	ND		7	ug/kg	12/28/23	12/28/23
Trichlorofluoromethane	ND		7	ug/kg	12/28/23	12/28/23
Dichlorodifluoromethane	ND		7	ug/kg	12/28/23	12/28/23
Surrogate(s)	Recovery%		Limit	s		
4-Bromofluorobenzene	95.8%		70-13	20	12/28/23	12/28/23
1,2-Dichloroethane-d4	108%		70-13	0	12/28/23	12/28/23
Toluene-d8	101%		70-13	0	12/28/23	12/28/23

Results: Volatile Organic Compounds 8260C (5035-LL)

Sample: LE-TP12 (10-12)

Lab Number: 3L20029-03 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		161	ug/kg	12/26/23	12/26/23
Benzene	ND		8	ug/kg	12/26/23	12/26/23
Bromobenzene	ND		8	ug/kg	12/26/23	12/26/23
Bromochloromethane	ND		8	ug/kg	12/26/23	12/26/23
Bromodichloromethane	ND		8	ug/kg	12/26/23	12/26/23
Bromoform	ND		8	ug/kg	12/26/23	12/26/23
Bromomethane	ND		8	ug/kg	12/26/23	12/26/23
2-Butanone	ND		161	ug/kg	12/26/23	12/26/23
tert-Butyl alcohol	ND		8	ug/kg	12/26/23	12/26/23
sec-Butylbenzene	ND		8	ug/kg	12/26/23	12/26/23
n-Butylbenzene	ND		8	ug/kg	12/26/23	12/26/23
tert-Butylbenzene	ND		8	ug/kg	12/26/23	12/26/23
Methyl t-butyl ether (MTBE)	ND		8	ug/kg	12/26/23	12/26/23
Carbon Disulfide	ND		8	ug/kg	12/26/23	12/26/23
Carbon Tetrachloride	ND		8	ug/kg	12/26/23	12/26/23
Chlorobenzene	ND		8	ug/kg	12/26/23	12/26/23
Chloroethane	ND		8	ug/kg	12/26/23	12/26/23
Chloroform	ND		8	ug/kg	12/26/23	12/26/23
Chloromethane	ND		8	ug/kg	12/26/23	12/26/23
4-Chlorotoluene	ND		8	ug/kg	12/26/23	12/26/23
2-Chlorotoluene	ND		8	ug/kg	12/26/23	12/26/23
1,2-Dibromo-3-chloropropane (DBCP)	ND		8	ug/kg	12/26/23	12/26/23
Dibromochloromethane	ND		8	ug/kg	12/26/23	12/26/23
1,2-Dibromoethane (EDB)	ND		8	ug/kg	12/26/23	12/26/23
Dibromomethane	ND		8	ug/kg	12/26/23	12/26/23
1,2-Dichlorobenzene	ND		8	ug/kg	12/26/23	12/26/23
1,3-Dichlorobenzene	ND		8	ug/kg	12/26/23	12/26/23
1,4-Dichlorobenzene	ND		8	ug/kg	12/26/23	12/26/23
1,1-Dichloroethane	ND		8	ug/kg	12/26/23	12/26/23
1,2-Dichloroethane	ND		8	ug/kg	12/26/23	12/26/23
1,2 Dichloroethene, Total	ND		8	ug/kg	12/26/23	12/26/23
trans-1,2-Dichloroethene	ND		8	ug/kg	12/26/23	12/26/23
cis-1,2-Dichloroethene	ND		8	ug/kg	12/26/23	12/26/23
1,1-Dichloroethene	ND		8	ug/kg	12/26/23	12/26/23
1,2-Dichloropropane	ND		8	ug/kg	12/26/23	12/26/23
2,2-Dichloropropane	ND		8	ug/kg	12/26/23	12/26/23
cis-1,3-Dichloropropene	ND		8	ug/kg	12/26/23	12/26/23
trans-1,3-Dichloropropene	ND		8	ug/kg	12/26/23	12/26/23
1,1-Dichloropropene	ND		8	ug/kg	12/26/23	12/26/23
1,3-Dichloropropene (cis + trans)	ND		8	ug/kg	12/26/23	12/26/23
Diethyl ether	ND		8	ug/kg	12/26/23	12/26/23
1,4-Dioxane	ND		161	ug/kg	12/26/23	12/26/23
Ethylbenzene	ND		8	ug/kg	12/26/23	12/26/23
Hexachlorobutadiene	ND		8	ug/kg	12/26/23	12/26/23
2-Hexanone	ND		161	ug/kg	12/26/23	12/26/23
Isopropylbenzene	ND		8	ug/kg	12/26/23	12/26/23
p-Isopropyltoluene	ND		8	ug/kg	12/26/23	12/26/23

Results: Volatile Organic Compounds 8260C (5035-LL) (Continued)

Sample: LE-TP12 (10-12) (Continued)

Lab Number: 3L20029-03 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Methylene Chloride	ND		24	ug/kg	12/26/23	12/26/23
4-Methyl-2-pentanone	ND		161	ug/kg	12/26/23	12/26/23
Naphthalene	ND		8	ug/kg	12/26/23	12/26/23
n-Propylbenzene	ND		8	ug/kg	12/26/23	12/26/23
Styrene	ND		8	ug/kg	12/26/23	12/26/23
1,1,1,2-Tetrachloroethane	ND		8	ug/kg	12/26/23	12/26/23
Tetrachloroethene	ND		8	ug/kg	12/26/23	12/26/23
Tetrahydrofuran	ND		8	ug/kg	12/26/23	12/26/23
Toluene	ND		8	ug/kg	12/26/23	12/26/23
1,2,4-Trichlorobenzene	ND		8	ug/kg	12/26/23	12/26/23
1,2,3-Trichlorobenzene	ND		8	ug/kg	12/26/23	12/26/23
1,1,2-Trichloroethane	ND		8	ug/kg	12/26/23	12/26/23
1,1,1-Trichloroethane	ND		8	ug/kg	12/26/23	12/26/23
Trichloroethene	ND		8	ug/kg	12/26/23	12/26/23
1,2,3-Trichloropropane	ND		8	ug/kg	12/26/23	12/26/23
1,3,5-Trimethylbenzene	ND		8	ug/kg	12/26/23	12/26/23
1,2,4-Trimethylbenzene	ND		8	ug/kg	12/26/23	12/26/23
Vinyl Chloride	ND		8	ug/kg	12/26/23	12/26/23
o-Xylene	ND		8	ug/kg	12/26/23	12/26/23
m&p-Xylene	ND		16	ug/kg	12/26/23	12/26/23
Total xylenes	ND		8	ug/kg	12/26/23	12/26/23
1,1,2,2-Tetrachloroethane	ND		8	ug/kg	12/26/23	12/26/23
tert-Amyl methyl ether	ND		8	ug/kg	12/26/23	12/26/23
1,3-Dichloropropane	ND		8	ug/kg	12/26/23	12/26/23
Ethyl tert-butyl ether	ND		8	ug/kg	12/26/23	12/26/23
Diisopropyl ether	ND		8	ug/kg	12/26/23	12/26/23
Trichlorofluoromethane	ND		8	ug/kg	12/26/23	12/26/23
Dichlorodifluoromethane	ND		8	ug/kg	12/26/23	12/26/23
Surrogate(s)	Recovery%		Lim	its		
4-Bromofluorobenzene	98.6%			1.30	12/26/23	12/26/23
1,2-Dichloroethane-d4	105%		70-1	1.30	12/26/23	12/26/23
Toluene-d8	101%		70-1	1.30	12/26/23	12/26/23

Volatile Petroleum Hydrocarbons Sample: LE-TP2 (4-6) (3L20029-01)

SAMPLE INFORMATION

Matrix	Soil			
Containers	Satisfactory			
	Aqueous	NA	-	
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol per gram soil:	
	Sediment	Methanol preserved (covering sample)		
		Received in air-tight container 1:1 +/- 25%		
Temperature	Received on Ice Received at: 4+/-2 C°			

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH-18-2.1		Client ID		LE-TP2 (4-6)		
Method for Target Analytes: MADEP VPH-18-2.1			L	ab ID	3L20029-01	
VPH Surrogate Standards:			Date Col	lected	12/14/23	
PID: 2,5-Dibromotoluene			Date Red	ceived	12/20/23	
FID: 2,5-Dibromotoluene			% M	oisture	11.30	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	60.3	mg/kg	<60.3	12/27/23 03:54
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	60.3	mg/kg	<60.3	12/27/23 03:54
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	75.4	mg/kg	<75.4	12/27/23 03:54
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	75.4	mg/kg	<75.4	12/27/23 03:54
2,5-Dibromotoluene-PID				%	81.0	12/27/23 03:54
2,5-Dibromotoluene-FID				%	80.8	12/27/23 03:54
Surrogate Acceptance Range				%	70-130	

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: LE-TP6 (8-10) (3L20029-02)

SAMPLE INFORMATION

Matrix	Soil			
Containers	Satisfactory			
	Aqueous	NA		
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol per gram soil:	
	Sediment	Methanol preserved (covering sample)		
		Received in air-tight container 1:1 +/- 25%		
Temperature	Received on Ice Received at: 4+/-2 C°			

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH-18-2.1	Client ID LE-TP6 (LE-TP6 (8-10)			
Method for Target Analytes: MADEP VPH-18-2.1			L	ab ID	3L20029-02	
VPH Surrogate Standards:			Date Col	lected	12/14/23	
PID: 2,5-Dibromotoluene			Date Red	ceived	12/20/23	
FID: 2,5-Dibromotoluene			% M	oisture	32.20	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	38.4	mg/kg	<38.4	12/27/23 04:29
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	38.4	mg/kg	<38.4	12/27/23 04:29
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	48.0	mg/kg	<48.0	12/27/23 04:29
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	48.0	mg/kg	<48.0	12/27/23 04:29
2,5-Dibromotoluene-PID				%	86.7	12/27/23 04:29
2,5-Dibromotoluene-FID				%	86.1	12/27/23 04:29
Surrogate Acceptance Range				%	70-130	

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: LE-TP12 (10-12) (3L20029-03)

SAMPLE INFORMATION

Matrix	Soil			
Containers	Satisfactory			
	Aqueous	NA	-	
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol per gram soil:	
	Sediment	Methanol preserved (covering sample)		
		Received in air-tight container 1:1 +/- 25%		
Temperature	Received on Ice Received at: 4+/-2 C°			

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH-18-2.1	Client ID LE-TP12 (10-12))			
Method for Target Analytes: MADEP VPH-18-2.1			L	ab ID	3L20029-03	
VPH Surrogate Standards:			Date Col	lected	12/19/23	
PID: 2,5-Dibromotoluene			Date Red	ceived	12/20/23	
FID: 2,5-Dibromotoluene			% M	oisture	13.30	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	29.1	mg/kg	<29.1	12/27/23 05:01
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	29.1	mg/kg	<29.1	12/27/23 05:01
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	36.4	mg/kg	<36.4	12/27/23 05:01
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	36.4	mg/kg	<36.4	12/27/23 05:01
2,5-Dibromotoluene-PID				%	100	12/27/23 05:01
2,5-Dibromotoluene-FID				%	97.7	12/27/23 05:01
Surrogate Acceptance Range				%	70-130	

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Extractable Petroleum Hydrocarbons Sample: LE-TP2 (4-6) (3L20029-01)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALYTICAL RESULTS

Method for Ranges: MADEP EPH 4-1.1				Client ID	LE-TP2 (4-6)		
Method for Target Analytes: MADEP EPH 4-1.1				Lab ID	3L20029-01		
EPH Surrogate Standards:			Dat	te Collected	12/14/23		
Aliphatic: Chlorooctadecane			Da	te Received	12/20/23		
Aromatic: o-Terphenyl			D	ate Thawed	NA		
			Dat	e Extracted	12/20/23		
EPH Fractionation Surrogates	:		Perce	nt Moisture	11.30		
(1) 2-Fluorodiphenyl (2) 2-Bromonaphthalene							
RANGE/TARGET ANALYTE		Dilution	RL	Units	Result	Analyzed	
Unadjusted C11-C22 Arom	atic Hydrocarbons [1]	1X	7.47	mg/kg	10.3	12/22/23 18:54	
	Naphthalene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
Diesel PAH	2-Methylnaphthalene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
Analytes	Phenanthrene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
	Acenaphthene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
	Acenaphthylene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
	Fluorene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
	Anthracene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
	Fluoranthene	1X	0.37	mg/kg	1.14	12/22/23 18:54	
	Pyrene	1X	0.37	mg/kg	0.87	12/22/23 18:54	
	Benzo(a)anthracene	1X	0.37	mg/kg	0.68	12/22/23 18:54	
Other	Chrysene	1X	0.37	mg/kg	0.75	12/22/23 18:54	
Target PAH	Benzo(b)fluoranthene	1X	0.37	mg/kg	0.71	12/22/23 18:54	
Analytes	Benzo(k)fluoranthene	1X	0.37	mg/kg	0.66	12/22/23 18:54	
	Benzo(a)pyrene	1X	0.37	mg/kg	0.48	12/22/23 18:54	
	Indeno(1,2,3-cd)pyrene	1X	0.37	mg/kg	0.40	12/22/23 18:54	
	Dibenz(a,h)anthracene	1X	0.37	mg/kg	<0.37	12/22/23 18:54	
	Benzo(g,h,i)perylene	1X	0.37	mg/kg	0.37	12/22/23 18:54	
C9-C18 Aliphatic Hydrocarbons [1]		1X	14.9	mg/kg	<14.9	12/22/23 18:01	
C19-C36 Aliphatic Hydrocarbons [1]		1X	14.9	mg/kg	<14.9	12/22/23 18:01	
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	7.47	mg/kg	<7.47	12/22/23 18:54	
Chlorooctadecane (Sample	e Surrogate)			%	42.8	12/22/23 18:01	
o-Terphenyl (Sample Surrogate)				%	55.5	12/22/23 18:54	
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	76.9	12/22/23 18:54	
2-Bromonaphthalene (Frac	ctionation Surrogate)			%	74.2	12/22/23 18:54	
Surrogate Acceptance Range [3]			%	40 - 140		

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

 $\ensuremath{\left[3\right]}$ See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: LE-TP6 (8-10) (3L20029-02)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALYTICAL RESULTS

Method for Ranges: MADEP E	PH 4-1.1			Client ID	LE-TP6 (8-10)	
Method for Target Analytes:	Madep EPH 4-1.1			Lab ID	3L20029-02	
EPH Surrogate Standards:			Dat	te Collected	12/14/23	
Aliphatic: Chlorooctadecane			Da	te Received	12/20/23	
Aromatic: o-Terphenyl			D	ate Thawed	NA	
			Dat	e Extracted	12/20/23	
EPH Fractionation Surrogates			Perce	nt Moisture	32.20	
(1) 2-Fluorodiphenyl (2) 2-Bromonaphthalene						
RANGE/TARGET ANALYTE	l l	Dilution	RL	Units	Result	Analyzed
Unadjusted C11-C22 Arom	natic Hydrocarbons [1]	1X	9.77	mg/kg	14.9	12/27/23 15:53
	Naphthalene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
Diesel PAH	2-Methylnaphthalene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
Analytes	Phenanthrene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Acenaphthene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Acenaphthylene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Fluorene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Anthracene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Fluoranthene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Pyrene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Benzo(a)anthracene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
Other	Chrysene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
Target PAH	Benzo(b)fluoranthene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
Analytes	Benzo(k)fluoranthene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Benzo(a)pyrene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Indeno(1,2,3-cd)pyrene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
1	Dibenz(a,h)anthracene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
	Benzo(g,h,i)perylene	1X	0.48	mg/kg	<0.48	12/27/23 15:53
C9-C18 Aliphatic Hydrocar	bons [1]	1X	19.5	mg/kg	<19.5	12/27/23 12:47
C19-C36 Aliphatic Hydroca	arbons [1]	1X	19.5	mg/kg	32.1	12/27/23 12:47
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	9.77	mg/kg	14.9	12/27/23 15:53
Chlorooctadecane (Sample	e Surrogate)			%	42.2	12/27/23 12:47
o-Terphenyl (Sample Surrogate)				%	43.8	12/27/23 15:53
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	80.2	12/27/23 15:53
2-Bromonaphthalene (Frac	ctionation Surrogate)			%	78.7	12/27/23 15:53
Surrogate Acceptance Range [3]			%	40 - 140	

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

 $\ensuremath{\left[3\right]}$ See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: LE-TP12 (10-12) (3L20029-03)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALYTICAL RESULTS

Method for Ranges: MADEP E	PH 4-1.1			Client ID	LE-TP12 (10-12)		
Method for Target Analytes:	Madep EPH 4-1.1			Lab ID	3L20029-03		
EPH Surrogate Standards:			Dat	te Collected	12/19/23		
Aliphatic: Chlorooctadecane			Da	te Received	12/20/23		
Aromatic: o-Terphenyl			D	ate Thawed	NA		
			Dat	e Extracted	12/20/23		
EPH Fractionation Surrogates			Perce	nt Moisture	13.30		
(1) 2-Fluorodiphenyl (2) 2-Bromonaphthalene							
RANGE/TARGET ANALYTE	E Contraction of the second	Dilution	RL	Units	Result	Analyzed	
Unadjusted C11-C22 Arom	natic Hydrocarbons [1]	1X	7.64	mg/kg	<7.64	12/27/23 14:59	
	Naphthalene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
Diesel PAH	2-Methylnaphthalene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
Analytes	Phenanthrene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Acenaphthene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Acenaphthylene		0.38	mg/kg	<0.38	12/27/23 14:59	
	Fluorene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Anthracene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Fluoranthene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Pyrene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Benzo(a)anthracene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
Other	Chrysene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
Target PAH	Benzo(b)fluoranthene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
Analytes	Benzo(k)fluoranthene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Benzo(a)pyrene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Indeno(1,2,3-cd)pyrene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
1	Dibenz(a,h)anthracene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
	Benzo(g,h,i)perylene	1X	0.38	mg/kg	<0.38	12/27/23 14:59	
C9-C18 Aliphatic Hydrocar	bons [1]	1X	15.2	mg/kg	<15.2	12/27/23 13:11	
C19-C36 Aliphatic Hydroca	arbons [1]	1X	15.2	mg/kg	<15.2	12/27/23 13:11	
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	7.64	mg/kg	<7.64	12/27/23 14:59	
Chlorooctadecane (Sample	e Surrogate)			%	42.4	12/27/23 13:11	
o-Terphenyl (Sample Surr	ogate)			%	58.7	12/27/23 14:59	
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	95.6	12/27/23 14:59	
2-Bromonaphthalene (Frac	ctionation Surrogate)			%	92.6	12/27/23 14:59	
Surrogate Acceptance Range [3]			%	40 - 140		

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Quality Control

Volatile Organic Compounds 8260C (5035-LL)

			Departing		Calibre	Course		0/ DEC		000
Analyte	Result	Qual	Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit
Batch: B3L1124 - EPA 5035										
Blank (B3L1124-BLK1)				Pr	epared: 12/2	7/23 Analyze	d: 12/26/23			
Acetone	ND		5	ug/kg	• •					
Benzene	ND		5	ug/kg						
Bromobenzene	ND		5	ug/kg						
Bromochloromethane	ND		5	ug/kg						
Bromodichloromethane	ND		5	ug/kg						
Bromoform	ND		5	ug/kg						
Bromomethane	ND		5	ug/kg						
2-Butanone	ND		5	ug/kg						
tert-Butyl alcohol	ND		5	ug/kg						
sec-Butylbenzene	ND		5	ug/kg						
n-Butylbenzene	ND		5	ug/kg						
tert-Butylbenzene	ND		5	ug/kg						
Methyl t-butyl ether (MTBE)	ND		5	ug/kg						
Carbon Disulfide	ND		5	ug/kg						
Carbon Tetrachloride	ND		5	ug/kg						
Chlorobenzene	ND		5	ug/kg						
Chloroethane	ND		5	ug/kg						
Chloroform	ND		5	ug/kg						
Chloromethane	ND		5	ug/kg						
4-Chlorotoluene	ND		5	ug/kg						
2-Chlorotoluene	ND		5	ug/kg						
1.2-Dibromo-3-chloropropane (DBCP)	ND		5	ug/kg						
Dibromochloromethane	ND		5	ua/ka						
1.2-Dibromoethane (FDB)	ND		5	ua/ka						
Dibromomethane	ND		5	ua/ka						
1 2-Dichlorobenzene	ND		5	ua/ka						
1 3-Dichlorobenzene	ND		5	ua/ka						
1 4-Dichlorobenzene	ND		5	ua/ka						
1 1-Dichloroethane	ND		5	ua/ka						
1 2-Dichloroethane	ND		5	ua/ka						
trans-1 2-Dichloroethene	ND		5	ua/ka						
1 2 Dichloroethene Total	ND		5	ua/ka						
cis-1 2-Dichloroethene	ND		5	ua/ka						
1 1-Dichloroethene	ND		5	ua/ka						
1 2-Dichloropropage	ND		5	ua/ka						
2 2-Dichloropropane	ND		5	ua/ka						
cis-1 3-Dichloropropene	ND		5	ua/ka						
trans-1 3-Dichloropropene	ND		5	ua/ka						
1 1-Dichloropropene	ND		5	ua/ka						
1 3-Dichloropropene (cis + trans)	ND		5	ua/ka						
Diethyl ether	ND		5	ug/kg						
1 4-Diovano	ND		100	ug/kg						
T, T-Dioxalic Ethylbenzene			5	ug/kg						
Hovachlorobutadiono	ND		5	ug/kg						
			5	ug/kg						
	ND		5	ug/kg						
n Isopropultoluono	ND		5	ug/kg						
p-Isopi opyiloluelle Methylene Chloride			ט 15	ug/kg						
Methylene Chionae			12	ug/kg Ja/ka						
Theory - 2-pendilloile			5	ug/kg						
			5	ug/kg						
Styropo			5	ug/kg						
Jurielle			5	ug/kg						
	ND		5	ug/kg						
rendemonoeuriene	ND		5	uy/ky						

			Quality (Conti	Control nued)						
Volatile Organic Compounds 82	260C (5035-L	L) (Con	tinued)							
Analyte	Result	Qual	Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L1124 - EPA 5035 (C	Continued)									
Blank (B3L1124-BLK1)	,			Pr	repared: 12/2	7/23 Analvze	ed: 12/26/23			
Tetrahydrofuran	ND		5	ua/ka		.,, <u>2</u> 5 , analyze				
Toluene	ND		5	ua/ka						
1.2.4-Trichlorobenzene	ND		5	ug/kg						
1.2.3-Trichlorobenzene	ND		5	ug/kg						
1.1.2-Trichloroethane	ND		5	ug/kg						
1.1.1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1.2.3-Trichloropropane	ND		5	ug/kg						
1.3.5-Trimethylbenzene	ND		5	ug/kg						
1.2.4-Trimethylbenzene	ND		5	ua/ka						
Vinyl Chloride	ND		5	ua/ka						
o-Xvlene	ND		5	ug/kg						
m&p-Xylene	ND		10	ua/ka						
Total xylenes	ND		5	ua/ka						
1 1 2 2-Tetrachloroethane	ND		5	ua/ka						
tert-Amyl methyl ether	ND		5	ua/ka						
1 3-Dichloropropane	ND		5	ua/ka						
Ethyl tert-butyl ether	ND		5	ua/ka						
Diisonronyl ether	ND		5	ua/ka						
Trichlorofluoromethane	ND		5	ua/ka						
Dichlorodifluoromethane	ND		5	ua/ka						
Surrogate: 4-Bromofluorobenzene			49.9	ug/kg	50.0		99.9	70-130		
Surrogate: 1,2-Dichloroethane-d4			51.0	ug/kg	50.0		102	70-130		
Surrogate: Toluene-d8			49.7	ug/kg	50.0		99.4	70-130		
LCS (B3L1124-BS1)				Pr	repared: 12/2	7/23 Analyze	ed: 12/26/23			
Acetone	49		5	ug/kg	50.0		98.0	50-150		
Benzene	46		5	ug/kg	50.0		92.9	70-130		
Bromobenzene	45		5	ug/kg	50.0		89.8	70-130		
Bromochloromethane	47		5	ug/kg	50.0		93.3	70-130		
Bromodichloromethane	45		5	ug/kg	50.0		90.4	70-130		
Bromoform	45		5	ug/kg	50.0		90.9	70-130		
Bromomethane	58		5	ug/kg	50.0		117	50-150		
2-Butanone	41		5	ug/kg	50.0		81.5	50-150		
tert-Butyl alcohol	43		5	ug/kg	50.0		85.9	70-130		
sec-Butylbenzene	49		5	ug/kg	50.0		97.1	70-130		
n-Butylbenzene	50		5	ug/kg	50.0		99.8	70-130		
tert-Butylbenzene	48		5	ug/kg	50.0		95.0	70-130		
Methyl t-butyl ether (MTBE)	43		5	ug/kg	50.0		85.6	70-130		
Carbon Disulfide	49		5	ug/kg	50.0		98.1	50-150		
Carbon Tetrachloride	50		5	ug/kg	50.0		100	70-130		
Chlorobenzene	46		5	ug/kg	50.0		91.9	70-130		
Chloroethane	59		5	ug/kg	50.0		118	50-150		
Chloroform	47		5	ug/kg	50.0		93.8	70-130		
Chloromethane	55		5	ug/kg	50.0		111	50-150		
4-Chlorotoluene	47		5	ug/kg	50.0		94.0	70-130		
2-Chlorotoluene	47		5	ug/kg	50.0		94.0	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	46		5	ug/kg	50.0		92.4	70-130		
Dibromochloromethane	46		5	ug/kg	50.0		91.7	70-130		
1,2-Dibromoethane (EDB)	46		5	ug/kg	50.0		92.2	70-130		
Dibromomethane	47		5	ug/kg	50.0		94.5	60-140		
1,2-Dichlorobenzene	46		5	ug/kg	50.0		92.5	70-130		
1,3-Dichlorobenzene	46		5	ug/kg	50.0		91.4	70-130		
1,4-Dichlorobenzene	45		5	ug/kg	50.0		90.2	70-130		
1,1-Dichloroethane	47		5	ug/kg	50.0		93.8	70-130		
1,2-Dichloroethane	47		5	ug/kg	50.0		93.0	70-130		
trans-1,2-Dichloroethene	48		5	ug/kg	50.0		95.4	70-130		

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L1124 - EPA 5035 (Contin	nued)									
LCS (B3L1124-BS1)	,			Pr	epared: 12/2	7/23 Analyze	d: 12/26/23			
cis-1,2-Dichloroethene	45		5	ug/kg	50.0	. ,	89.9	70-130		
1,1-Dichloroethene	46		5	ug/kg	50.0		93.0	70-130		
1,2-Dichloropropane	47		5	ug/kg	50.0		94.7	70-130		
2,2-Dichloropropane	47		5	ug/kg	50.0		94.1	70-130		
cis-1,3-Dichloropropene	46		5	ug/kg	50.0		92.5	70-130		
trans-1,3-Dichloropropene	46		5	ug/kg	50.0		92.5	70-130		
1,1-Dichloropropene	49		5	ug/kg	50.0		97.2	70-130		
Diethyl ether	42		5	ug/kg	50.0		83.7	60-140		
1,4-Dioxane	265		100	ug/kg	250		106	0-200		
Ethylbenzene	47		5	ug/kg	50.0		94.1	70-130		
Hexachlorobutadiene	46		5	ug/kg	50.0		92.3	70-130		
2-Hexanone	44		5	ug/kg	50.0		88.1	50-150		
Isopropylbenzene	48		5	ug/kg	50.0		95.9	70-130		
p-Isopropyltoluene	48		5	ug/kg	50.0		96.9	70-130		
Methylene Chloride	53		15	ug/kg	50.0		106	60-140		
4-Methyl-2-pentanone	45		5	ug/kg	50.0		89.4	50-150		
Naphthalene	45		5	ug/kg	50.0		90.8	70-130		
n-Propylbenzene	49		5	ug/kg	50.0		97.3	70-130		
Styrene	46		5	ug/kg	50.0		92.1	70-130		
1,1,1,2-Tetrachloroethane	46		5	ug/kg	50.0		91.7	70-130		
Tetrachloroethene	46		5	ug/kg	50.0		92.6	70-130		
Tetrahydrofuran	49		5	ug/kg	50.0		97.5	50-150		
Toluene	46		5	ug/kg	50.0		92.7	70-130		
1,2,4-Trichlorobenzene	45		5	ug/kg	50.0		89.5	70-130		
1,2,3-Trichlorobenzene	44		5	ug/kg	50.0		88.6	70-130		
1,1,2-Trichloroethane	48		5	ug/kg	50.0		95.8	70-130		
1,1,1-Trichloroethane	47		5	ug/kg	50.0		93.6	70-130		
Trichloroethene	47		5	ug/kg	50.0		94.6	70-130		
1,2,3-Trichloropropane	49		5	ug/kg	50.0		97.8	70-130		
1,3,5-Trimethylbenzene	49		5	ug/kg	50.0		97.3	70-130		
1,2,4-Trimethylbenzene	48		5	ug/kg	50.0		95.0	70-130		
Vinyl Chloride	54		5	ug/kg	50.0		108	50-150		
o-Xylene	47		5	ug/kg	50.0		93.1	70-130		
m&p-Xylene	94		10	ug/kg	100		93.8	70-130		
1,1,2,2-Tetrachloroethane	47		5	ug/kg	50.0		94.1	70-130		
tert-Amyl methyl ether	42		5	ug/kg	50.0		83.8	70-130		
1,3-Dichloropropane	46		5	ug/kg	50.0		93.0	70-130		
Ethyl tert-butyl ether	43		5	ug/kg	50.0		85.9	70-130		
Trichlorofluoromethane	53		5	ug/kg	50.0		106	50-150		
Dichlorodifluoromethane	57		5	ug/kg	50.0		114	50-150		
Surrogate: 4-Bromofluorobenzene			49.9	ug/kg	50.0		99.8	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.2	ug/kg	50.0		98.3	70-130		
Surrogate: Toluene-d8			49.6	ug/kg	50.0		99.2	70-130		

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L1124 - EPA 5035 (Co	ontinued)									
LCS Dup (B3L1124-BSD1)	-			Pr	epared: 12/2	7/23 Analyzed	1: 12/26/23			
Acetone	42		5	ug/kg	50.0		84.5	50-150	14.7	30
Benzene	50		5	ug/kg	50.0		100	70-130	7.74	20
Bromobenzene	48		5	ug/kg	50.0		96.3	70-130	7.03	20
Bromochloromethane	50		5	ug/kg	50.0		99.6	70-130	6.51	20
Bromodichloromethane	49		5	ug/kg	50.0		98.5	70-130	8.51	20
Bromoform	47		5	ug/kg	50.0		93.8	70-130	3.12	20
Bromomethane	65		5	ug/kg	50.0		129	50-150	10.3	30
2-Butanone	38		5	ug/kg	50.0		76.5	50-150	6.30	30
tert-Butyl alcohol	47		5	ug/kg	50.0		94.0	70-130	8.99	20
sec-Butylbenzene	53		5	ug/kg	50.0		105	70-130	8.16	20
n-Butylbenzene	54		5	ug/kg	50.0		108	70-130	8.28	20
tert-Butylbenzene	51		5	ug/kg	50.0		102	70-130	7.22	20
Methyl t-butyl ether (MTBE)	46		5	ug/kg	50.0		91.1	70-130	6.18	20
Carbon Disulfide	53		5	ug/kg	50.0		107	50-150	8.53	40
Carbon Tetrachloride	54		5	ug/kg	50.0		108	70-130	7.27	20
Chlorobenzene	49		5	ug/kg	50.0		98.5	70-130	6.91	20
Chloroethane	65		5	ug/kg	50.0		130	50-150	9.51	30
Chloroform	51		5	ug/kg	50.0		102	70-130	8.30	20
Chloromethane	60		5	ug/kg	50.0		119	50-150	7.43	30
4-Chlorotoluene	51		5	ug/kg	50.0		101	70-130	7.46	20
2-Chlorotoluene	51		5	ug/kg	50.0		101	70-130	7.46	20
1,2-Dibromo-3-chloropropane (DBCP)	47		5	ug/kg	50.0		94.5	70-130	2.29	20
Dibromochloromethane	48		5	ug/kg	50.0		96.8	70-130	5.45	20
1,2-Dibromoethane (EDB)	48		5	ug/kg	50.0		96.1	70-130	4.18	20
Dibromomethane	49		5	ug/kg	50.0		97.6	60-140	3.21	30
1,2-Dichlorobenzene	50		5	ug/kg	50.0		101	70-130	8.39	20
1,3-Dichlorobenzene	49		5	ug/kg	50.0		98.3	70-130	7.29	20
1,4-Dichlorobenzene	49		5	ug/kg	50.0		98.8	70-130	9.12	20
1,1-Dichloroethane	51		5	ug/kg	50.0		103	70-130	8.94	20
1,2-Dichloroethane	50		5	ug/kg	50.0		100	70-130	7.23	20
trans-1,2-Dichloroethene	52		5	ug/kg	50.0		105	70-130	9.52	20
cis-1,2-Dichloroethene	49		5	ug/kg	50.0		97.3	70-130	7.93	20
1,1-Dichloroethene	51		5	ug/kg	50.0		103	70-130	9.90	20
1,2-Dichloropropane	50		5	ug/kg	50.0		101	70-130	6.42	20
2,2-Dichloropropane	51		5	ug/kg	50.0		101	70-130	7.27	20
cis-1,3-Dichloropropene	49		5	ug/kg	50.0		98.0	70-130	5.84	20
trans-1,3-Dichloropropene	49		5	ug/kg	50.0		97.6	70-130	5.39	20
1,1-Dichloropropene	51		5	ug/kg	50.0		103	70-130	5.66	20
Diethyl ether	47		5	ug/kg	50.0		93.5	60-140	11.2	30
1,4-Dioxane	265		100	ug/kg	250		106	0-200	0.0603	50
Ethylbenzene	51		5	ug/kg	50.0		101	70-130	7.45	20
Hexachlorobutadiene	52		5	ug/kg	50.0		104	70-130	12.3	20
2-Hexanone	41		5	ug/kg	50.0		81.0	50-150	8.37	20
Isopropylbenzene	51		5	ug/kg	50.0		101	/0-130	5.49	20
p-Isopropyltoluene	52		5	ug/kg	50.0		104	/0-130	7.05	20
Methylene Chloride	58		15	ug/kg	50.0		116	60-140	9.05	30
4-Methyl-2-pentanone	44		5	ug/kg	50.0		87.9	50-150	1./1	20
Naphthalene	49		5	ug/kg	50.0		97.3	70-130	6.91	20
n-Propylbenzene	52		5	ug/kg	50.0		104	70-130	6.83	20
Styrene	50		5	ug/kg	50.0		99.7	70-130	7.92	20
1,1,1,2-1 etrachioroethane	49		5	ug/kg	50.0		98.6	70-130	1.27	20
	50		5	ug/kg	50.0		99.2	/0-130	0.91	20
	4/		5	ug/kg	50.0		93.I	50-150	4.62	40
1000ene	50		5	ug/kg	50.0		100	70-130	/.8/ 7 7C	20
	48		5	ug/kg	50.0		96.7	70-130	/./0	20
	48 F1		5 F	ug/kg	50.0		101	70-130	0.31	20
1,1,2-IIICHOIOEUIdHE	51		5	~g/ng	0.00		101	10-120	5.54	20

Volatile Organic Compounds 8260C (5035-LL) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L1124 - EPA 5035 (Contir	nued)									
LCS Dup (B3L1124-BSD1)				Pr	epared: 12/2	7/23 Analyze	d: 12/26/23			
1,1,1-Trichloroethane	51		5	ug/kg	50.0		103	70-130	9.45	20
Trichloroethene	50		5	ug/kg	50.0		101	70-130	6.09	20
1,2,3-Trichloropropane	46		5	ug/kg	50.0		91.7	70-130	6.37	20
1,3,5-Trimethylbenzene	52		5	ug/kg	50.0		105	70-130	7.37	20
1,2,4-Trimethylbenzene	51		5	ug/kg	50.0		102	70-130	6.67	20
Vinyl Chloride	59		5	ug/kg	50.0		119	50-150	9.78	30
o-Xylene	50		5	ug/kg	50.0		100	70-130	7.50	20
m&p-Xylene	100		10	ug/kg	100		100	70-130	6.65	20
1,1,2,2-Tetrachloroethane	49		5	ug/kg	50.0		97.4	70-130	3.51	20
tert-Amyl methyl ether	45		5	ug/kg	50.0		90.3	70-130	7.40	20
1,3-Dichloropropane	49		5	ug/kg	50.0		98.1	70-130	5.40	20
Ethyl tert-butyl ether	46		5	ug/kg	50.0		92.9	70-130	7.85	20
Trichlorofluoromethane	58		5	ug/kg	50.0		115	50-150	7.88	20
Dichlorodifluoromethane	63		5	ug/kg	50.0		126	50-150	10.1	30
Surrogate: 4-Bromofluorobenzene			50.4	ug/kg	50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4			48.5	ug/kg	50.0		97.0	70-130		
Surrogate: Toluene-d8			50.1	ug/kg	50.0		100	70-130		

Batch: B3L1193 - EPA 5035

Blank (B3L1193-BLK1)			
Acetone	ND	5	ug/kg
Benzene	ND	5	ug/kg
Bromobenzene	ND	5	ug/kg
Bromochloromethane	ND	5	ug/kg
Bromodichloromethane	ND	5	ug/kg
Bromoform	ND	5	ug/kg
Bromomethane	ND	5	ug/kg
2-Butanone	ND	5	ug/kg
tert-Butyl alcohol	ND	5	ug/kg
sec-Butylbenzene	ND	5	ug/kg
n-Butylbenzene	ND	5	ug/kg
tert-Butylbenzene	ND	5	ug/kg
Methyl t-butyl ether (MTBE)	ND	5	ug/kg
Carbon Disulfide	ND	5	ug/kg
Carbon Tetrachloride	ND	5	ug/kg
Chlorobenzene	ND	5	ug/kg
Chloroethane	ND	5	ug/kg
Chloroform	ND	5	ug/kg
Chloromethane	ND	5	ug/kg
4-Chlorotoluene	ND	5	ug/kg
2-Chlorotoluene	ND	5	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg
Dibromochloromethane	ND	5	ug/kg
1,2-Dibromoethane (EDB)	ND	5	ug/kg
Dibromomethane	ND	5	ug/kg
1,2-Dichlorobenzene	ND	5	ug/kg
1,3-Dichlorobenzene	ND	5	ug/kg
1,4-Dichlorobenzene	ND	5	ug/kg
1,1-Dichloroethane	ND	5	ug/kg
1,2-Dichloroethane	ND	5	ug/kg
trans-1,2-Dichloroethene	ND	5	ug/kg
1,2 Dichloroethene, Total	ND	5	ug/kg
cis-1,2-Dichloroethene	ND	5	ug/kg
1,1-Dichloroethene	ND	5	ug/kg
1,2-Dichloropropane	ND	5	ug/kg
2,2-Dichloropropane	ND	5	ug/kg
cis-1,3-Dichloropropene	ND	5	ug/kg

Prepared & Analyzed: 12/28/23

			Quality (Conti	Control						
/olatile Organic Compounds 8	260C (5035-L	L) (Con	tinued)							
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L1193 - EPA 5035 ((Continued)									
Blank (B3I 1193-BI K1)	·····,				Prepared 8	Analyzed: 1	2/28/23			
trans-1.3-Dichloropropene	ND		5	ug/kg	opu. ou o		_, _0, _0			
1,1-Dichloropropene	ND		5	ug/kg						
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg						
Diethyl ether	ND		5	ug/kg						
1,4-Dioxane	ND		100	ug/kg						
Ethylbenzene	ND		5	ug/kg						
Hexachlorobutadiene	ND		5	ug/kg						
2-Hexanone	ND		5	ug/kg						
Isopropylbenzene	ND		5	ug/kg						
p-Isopropyltoluene	ND		5	ug/kg						
Methylene Chloride	ND		10	ug/kg						
4-Methyl-2-pentanone	ND		5	ug/kg						
Naphthalene	ND		5	ug/kg						
n-Propylbenzene	ND		5	ug/kg						
Styrene	ND		5	ug/kg						
1.1.1.2-Tetrachloroethane	ND		5	ug/kg						
Tetrachloroethene	ND		5	ug/kg						
Tetrahvdrofuran	ND		5	ug/kg						
Toluene	ND		5	ug/kg						
1,2,4-Trichlorobenzene	ND		5	ug/kg						
1,2,3-Trichlorobenzene	ND		5	ug/kg						
1,1,2-Trichloroethane	ND		5	ug/kg						
1,1,1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg						
1.3.5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xvlenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg						
Diisopropyl ether	ND		5	ug/kg						
Trichlorofluoromethane	ND		5	ug/kg						
Dichlorodifluoromethane	ND		5	ug/kg						
Surragate: 4-Bromofluorohenzene	· · · · · · · · · · · · · · · · · · ·		50 4	ua/ka	50 N		 101	70-130		
Surrogate: 1.2-Dichloroethane-d4			51.9	ua/ka	50.0 50 0		101	70-130		
Surrogater Toluene-dR			51 1	ua/ka	50.0 50 0		107	70-130		
sansguter romene uo			51.1		50.0		102	,0 100		

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Ratch: B31 1193 - FDA 5035 (Conti	inued)	-								
LCS (B3I 1193-BS1)	nucuj				Prenared 8	Analyzed: 12	2/28/23			
Acetone	51		5	ug/kg	50.0	c , and y zea. 12	103	50-150		
Benzene	51		5	ug/kg	50.0		102	70-130		
Bromobenzene	47		5	ug/kg	50.0		93.9	70-130		
Bromochloromethane	51		5	ug/kg	50.0		102	70-130		
Bromodichloromethane	50		5	ug/kg	50.0		99.4	70-130		
Bromoform	45		5	ug/kg	50.0		90.2	70-130		
Bromomethane	79		5	ug/kg	50.0		158	50-150		
2-Butanone	42		5	ug/kg	50.0		84.5	50-150		
tert-Butyl alcohol	56		5	ug/kg	50.0		112	70-130		
sec-Butylbenzene	52		5	ug/kg	50.0		104	70-130		
n-Butylbenzene	53		5	ug/kg	50.0		105	70-130		
tert-Butylbenzene	49		5	ug/kg	50.0		98.7	70-130		
Methyl t-butyl ether (MTBE)	48		5	ug/kg	50.0		97.0	70-130		
Carbon Disulfide	59		5	ug/kg	50.0		118	50-150		
Carbon Tetrachloride	51		5	ug/kg	50.0		101	70-130		
Chlorobenzene	49		5	ug/kg	50.0		98.0	70-130		
Chloroethane	78		5	ug/kg	50.0		156	50-150		
Chloroform	52		5	ug/kg	50.0		104	70-130		
Chloromethane	68		5	ug/kg	50.0		136	50-150		
4-Chlorotoluene	51		5	ug/kg	50.0		102	70-130		
2-Chlorotoluene	51		5	ug/kg	50.0		102	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	47		5	ug/kg	50.0		94.2	70-130		
Dibromochloromethane	48		5	ug/kg	50.0		96.3	70-130		
1,2-Dibromoethane (EDB)	50		5	ug/kg	50.0		100	70-130		
Dibromomethane	52		5	ug/kg	50.0		103	60-140		
1,2-Dichlorobenzene	48		5	ug/kg	50.0		96.7	70-130		
1,3-Dichlorobenzene	47		5	ug/kg	50.0		94.3	70-130		
1,4-Dichlorobenzene	47		5	ug/kg	50.0		93.3	70-130		
1,1-Dichloroethane	54		5	ug/kg	50.0		108	70-130		
1,2-Dichloroethane	53		5	ug/kg	50.0		107	70-130		
trans-1,2-Dichloroethene	54		5	ug/kg	50.0		108	70-130		
cis-1,2-Dichloroethene	50		5	ug/kg	50.0		99.4	70-130		
1,1-Dichloroethene	57		5	ug/kg	50.0		114	70-130		
1,2-Dichloropropane	53		5	ug/kg	50.0		106	70-130		
2,2-Dichloropropane	51		5	ug/kg	50.0		102	/0-130		
cis-1,3-Dichloropropene	50		5	ug/kg	50.0		99.9	/0-130		
trans-1,3-Dichloropropene	50		5	ug/kg	50.0		100	70-130		
1,1-Dichloropropene	50		5	ug/kg	50.0		99.7	/0-130		
Dietnyl etner	53		5	ug/kg	50.0		107	60-140		
1,4-Dioxane	2/1		100	ug/kg	250		108	0-200		
Euryidenzene	50 4F		5	ug/kg	50.0		100	70-130		
	45 45		5	ug/kg	50.0		90.2	70-150		
	45		5	ug/kg ug/kg	50.0		90.0	50-150 70-130		
n-Iconroputaluono	50		5	ug/kg ug/kg	50.0		102	70-130		
Mathylana Chlorida	50		10	ug/kg	50.0		102	60-140		
4-Mothyl-2-poptanono	J0 /19		5	ug/kg	50.0		05.5	50-150		
Naphthalono	47		5	ug/kg	50.0		93.3	70-130		
	52		5	ug/kg	50.0		103	70-130		
Styrene	50		5	ua/ka	50.0		99.4	70-130		
1 1 1 2-Tetrachloroethane	<u>م</u> لا 20		5	∽a⁄∾a ua/ka	50.0		99. 1 Q5 2	70-130		
Tetrachloroethene	48		5	ua/ka	50.0		95.0	70-130		
Tetrabydrofuran	49		5	ug/ka	50.0		97.2	50-150		
Toluene	50		5	ug/ka	50.0		100	70-130		
1.2.4-Trichlorobenzene	44		5	ua/ka	50.0		88.6	70-130		
1.2.3-Trichlorobenzene	45		5	ua/ka	50.0		89.9	70-130		
1,1,2-Trichloroethane	53		5	ug/kg	50.0		106	70-130		

			Reporting		Sniko	Source		%PEC		
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3L1193 - EPA 5035 (Co	ontinued)						100 100			
LCS (B3L1193-BS1)			_		Prepared &	Analyzed: 12	2/28/23			
1,1,1-I richloroethane	51		5	ug/kg	50.0		102	/0-130		
Trichloroethene	50		5	ug/kg	50.0		99.7	70-130		
1,2,3-Trichloropropane	53		5	ug/kg	50.0		106	70-130		
1,3,5-Trimethylbenzene	52		5	ug/kg	50.0		103	70-130		
1,2,4-Trimethylbenzene	50		5	ug/kg	50.0		99.6	70-130		
Vinyl Chloride	67		5	ug/kg	50.0		134	50-150		
o-Xylene	50		5	ug/kg	50.0		101	70-130		
m&p-Xylene	99		10	ug/kg	100		99.2	70-130		
1,1,2,2-Tetrachloroethane	52		5	ug/kg	50.0		103	70-130		
tert-Amyl methyl ether	45		5	ug/kg	50.0		91.0	70-130		
1,3-Dichloropropane	52		5	ug/kg	50.0		104	70-130		
Ethyl tert-butyl ether	49		5	ug/kg	50.0		97.0	70-130		
Trichlorofluoromethane	65		5	ug/kg	50.0		129	50-150		
Dichlorodifluoromethane	67		5	ug/kg	50.0		134	50-150		
Surrogate: 4-Bromofluorobenzene			51.4	ug/kg	50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.9	ug/kg	50.0		99.7	70-130		
Surrogate: Toluene-d8			50.5	ug/kg	50.0		101	70-130		
LCS Dup (B3L1193-BSD1)					Prepared 8	Analvzed: 12	2/28/23			
Acetone	51		5	ug/kg	50.0		101	50-150	1.12	30
Benzene	47		5	ug/kg	50.0		94.1	70-130	7.63	20
Bromobenzene	43		5	ug/kg	50.0		86.1	70-130	8.71	20
Bromochloromethane	47		5	ug/kg	50.0		93.8	70-130	8.33	20
Bromodichloromethane	46		5	ug/kg	50.0		92.1	70-130	7.64	20
Bromoform	41		5	ug/kg	50.0		81.2	70-130	10.5	20
Bromomethane	71		5	ug/kg	50.0		142	50-150	10.3	30
2-Butanone	42		5	ug/kg	50.0		83.6	50-150	1.12	30
tert-Butyl alcohol	50		5	ug/kg	50.0		99.2	70-130	12.2	20
sec-Butylbenzene	48		5	ug/kg	50.0		96.2	70-130	7.39	20
n-Butylbenzene	48		5	ug/kg	50.0		96.2	70-130	8.90	20
tert-Butylbenzene	46		5	ug/kg	50.0		91.9	70-130	7.09	20
Methyl t-butyl ether (MTBE)	46		5	ug/kg	50.0		91.2	70-130	6.12	20
Carbon Disulfide	52		5	ug/kg	50.0		105	50-150	11.5	40
Carbon Tetrachloride	46		5	ug/kg	50.0		92.8	70-130	8.62	20
Chlorobenzene	44		5	ua/ka	50.0		88.3	70-130	10.3	20
Chloroethane	69		5	ug/kg	50.0		138	50-150	12.3	30
Chloroform	48		5	ug/kg	50.0		95.4	70-130	8.55	20
Chloromethane	61		5	ug/kg	50.0		122	50-150	10.2	30
4-Chlorotoluene	47		5	ug/kg	50.0		93.5	70-130	8.54	20
2-Chlorotoluene	47		5	ug/kg	50.0		93.5	70-130	8.54	20
1.2-Dibromo-3-chloropropane (DBCP)	44		5	ug/kg	50.0		88.6	70-130	6.13	20
Dibromochloromethane	45		5	ug/kg	50.0		89.5	70-130	7.30	20
1.2-Dibromoethane (EDB)	47		5	ug/kg	50.0		93.2	70-130	7.08	20
Dibromomethane	49		5	ug/kg	50.0		97.9	60-140	5.17	30
1.2-Dichlorobenzene	44		5	ug/kg	50.0		87.4	70-130	10.1	20
1.3-Dichlorobenzene	44		5	ug/kg	50.0		88.6	70-130	6.19	20
1.4-Dichlorobenzene	43		5	ug/kg	50.0		85.0	70-130	9.24	20
1.1-Dichloroethane	49		5	ug/kg	50.0		97.4	70-130	10.2	20
1.2-Dichloroethane	50		5	ug/kg	50.0		99.3	70-130	7.22	20
trans-1,2-Dichloroethene	49		5	ug/ka	50.0		97.7	70-130	9.71	_• 20
cis-1.2-Dichloroethene	45		-	ug/ka	50.0		90.5	70-130	9.29	20
1,1-Dichloroethene	52		- 5	ug/ka	50.0		104	70-130	9.04	20
1,2-Dichloropropane			5	ug/ka	50.0		96.1	70-130	10.1	20
2,2-Dichloropropane	46		5	ug/ka	50.0		92.4	70-130	9,97	_• 20
cis-1,3-Dichloropropene	46		5	ug/ka	50.0		91.6	70-130	8.62	20
trans-1.3-Dichloropropene	46		5	ug/ka	50.0		92.6	70-130	7.68	20
1,1-Dichloropropene	47		5	ug/ka	50.0		94.4	70-130	5.50	20
· · · · · · · · ·			-							

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Ratahi R211102 ERA E02E (Camtia	(in the second s									
Batten: B3L1193 - EPA 5035 (Contin	uea)				Droparad 9	Applyrody 17	120/22			
Diothyl other	50		E	ua/ka		k Alidiyzeu: 12	101	60-140	6.02	30
	252		5	ug/kg	20.0		101	0.200	6.02	50
	255		100	ug/kg	250		101	70,120	0.95	20
	45		5	ug/kg	50.0		90.9	70-130	9.79	20
Hexachiorodutadiene	41		5	ug/kg	50.0		81.4	70-130	10.3	20
2-Hexanone	44		5	ug/kg	50.0		88.0	50-150	2.20	20
Isopropyibenzene	46		5	ug/kg	50.0		92.0	70-130	7.79	20
p-Isopropyltoluene	48		5	ug/kg	50.0		95.1	/0-130	6.63	20
Methylene Chloride	54		10	ug/kg	50.0		107	60-140	7.47	30
4-Methyl-2-pentanone	47		5	ug/kg	50.0		93.9	50-150	1.69	20
Naphthalene	45		5	ug/kg	50.0		90.1	70-130	3.58	20
n-Propylbenzene	48		5	ug/kg	50.0		95.4	70-130	7.70	20
Styrene	45		5	ug/kg	50.0		90.9	70-130	9.00	20
1,1,1,2-Tetrachloroethane	42		5	ug/kg	50.0		85.0	70-130	11.4	20
Tetrachloroethene	44		5	ug/kg	50.0		88.1	70-130	7.56	20
Tetrahydrofuran	47		5	ug/kg	50.0		94.0	50-150	3.33	40
Toluene	46		5	ug/kg	50.0		92.8	70-130	7.49	20
1,2,4-Trichlorobenzene	41		5	ug/kg	50.0		82.7	70-130	6.91	20
1,2,3-Trichlorobenzene	42		5	ug/kg	50.0		84.3	70-130	6.40	20
1,1,2-Trichloroethane	48		5	ug/kg	50.0		96.4	70-130	9.68	20
1,1,1-Trichloroethane	46		5	ug/kg	50.0		92.0	70-130	9.98	20
Trichloroethene	46		5	ug/kg	50.0		91.9	70-130	8.18	20
1,2,3-Trichloropropane	50		5	ug/kg	50.0		100	70-130	5.34	20
1,3,5-Trimethylbenzene	48		5	ug/kg	50.0		95.8	70-130	7.69	20
1,2,4-Trimethylbenzene	47		5	ug/kg	50.0		93.1	70-130	6.81	20
Vinyl Chloride	61		5	ug/kg	50.0		123	50-150	8.62	30
o-Xylene	46		5	ug/kg	50.0		91.0	70-130	9.94	20
m&p-Xvlene	91		10	ug/kg	100		90.8	70-130	8.86	20
1.1.2.2-Tetrachloroethane	48		5	ug/kg	50.0		96.8	70-130	6.32	20
tert-Amyl methyl ether	43		5	ug/kg	50.0		85.1	70-130	6.68	20
1.3-Dichloropropane	49		5	ug/kg	50.0		98.1	70-130	5.55	20
Ethyl tert-butyl ether	46		5	ua/ka	50.0		91.1	70-130	6.31	20
Trichlorofluoromethane	59		5	ua/ka	50.0		117	50-150	9.75	20
Dichlorodifluoromethane	60		5	ua/ka	50.0		119	50-150	11 4	30
			· · · · · · · · · · · · · · · · · · ·							
Surrogate: 4-Bromofluorobenzene			52.2	ug/kg	50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4			51.9	ug/kg	50.0		104	70-130		
Surrogate: Toluene-d8			51.4	ug/kg	50.0		103	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Analute	Pocult	Qual	Reporting	Unite	Spike	Source	%PEC	%REC	חספ	RPD Limit
Analyte	Result	Quui	Linit	Units	Level	Result	JUREC	LITIICS	N D	
Batch: B3L1080 - MADEP VPH										
Blank (B3L1080-BLK1)					Prepared a	& Analyzed: 1	2/26/23			
Unadjusted C5-C8 Aliphatic Hydrocarbons	ND		10.0	mg/kg						
C5-C8 Aliphatic Hydrocarbons	ND		10.0	mg/kg						
C9-C12 Aliphatic Hydrocarbons	ND		12.5	mg/kg						
C9-C10 Aromatic Hydrocarbons	ND		12.5	mg/kg						
Surrogate: 2,5- Dibromotoluene-PID			64.1	ug/l	50.0		128	70-130		
Surrogate: 2,5- Dibromotoluene-FID			64.2	ug/l	50.0		128	70-130		
LCS (B3L1080-BS1)					Prepared	& Analyzed: 1	2/26/23			
n-Butylcylohexane	2.3		250	mg/kg	2.50		93.9	70-130		
n-Pentane	2.4		250	mg/kg	2.50		94.8	70-130		
1,2,4-Trimethylbenzene	2.3		0.5	mg/kg	2.50		90.9	70-130		
VPH_LCS_Aliphatic_C5-C8	7.0		0.5	mg/kg	7.50		93.0	70-130		
VPH_LCS_Aliphatic_C9-C12	5.1		0.5	mg/kg	5.00		102	70-130		
2,2,4-Trimethylpentane	2.3		0.2	mg/kg	2.50		92.0	70-130		
VPH_LCS_Aromatic_C9-C10	2.3		0.5	mg/kg	2.50		90.9	70-130		
Surrogate: 2,5- Dibromotoluene-PID			59.5	ug/l	50.0		119	70-130		
Surrogate: 2,5- Dibromotoluene-FID			<i>59.7</i>	ug/l	50.0		119	70-130		
LCS Dup (B3L1080-BSD1)					Prepared	& Analyzed: 1	2/26/23			
n-Butylcylohexane	2.1		250	mg/kg	2.50		84.4	70-130	10.6	25
n-Pentane	2.2		250	mg/kg	2.50		87.7	70-130	7.87	25
1,2,4-Trimethylbenzene	2.2		0.5	mg/kg	2.50		89.5	70-130	1.46	25
VPH_LCS_Aliphatic_C5-C8	6.4		0.5	mg/kg	7.50		85.7	70-130	8.12	25
VPH_LCS_Aliphatic_C9-C12	4.6		0.5	mg/kg	5.00		92.1	70-130	10.3	25
2,2,4-Trimethylpentane	2.1		0.2	mg/kg	2.50		84.4	70-130	8.60	25
VPH_LCS_Aromatic_C9-C10	2.2		0.5	mg/kg	2.50		89.5	70-130	1.46	25
Surrogate: 2,5- Dibromotoluene-PID			62.6	ug/l	50.0		125	70-130		
Surrogate: 2,5- Dibromotoluene-FID			62.0	ug/l	50.0		124	70-130		

			Quality (Cont	Control inued)						
Extractable Petroleum Hydro	carbons (MADE	P-EPH)							
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0897 - 1_Semivol	atiles Extractio	ons								
Blank (B3L0897-BLK1)				Pr	epared: 12/2	0/23 Analyze	ed: 12/21/23			
Unadjusted C11-C22 Aromatic	ND		6.63	mg/kg						
Hydrocarbons										
Naphthalene	ND		0.33	mg/kg						
2-Methylnaphthalene	ND		0.33	mg/kg						
Phenanthrene	ND		0.33	mg/kg						
Acenaphthene	ND		0.33	mg/kg						
Acenaphthylene	ND		0.33	mg/kg						
Fluorene	ND		0.33	mg/kg						
Anthracene	ND		0.33	mg/kg						
Fluoranthene	ND		0.33	mg/kg						
Pyrene	ND		0.33	mg/kg						
Benzo(a)anthracene	ND		0.33	mg/kg						
Chrysene	ND		0.33	mg/kg						
Benzo(b)fluoranthene	ND		0.33	mg/kg						
Benzo(k)fluoranthene	ND		0.33	mg/kg						
Benzo(a)pyrene	ND		0.33	mg/kg						
Indeno(1,2,3-cd)pyrene	ND		0.33	mg/kg						
Dibenz(a,h)anthracene	ND		0.33	mg/kg						
Benzo(g,h,i)perylene	ND		0.33	mg/kg						
C9-C18 Aliphatic Hydrocarbons	ND		13.2	mg/kg						
C19-C36 Aliphatic Hydrocarbons	ND		13.2	mg/kg						
C11-C22 Aromatic Hydrocarbons	ND		6.63	mg/kg						
Surrogate: Chlorooctadecane			3.44	mg/kg	8.28		41.5	40-140		
Surrogate: o-Terphenyl			3.36	mg/kg	8.28		40.6	40-140		

Surrogate: 2-Bromonaphthalene		2.31	mg/kg	3.31	69.8	40-140			
LCS (B3L0897-BS1)		Prepared: 12/20/23 Analyzed: 12/21/23							
Naphthalene	1.62	0.33	mg/kg	2.65	61.0	40-140			
2-Methylnaphthalene	1.61	0.33	mg/kg	2.65	60.6	40-140			
Phenanthrene	1.67	0.33	mg/kg	2.65	63.0	40-140			
Acenaphthene	1.64	0.33	mg/kg	2.65	61.9	40-140			
Acenaphthylene	1.62	0.33	mg/kg	2.65	61.3	40-140			
Fluorene	1.66	0.33	mg/kg	2.65	62.7	40-140			
Anthracene	1.71	0.33	mg/kg	2.65	64.4	40-140			
Fluoranthene	1.67	0.33	mg/kg	2.65	63.0	40-140			
Pyrene	1.79	0.33	mg/kg	2.65	67.6	40-140			
Benzo(a)anthracene	1.84	0.33	mg/kg	2.65	69.5	40-140			
Chrysene	1.98	0.33	mg/kg	2.65	74.6	40-140			
Benzo(b)fluoranthene	1.96	0.33	mg/kg	2.65	74.2	40-140			
Benzo(k)fluoranthene	1.92	0.33	mg/kg	2.65	72.3	40-140			
Benzo(a)pyrene	1.82	0.33	mg/kg	2.65	68.7	40-140			
Indeno(1,2,3-cd)pyrene	1.76	0.33	mg/kg	2.65	66.5	40-140			
Dibenz(a,h)anthracene	1.87	0.33	mg/kg	2.65	70.6	40-140			
Benzo(g,h,i)perylene	1.96	0.33	mg/kg	2.65	73.9	40-140			
EPH_LCS_Aliphatic_C19-C36	10.8	0.00	mg/kg	21.2	51.1	40-140			
EPH_LCS_Aliphatic_C9-C18	6.51	0.00	mg/kg	15.9	41.0	40-140			
EPH_LCS_Aromatic_C11-C22	30.1	0.00	mg/kg	45.0	66.8	40-140			
Nonane	0.85	0.33	mg/kg	2.65	32.3	30-140			
Decane	1.06	0.33	mg/kg	2.65	40.1	40-140			
Dodecane	1.13	0.33	mg/kg	2.65	42.5	40-140			
Tetradecane	1.08	0.33	mg/kg	2.65	40.7	40-140			
Hexadecane	1.15	0.33	mg/kg	2.65	43.3	40-140			
Octadecane	1.24	0.33	mg/kg	2.65	46.8	40-140			
Nonadecane	1.26	0.33	mg/kg	2.65	47.8	40-140			
Eicosane	1.30	0.33	mg/kg	2.65	49.2	40-140			

mg/kg

mg/kg

2.65

2.65

0.33

0.33

1.36

1.41

mg/kg

3.31

70.1

51.4

53.1

40-140

40-140

40-140

2.32

Surrogate: 2-Fluorobiphenyl

Docosane

Tetracosane

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0897 - 1_Semivolatiles E	xtractio	ons (Con	tinued)							
LCS (B3L0897-BS1)				Pr	epared: 12/2	0/23 Analyze	d: 12/21/23			
Hexacosane	1.43		0.33	mg/kg	2.65		54.0	40-140		
Octacosane	1.42		0.33	mg/kg	2.65		53.5	40-140		
Triacontane	1.40		0.33	mg/kg	2.65		52.7	40-140		
Hexatriacontane	1.25		0.33	mg/kg	2.65		47.1	40-140		
Surrogate: Chlorooctadecane			3.96	mg/kg	8.28		47.8	40-140		
Surrogate: o-Terphenyl			5.21	mg/kg	8.28		62.9	40-140		
Surrogate: 2-Fluorobiphenyl			3.03	mg/kg	3.31		91.6	40-140		
Surrogate: 2-Bromonaphthalene			3.04	mg/kg	3.31		91.7	40-140		
LCS Dup (B3L0897-BSD1)				Pr	epared: 12/2	0/23 Analyze	d: 12/21/23			
Naphthalene	1.40		0.33	mg/kg	2.65	. ,	53.0	40-140	14.0	25
2-Methylnaphthalene	1.54		0.33	mg/kg	2.65		58.2	40-140	4.12	25
Phenanthrene	1.60		0.33	mg/kg	2.65		60.2	40-140	4.50	25
Acenaphthene	1.58		0.33	mg/kg	2.65		59.6	40-140	3.79	25
Acenaphthylene	1.55		0.33	mg/kg	2.65		58.5	40-140	4.63	25
Fluorene	1.56		0.33	mg/kg	2.65		58.8	40-140	6.42	25
Anthracene	1.72		0.33	mg/kg	2.65		64.9	40-140	0.774	25
Fluoranthene	1.61		0.33	mg/kg	2.65		60.8	40-140	3.55	25
Pyrene	1.73		0.33	mg/kg	2.65		65.4	40-140	3.42	25
Benzo(a)anthracene	1.75		0.33	mg/kg	2.65		66.2	40-140	4.75	25
Chrysene	1.88		0.33	mg/kg	2.65		71.1	40-140	4.84	25
Benzo(b)fluoranthene	1.90		0.33	mg/kg	2.65		71.7	40-140	3.36	25
Benzo(k)fluoranthene	1.85		0.33	mg/kg	2.65		69.9	40-140	3.38	25
Benzo(a)pyrene	1.72		0.33	mg/kg	2.65		64.8	40-140	5.80	25
Indeno(1,2,3-cd)pyrene	1.67		0.33	mg/kg	2.65		63.2	40-140	5.16	25
Dibenz(a,h)anthracene	1.74		0.33	mg/kg	2.65		65.6	40-140	7.41	25
Benzo(g,h,i)perylene	1.84		0.33	mg/kg	2.65		69.3	40-140	6.53	25
EPH_LCS_Aliphatic_C19-C36	10.0		0.00	mg/kg	21.2		47.3	40-140	7.73	25
EPH_LCS_Aliphatic_C9-C18	6.48		0.00	mg/kg	15.9		40.8	40-140	0.387	25
EPH_LCS_Aromatic_C11-C22	28.6		0.00	mg/kg	45.0		63.6	40-140	4.94	25
Nonane	0.92		0.33	mg/kg	2.65		34.8	30-140	7.60	25
Decane	1.09		0.33	mg/kg	2.65		41.1	40-140	2.34	25
Dodecane	1.10		0.33	mg/kg	2.65		41.4	40-140	2.80	25
Tetradecane	1.09		0.33	mg/kg	2.65		41.3	40-140	1.28	25
Hexadecane	1.14		0.33	mg/kg	2.65		43.0	40-140	0.696	25
Octadecane	1.15		0.33	mg/kg	2.65		43.2	40-140	7.78	25
Nonadecane	1.17		0.33	mg/kg	2.65		44.0	40-140	8.17	25
Eicosane	1.21		0.33	mg/kg	2.65		45.6	40-140	7.65	25
Docosane	1.26		0.33	mg/kg	2.65		47.5	40-140	7.88	25
Tetracosane	1.29		0.33	mg/kg	2.65		48.8	40-140	8.44	25
Hexacosane	1.31		0.33	mg/kg	2.65		49.6	40-140	8.40	25
Octacosane	1.30		0.33	mg/kg	2.65		49.1	40-140	8.63	25
Triacontane	1.29		0.33	mg/kg	2.65		48.7	40-140	7.89	25
Hexatriacontane	1.19		0.33	mg/kg	2.65		45.0	40-140	4.45	25
Surrogate: Chlorooctadecane			3.60	mg/kg	8.28		43.5	40-140		
Surrogate: o-Terphenyl			4.66	mg/kg	8.28		56.4	40-140		
Surrogate: 2-Fluorobiphenyl			3.20	mg/kg	3.31		96.6	40-140		
Surrogate: 2-Bromonaphthalene			3.18	mg/kg	3.31		96.1	40-140		

Item	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.
New England Testing Laboratory

59 Greenhill Street West Warwick, RI 02893

1-888-863-8522

Project No. 1075.1.2	Project N	ame/	_002	ation: Wareham								Те	ests**	
Client: Lightship Engineering, LLC			Vatr	ix		0								
Report To:	Kevin Para	adise,	Kristi	in Maloney				T	ative		(yluo	(Hs)		
Invoice To:	Kevin	Para	dise					No. of	reserv	260)	ctions o	get PA		
Date	Time	Comp	Grab	Sample I.D.	Aqueous	Aqueous Soil Other O	Containers	s C	VOCs (8	VPH (fra	EPH (tar			
12/14/2023	9:00		X	LE-TP2 (4-6)		X		4	MeOH	X	X	X		
12/14/2023	12:00		X	LE-TP6 (8-10)		X		4	MeOH	X	X	X		
12/19/2023	10:00		X	LE-TP12 (10-12)		X		4	MeOH	X	X	X		
			-		_					-	-			
			_			-	-				-			
			-			-	-			-				
						-	+			-	-			-
·			-			-	-			-	-			
						-	-			-	1			
		1					1			1	1			
						-								
									_					
Sampled By: K. Malone	у	Date/ 12/1 12/1	Time 4/23, 9/23	Received By:	Date	2/Time	Lab	ooratory Remar	rks:	Spe	ecial	nstructions:		
Relinquished	I By:	Date	Time	Received By:	Date 12	17ime			-					
i incer		De	55	SNU	18	5)	Ter	np. Received:	3					
**Netlab Sub	contracts th	ne follo	owin	g tests: Radiologicals, Radon.	TOC.	Asbe	estos	, UCMRs, Per	chlorate.	-				and the second
Bromate, Bro	mide, Siev	e, Sal	mon	ella, Carbamates						Tur	naro	und Time [Busi	ness Days]:	5 Days
**Netlab Sub Bromate, Bro	ocontracts the omide, Sieve	e, Sal	owin mon チャ	g tests: Radiologicals, Radon, ella, Carbamates	Г тос, 20	Asbe	Ter	np. Received:_ s, UCMRs, Per	chlorate,	Tur	naro	ind Time [Busi	ness Days]:	5 Da

65

	MassDEP Analytical Protocol Certification Form							
Labo	Laboratory Name: New England Testing Laboratory, Inc. Project #: 1075.1.2							
Proje	ect Locati	on: Wareham, MA	l.		RTN:			
This 3	Form pro	ovides certification	ons for the followin	g data set: list Lab	ooratory Sample ID N	lumber(s):		
Matrie	ces: 🗆 G	roundwater/Surfac	ce Water 🗵 Soil/Se	diment 🛛 Drinking	yWater □ Air □ Oth	ier:		
CAM	Protoco	ol (check all that a	apply below):					
8260 CAM	VOC II A ⊠	7470/7471 Hg CAM III B □	MassDEP VPH (GC/PID/FID) CAM IV A ⊠	8082 PCB CAM V A □	9014 Total Cyanide/PAC CAM VI A □	6860 Perchlorate CAM VIII B □		
8270 CAM	SVOC II B □	7010 Metals CAM III C □	MassDEP VPH (GC/MS) CAM IV C □	8081 Pesticides CAM V B □	7196 Hex Cr CAM VI B □	MassDEP APH CAM IX A □		
6010 CAM	Metals Ⅲ A □	6020 Metals CAM III D □	MassDEP EPH CAM IV B ⊠	8151 Herbicides CAM V C □	8330 Explosives CAM VIII A □	TO-15 VOC CAM IX B □		
A	Affirmativ	ve Responses to	Questions A throug	gh F are required f	for "Presumptive Ce	rtainty" status		
Α	Were all Custody, prepared	samples received properly preserv I/analyzed within me	in a condition consis ved (including temp athod holding times?	stent with those des erature) in the fie	cribed on the Chain-of Id or laboratory, and	f- d ⊠Yes □No		
В	Were the CAM pro	e analytical method tocol(s) followed?	I(s) and all associated	d QC requirements s	specified in the selecte	d ⊠ Yes □ No		
с	C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ⊠ Yes □ No							
D	Does the "Quality Analytica	e laboratory report Assurance and G al Data"?	comply with all the re quality Control Guide	porting requirements lines for the Acquis	specified in CAM VII A ition and Reporting c	, of ⊠Yes □No		
Е	VPH, EP a. VPH, modificat b. APH a	H, APH, and TO-15 EPH, and APH I tion(s)? (Refer to th and TO-15 Methods	only Methods only: Was e individual method(s) only: Was the complet	each method condu for a list of significant te analyte list reported	icted without significar modifications). d for each method?	nt ⊠ Yes □ No □ Yes □ No		
F	Were all and eval	applicable CAM pruted in a laborator	otocol QC and perform y narrative (including a	mance standard non- Ill "No" responses to (-conformances identifie Questions A through E)?	d ⊠ Yes □ No		
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	tatus		
G	Were the protocol	e reporting limits at (s)?	or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No ¹		
<u>Da</u> re	ata User Ne presentati	ote: Data that achiev veness requirements	ve "Presumptive Certain s described in 310 CMR	nty" status may not ne 40. 1056 (2)(k) and WS	ecessarily meet the data SC-07-350.	usability and		
Н	Were all	QC performance st	andards specified in th	e CAM protocol(s) ac	chieved?	⊠ Yes □ No ¹		
I	Were res	sults reported for the	e complete analyte list	specified in the select	ted CAM protocol(s)?	□ Yes ⊠ No ¹		
¹ All I	negative r	esponses must be	addressed in an attac	ched laboratory narra	ative.			
l, the respo and be	undersign nsible for elief, is acc	ned, attest under the obtaining the inform curate and complete.	ne pains and penalties hation, the material con	s of perjury that, bas tained in this analytic	sed upon my personal al report is, to the best	inquiry of those of my knowledge		
Sign	ature: 🙆	AOUtoo		Positio	on: Laboratory Director			
Print	ted Name	e: Richard Warila		— Date: <u>1</u> 2	2/28/2023			

ANALYTICAL REPORT

Lab Number:	L2374188
Client:	Lightship Engineering
	6 Resnik Road
	Suite 207
	Plymouth, MA 02360
ATTN:	Kevin Paradise
Phone:	(508) 830-3344
Project Name:	WAREHAM
Project Number:	1075-1-2
Report Date:	01/02/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0825), DoD (L2474), FL (E87814), IL (200081), IN (C-MA-04), KY (KY98046), LA (85084), ME (MA00030), MD (350), MI (99110), NJ (MA015), NY (11627), NC (685), OH (CL106), OR (MA-0262), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #525-23-107-88708), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:01022412:47

Project Name:	WAREHAM
Project Number:	1075-1-2

 Lab Number:
 L2374188

 Report Date:
 01/02/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2374188-01	LE-SW1	WATER	WAREHAM	12/14/23 09:15	12/15/23
L2374188-02	LE-TMW1	WATER	WAREHAM	12/14/23 09:45	12/15/23
L2374188-03	LE-TMW2	WATER	WAREHAM	12/14/23 10:00	12/15/23
L2374188-04	LE-TMW3	WATER	WAREHAM	12/14/23 09:00	12/15/23
L2374188-05	LE-TMW4	WATER	WAREHAM	12/14/23 08:45	12/15/23

Project Name: WAREHAM Project Number: 1075-1-2

 Lab Number:
 L2374188

 Report Date:
 01/02/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:WAREHAMProject Number:1075-1-2

 Lab Number:
 L2374188

 Report Date:
 01/02/24

Case Narrative (continued)

Perfluorinated Alkyl Acids by 1633

L2374188-02: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ashly Boucher Ashley Boucher

Authorized Signature:

Title: Technical Director/Representative

Date: 01/02/24

ORGANICS

SEMIVOLATILES

			Serial_No:	01022412:47
Project Name:	WAREHAM		Lab Number:	L2374188
Project Number:	1075-1-2		Report Date:	01/02/24
		SAMPLE RESULTS		
Lab ID:	L2374188-01		Date Collected:	12/14/23 09:15
Client ID:	LE-SW1		Date Received:	12/15/23
Sample Location:	WAREHAM		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	EPA 1633
Analytical Method:	144,1633		Extraction Date:	12/21/23 14:55
Analytical Date:	12/23/23 12:39			
Analyst:	ANH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/l	5.91		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.96		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.48		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	5.91		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.48		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.48		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.48		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.48		1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.48		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	5.91		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.48		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.48		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.48		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.48		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	5.91		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.48		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.48		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.48		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.48		1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.48		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.48		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.48		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.48		1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.48		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	5.91		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	5.91		1
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/l	1.48		1

					S	Serial_No	01022412:47	
Project Name:	WAREHAM				Lab Nu	mber:	L2374188	
Project Number:	1075-1-2				Report	Date:	01/02/24	
		SAMPL	E RESULTS	5				
Lab ID:	L2374188-01				Date Coll	ected:	12/14/23 09:15	
Client ID:	LE-SW1				Date Rec	eived:	12/15/23	
Sample Location:	WAREHAM				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl	Acids by EPA 1633 - Ma	nsfield Lab						
9-Chlorohexadecafluoro-3- (9CI-PF3ONS)	Oxanone-1-Sulfonic Acid	ND		ng/l	5.91		1	

5.91

1.48

1.48

14.8

14.8

2.96

2.96

2.96

2.96

7.39

36.9

36.9

--

--

--

--

--

ng/l

1

1

1

1

1

1

1

1

1

1

1

1

ND

11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic

N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)

N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)

N-Methyl Perfluorooctanesulfonamido Ethanol

N-Ethyl Perfluorooctanesulfonamido Ethanol

Perfluoro-3-Methoxypropanoic Acid (PFMPA)

Perfluoro-4-Methoxybutanoic Acid (PFMBA)

Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)

2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)

3-Perfluoropropyl Propanoic Acid (3:3FTCA)

3-Perfluoroheptyl Propanoic Acid (7:3FTCA)

Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)

Acid (11CI-PF3OUdS)

(NMeFÓSE)

(NEtFOSE)

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	WAREHAM				Field Prep:		Not Specified
Client ID:	LE-SW1				Date Receiv	ved:	12/15/23
Lab ID:	L2374188-01				Date Collec	ted:	12/14/23 09:15
		SAMP	LE RESULTS	6			
Project Number:	1075-1-2				Report Da	ate:	01/02/24
Project Name:	WAREHAM				Lab Num	oer:	L2374188
					Ser	ial_No	b:01022412:47

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	81	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	89	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	89	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	95	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	77	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	82	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	75	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	73	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	66	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	74	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	61	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	58	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	44	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	51	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	61	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	42	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	53	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	54	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	47	20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	70	20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	43	20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	41	20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	55	20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	62	20-150

			Serial_No:	01022412:47
Project Name:	WAREHAM		Lab Number:	L2374188
Project Number:	1075-1-2		Report Date:	01/02/24
		SAMPLE RESULTS		
Lab ID:	L2374188-02		Date Collected:	12/14/23 09:45
Client ID:	LE-TMW1		Date Received:	12/15/23
Sample Location:	WAREHAM		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	EPA 1633
Analytical Method:	144,1633		Extraction Date:	12/21/23 14:55
Analytical Date:	12/23/23 12:52			
Analyst:	ANH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	20.8		ng/l	6.42		1
Perfluoropentanoic Acid (PFPeA)	7.22		ng/l	3.21		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.60		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	6.42		1
Perfluorohexanoic Acid (PFHxA)	5.75		ng/l	1.60		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.60		1
Perfluoroheptanoic Acid (PFHpA)	8.19		ng/l	1.60		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.60		1
Perfluorooctanoic Acid (PFOA)	18.9		ng/l	1.60		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	6.42		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.60		1
Perfluorononanoic Acid (PFNA)	5.50		ng/l	1.60		1
Perfluorooctanesulfonic Acid (PFOS)	2.14		ng/l	1.60		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.60		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	6.42		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.60		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.60		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.60		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.60		1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.60		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.60		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.60		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.60		1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.60		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	6.42		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	6.42		1
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/l	1.60		1

					:	Serial_No	0:01022412:47	
Project Name:	WAREHAM				Lab Nu	mber:	L2374188	
Project Number:	1075-1-2				Report	Date:	01/02/24	
		SAMP		5				
Lab ID:	L2374188-02				Date Co	lected:	12/14/23 09:45	
Client ID:	LE-TMW1				Date Re	ceived:	12/15/23	
Sample Location:	WAREHAM				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alky	l Acids by EPA 1633 - M	ansfield Lab						
							_	
9-Chlorohexadecafluoro-3 (9CI-PF3ONS)	B-Oxanone-1-Sulfonic Acid	ND		ng/l	6.42		1	
11-Chloroeicosafluoro-3-C	Number of a second of the other	ND		na/l	6 4 2		1	
Acid (11CI-PF3OUdS)	Jxaundecane-1-Sulfonic	ND		ng/i	0.12			

ng/l

1.60

16.0

16.0

3.21

3.21

3.21

3.21

8.03

40.1

40.1

--

--

--

--

--

1 1

1

1

1

1

1

1

1

1

ND

N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)

N-Methyl Perfluorooctanesulfonamido Ethanol

N-Ethyl Perfluorooctanesulfonamido Ethanol

Perfluoro-3-Methoxypropanoic Acid (PFMPA)

Perfluoro-4-Methoxybutanoic Acid (PFMBA)

Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)

2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)

3-Perfluoropropyl Propanoic Acid (3:3FTCA)

3-Perfluoroheptyl Propanoic Acid (7:3FTCA)

Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)

(NMeFÓSE)

(NEtFOSE)

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	WAREHAM				Field Prep	•	Not Specified
Somple Leastion					Field Drop		Not Crossified
Client ID:	LE-TMW1				Date Rece	eived:	12/15/23
Lab ID:	L2374188-02				Date Colle	cted:	12/14/23 09:45
		SAMP	LE RESULTS	6			
Project Number:	1075-1-2				Report D	Date:	01/02/24
Project Name:	WAREHAM				Lab Num	nber:	L2374188
					Se	0:01022412:47	

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	81		20-150	
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	88		20-150	
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	83		20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	174	Q	20-150	
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	86		20-150	
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	85		20-150	
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	82		20-150	
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	79		20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	74		20-150	
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	73		20-150	
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	73		20-150	
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	67		20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	60		20-150	
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	53		20-150	
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	58		20-150	
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	39		20-150	
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	53		20-150	
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	46		20-150	
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	30		20-150	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	71		20-150	
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	38		20-150	
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	41		20-150	
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	50		20-150	
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	57		20-150	

			Serial_No:	01022412:47
Project Name:	WAREHAM		Lab Number:	L2374188
Project Number:	1075-1-2		Report Date:	01/02/24
		SAMPLE RESULTS		
Lab ID:	L2374188-03		Date Collected:	12/14/23 10:00
Client ID:	LE-TMW2		Date Received:	12/15/23
Sample Location:	WAREHAM		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	EPA 1633
Analytical Method:	144,1633		Extraction Date:	12/21/23 14:55
Analytical Date:	12/23/23 13:05			
Analyst:	ANH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 - N	Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	16.3		ng/l	5.66		1
Perfluoropentanoic Acid (PFPeA)	6.81		ng/l	2.83		1
Perfluorobutanesulfonic Acid (PFBS)	1.89		ng/l	1.42		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	5.66		1
Perfluorohexanoic Acid (PFHxA)	9.18		ng/l	1.42		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.42		1
Perfluoroheptanoic Acid (PFHpA)	8.51		ng/l	1.42		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.42		1
Perfluorooctanoic Acid (PFOA)	6.57		ng/l	1.42		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	5.66		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.42		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.42		1
Perfluorooctanesulfonic Acid (PFOS)	1.56		ng/l	1.42		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.42		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	5.66		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.42		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.42		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.42		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.42		1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.42		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.42		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.42		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.42		1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.42		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	5.66		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	5.66		1
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/l	1.42		1

					:	Serial_No	0:01022412:47	
Project Name:	WAREHAM				Lab Nu	mber:	L2374188	
Project Number:	1075-1-2				Report	Date:	01/02/24	
		SAMP	LE RESULTS	5				
Lab ID:	L2374188-03				Date Co	llected:	12/14/23 10:00	
Client ID:	LE-TMW2				Date Collected: 12/14/23 10:00 Date Received: 12/15/23 Field Prep: Not Specified			
Sample Location:	WAREHAM				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alky	l Acids by EPA 1633 - M	ansfield Lab						
9-Chlorohexadecafluoro-3 (9CI-PF3ONS)	3-Oxanone-1-Sulfonic Acid	ND		ng/l	5.66		1	
11-Chloroeicosafluoro-3-	Oxaundecane-1-Sulfonic	ND		ng/l	5.66		1	

ng/l

1.42

1.42

14.2

14.2

2.83

2.83

2.83

2.83

7.08

35.4

35.4

--

--

--

--

--

--

1

1

1

1

1

1

1

1

1

1

1

ND

Acid (11CI-PF3OUdS)

(NMeFÓSE)

(NEtFOSE)

N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)

N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)

N-Methyl Perfluorooctanesulfonamido Ethanol

N-Ethyl Perfluorooctanesulfonamido Ethanol

Perfluoro-3-Methoxypropanoic Acid (PFMPA)

Perfluoro-4-Methoxybutanoic Acid (PFMBA)

Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)

2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)

3-Perfluoropropyl Propanoic Acid (3:3FTCA)

3-Perfluoroheptyl Propanoic Acid (7:3FTCA)

Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	WAREHAM				Field Prep	:	Not Specified
Complete setient					Eald Deer		
Client ID [.]	LE-TMW2				Date Rece	ived:	12/15/23
Lab ID:	L2374188-03				Date Colle	cted:	12/14/23 10:00
		SAMP	LE RESULTS	6			
Project Number:	1075-1-2				Report D	ate:	01/02/24
Project Name:	WAREHAM				Lab Num	ber:	L2374188
					Se	erial_No	0:01022412:47

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	81	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	96	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	92	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	89	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	81	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	84	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	78	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	77	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	66	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	76	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	74	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	75	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	44	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	58	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	65	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	46	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	49	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	58	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	46	20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	76	20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	44	20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	51	20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	61	20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	72	20-150

			Serial_No:	01022412:47
Project Name:	WAREHAM		Lab Number:	L2374188
Project Number:	1075-1-2		Report Date:	01/02/24
		SAMPLE RESULTS		
Lab ID:	L2374188-04		Date Collected:	12/14/23 09:00
Client ID:	LE-TMW3		Date Received:	12/15/23
Sample Location:	WAREHAM		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	EPA 1633
Analytical Method:	144,1633		Extraction Date:	12/21/23 14:55
Analytical Date:	12/23/23 13:18			
Analyst:	ANH			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/l	5.66		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.83		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.41		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	5.66		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.41		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.41		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.41		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.41		1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.41		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	5.66		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.41		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.41		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.41		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.41		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	5.66		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.41		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.41		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.41		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.41		1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.41		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.41		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.41		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.41		1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.41		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	5.66		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	5.66		1
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/l	1.41		1

					S	Serial_No	0:01022412:47	
Project Name:	WAREHAM				Lab Nu	mber:	L2374188	
Project Number:	1075-1-2				Report	Date:	01/02/24	
		SAMPL	E RESULTS					
Lab ID:	L2374188-04				Date Col	lected:	12/14/23 09:00	
Client ID:	LE-TMW3				Date Rec	eived:	12/15/23	
Sample Location:	WAREHAM				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl	Acids by EPA 1633 - Ma	nsfield Lab						
9-Chlorohexadecafluoro-3 (9CI-PF3ONS)	-Oxanone-1-Sulfonic Acid	ND		ng/l	5.66		1	
11-Chloroeicosafluoro-3-C Acid (11Cl-PF3OUdS)	Dxaundecane-1-Sulfonic	ND		ng/l	5.66		1	

ng/l

1.41

1.41

14.1

14.1

2.83

2.83

2.83

2.83

7.07

35.4

35.4

--

--

--

1

1

1

1

1

1

1

1

1

1

1

ND

N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)

N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)

N-Methyl Perfluorooctanesulfonamido Ethanol

N-Ethyl Perfluorooctanesulfonamido Ethanol

Perfluoro-3-Methoxypropanoic Acid (PFMPA)

Perfluoro-4-Methoxybutanoic Acid (PFMBA)

Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)

2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)

3-Perfluoropropyl Propanoic Acid (3:3FTCA)

3-Perfluoroheptyl Propanoic Acid (7:3FTCA)

Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)

(NMeFÓSE)

(NEtFOSE)

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	WAREHAM				Field Pre	p:	Not Specified
Comple Leastion:					Field Dra		
Client ID [.]	LE-TMW3				Date Rec	eived.	12/15/23
Lab ID:	L2374188-04				Date Coll	ected:	12/14/23 09:00
		SAMP		6			
Project Number:	1075-1-2				Report	Date:	01/02/24
Project Name:	WAREHAM				Lab Nu	mber:	L2374188
			Serial_No:01022412			0:01022412:47	

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	86	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	99	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	97	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	95	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	85	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	83	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	82	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	78	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	71	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	70	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	54	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	58	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	36	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	42	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	56	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	38	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	39	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	59	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	45	20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	74	20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	35	20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	41	20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	50	20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	56	20-150

		Serial_No:	01022412:47
WAREHAM		Lab Number:	L2374188
1075-1-2		Report Date:	01/02/24
	SAMPLE RESULTS		
L2374188-05		Date Collected:	12/14/23 08:45
LE-TMW4		Date Received:	12/15/23
WAREHAM		Field Prep:	Not Specified
Water		Extraction Method:	EPA 1633
144,1633		Extraction Date:	12/21/23 14:55
12/23/23 13:30			
ANH			
	WAREHAM 1075-1-2 L2374188-05 LE-TMW4 WAREHAM Water 144,1633 12/23/23 13:30 ANH	WAREHAM 1075-1-2 L2374188-05 LE-TMW4 WAREHAM Water 144,1633 12/23/23 13:30 ANH	WAREHAM Lab Number: 1075-1-2 Report Date: SAMPLE RESULTS L2374188-05 Date Collected: LE-TMW4 Date Received: WAREHAM Field Prep: Water 144,1633 12/23/23 13:30 ANH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	14.9		ng/l	5.63		1
Perfluoropentanoic Acid (PFPeA)	6.03		ng/l	2.82		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.41		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	5.63		1
Perfluorohexanoic Acid (PFHxA)	7.37		ng/l	1.41		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.41		1
Perfluoroheptanoic Acid (PFHpA)	7.61		ng/l	1.41		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.41		1
Perfluorooctanoic Acid (PFOA)	7.64		ng/l	1.41		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	5.63		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.41		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.41		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.41		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.41		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	5.63		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.41		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.41		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.41		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.41		1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.41		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.41		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.41		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.41		1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.41		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	5.63		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	5.63		1
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/l	1.41		1

					Serial_No:01022412:47			
Project Name:	WAREHAM				Lab Nu	ımber:	L2374188	
Project Number:	1075-1-2	Report Date:			01/02/24			
		SAMP	LE RESULTS	5				
Lab ID:	L2374188-05				Date Collected: 12/14/23 (12/14/23 08:45	
Client ID:	LE-TMW4				Date Received: 12/1		12/15/23	
Sample Location:	WAREHAM				Field Prep: Not Sp		Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab								
9-Chlorohexadecafluoro- (9CI-PF3ONS)	3-Oxanone-1-Sulfonic Acid	ND		ng/l	5.63		1	
11-Chloroeicosafluoro-3- Acid (11CI-PE3OUdS)	Oxaundecane-1-Sulfonic	ND		ng/l	5.63		1	

ng/l

1.41

1.41

14.1

14.1

2.82

2.82

2.82

2.82

7.04

35.2

35.2

--

--

--

--

1

1

1

1

1

1

1

1

1

1

1

ND

N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)

N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)

N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)

N-Ethyl Perfluorooctanesulfonamido Ethanol

Perfluoro-3-Methoxypropanoic Acid (PFMPA)

Perfluoro-4-Methoxybutanoic Acid (PFMBA)

Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)

2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)

3-Perfluoropropyl Propanoic Acid (3:3FTCA)

3-Perfluoroheptyl Propanoic Acid (7:3FTCA)

Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)

(NEtFOSE)

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	WAREHAM				Field Prep):	Not Specified
Comple Leastion:					Field Dror		Net Or esition
Client ID:	LE-TMW4				Date Rec	eived:	12/15/23
Lab ID:	L2374188-05				Date Colle	ected:	12/14/23 08:45
		SAMP	LE RESULTS	5			
Project Number:	1075-1-2				Report I	Date:	01/02/24
Project Name:	WAREHAM				Lab Nur	nber:	L2374188
			Serial_No:01022412:47			0:01022412:47	

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	81	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	99	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	83	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	108	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	82	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	82	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	80	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	81	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	71	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	82	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	76	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	73	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	51	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	59	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	73	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	49	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	49	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	62	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	56	20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	70	20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	43	20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	43	20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	61	20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	68	20-150

Lab Number:

Report Date:

Project Name: WAREHAM

Project Number: 1075-1-2

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

144,1633 12/23/23 11:48 ANH Extraction Method: EPA 1633 Extraction Date: 12/21/23 14:55

L2374188

01/02/24

Parameter	Result	Qualifier	Units	RL	MDL
Perfluorinated Alkyl Acids by EPA 1	633 - Mansf	ield Lab fo	r sample(s):	01-05	Batch: WG1866942-1
Perfluorobutanoic Acid (PFBA)	ND		ng/l	6.40	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	3.20	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.60	
1H,1H,2H,2H-Perfluorohexanesulfonic Ac (4:2FTS)	id ND		ng/l	6.40	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.60	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.60	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.60	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.60	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.60	
1H,1H,2H,2H-Perfluorooctanesulfonic Aci (6:2FTS)	d ND		ng/l	6.40	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.60	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.60	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.60	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.60	
1H,1H,2H,2H-Perfluorodecanesulfonic Ac (8:2FTS)	id ND		ng/l	6.40	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.60	
N-Methyl Perfluorooctanesulfonamidoace Acid (NMeFOSAA)	tic ND		ng/l	1.60	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.60	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.60	
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.60	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.60	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.60	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.60	
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.60	-
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	6.40	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	6.40	
Perfluorododecanesulfonic Acid (PFDoS)	ND		ng/l	1.60	

Lab Number:

Report Date:

Project Name: WAREHAM

Project Number: 1075-1-2

Method Blank Analysis Batch Quality Control

Analytical Method:	144,1633
Analytical Date:	12/23/23 11:48
Analyst:	ANH

Extraction Method: EPA 1633 Extraction Date: 12/21/23 14:55

L2374188

01/02/24

Parameter	Result	Qualifier	Units	RL	MDL
Perfluorinated Alkyl Acids by EPA 16	633 - Mansf	ield Lab fo	r sample(s):	01-05	Batch: WG1866942-1
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	6.40	-
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	ND		ng/l	6.40	-
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	ND		ng/l	1.60	
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	ND		ng/l	1.60	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	ND		ng/l	16.0	
N-Ethyl Perfluorooctanesulfonamido Ethan (NEtFOSE)	ol ND		ng/l	16.0	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	3.20	
Perfluoro-4-Methoxybutanoic Acid (PFMBA	A) ND		ng/l	3.20	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	3.20	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	3.20	
3-Perfluoropropyl Propanoic Acid (3:3FTC)	A) ND		ng/l	8.00	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	ND		ng/l	40.0	
3-Perfluoroheptyl Propanoic Acid (7:3FTC/	A) ND		ng/l	40.0	

Project Name:	WAREHAM		Lab Number:	L2374188
Project Number:	1075-1-2		Report Date:	01/02/24
		Method Blank Analysis		

Batch Quality Control

Analytical Method:	144,1633	Extraction Method:	EPA 1633
Analytical Date:	12/23/23 11:48	Extraction Date:	12/21/23 14:55
Analyst:	ANH		

Parameter	Result	Qualifier	Units	RL	MDL
Perfluorinated Alkyl Acids by EPA 1	633 - Mansf	field Lab fo	r sample(s):	01-05	Batch: WG1866942-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	85	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	102	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	91	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	85	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	92	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	87	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	85	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	85	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	71	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	94	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	87	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	86	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	57	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	63	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	80	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	57	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	61	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	71	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	66	20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	84	20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	46	20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	48	20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	73	20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	80	20-150

Lab Control Sample Analysis Batch Quality Control

Project Name:WAREHAMProject Number:1075-1-2

 Lab Number:
 L2374188

 Report Date:
 01/02/24

Parameter	Low Level LCS %Recovery C	Low Level LCSD Qual %Recovery	%Reco Qual Lim	overy its RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab Associat	ted sample(s): 01-05 E	Batch: WG1866942-2	LOW LEVEL		
Perfluorobutanoic Acid (PFBA)	104	-	40-1	50 -	30	
Perfluoropentanoic Acid (PFPeA)	107	-	40-1	50 -	30	
Perfluorobutanesulfonic Acid (PFBS)	119	-	40-1	50 -	30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	102	-	40-1	50 -	30	
Perfluorohexanoic Acid (PFHxA)	118	-	40-1	50 -	30	
Perfluoropentanesulfonic Acid (PFPeS)	103	-	40-1	50 -	30	
Perfluoroheptanoic Acid (PFHpA)	109	-	40-1	50 -	30	
Perfluorohexanesulfonic Acid (PFHxS)	100	-	40-1	50 -	30	
Perfluorooctanoic Acid (PFOA)	110	-	40-1	50 -	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	96	-	40-1	50 -	30	
Perfluoroheptanesulfonic Acid (PFHpS)	107	-	40-1	50 -	30	
Perfluorononanoic Acid (PFNA)	118	-	40-1	50 -	30	
Perfluorooctanesulfonic Acid (PFOS)	115	-	40-1	50 -	30	
Perfluorodecanoic Acid (PFDA)	112	-	40-1	50 -	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	94	-	40-1	50 -	30	
Perfluorononanesulfonic Acid (PFNS)	83	-	40-1	50 -	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	117	-	40-1	50 -	30	
Perfluoroundecanoic Acid (PFUnA)	95	-	40-1	50 -	30	
Perfluorodecanesulfonic Acid (PFDS)	82	-	40-1	50 -	30	
Perfluorooctanesulfonamide (PFOSA)	98	-	40-1	50 -	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	128	-	40-1	50 -	30	
Perfluorododecanoic Acid (PFDoA)	97	-	40-1	50 -	30	

Lab Control Sample Analysis Batch Quality Control

Project Name:WAREHAMProject Number:1075-1-2

 Lab Number:
 L2374188

 Report Date:
 01/02/24

	Low Level	Low Level				
	LCS	LCSD	%Recov	ery	RPD	
Parameter	%Recovery Qι	al %Recovery	Qual Limits	RPD	Qual Limits	
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab Associate	d sample(s): 01-05 Batc	h: WG1866942-2	LOW LEVEL		
Perfluorotridecanoic Acid (PFTrDA)	104	-	40-150	-	30	
Perfluorotetradecanoic Acid (PFTeDA)	115	-	40-150	-	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	112	-	40-150	-	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	108	-	40-150	-	30	
Perfluorododecanesulfonic Acid (PFDoS)	88	-	40-150	-	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	108	-	40-150	-	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11CI-PF3OUdS)	95	-	40-150	-	30	
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	113	-	40-150	-	30	
N-Ethyl Perfluorooctane Sulfonamide (NEtEOSA)	90	-	40-150	-	30	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeEQSE)	103	-	40-150	-	30	
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtEOSE)	106	-	40-150	-	30	
Perfluoro-3-Methoxypropanoic Acid (PEMPA)	89	-	40-150	-	30	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	93	-	40-150	-	30	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	136	-	40-150	-	30	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	128	-	40-150	-	30	
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	97	-	40-150	-	30	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3ETCA)	74	-	40-150	-	30	
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	52	-	40-150	-	30	

Lab Control Sample Analysis

WAREHAM	Batch Quality Control	Lab Number:	L2374188
1075-1-2		Report Date:	01/02/24

	Low Level		Low Level						
	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab Asso	ciated sam	ple(s): 01-05 Bat	ch: WG1	866942-2 LOW LE	EVEL			

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	88				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	103				20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	95				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	89				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	81				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	86				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	86				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	84				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	72				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	85				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	83				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	81				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	67				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	72				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	82				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	57				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	56				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	76				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	59				20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	79				20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	41				20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	50				20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	64				20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	75				20-150

Project Name:

Project Number:

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2374188

Report Date: 01/02/24

Parameter	LCS %Recovery	Qual %	LCSD &Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EDA 1633	Mansfield Lab Asso	ciated sample(s)	• 01-05 B	atch: WG1	866942-3				
Fernuorinated Aikyr Acids by EFA 1055	- Manshelu Lab Assu	cialeu sample(s)	. 01-03 D		000942-3				
Perfluorobutanoic Acid (PFBA)	100		-		40-150	-		30	
Perfluoropentanoic Acid (PFPeA)	108		-		40-150	-		30	
Perfluorobutanesulfonic Acid (PFBS)	105		-		40-150	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	90		-		40-150	-		30	
Perfluorohexanoic Acid (PFHxA)	111		-		40-150	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	102		-		40-150	-		30	
Perfluoroheptanoic Acid (PFHpA)	98		-		40-150	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	102		-		40-150	-		30	
Perfluorooctanoic Acid (PFOA)	108		-		40-150	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	93		-		40-150	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	104		-		40-150	-		30	
Perfluorononanoic Acid (PFNA)	107		-		40-150	-		30	
Perfluorooctanesulfonic Acid (PFOS)	99		-		40-150	-		30	
Perfluorodecanoic Acid (PFDA)	94		-		40-150	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	116		-		40-150	-		30	
Perfluorononanesulfonic Acid (PFNS)	81		-		40-150	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	124		-		40-150	-		30	
Perfluoroundecanoic Acid (PFUnA)	106		-		40-150	-		30	
Perfluorodecanesulfonic Acid (PFDS)	82		-		40-150	-		30	
Perfluorooctanesulfonamide (PFOSA)	96		-		40-150	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	124		-		40-150	-		30	
Perfluorododecanoic Acid (PFDoA)	96		-		40-150	-		30	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2374188 01/02/24

Report Date:

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by EPA 1633	- Mansfield Lab Ass	ociated sample(s): 01-05	Batch: WG1866942-3			
Perfluorotridecanoic Acid (PFTrDA)	109	-	40-150	-	30	
Perfluorotetradecanoic Acid (PFTeDA)	115	-	40-150	-	30	
Hexafluoropropylene Oxide Dimer Acid (HEPO-DA)	110	-	40-150	-	30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	113	-	40-150	-	30	
Perfluorododecanesulfonic Acid (PFDoS)	87	-	40-150	-	30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	102	-	40-150	-	30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11CI-PF3OUdS)	104	-	40-150	-	30	
N-Methyl Perfluorooctane Sulfonamide (NMeFQSA)	109	-	40-150	-	30	
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	108	-	40-150	-	30	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	111	-	40-150	-	30	
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	110	-	40-150	-	30	
Perfluoro-3-Methoxypropanoic Acid (PEMPA)	92	-	40-150	-	30	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	93	-	40-150	-	30	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	132	-	40-150	-	30	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	123	-	40-150	-	30	
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	92	-	40-150	-	30	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	81	-	40-150	-	30	
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	67	-	40-150	-	30	

L2374188

Lab Control Sample Analysis Batch Quality Control

Project Name:WAREHAMProject Number:1075-1-2

Lab Number:

Report Date: 01/02/24

WG1866042-3				
	WG1866942-3	WG1866942-3	WG1866942-3	WG1866942-3

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	87				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	105				20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	88				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Hexanesulfonic Acid (13C2-4:2FTS)	90				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	83				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	88				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	85				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	82				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	74				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	94				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	96				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	97				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	60				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	79				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	92				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	65				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	71				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	88				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	74				20-150
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	80				20-150
N-Methyl-d3-Perfluoro-1-Octanesulfonamide (D3-NMeFOSA)	55				20-150
N-Ethyl-d5-Perfluoro-1-Octanesulfonamide (D5-NEtFOSA)	57				20-150
N-Methyl-d7-Perfluorooctanesulfonamidoethanol (D7-NMeFOSE)	76				20-150
N-Ethyl-d9-Perfluorooctanesulfonamidoethanol (D9-NEtFOSE)	88				20-150

Project Name: WAREHAM Project Number: 1075-1-2 Serial_No:01022412:47 *Lab Number:* L2374188 *Report Date:* 01/02/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2374188-01A	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-01B	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-01C	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-02A	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-02B	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-02C	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-03A	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-03B	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-03C	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-04A	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-04B	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-04C	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-05A	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-05B	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)
L2374188-05C	Plastic 500ml unpreserved	А	NA		5.7	Y	Absent		A2-1633-DRAFT(28)

Project Name: WAREHAM

Project Number: 1075-1-2

Serial_No:01022412:47 Lab Number: L2374188 Report Date: 01/02/24

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA/PFTeDA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS/PFDoS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
Perfluoropropanesulfonic Acid	PFPrS	423-41-6
FLUOROTELOMERS		
1H 1H 2H 2H-Perfluorododecanesulfonic Acid	10.2ETS	120226 60 0
1H 1H 2H 2H-Perfluorodecanesulfonic Acid	8.2FTS	39108-34-4
1H 1H 2H 2H-Perfluorooctanesulfonic Acid	6:2FTS	27610 07 2
1H 1H 2H 2H-Perfluorobevanesulfonic Acid	4:2FTS	27019-97-2 757104 70 4
	4.2113	15/124-72-4
PERFLUOROALKAINE SULFONAIMIDES (FASAS)		
Perfluorooctanesulfonamide	FOSA/PFOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NETFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
	30111 30113	750420-30-1
Perfluoro(2 Ethoxyethano)Sulfonic Acid	DEEESA	112507 02 7
	II LLOA	113307-02-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Name: WAREHAM

Project Number: 1075-1-2

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs)		
3-Perfluoroheptyl Propanoic Acid	7:3FTCA	812-70-4
2H,2H,3H,3H-Perfluorooctanoic Acid	5:3FTCA	914637-49-3
3-Perfluoropropyl Propanoic Acid	3:3FTCA	356-02-5

Serial_No:01022412:47

Project Name: WAREHAM

Project Number: 1075-1-2

Lab Number: L2374188

Report Date: 01/02/24

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: WAREHAM

Project Number: 1075-1-2

Lab Number: L2374188 Report Date: 01/02/24

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name: WAREHAM

Project Number: 1075-1-2

Serial_No:01022412:47

Lab Number: L2374188

Report Date: 01/02/24

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: WAREHAM Project Number: 1075-1-2

 Lab Number:
 L2374188

 Report Date:
 01/02/24

REFERENCES

144 Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. Draft EPA Method 1633, EPA Document 821-D-22-001, June 2022.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethvltoluene.

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H, B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

-						_	_					S	erial_No:0	10224	12:47	
	CHAI	N OF C	USTO	DY ,	AGE L	OF /	Date Re	c'd in Lat	: 12	/13	123	ALP	HA Job #:	12	3741	88
8 Walkup Drive	320 Fosters Blot	Pro	oject Informat	ion			Repor	t Informa	tion - Da	ita Deliv	erables	Billin	ng Informat	tion	- 110	10
Westboro, MA 0 Tol: 508-898-90	01581 Marrafield, MA 0204 220 Tel: 508-822-9300	a Pro	iect Name: 🛛 👔	Vareh	am		ZADE	x		L		2 San	ne as Client in	nfo PC	#1075.1.	.2
Client Informatio	n	Proj	ect Location:	Nare	ham		Regula	atory Red	quiremer	its &	Project	Informa	tion Requir	rements	3	
Client: Lights	hip Engineeri	ng Pro	iect #: 10	75-1-	2		Ves D	No MAN	ACP Analy x Spike Re	tical Meti	nods n this SDC	2 (Recui	Yes No C	T RCP A	Analytical Metho	ds
Address: 6 A	Resnik Rd.	Proj	ect Manager: K	evin 1	arad	se	Cal Yes D	No GW1	Standard	s (Info Re	equired for	Metals &	EPH with Ta	rgets)	21	
Plymo	wth, MA	AL	PHA Quote #:				Other	State /Fea	es RGP i Program	i			Criteria			
Phone: 721-	223-6717	Tu	rn-Around Tir	ne				11	P 15	13	3	17	77	11	1	
Additional P	roject Information		Standard 🛛	I RUSH (only	conformed of pro-sy	anned)	ANALYSIS	U PAH	IS LIRCHAR LINC	Targets D Ranges Or	V DFIngerprine				SAMPLE INFO	TOTAL .
AL OHAL AN ID							C 8260 C	US: LINCP	U.R. L. R.C.R.A. L.R.anges &	CRanges & 1	Courant Only	2	[]]		Lab to do Preservation Lab to do	BOTT
(Lab Use Only)	Sample	e ID	Colle	Time	Sample Matrix	Sampler Initials	POC.	MET	Has	t a	# /	11	///	Sam	nie Commente	LES
74188 - =1	LE-SW	1	12/14/23	915	SW	KP			11	TT	×	T	T T	Gain	pie continenta	2
. •2	LE-TMU	11	12/15/00	945	GW	KM					4					3
- 03	LE-TMU	VZ	12/15/22	1000	610	KM					4					1
40 ·	LE -TMI	W3	12/10/22	900	60	KM					×					
. •5	LE -TM	w4	12/15/23	845	GW	KM					+					1
Container Type	Preservative A= None			Г	Conta	iner Type					P					
A- Amber glass V= Vtal G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄				Pre	servative					A					
8= Bacteria cup C= Cube O= Other E# Encore D= BOD Bottle	E= NaOH F= MeOH G= NaHSO+ H = Na ₂ S ₂ O ₂ I= Ascorbic Acid J = NH ₄ Cl	K mal	linguished By:		Date 12/15/2	:3 1/28	Rol	Perceiv	all all	2	Dat 12/13	e/Time	All sample	es submi erms and	ited are subject Conditions.	t to
Page 39 of 39	C= Other												FORM NO: (01-01 (rev. 1	(2-Mar-2012)	

EMSL	EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com	Customer ID: Customer PO: Project ID:	LENG78 1075.1.2
Attention:	Kevin Paradise	Phone:	(508) 830-3344
	Lightship Engineering, LLC	Fax:	(508) 830-3360
	39 Industrial Park Road	Received Date:	12/19/2023 10:00 AM
	Unit C	Analysis Date:	12/27/2023
	Plymouth, MA 02360	Collected Date:	12/15/2023
Project:	Wareham - 1075.1.2		

Test Report: Asbestos Analysis of Bulk Materials via AHERA Method 40CFR 763 Subpart E Appendix E supplemented with EPA 600/R-93/116 using Polarized Light Microscopy

			Non-A	sbestos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
LE-BM1	Building Material	Gray/Blue Non-Fibrous		100% Non-fibrous (Other)	None Detected
042329204-0001		Heterogeneous			
Inseparable paint / coating l	ayer included in analysis	-			
LE-BM2	Building Material	Gray/Blue Non-Fibrous		100% Non-fibrous (Other)	None Detected
042329204-0002		Heterogeneous			
Inseparable paint / coating l	ayer included in analysis	-			
LE-BM3	Building Material	Gray/White Non-Fibrous		100% Non-fibrous (Other)	None Detected
042329204-0003		Heterogeneous			
Inseparable paint / coating l	ayer included in analysis	5			

Analyst(s)

Brett Polumbo (2) Michelle Quach (1)

montha Kingstrono

Samantha Rundstrom, Laboratory Manager or Other Approved Signatory

04000004

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AIHA LAP, LLC-IHLAP Lab 100194, NJ DEP 03036, PA ID# 68-00367, LA #04127

Initial report from: 12/27/2023 15:08:50

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 3L14040 Client Project: 1075 - Wareham

Report Date: 21-December-2023

Prepared for:

Kevin Paradise Lightship Engineering 6 Resnik Raod, Suite 207 Plymouth, MA 02360

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted :

The samples listed below were submitted to New England Testing Laboratory on 12/14/23. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 3L14040. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
3L14040-01	LE-SW1	Water	12/14/2023	12/14/2023
3L14040-02	LE-SE01	Soil	12/14/2023	12/14/2023

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

LE-SE01 (Lab Number: 3L14040-02)

Analysis	Method
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH
Volatile Organic Compounds	EPA 8260C
LE-SW1 (Lab Number: 3L14040-01)	

AnalysisMethodE. coli bacteriaSM9223(04) COLertQTMADEP EPHMADEP EPHMADEP VPHMADEP VPHVolatile Organic CompoundsEPA 8260C

Method References

Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2004

Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2018

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Microbiology

Sample: LE-SW1 Lab Number: 3L14040-01 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
E. coli	<		1	MPN/100ml	12/14/23 16:15	12/14/23 16:15

Results: Volatile Organic Compounds 8260C (5035-LL)

Sample: LE-SE01

Lab Number: 3L14040-02 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		80	ua/ka	12/18/23	12/18/23
Benzene	ND		4	ug/kg	12/18/23	12/18/23
Bromobenzene	ND		4	ug/kg	12/18/23	12/18/23
Bromochloromethane	ND		4	ug/kg	12/18/23	12/18/23
Bromodichloromethane	ND		4	ug/kg	12/18/23	12/18/23
Bromoform	ND		4	ug/kg	12/18/23	12/18/23
Bromomethane	ND		4	ug/kg	12/18/23	12/18/23
2-Butanone	ND		80	ug/kg	12/18/23	12/18/23
tert-Butyl alcohol	ND		4	ug/kg	12/18/23	12/18/23
sec-Butylbenzene	ND		4	ug/kg	12/18/23	12/18/23
n-Butylbenzene	ND		4	ug/kg	12/18/23	12/18/23
tert-Butylbenzene	ND		4	ug/kg	12/18/23	12/18/23
Methyl t-butyl ether (MTBE)	ND		4	ug/kg	12/18/23	12/18/23
Carbon Disulfide	ND		4	ug/kg	12/18/23	12/18/23
Carbon Tetrachloride	ND		4	ug/kg	12/18/23	12/18/23
Chlorobenzene	ND		4	ug/kg	12/18/23	12/18/23
Chloroethane	ND		4	ug/kg	12/18/23	12/18/23
Chloroform	ND		4	ug/kg	12/18/23	12/18/23
Chloromethane	ND		4	ug/kg	12/18/23	12/18/23
4-Chlorotoluene	ND		4	ug/kg	12/18/23	12/18/23
2-Chlorotoluene	ND		4	ug/kg	12/18/23	12/18/23
1,2-Dibromo-3-chloropropane (DBCP)	ND		4	ug/kg	12/18/23	12/18/23
Dibromochloromethane	ND		4	ug/kg	12/18/23	12/18/23
1,2-Dibromoethane (EDB)	ND		4	ug/kg	12/18/23	12/18/23
Dibromomethane	ND		4	ug/kg	12/18/23	12/18/23
1,2-Dichlorobenzene	ND		4	ug/kg	12/18/23	12/18/23
1,3-Dichlorobenzene	ND		4	ug/kg	12/18/23	12/18/23
1,4-Dichlorobenzene	ND		4	ug/kg	12/18/23	12/18/23
1,1-Dichloroethane	ND		4	ug/kg	12/18/23	12/18/23
1,2-Dichloroethane	ND		4	ug/kg	12/18/23	12/18/23
1,2 Dichloroethene, Total	ND		4	ug/kg	12/18/23	12/18/23
trans-1,2-Dichloroethene	ND		4	ug/kg	12/18/23	12/18/23
cis-1,2-Dichloroethene	ND		4	ug/kg	12/18/23	12/18/23
1,1-Dichloroethene	ND		4	ug/kg	12/18/23	12/18/23
1,2-Dichloropropane	ND		4	ug/kg	12/18/23	12/18/23
2,2-Dichloropropane	ND		4	ug/kg	12/18/23	12/18/23
cis-1,3-Dichloropropene	ND		4	ug/kg	12/18/23	12/18/23
trans-1,3-Dichloropropene	ND		4	ug/kg	12/18/23	12/18/23
1,1-Dichloropropene	ND		4	ug/kg	12/18/23	12/18/23
1,3-Dichloropropene (cis + trans)	ND		4	ug/kg	12/18/23	12/18/23
Diethyl ether	ND		4	ug/kg	12/18/23	12/18/23
1,4-Dioxane	ND		80	ug/kg	12/18/23	12/18/23
Ethylbenzene	ND		4	ug/kg	12/18/23	12/18/23
Hexachlorobutadiene	ND		4	ug/kg	12/18/23	12/18/23
2-Hexanone	ND		80	ug/kg	12/18/23	12/18/23
Isopropylbenzene	ND		4	ug/kg	12/18/23	12/18/23
p-Isopropyltoluene	ND		4	ug/kg	12/18/23	12/18/23
Methylene Chloride	ND		16	ug/kg	12/18/23	12/18 Page 6

of 33

Sample: LE-SE01 (Continued)

Lab Number: 3L14040-02 (Soil)

		Rep	orting			
Analyte	Result	Qual Li	mit	Units	Date Prepared	Date Analyzed
4-Methyl-2-pentanone	ND	8	30	ug/kg	12/18/23	12/18/23
Naphthalene	ND		4	ug/kg	12/18/23	12/18/23
n-Propylbenzene	ND		4	ug/kg	12/18/23	12/18/23
Styrene	ND		4	ug/kg	12/18/23	12/18/23
1,1,1,2-Tetrachloroethane	ND		4	ug/kg	12/18/23	12/18/23
Tetrachloroethene	ND		4	ug/kg	12/18/23	12/18/23
Tetrahydrofuran	ND		4	ug/kg	12/18/23	12/18/23
Toluene	ND		4	ug/kg	12/18/23	12/18/23
1,2,4-Trichlorobenzene	ND		4	ug/kg	12/18/23	12/18/23
1,2,3-Trichlorobenzene	ND		4	ug/kg	12/18/23	12/18/23
1,1,2-Trichloroethane	ND		4	ug/kg	12/18/23	12/18/23
1,1,1-Trichloroethane	ND		4	ug/kg	12/18/23	12/18/23
Trichloroethene	ND		4	ug/kg	12/18/23	12/18/23
1,2,3-Trichloropropane	ND		4	ug/kg	12/18/23	12/18/23
1,3,5-Trimethylbenzene	ND		4	ug/kg	12/18/23	12/18/23
1,2,4-Trimethylbenzene	ND		4	ug/kg	12/18/23	12/18/23
Vinyl Chloride	ND		4	ug/kg	12/18/23	12/18/23
o-Xylene	ND		4	ug/kg	12/18/23	12/18/23
m&p-Xylene	ND		8	ug/kg	12/18/23	12/18/23
Total xylenes	ND		4	ug/kg	12/18/23	12/18/23
1,1,2,2-Tetrachloroethane	ND		4	ug/kg	12/18/23	12/18/23
tert-Amyl methyl ether	ND		4	ug/kg	12/18/23	12/18/23
1,3-Dichloropropane	ND		4	ug/kg	12/18/23	12/18/23
Ethyl tert-butyl ether	ND		4	ug/kg	12/18/23	12/18/23
Diisopropyl ether	ND		4	ug/kg	12/18/23	12/18/23
Trichlorofluoromethane	ND		4	ug/kg	12/18/23	12/18/23
Dichlorodifluoromethane	ND		4	ug/kg	12/18/23	12/18/23
	_					
Surrogate(s)	Recovery%		Limits			
4-Bromofluorobenzene	104%		70-130		12/18/23	12/18/23
1,2-Dichloroethane-d4	110%		70-130		12/18/23	12/18/23
Toluene-d8	100%		70-130		12/18/23	12/18/23

Results: Volatile Organic Compounds

Sample: LE-SW1

Lab Number: 3L14040-01 (Water)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Acetone	ND		100	ug/l	12/20/23	12/20/23	
Benzene	ND		1	ug/l	12/20/23	12/20/23	
Bromobenzene	ND		1	ug/l	12/20/23	12/20/23	
Bromochloromethane	ND		1	ug/l	12/20/23	12/20/23	
Bromodichloromethane	ND		1	ug/l	12/20/23	12/20/23	
Bromoform	ND		1	ug/l	12/20/23	12/20/23	
Bromomethane	ND		1	ug/l	12/20/23	12/20/23	
2-Butanone	ND		100	ug/l	12/20/23	12/20/23	
tert-Butyl alcohol	ND		5	ug/l	12/20/23	12/20/23	
sec-Butylbenzene	ND		1	ug/l	12/20/23	12/20/23	
n-Butylbenzene	ND		1	ug/l	12/20/23	12/20/23	
tert-Butylbenzene	ND		1	ug/l	12/20/23	12/20/23	
Methyl t-butyl ether (MTBE)	ND		1	ug/l	12/20/23	12/20/23	
Carbon Disulfide	ND		1	ug/l	12/20/23	12/20/23	
Carbon Tetrachloride	ND		1	ug/l	12/20/23	12/20/23	
Chlorobenzene	ND		1	ug/l	12/20/23	12/20/23	
Chloroethane	ND		1	ug/l	12/20/23	12/20/23	
Chloroform	ND		1	ug/l	12/20/23	12/20/23	
Chloromethane	ND		1	ug/l	12/20/23	12/20/23	
4-Chlorotoluene	ND		1	ug/l	12/20/23	12/20/23	
2-Chlorotoluene	ND		1	ug/l	12/20/23	12/20/23	
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l	12/20/23	12/20/23	
Dibromochloromethane	ND		1	ug/l	12/20/23	12/20/23	
1,2-Dibromoethane (EDB)	ND		1	ug/l	12/20/23	12/20/23	
Dibromomethane	ND		1	ug/l	12/20/23	12/20/23	
1,2-Dichlorobenzene	ND		1	ug/l	12/20/23	12/20/23	
1,3-Dichlorobenzene	ND		1	ug/l	12/20/23	12/20/23	
1,4-Dichlorobenzene	ND		1	ug/l	12/20/23	12/20/23	
1,1-Dichloroethane	ND		1	ug/l	12/20/23	12/20/23	
1,2-Dichloroethane	ND		1	ug/l	12/20/23	12/20/23	
1,2 Dichloroethene, Total	ND		1	ug/l	12/20/23	12/20/23	
trans-1,2-Dichloroethene	ND		1	ug/l	12/20/23	12/20/23	
cis-1,2-Dichloroethene	ND		1	ug/l	12/20/23	12/20/23	
1,1-Dichloroethene	ND		1	ug/l	12/20/23	12/20/23	
1,2-Dichloropropane	ND		1	ug/l	12/20/23	12/20/23	
2,2-Dichloropropane	ND		1	ug/l	12/20/23	12/20/23	
cis-1,3-Dichloropropene	ND		1	ug/l	12/20/23	12/20/23	
trans-1,3-Dichloropropene	ND		1	ug/l	12/20/23	12/20/23	
1,1-Dichloropropene	ND		1	ug/l	12/20/23	12/20/23	
1,3-Dichloropropene (cis + trans)	ND		2	ug/l	12/20/23	12/20/23	
Diethyl ether	ND		5	ug/l	12/20/23	12/20/23	
1,4-Dioxane	ND		100	ug/l	12/20/23	12/20/23	
Ethylbenzene	ND		1	ug/l	12/20/23	12/20/23	
Hexachlorobutadiene	ND		1	ug/l	12/20/23	12/20/23	
2-Hexanone	ND		100	ug/l	12/20/23	12/20/23	
Isopropylbenzene	ND		1	ug/l	12/20/23	12/20/23	
p-Isopropyltoluene	ND		1	ug/l	12/20/23	12/20/23	
Methylene Chloride	ND		1	ug/l	12/20/23	12/2 Page 8 of 33	

Results: Volatile Organic Compounds (Continued)

Sample: LE-SW1 (Continued) Lab Number: 3L14040-01 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
4-Methyl-2-pentanone	ND		100	ug/l	12/20/23	12/20/23
Naphthalene	ND		1	ug/l	12/20/23	12/20/23
n-Propylbenzene	ND		1	ug/l	12/20/23	12/20/23
Styrene	ND		1	ug/l	12/20/23	12/20/23
1,1,1,2-Tetrachloroethane	ND		1	ug/l	12/20/23	12/20/23
Tetrachloroethene	ND		1	ug/l	12/20/23	12/20/23
Tetrahydrofuran	ND		5	ug/l	12/20/23	12/20/23
Toluene	ND		1	ug/l	12/20/23	12/20/23
1,2,4-Trichlorobenzene	ND		1	ug/l	12/20/23	12/20/23
1,2,3-Trichlorobenzene	ND		1	ug/l	12/20/23	12/20/23
1,1,2-Trichloroethane	ND		1	ug/l	12/20/23	12/20/23
1,1,1-Trichloroethane	ND		1	ug/l	12/20/23	12/20/23
Trichloroethene	ND		1	ug/l	12/20/23	12/20/23
1,2,3-Trichloropropane	ND		1	ug/l	12/20/23	12/20/23
1,3,5-Trimethylbenzene	ND		1	ug/l	12/20/23	12/20/23
1,2,4-Trimethylbenzene	ND		1	ug/l	12/20/23	12/20/23
Vinyl Chloride	ND		1	ug/l	12/20/23	12/20/23
o-Xylene	ND		1	ug/l	12/20/23	12/20/23
m&p-Xylene	ND		2	ug/l	12/20/23	12/20/23
Total xylenes	ND		1	ug/l	12/20/23	12/20/23
1,1,2,2-Tetrachloroethane	ND		1	ug/l	12/20/23	12/20/23
tert-Amyl methyl ether	ND		1	ug/l	12/20/23	12/20/23
1,3-Dichloropropane	ND		1	ug/l	12/20/23	12/20/23
Ethyl tert-butyl ether	ND		1	ug/l	12/20/23	12/20/23
Diisopropyl ether	ND		1	ug/l	12/20/23	12/20/23
Trichlorofluoromethane	ND		1	ug/l	12/20/23	12/20/23
Dichlorodifluoromethane	ND		1	ug/l	12/20/23	12/20/23
Surrogate(s)	Recovery%		Limit	S		
4-Bromofluorobenzene	97.5%		70-13	20	12/20/23	12/20/23
1,2-Dichloroethane-d4	104%		70-13	0	12/20/23	12/20/23
Toluene-d8	96.4%		70-13	0	12/20/23	12/20/23

Volatile Petroleum Hydrocarbons Sample: LE-SW1 (3L14040-01)

SAMPLE INFORMATION

Matrix	Water		
Containers	Satisfactory		
	Aqueous	pH<2	
Sample Soil	Soil or	NA	
FIESEIVALION	Sediment	NA	
		Received in air-tight container	
Temperature	Received on Ice	Received at: 4+/-2 C°	

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH-18-2.1	Client ID LE-SW1							
Method for Target Analytes: MADEP VPH-18-2.1			L	ab ID	3L14040-01			
VPH Surrogate Standards:			12/14/23					
PID: 2,5-Dibromotoluene			12/14/23					
FID: 2,5-Dibromotoluene			% M	oisture	NA			
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed		
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	1X	100	ug/l	<100	12/15/23 10:27		
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	1X	100	ug/l	<100	12/15/23 10:27		
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	1X	150	ug/l	<150	12/15/23 10:27		
C9-C10 Aromatic Hydrocarbons [1]	NA	1X	150	ug/l	<150	12/15/23 10:27		
2,5-Dibromotoluene-PID				%	116	12/15/23 10:27		
2,5-Dibromotoluene-FID				%	110	12/15/23 10:27		
Surrogate Acceptance Range				%	70-130			

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: LE-SE01 (3L14040-02)

SAMPLE INFORMATION

Matrix	Soil									
Containers	Satisfactory									
	Aqueous	NA								
Sample	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol							
FIESEIVALION	Sediment	Methanol preserved (covering sample)	per gram soil:							
		Received in air-tight container	1:1 +/- 25%							
Temperature	Received on Ice	Received at: 4+/-2 C°								

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH-18-2.1	Client ID LE-SE01							
Method for Target Analytes: MADEP VPH-18-2.1			L	ab ID	3L14040-02			
VPH Surrogate Standards:			12/14/23					
PID: 2,5-Dibromotoluene			12/14/23					
FID: 2,5-Dibromotoluene			% M	oisture	25.30			
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed		
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	16.8	mg/kg	<16.8	12/14/23 21:31		
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	16.8	mg/kg	<16.8	12/14/23 21:31		
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	21.0	mg/kg	<21.0	12/14/23 21:31		
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	21.0	mg/kg	<21.0	12/14/23 21:31		
2,5-Dibromotoluene-PID				%	106	12/14/23 21:31		
2,5-Dibromotoluene-FID				%	104	12/14/23 21:31		
Surrogate Acceptance Range				%	70-130			

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Extractable Petroleum Hydrocarbons Sample: LE-SW1 (3L14040-01)

SAMPLE INFORMATION

Matrix	Water
Containers	Satisfactory
Aqueous Preservatives	pH<2
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3510C

EPH ANALYTICAL RESULTS

Method for Ranges: MADEP E	PH 4-1.1			Client ID	LE-SW1			
Method for Target Analytes:	Madep EPH 4-1.1			Lab ID	3L14040-01			
EPH Surrogate Standards:			Dat	te Collected	12/14/23			
Aliphatic: Chlorooctadecane			Da	te Received	12/14/23			
Aromatic: o-Terphenyl			D	ate Thawed	NA			
			Dat	e Extracted	12/15/23			
EPH Fractionation Surrogates	:		Perce	ent Moisture	NA			
(1) 2-Fluorobiphenyl (2) 2-Bromonanhthalene								
RANGE/TARGET ANALYTE		Dilution	RL	Units	Result	Analyzed		
Unadjusted C11-C22 Arom	atic Hvdrocarbons [1]	1X	100	ug/l	<100	12/20/23 16:05		
	Naphthalene	1X	1.0	ug/l	<1.0	12/20/23 16:05		
Diesel PAH	2-Methylnaphthalene	1X	1.0	ug/l	<1.0	12/20/23 16:05		
Analytes	Phenanthrene	1X	1.0	ug/l	<1.0	12/20/23 16:05		
	Acenaphthene			ug/l	<5.0	12/20/23 16:05		
	Acenaphthylene	1X	1.0	ug/l	<1.0	12/20/23 16:05		
	Fluorene	1X	5.0	ug/l	<5.0	12/20/23 16:05		
	Anthracene	1X	5.0	ug/l	<5.0	12/20/23 16:05		
	Fluoranthene	1X	5.0	ug/l	<5.0	12/20/23 16:05		
	Pyrene	1X	5.0	ug/l	<5.0	12/20/23 16:05		
	Benzo(a)anthracene	1X	1.0	ug/l	<1.0	12/20/23 16:05		
Other	Chrysene	1X	2.0	ug/l	<2.0	12/20/23 16:05		
Target PAH	Benzo(b)fluoranthene	1X	1.0	ug/l	<1.0	12/20/23 16:05		
Analytes	Benzo(k)fluoranthene	1X	1.0	ug/l	<1.0	12/20/23 16:05		
	Benzo(a)pyrene	1X	0.2	ug/l	<0.2	12/20/23 16:05		
	Indeno(1,2,3-cd)pyrene	1X	0.5	ug/l	<0.5	12/20/23 16:05		
	Dibenz(a,h)anthracene	1X	0.5	ug/l	<0.5	12/20/23 16:05		
	Benzo(g,h,i)perylene	1X	5.0	ug/l	<5.0	12/20/23 16:05		
C9-C18 Aliphatic Hydrocar	bons [1]	1X	200	ug/l	<200	12/20/23 15:03		
C19-C36 Aliphatic Hydroca	arbons [1]	1X	200	ug/l	<200	12/20/23 15:03		
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	100	ug/l	<100	12/20/23 16:05		
Chlorooctadecane (Sample	e Surrogate)			%	46.2	12/20/23 15:03		
o-Terphenyl (Sample Surr	ogate)			%	60.3	12/20/23 16:05		
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	95.6	12/20/23 16:05		
2-Bromonaphthalene (Fra	ctionation Surrogate)			%	102	12/20/23 16:05		
Surrogate Acceptance Range [3]			%	40 - 140			

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

 $\ensuremath{\left[3\right]}$ See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: LE-SE01 (3L14040-02)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALYTICAL RESULTS

Method for Ranges: MADEP EPH 4-1.1				Client ID	LE-SE01			
Method for Target Analytes:	Madep EPH 4-1.1			Lab ID	3L14040-02			
EPH Surrogate Standards:			Dat	te Collected	12/14/23			
Aliphatic: Chlorooctadecane			Da	te Received	12/14/23			
Aromatic: o-Terphenyl			D	ate Thawed	NA			
			Dat	e Extracted	12/15/23			
EPH Fractionation Surrogates:			Perce	nt Moisture	25.30			
(1) 2-Fluorobiphenyl (2) 2-Bromonaphthalene								
RANGE/TARGET ANALYTE		Dilution	RL	Units	Result	Analyzed		
Unadjusted C11-C22 Arom	atic Hydrocarbons [1]	1X	17.8	mg/kg	<17.8	12/20/23 16:32		
	Naphthalene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
Diesel PAH	2-Methylnaphthalene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
Analytes	Phenanthrene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Acenaphthene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Acenaphthylene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Fluorene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Anthracene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Fluoranthene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Pyrene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Benzo(a)anthracene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
Other	Chrysene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
Target PAH	Benzo(b)fluoranthene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
Analytes	Benzo(k)fluoranthene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Benzo(a)pyrene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Indeno(1,2,3-cd)pyrene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Dibenz(a,h)anthracene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
	Benzo(g,h,i)perylene	1X	0.88	mg/kg	<0.88	12/20/23 16:32		
C9-C18 Aliphatic Hydrocar	bons [1]	1X	35.4	mg/kg	<35.4	12/20/23 15:27		
C19-C36 Aliphatic Hydroca	arbons [1]	1X	35.4	mg/kg	<35.4	12/20/23 15:27		
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	17.8	mg/kg	<17.8	12/20/23 16:32		
Chlorooctadecane (Sample	e Surrogate)			%	42.6	12/20/23 15:27		
o-Terphenyl (Sample Surre	ogate)			%	44.7	12/20/23 16:32		
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	99.4	12/20/23 16:32		
2-Bromonaphthalene (Frac	ctionation Surrogate)			%	98.8	12/20/23 16:32		
Surrogate Acceptance Range [3]			%	40 - 140			

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

 $\ensuremath{\left[3\right]}$ See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Microbiology			Quality	y Control						
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0824 - Microbiology Blank (B3L0824-BLK1) E. coli	<		1	MPN/100ml	Prepared	& Analyzed: 12	2/14/23			

Г

Quality Control (Continued) Volatile Organic Compounds 8260C (5035-LL) %REC Reporting Spike Source Qual Limit Units Level Result %REC Limits RPD Result

Analyte

Batch: B3L0785 - EPA 5035				
Blank (B3L0785-BLK1)				Prepared & Analyzed: 12/18/23
Acetone	ND	5	ug/kg	
Benzene	ND	5	ug/kg	
Bromobenzene	ND	5	ug/kg	
Bromochloromethane	ND	5	ug/kg	
Bromodichloromethane	ND	5	ug/kg	
Bromoform	ND	5	ug/kg	
Bromomethane	ND	5	ug/kg	
2-Butanone	ND	5	ug/kg	
tert-Butyl alcohol	ND	5	ug/kg	
sec-Butylbenzene	ND	5	ug/kg	
n-Butylbenzene	ND	5	ug/kg	
tert-Butylbenzene	ND	5	ug/kg	
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	
Carbon Disulfide	ND	5	ug/kg	
Carbon Tetrachloride	ND	5	ug/kg	
Chlorobenzene	ND	5	ug/kg	
Chloroethane	ND	5	ug/kg	
Chloroform	ND	5	ug/kg	
Chloromethane	ND	5	ug/kg	
4-Chlorotoluene	ND	5	ug/kg	
2-Chlorotoluene	ND	5	ug/kg	
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	
Dibromochloromethane	ND	5	ug/kg	
1,2-Dibromoethane (EDB)	ND	5	ug/kg	
Dibromomethane	ND	5	ug/kg	
1,2-Dichlorobenzene	ND	5	ug/kg	
1,3-Dichlorobenzene	ND	5	ug/kg	
1,4-Dichloroothano		5	ug/kg	
1,1-Dichloroethane	ND	5	ug/kg	
trans-1 2-Dichloroethene	ND	5	ua/ka	
1 2 Dichloroethene. Total	ND	5	ua/ka	
cis-1.2-Dichloroethene	ND	5	ua/ka	
1.1-Dichloroethene	ND	5	ug/kg	
1,2-Dichloropropane	ND	5	ug/kg	
2,2-Dichloropropane	ND	5	ug/kg	
cis-1,3-Dichloropropene	ND	5	ug/kg	
trans-1,3-Dichloropropene	ND	5	ug/kg	
1,1-Dichloropropene	ND	5	ug/kg	
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	
Diethyl ether	ND	5	ug/kg	
1,4-Dioxane	ND	100	ug/kg	
Ethylbenzene	ND	5	ug/kg	
Hexachlorobutadiene	ND	5	ug/kg	
2-Hexanone	ND	5	ug/kg	
Isopropylbenzene	ND	5	ug/kg	
p-Isopropyltoluene	ND	5	ug/kg	
Methylene Chloride	ND	15	ug/kg	
4-Methyl-2-pentanone	ND	5	ug/kg	
Naphthalene	ND	5	ug/kg	
n-Propylbenzene	ND	5	ug/kg	
Styrene	ND	5	ug/kg	
1,1,1,2- I etrachloroethane	ND	5	ug/Kg	
I etrachioroethene	ND	5	ug/kg	
Taluana	ND	5	ug/kg	
1 2 4-Trichlorohonzono		5	ug/Kg ug/kg	_
	NU IND	3	~g/ng	

RPD

Limit

			Quality (Conti	Control						
Volatile Organic Compounds 82	260C (5035-L	L) (Con	Reporting		Snike	Source		%RFC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3L0785 - EPA 5035 (C	Continued)									
Blank (B3I 0785-BI K1)					Prepared 8	Analyzed: 1	2/18/23			
1 2 3-Trichlorobenzene	ND		5	ua/ka	riepureu e	x / and y zeur 1	2,10,23			
1 1 2-Trichloroethane	ND		5	ua/ka						
1 1 1-Trichloroethane	ND		5	ua/ka						
	ND		5	ug/kg						
1 2 3-Trichloropropago			5	ug/kg						
1,2,5-Thenloropropane	ND		5	ug/kg						
1,3,5-Thinediyibenzene	ND		5	ug/kg						
1,2,4-Trimeutybenzene	ND		5	ug/kg						
Vinyi Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xylenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg						
Diisopropyl ether	ND		5	ug/kg						
Trichlorofluoromethane	ND		5	ug/kg						
Dichlorodifluoromethane	ND		5	ug/kg						
Surragata: A-Bramafluarahanzana			57 <i>1</i>	ua/ka	50 0		105	70_120		
Surrogate, 1-2 Dichloroothana da			52.4	ug/kg	50.0		110	70-130		
Surrogate, 1,2-Dichioroethane-u4			33.0	ug/kg	50.0		110	70-130		
Surrogate: Toluene-us			49.0	ug/kg	50.0		98.0	70-130		
LCS (B3L0785-BS1)					Prepared 8	& Analyzed: 1	2/18/23			
Acetone	103		5	ug/kg	50.0		206	50-150		
Benzene	48		5	ug/kg	50.0		95.6	70-130		
Bromobenzene	52		5	ug/kg	50.0		103	70-130		
Bromochloromethane	54		5	ug/kg	50.0		107	70-130		
Bromodichloromethane	54		5	ug/kg	50.0		108	70-130		
Bromoform	58		5	ug/kg	50.0		116	70-130		
Bromomethane	63		5	ug/kg	50.0		127	50-150		
2-Butanone	65		5	ug/kg	50.0		129	50-150		
tert-Butyl alcohol	59		5	ug/kg	50.0		118	70-130		
sec-Butylbenzene	53		5	ug/kg	50.0		106	70-130		
n-Butvlbenzene	51		5	ug/kg	50.0		103	70-130		
tert-Butylbenzene	52		5	ua/ka	50.0		105	70-130		
Methyl t-butyl ether (MTBE)	56		5	ua/ka	50.0		112	70-130		
Carbon Disulfide	56		5	ua/ka	50.0		112	50-150		
	52		5	ua/ka	50.0		104	70-130		
Chlorobenzene	47		5	ua/ka	50.0		04.8	70-130		
Chloroothano	54		5	ug/kg	50.0		107	50-150		
Chloroform	54		5	ug/kg	50.0		107	70 120		
Chloronorm	52		5	ug/kg	50.0		105	70-150		
Chloromethane	43		5	uy/ky	50.0		85./	50-150		
4-Chlorotoluene	52		5	ug/kg	50.0		103	/0-130		
2-Chlorotoluene	52		5	ug/kg	50.0		103	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	64		5	ug/ĸg	50.0		129	70-130		
Dibromochloromethane	57		5	ug/kg	50.0		113	70-130		
1,2-Dibromoethane (EDB)	53		5	ug/kg	50.0		106	70-130		
Dibromomethane	55		5	ug/kg	50.0		110	60-140		
1,2-Dichlorobenzene	51		5	ug/kg	50.0		101	70-130		
1,3-Dichlorobenzene	53		5	ug/kg	50.0		106	70-130		
1,4-Dichlorobenzene	48		5	ug/kg	50.0		96.3	70-130		
1,1-Dichloroethane	50		5	ug/kg	50.0		99.3	70-130		
1,2-Dichloroethane	56		5	ug/kg	50.0		112	70-130		
trans-1,2-Dichloroethene	51		5	ug/kg	50.0		103	70-130		
cis-1,2-Dichloroethene	49		5	ug/kg	50.0		98.9	70-130		

1,1-Dichloroethene

1,2-Dichloropropane

48

49

5

5

50.0

50.0

ug/kg

ug/kg

96.6

98.7

70-130

70-130

Volatile Organic Compounds 8260C (5035-LL) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0785 - EPA 5035 (Contin	ued)									
LCS (B3L0785-BS1)					Prepared 8	Analyzed: 12	2/18/23			
2,2-Dichloropropane	54		5	ug/kg	50.0		108	70-130		
cis-1,3-Dichloropropene	50		5	ug/kg	50.0		99.8	70-130		
trans-1,3-Dichloropropene	60		5	ug/kg	50.0		119	70-130		
1,1-Dichloropropene	48		5	ug/kg	50.0		96.3	70-130		
Diethyl ether	59		5	ug/kg	50.0		117	60-140		
1,4-Dioxane	235		100	ug/kg	250		94.0	0-200		
Ethylbenzene	48		5	ug/kg	50.0		95.9	70-130		
Hexachlorobutadiene	53		5	ug/kg	50.0		106	70-130		
2-Hexanone	59		5	ug/kg	50.0		118	50-150		
Isopropylbenzene	51		5	ug/kg	50.0		102	70-130		
p-Isopropyltoluene	54		5	ug/kg	50.0		109	70-130		
Methylene Chloride	79		15	ug/kg	50.0		158	60-140		
4-Methyl-2-pentanone	59		5	ug/kg	50.0		118	50-150		
Naphthalene	59		5	ug/kg	50.0		118	70-130		
n-Propylbenzene	52		5	ug/kg	50.0		104	70-130		
Styrene	52		5	ug/kg	50.0		104	70-130		
1,1,1,2-Tetrachloroethane	51		5	ug/kg	50.0		102	70-130		
Tetrachloroethene	48		5	ug/kg	50.0		95.8	70-130		
Tetrahydrofuran	49		5	ug/kg	50.0		98.0	50-150		
Toluene	48		5	ug/kg	50.0		95.1	70-130		
1,2,4-Trichlorobenzene	54		5	ug/kg	50.0		107	70-130		
1,2,3-Trichlorobenzene	56		5	ug/kg	50.0		112	70-130		
1,1,2-Trichloroethane	49		5	ug/kg	50.0		98.9	70-130		
1,1,1-Trichloroethane	53		5	ug/kg	50.0		106	70-130		
Trichloroethene	47		5	ug/kg	50.0		94.1	70-130		
1,2,3-Trichloropropane	54		5	ug/kg	50.0		107	70-130		
1,3,5-Trimethylbenzene	54		5	ug/kg	50.0		108	70-130		
1,2,4-Trimethylbenzene	52		5	ug/kg	50.0		103	70-130		
Vinyl Chloride	45		5	ug/kg	50.0		89.6	50-150		
o-Xylene	49		5	ug/kg	50.0		97.5	70-130		
m&p-Xylene	95		10	ug/kg	100		94.9	70-130		
1,1,2,2-Tetrachloroethane	59		5	ug/kg	50.0		118	70-130		
tert-Amyl methyl ether	53		5	ug/kg	50.0		105	70-130		
1,3-Dichloropropane	51		5	ug/kg	50.0		103	70-130		
Ethyl tert-butyl ether	52		5	ug/kg	50.0		105	70-130		
Trichlorofluoromethane	56		5	ug/kg	50.0		112	50-150		
Dichlorodifluoromethane	52		5	ug/kg	50.0		105	50-150		
Surrogate: 4-Bromofluorobenzene			54.2	ug/kg	50.0		108	70-130		
Surrogate: 1,2-Dichloroethane-d4			52.0	ug/kg	50.0		104	70-130		
Surrogate: Toluene-d8			49.2	ug/kg	50.0		98.4	70-130		

Volatile Organic Compounds 8260C (5035-LL) (Continued)

Image Image Image Image Image Image Image Image Image LeS bug (SL0785-ESD.)	Analyte	Result	Oual	Reporting Limit	(Inite	Spike	Source	%RFC	%REC	RbU	RPD Limit
barton barton Name Departed Analysec: Use of the second of the se	Patch P210795 EDA 5025 (0		2001		Gints		NUSUIL	JUILL	Linito		
Instrume P Up Ma S00 S00 Up Ma S00 S00 <td>Batton: B3L0785 - EPA 3035 (Con</td> <td>tinuea)</td> <td></td> <td></td> <td></td> <td>Prenared 8</td> <td>& Analyzed: 12</td> <td>0/18/23</td> <td></td> <td></td> <td></td>	Batton: B3L0785 - EPA 3035 (Con	tinuea)				Prenared 8	& Analyzed: 12	0/18/23			
nerven 49 5 Uphq 50.0 97.0 3.7 20 Bronochsmer 56 5 Uphq 50.0 11.0 7.10 3.6 20 Bronochsmer 56 0.044 50.0 11.0 7.10 3.9 20 Bronochsmer 60 5 Uphq 50.0 11.0 7.10 3.9 20 Standard 59 5 Uphq 50.0 11.0 7.10 4.2 20 Standard 59 5 Uphq 50.0 11.0 7.10 4.2 20 Standard 59 10.44 50.0 11.0 7.10 4.2 20 Standard 59 Uphq 50.0 11.0 7.10 4.2 20 Catco Interfaction 59 Uphq 50.0 11.0 7.10 2.3 20 Catco Interfaction 51 Uphq 50.0 11.0 7.10 3.3 20	Acetone	78		5	ug/kg	50.0	x / (liai)2001 12	156	50-150	27.7	30
sponchorsner ss s uphq so0 111 P.100 6.42 DD Boundblorsnerbine 55 5 uphq So0 110 P.100 1.58 20 Boundblorsnerbine 74 5 uphq So0 110 P.100 1.57 20 Boundbrorsnerbine 74 5 uphq So0 110 P.100 7.60 2.60	Benzene	49		5	ua/ka	50.0		98.9	70-130	3.37	20
second chromen bare sec s uphq S00 111 P-150 S88 20 Bernandehnemenhen 60 5 uphq S00 110 P-150 3.9 20 Common hune 60 5 uphq S00 110 P-150 3.9 20 2-Allantine 50 uphq S00 110 P-150 7.6 20 2-Allantine 50 uphq S00 110 P-150 7.6 20 2-Allantine 51 12 uphq S00 110 P-150 7.6 20 16-All/Metantine 51 13 Uphq S00 110 P-150 7.6 20 16-All/Metantine 51 12 Uphq S00 110 P-150 7.6 20 16-All/Metantine 51 12 Uphq S00 110 P-150 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 </td <td>Bromobenzene</td> <td>55</td> <td></td> <td>5</td> <td>ua/ka</td> <td>50.0</td> <td></td> <td>110</td> <td>70-130</td> <td>6.62</td> <td>20</td>	Bromobenzene	55		5	ua/ka	50.0		110	70-130	6.62	20
space S Up/Sq SOD LID PL-SD LSS PD Biorandom 60 5 Up/Sq SOD LID PL-SD LSS PD Biorandom 74 5 Up/Sq SOD LID PL-SD LSS PD Biorandom 54 Up/Sq SOD LID PL-SD LSS PD Verhalt alcold 54 Up/Sq SOD LID PL-SD C40 PD refund backed 54 Up/Sq SOD LID PL-SD C40 PD refund backed 57 Up/Sq SOD LID PL-SD C40	Bromochloromethane	55		5	ua/ka	50.0		111	70-130	3.68	20
Bowenerthme 60 5 ug/kg 50.0 120 71.0 13 70 2-Barmen 90 5 ug/kg 50.0 110 50.10 60.0 20 2-Barmen 90 5 ug/kg 50.0 110 70.10 4.72 20 act daylestine 55 93/kg 50.0 110 70.10 4.72 20 act daylestine 55 5 93/kg 50.0 110 70.10 4.52 20 Mathylemente 51 5 93/kg 50.0 110 70.10 4.53 20 Cathon Examine 51 5 93/kg 50.0 110 70.10 4.53 20 Cathon Examine 51 5 93/kg 50.0 110 70.10 4.53 20 Cathon Examine 51 5 93/kg 50.0 110 70.10 3.38 20 Chaton Examine 51 5 93	Bromodichloromethane	55		5	ua/ka	50.0		110	70-130	1.56	20
norm 74 5 uphq 50.0 149 51.0 57 50 2 Bacamar 59 5 uphq 50.0 119 50.10 7.2 30 sec.hu/j alchol 54 5 uphq 50.0 110 7.10 7.2 30 Bithylenzme 54 5 uphq 50.0 110 7.10 8.4 20 Catcan fracthylenzme 53 uphq 50.0 110 7.10 8.4 20 Catcan fracthylenzme 52 Uphq 50.0 115 50.15 7.4 7.0 Chatorsfracthylenzme 53 Uphq 50.0 115 50.15 7.4 7.0 Chatorsfracthylenzme 53 Uphq 50.0 117 50.10 7.43 30 Chatorsfracthylenzme 54 5 Uphq 50.0 116 7.10 5.4 20 Chatorsfracthylenzme 54 5 Uphqq 50.0	Bromoform	60		5	ua/ka	50.0		120	70-130	3.19	20
Base S Ug/Rg SO.0 119 SO.10 Ro D tert-flud/ stobel 54 5 Ug/Rg 50.0 109 70.13	Bromomethane	74		5	ug/kg	50.0		149	50-150	15.7	30
n=n-trapplace S4 S ug/kg S0. 10 70.13 7.04 20 secklaptorance S5 S ug/kg S0.0 111 70.13 4.23 20 secklaptorance S4 S5 Ug/kg S0.0 118 70.13 4.43 20 best Applorance S5 Ug/kg S0.0 118 70.13 4.43 20 Carbon Ident/Aber S2 Ug/kg S0.0 118 70.13 3.43 20 Chron Ident/Aber S2 Ug/kg S0.0 115 S9.15 S9.16 S9.16<	2-Butanone	59		5	ug/kg	50.0		119	50-150	8.40	30
sic. ugk SD 111 77-13 4.72 2D n=buyhannan 54 5 ugk SD 111 77-13 4.72 2D n=buyhannan 55 5 ugk SD 110 70-13 4.83 2D Methyl-Lawl rifer (MTEP) 33 5 ugk SD 111 70-13 4.83 2D Carbon Samifac 51 5 ugk SD 111 50-15 704 3D Charbon Samifac 51 5 ugk SD 112 51-15 704 3D Charbon 33 5 ugk SD 118 70-13 43 2D Charbon 34 5 ugk SD 118 70-13 43 2D Charbon 34 5 ugk SD 118 70-13 43 2D Charbon 34 5 ugk SD 118 70-13	tert-Butyl alcohol	54		5	ug/kg	50.0		109	70-130	7.60	20
s-Barpheanne 54 5 up/kg 9.0. 108 70-130 4.43 2.0 set sharpheanne 55 5 up/kg 50.0 116 70-130 3.46 2.0 Carbon Trackindrad 53 up/kg 50.0 116 70-130 6.240 7.	sec-Butylbenzene	55		5	ug/kg	50.0		111	70-130	4.72	20
n=n-functioneme Si S up/dq S0.0 110 Ph-130 4.66 20 Methyl - bodyl detty (MTRE) S5 S up/dq S0.0 1119 S5.130 S0.0 20 Cattor Disulfic S2 S up/dq S0.0 1119 S5.130 C.02 20 Cattor Insulfic S2 S up/dq S0.0 111 S5.130 C.02 20 Chinomeman S3 S up/dq S0.0 115 S4.13 S0.0 116 C.013 C.32 C.20 Chinomeman S4 S up/dq S0.0 118 S7.130 C.32 C.20 Chinomemane S4 S up/dq S0.0 118 C.7130 C.45 C.20 Chinomemane S4 S up/dq S0.0 118 C.7130 C.72 C.20 Chinomemane S3 S up/dq S0.0 1111 C.7130 C.72	n-Butylbenzene	54		5	ug/kg	50.0		108	70-130	4.93	20
nempty isage s ugkg S0.0 116 P1-130 3.40 20 Carbon Disulfide 59 5 ugkg S0.0 114 P1-130 0.20 0.20 Charbon Treatchioride 52 ugkg S0.0 114 P1-130 0.20 0.20 Charbon Treatchioride 51 Ugkg S0.0 115 S0-150 7.413 3.38 2.00 Charbon Treatchioride 54 Ugkg S0.0 116 7.130 0.455 2.00 Charbon Treatchioride 54 5 Ugkg S0.0 108 7.130 0.455 2.00 L'2-Obtoroutloane 54 5 Ugkg S0.0 116 7.130 0.451 2.00 L'2-Obtoroutloane 53 5 Ugkg S0.0 116 7.130 0.451 2.00 L'2-Obtoroutloane 53 Ugkg S0.0 116 7.130 4.47 2.00 L'2-Obtolonontheme 53	tert-Butylbenzene	55		5	ug/kg	50.0		110	70-130	4.56	20
Carbon Doubled SP S Up/Rg SO.0 119 SP-18 SO.90 40 Carbon Tetrachionide S2 S Up/Rg SO.0 1014 70-130 0.249 23 Chicordemne S3 S Up/Rg SO.0 107 70-130 33.8 20 Chicordemne S4 S Up/Rg SO.0 108 70-130 33.8 20 Chicordemne S4 S Up/Rg SO.0 108 70-130 45.5 20 Chicordenne S4 S Up/Rg SO.0 108 70-130 45.5 20 Chicordenne S4 S Up/Rg SO.0 118 70-130 45.5 20 Chicordenne S4 S Up/Rg SO.0 118 70-130 45.7 20 1.2-Dificordenne S3 S Up/Rg SO.0 102 70-130 45.7 20 1.2-Dificordenne <td< td=""><td>Methyl t-butyl ether (MTBE)</td><td>58</td><td></td><td>5</td><td>ug/kg</td><td>50.0</td><td></td><td>116</td><td>70-130</td><td>3.40</td><td>20</td></td<>	Methyl t-butyl ether (MTBE)	58		5	ug/kg	50.0		116	70-130	3.40	20
Carbon Terrachionide S2 S ug/kg S0.0 104 7.1.3 0.2.49 20 Chiorothane S1 S ug/kg S0.0 115 7.1.3 6.5.3 23 Chiorothane S3 S ug/kg S0.0 107 7.1.3 3.38 20 Chiorothane S4 S Ug/kg S0.0 108 7.1.30 4.55 20 Chiorothane S4 S Ug/kg S0.0 108 7.1.30 4.55 20 1,2.Discons-3-chionopopane (DBCP) 64 S Ug/kg S0.0 116 7.1.30 4.57 20 1,2.Disconstructure S3 S Ug/kg S0.0 111 7.1.30 4.57 20 1,2.Disconstructure S3 S Ug/kg S0.0 111 7.1.30 4.57 20 1,2.Dischorothane S3 S Ug/kg S0.0 111 7.1.30 3.53 20 <td< td=""><td>Carbon Disulfide</td><td>59</td><td></td><td>5</td><td>ug/kg</td><td>50.0</td><td></td><td>119</td><td>50-150</td><td>5.90</td><td>40</td></td<>	Carbon Disulfide	59		5	ug/kg	50.0		119	50-150	5.90	40
Chloroschane S1 S ug/kg S0.0 101 7.13 6.53 20 Chloroschane S3 S ug/kg S0.0 107 7.13 3.3 2.0 Chloroschane 41 S ug/kg S0.0 108 7.13 4.51 2.0 Chloroschane 54 S ug/kg S0.0 108 7.130 4.55 2.0 2-Chloroschane 54 S ug/kg S0.0 108 7.130 4.55 2.0 2-Chloroschane 54 S ug/kg S0.0 116 7.130 2.25 2.0 12-Obtinoro-chloroschane (EDB) S3 S ug/kg S0.0 116 7.130 4.57 2.0 1.2-Obtinoro-chloroschane (EDB) S3 S ug/kg S0.0 110 7.130 3.12 2.0 1.2-Obtinorochane S3 S ug/kg S0.0 110 7.130 3.13 2.0 1.2-Obtinorochane S3 S ug/kg S0.0 103 7.130 3.13 <td>Carbon Tetrachloride</td> <td>52</td> <td></td> <td>5</td> <td>ug/kg</td> <td>50.0</td> <td></td> <td>104</td> <td>70-130</td> <td>0.249</td> <td>20</td>	Carbon Tetrachloride	52		5	ug/kg	50.0		104	70-130	0.249	20
Chloresthane S8 S upkg S0.0 115 S0-150 7.04 30 Chloroform S3 S upkg S0.0 107 70-130 3.38 20 Chloromethane 41 S upkg S0.0 108 70-130 4.55 20 4-Chlorobulene 54 S upkg S0.0 128 70-130 0.455 20 1,2-Olbromo-3-chloropropene (DECP) 64 S upkg S0.0 116 70-130 0.451 20 1,2-Olbromosthane (ED8) S3 S upkg S0.0 111 70-130 4.75 20 1,3-Olbromosthane S3 S upkg S0.0 111 70-130 4.75 20 1,3-Olbromosthane S1 S upkg S0.0 102 70-130 6.19 20 1,2-Olbromosthane S1 S upkg S0.0 103 70-10 6.19 20 1,	Chlorobenzene	51		5	ug/kg	50.0		101	70-130	6.53	20
Chickomm S3 S ug/kg S0.0 107 79-130 3.38 20 Chickomethane 41 S ug/kg S0.0 81.9 S0.10 4.51 30 Chickotaluene 54 S ug/kg S0.0 108 70-130 4.55 20 2-Chickotaluene 54 S ug/kg S0.0 116 70-130 0.342 20 2-Chickotaluene 58 S ug/kg S0.0 116 70-130 0.342 20 1/2-Dithono-schane (EB8) 53 ug/kg S0.0 116 70-130 4.75 20 1/2-Dithono-schane (EB8) 53 ug/kg S0.0 116 70-130 4.75 20 1/2-Dithonostrane 51 5 ug/kg S0.0 102 70-130 4.72 20 1/2-Dithonostrane 51 5 ug/kg S0.0 102 70-130 3.37 20 1/2-Dithonostrane 51 5 ug/kg S0.0 102 70-130 3.37 20	Chloroethane	58		5	ug/kg	50.0		115	50-150	7.04	30
Chiomestrane 41 5 University 50.0 81.9 50.10 4.51.9 50.0 4-Chionethuene 54 5 ugkg 50.0 108 70.10 4.55 20 1,2-Ditrone-2-chioregroppine (DBCP) 64 5 ugkg 50.0 11.8 70.10 0.45.5 20 1,2-Ditrone-2-chioregroppine (DBCP) 64 5 ugkg 50.0 11.8 70.10 0.45.7 20 1,2-Ditrone-2-chioregroppine (DBCP) 64 5 ugkg 50.0 11.2 61.40 2.25 20 1,2-Ditrone-2-chioregroppine (DBCP) 54 1.30 1.45 1.20 61.40 2.25 20 1,2-Ditrone-2-chioregroppine (DBCP) 63 5 ugkg 50.0 11.20 61.40 2.25 20 1,2-Ditrone-2-chioregroppine 51 5 ugkg 50.0 102 70.10 3.93 20 1,2-Ditrone-2-chioregroppine 51 5 ugkg 50.0 103	Chloroform	53		5	ug/kg	50.0		107	70-130	3.38	20
-Chlorotoluene 54 5 ug/kg 50.0 108 70-130 4.55 20 2-Chlorotoluene 54 5 ug/kg 50.0 108 70-130 0.342 20 Dibronochloronethane 58 5 ug/kg 50.0 116 70-130 0.451 20 Dibronochloronethane 53 5 ug/kg 50.0 112 60-10 2.25 30 1,2-Dichorobenzene 53 5 ug/kg 50.0 112 70-10 8.47 20 1,3-Dichorobenzene 51 5 ug/kg 50.0 112 70-130 8.27 20 1,3-Dichorobenzene 51 5 ug/kg 50.0 119 70-130 8.37 20 1,2-Dichorobenzene 51 5 ug/kg 50.0 119 70-130 8.37 20 1,2-Dichorobenzene 51 ug/kg 50.0 101 70-130 8.37 20 1,2-Dichoro	Chloromethane	41		5	ug/kg	50.0		81.9	50-150	4.51	30
Chlorotolune 54 5 ug/kg 50.0 10.8 70-130 0.32 20 1.2.Dhronne3-chlorogropane (DBCP) 64 5 ug/kg 50.0 128 70-130 0.22 20 1.2.Dhronne3-thorogropane (DBCP) 53 5 ug/kg 50.0 107 70-130 0.451 20 1.2.Dhronnesthane (EDB) 53 5 ug/kg 50.0 112 60-00 2.20 0.451 20 1.3-Dhronnesthane (EDB) 53 s0 ug/kg 50.0 111 70-130 5.47 20 1.4-Dhrontesthane 51 5 ug/kg 50.0 102 70-130 5.37 20 1.4-Dhrontesthane 51 5 ug/kg 50.0 107 70-130 3.37 20 1.4-Dhrontesthane 51 5 ug/kg 50.0 103 70-130 5.37 20 1.2-Dhrontesthane 51 5 ug/kg 50.0 103 70-130	4-Chlorotoluene	54		5	ug/kg	50.0		108	70-130	4.55	20
1.2 Dibromo3-chloropropane (DBCP) 64 5 ug/kg 50.0 128 70-130 0.342 20 Dibromochloromethane 58 5 ug/kg 50.0 110 70-130 0.421 20 1.2 Dibromethane (EDB) 53 5 ug/kg 50.0 112 60-140 2.25 30 1.3 Dichrorobenzene 56 5 ug/kg 50.0 111 60-140 2.26 20 1.4 Dichrorebnzene 51 5 ug/kg 50.0 102 70-130 5.48 20 1.4 Dichrorebnzene 51 5 ug/kg 50.0 102 70-130 2.37 20 1.4 Dichrorethane 51 5 ug/kg 50.0 103 70-130 3.37 20 1.4 Dichrorethene 51 5 ug/kg 50.0 103 70-130 4.37 20 1.4 Dichrorophene 51 5 ug/kg 50.0 103 70-130 4.37 20 1.2 Dichrorophene 51 5 ug/kg 50.0 103	2-Chlorotoluene	54		5	ug/kg	50.0		108	70-130	4.55	20
Dibromethane 58 5 ug/kg 50.0 116 70-130 2.25 20 1,2-Dibromethane (EDB) 53 5 ug/kg 50.0 112 60-10 2.25 20 1,2-Dibromethane 53 5 ug/kg 50.0 116 70-130 4.75 20 1,3-Dichromethane 51 5 ug/kg 50.0 102 70-130 6.48 20 1,4-Dichlorothane 51 5 ug/kg 50.0 102 70-130 6.32 20 1,2-Dichlorothane 51 5 ug/kg 50.0 102 70-130 6.33 20 1,2-Dichlorothane 51 5 ug/kg 50.0 102 70-130 6.37 20 1,2-Dichlorothane 51 5 ug/kg 50.0 103 70-130 4.89 20 1,2-Dichloropropene 52 5 ug/kg 50.0 103 70-130 6.33 20 <t< td=""><td>1,2-Dibromo-3-chloropropane (DBCP)</td><td>64</td><td></td><td>5</td><td>ug/kg</td><td>50.0</td><td></td><td>128</td><td>70-130</td><td>0.342</td><td>20</td></t<>	1,2-Dibromo-3-chloropropane (DBCP)	64		5	ug/kg	50.0		128	70-130	0.342	20
1.2.2.Dichromoethane (EDB) 53 5 ug/kg 50.0 107 70.10 0.451 20 Dibromoethane 56 5 ug/kg 50.0 112 60-10 2.25 30 1.3.Dichrooberzene 56 5 ug/kg 50.0 111 70-130 4.87 20 1.4.Dichrooberzene 51 5 ug/kg 50.0 102 70-130 5.48 20 1.2.Dichrootehane 51 5 ug/kg 50.0 107 70-130 6.19 20 1.2.Dichrootehane 51 5 ug/kg 50.0 103 70-130 3.87 20 1.2.Dichrootehane 51 5 ug/kg 50.0 103 70-130 4.87 20 1.2.Dichrootehane 51 5 ug/kg 50.0 103 70-130 4.89 20 1.2.Dichroopropane 52 5 ug/kg 50.0 109 70-130 4.89 20 1.2.Dichroopropane 52 5 ug/kg 50.0 119 70-130	Dibromochloromethane	58		5	ug/kg	50.0		116	70-130	2.25	20
Diromomethane 56 5 ug/kg 50.0 112 60-140 2.25 30 1,2-Dichloroberzene 53 5 ug/kg 50.0 116 70-130 4.75 20 1,4-Dichloroberzene 51 5 ug/kg 50.0 102 70-130 5.48 20 1,4-Dichlorobertane 51 5 ug/kg 50.0 109 70-130 2.72 20 1,2-Dichloroethane 53 5 ug/kg 50.0 109 70-130 3.87 20 1,2-Dichloroethane 51 5 ug/kg 50.0 103 70-130 3.87 20 1,2-Dichloroethane 51 5 ug/kg 50.0 103 70-130 4.89 20 1,2-Dichloroptopane 53 5 ug/kg 50.0 105 70-130 4.89 20 1,2-Dichloroptopane 52 ug/kg 50.0 119 70-130 4.89 20 1,2-Dich	1,2-Dibromoethane (EDB)	53		5	ug/kg	50.0		107	70-130	0.451	20
1.2-Dichlorobenzene 53 5 ug/kg 50.0 106 70-130 4.75 20 1.3-Dichlorobenzene 56 5 ug/kg 50.0 111 70-130 5.48 20 1.4-Dichlorobenzene 51 5 ug/kg 50.0 102 70-130 5.48 20 1.2-Dichloroethane 51 5 ug/kg 50.0 103 70-130 3.93 20 dis-1.2-Dichloroethene 51 5 ug/kg 50.0 103 70-130 3.87 20 1.2-Dichloroethene 51 5 ug/kg 50.0 103 70-130 3.87 20 1.2-Dichloroptopane 51 5 ug/kg 50.0 103 70-130 4.07 20 2.2-Dichloroptopane 53 5 ug/kg 50.0 105 70-130 4.89 20 147-51choroptopane 50 14/kg 50.0 106 70-130 1.85 20 1.4-Dichoroptopene 50 5 ug/kg 50.0 105 70-130 1.85 <td< td=""><td>Dibromomethane</td><td>56</td><td></td><td>5</td><td>ug/kg</td><td>50.0</td><td></td><td>112</td><td>60-140</td><td>2.25</td><td>30</td></td<>	Dibromomethane	56		5	ug/kg	50.0		112	60-140	2.25	30
1.3-Dechlorobenzene 56 5 U9/kg 50.0 111 70-130 4.87 20 1.4-Dichlorobenzene 51 5 Ug/kg 50.0 102 70-130 5.48 20 1.2-Dichlorobethane 59 5 Ug/kg 50.0 119 70-130 6.19 20 1.2-Dichlorobethane 53 5 Ug/kg 50.0 102 70-130 3.87 20 1.1-Dichlorobethene 51 5 Ug/kg 50.0 102 70-130 3.87 20 1.2-Dichloroptopene 51 5 Ug/kg 50.0 102 70-130 8.77 20 1.2-Dichloroptopene 51 5 Ug/kg 50.0 103 70-130 4.87 20 1.2-Dichloroptopene 52 5 Ug/kg 50.0 103 70-130 4.89 20 1.2-Dichloroptopene 59 5 Ug/kg 50.0 111 70-130 4.89 20 1.4-Dichloroptopene 50 Ug/kg 50.0 113 70-130 <td< td=""><td>1,2-Dichlorobenzene</td><td>53</td><td></td><td>5</td><td>ug/kg</td><td>50.0</td><td></td><td>106</td><td>70-130</td><td>4.75</td><td>20</td></td<>	1,2-Dichlorobenzene	53		5	ug/kg	50.0		106	70-130	4.75	20
1,4-bichbrodenzene 51 5 ug/kg 50.0 102 70-130 5.48 20 1,1-bichbrorethane 51 5 ug/kg 50.0 102 70-130 2.72 20 1,2-bichbrorethane 53 5 ug/kg 50.0 107 70-130 3.93 20 dis-1,2-bichbrorethane 51 5 ug/kg 50.0 103 70-130 5.79 20 1,1-bichbrorethane 51 5 ug/kg 50.0 103 70-130 5.79 20 1,2-bichbrorethane 51 5 ug/kg 50.0 106 70-130 4.89 20 1,2-bichbrorethane 52 5 ug/kg 50.0 109 70-130 4.89 20 1,2-bichbrorethane 50 5 ug/kg 50.0 119 70-130 4.89 20 1,4-bichbrorethane 50 5 ug/kg 50.0 119 70-130 4.89 20 1,4-bichbrorethane 51 5 ug/kg 50.0 111 70-130 <td>1,3-Dichlorobenzene</td> <td>56</td> <td></td> <td>5</td> <td>ug/kg</td> <td>50.0</td> <td></td> <td>111</td> <td>70-130</td> <td>4.87</td> <td>20</td>	1,3-Dichlorobenzene	56		5	ug/kg	50.0		111	70-130	4.87	20
1,1-Dichloroethane 51 5 Ug/kg 50.0 122 70-130 2.72 20 1,2-Dichloroethane 59 5 Ug/kg 50.0 119 70-130 6.19 20 Urans-1,2-Dichloroethane 51 5 Ug/kg 50.0 103 70-130 3.87 20 1,1-Dichloroethane 51 5 Ug/kg 50.0 102 70-130 5.79 20 1,2-Dichloropropane 51 5 Ug/kg 50.0 106 70-130 4.70 20 1,2-Dichloropropane 53 5 Ug/kg 50.0 106 70-130 4.89 20 1,2-Dichloropropane 52 5 Ug/kg 50.0 109 70-130 4.89 20 1,1-Dichloropropane 50 Ug/kg 50.0 119 70-130 6.63 20 1,1-Dichloropropane 50 Ug/kg 50.0 119 60-140 1.55 30 1,4-Dicxane 60 5 Ug/kg 50.0 111 70-130 5.55 20	1,4-Dichlorobenzene	51		5	ug/kg	50.0		102	70-130	5.48	20
1.2-Dechloroethane 59 5 Ug/kg 50.0 119 70-130 6.19 20 trans-1,2-Dichloroethene 53 5 Ug/kg 50.0 103 70-130 3.33 20 0.51,2-Dichloroethene 51 5 Ug/kg 50.0 103 70-130 5.79 20 1,2-Dichloroptopane 51 5 Ug/kg 50.0 103 70-130 4.07 20 2,2-Dichloroptopane 53 5 Ug/kg 50.0 105 70-130 4.407 20 2,2-Dichloroptopane 52 5 Ug/kg 50.0 105 70-130 4.69 20 1,1-Dichloroptopene 50 5 Ug/kg 50.0 109 70-130 4.69 20 1,1-Dichloroptopene 50 5 Ug/kg 50.0 119 60-140 1.55 30 1,1-Dichloroptopene 50 5 Ug/kg 50.0 111 70-130 6.43 20 1,1-Dichloroptopene 51 5 Ug/kg 50.0 111 <	1,1-Dichloroethane	51		5	ug/kg	50.0		102	70-130	2.72	20
trans-1,2-Dichloroethene 53 5 ug/kg 50.0 107 70-130 3.33 20 1,1-Dichloroethene 51 5 ug/kg 50.0 102 70-130 3.47 20 1,1-Dichloroethene 51 5 ug/kg 50.0 103 70-130 4.47 20 2,2-Dichloropropane 53 5 ug/kg 50.0 106 70-130 4.48 20 2,2-Dichloropropane 53 5 ug/kg 50.0 106 70-130 4.48 20 1,2-Dichloropropane 52 5 ug/kg 50.0 119 70-130 3.69 20 1,1-Dichloropropene 50 5 ug/kg 50.0 119 70-130 3.69 20 1,4-Dicknoropropene 50 5 ug/kg 50.0 119 60-140 1.55 30 14 1.55 30 11 70-130 6.33 20 12 20 1.4 20 1.4 20 1.4 20 1.4 20 1.4 20 1.4<	1,2-Dichloroethane	59		5	ug/kg	50.0		119	70-130	6.19	20
cis1,2-Dichloroethene 51 5 ug/kg 5.0 103 70-130 3.87 20 1,1-Dichloroethene 51 5 ug/kg 5.0 102 70-130 5.79 20 1,2-Dichloroptopane 53 5 ug/kg 50.0 106 70-130 4.07 20 2,2-Dichloroptopane 53 5 ug/kg 50.0 105 70-130 4.89 20 trans-1,3-Dichloroptopene 52 5 ug/kg 50.0 100 70-130 3.69 20 Diethyl ether 60 5 ug/kg 50.0 101 70-130 3.69 20 1,4-Dioxane 280 100 ug/kg 250 112 60-140 1.55 30 1,4-Dioxane 53 5 ug/kg 50.0 111 70-130 5.24 20 P-kexachrothubtadiene 51 5 ug/kg 50.0 111 70-130 5.24 20 1,4-Dioxane 53 5 ug/kg 50.0 111 70-130 5.2	trans-1,2-Dichloroethene	53		5	ug/kg	50.0		107	70-130	3.93	20
1,1-Dichloropcpane 51 5 ug/kg 50.0 102 70-130 5.79 20 1,2-Dichloropcpane 51 5 ug/kg 50.0 103 70-130 4.07 20 2,2-Dichloropcpane 53 5 ug/kg 50.0 106 70-130 4.89 20 cis1,3-Dichloropropene 59 5 ug/kg 50.0 109 70-130 0.168 20 1,1-Dichloropropene 50 5 ug/kg 50.0 109 70-130 3.69 20 Diethyl ether 60 5 ug/kg 50.0 119 60-140 1.55 30 1,4-Dioxane 280 100 ug/kg 50.0 111 70-130 6.83 20 1-kavane 56 5 ug/kg 50.0 111 70-130 5.24 20 2-Hexanone 58 5 ug/kg 50.0 111 70-130 5.24 20 1-sopropyltourene 57 5 ug/kg 50.0 111 70-130 5.24	cis-1,2-Dichloroethene	51		5	ug/kg	50.0		103	70-130	3.87	20
1,2-Dichloropropane 51 5 49/kg 50.0 103 70-130 4.07 20 2,2-Dichloropropane 53 5 49/kg 50.0 106 70-130 1.85 20 dis-1,3-Dichloropropane 52 5 49/kg 50.0 105 70-130 4.89 20 1,1-Dichloropropane 50 5 49/kg 50.0 100 70-130 3.69 20 Diethyl ether 60 5 49/kg 50.0 119 60-10 1.55 30 1,4-Dioxane 280 100 49/kg 50.0 111 70-130 6.83 20 2-Hexanone 51 5 49/kg 50.0 111 70-130 6.83 20 Hexachlorobutadiene 56 5 49/kg 50.0 111 70-130 6.83 20 P-Isopropylonzene 58 5 49/kg 50.0 113 70-130 5.05 20 p-Isopropylonzene 57 5 49/kg 50.0 113 70-130 8.7	1,1-Dichloroethene	51		5	ug/kg	50.0		102	70-130	5.79	20
2.2-Dichloropropane 53 5 ug/kg 50.0 106 70-130 1.85 20 cis.1,3-Dichloropropene 52 5 ug/kg 50.0 119 70-130 4.89 20 trans-1,3-Dichloropropene 50 5 ug/kg 50.0 119 70-130 3.69 20 Diethyl ether 60 5 ug/kg 50.0 119 60-140 1.55 30 1,4-Dioknoropropene 280 100 ug/kg 250 112 0-200 17.4 50 Ethylbenzene 51 5 ug/kg 50.0 103 70-130 5.42 20 2-Hexachlorobutaliene 56 5 ug/kg 50.0 111 70-130 5.42 20 2-Hexanone 53 5 ug/kg 50.0 113 70-130 5.05 20 p-Isopropyltoluene 57 5 ug/kg 50.0 113 70-130 5.05 20 Naphthalene 65 5 ug/kg 50.0 162 60-160	1,2-Dichloropropane	51		5	ug/kg	50.0		103	70-130	4.07	20
cis-1,3-Dichloropropene 52 5 ug/kg 50.0 105 70-130 4.89 20 trans-1,3-Dichloropropene 59 5 ug/kg 50.0 119 70-130 0.168 20 1,1-Dichloropropene 50 5 ug/kg 50.0 100 70-130 3.69 20 Dichtyl ether 60 5 ug/kg 50.0 112 0-200 17.4 50 Lityl benzene 280 100 ug/kg 250 112 0-200 17.4 50 Ethylbenzene 51 5 ug/kg 50.0 111 70-130 5.24 20 2-Hexachlorobutadiene 56 5 ug/kg 50.0 111 70-130 5.24 20 2-hexanone 58 5 ug/kg 50.0 113 70-130 5.24 20 p-lsopropylbenzene 57 5 ug/kg 50.0 113 70-130 8.7 20 p-lsopropylbulene 57 ug/kg 50.0 116 50-150 1.56 <t< td=""><td>2,2-Dichloropropane</td><td>53</td><td></td><td>5</td><td>ug/kg</td><td>50.0</td><td></td><td>106</td><td>70-130</td><td>1.85</td><td>20</td></t<>	2,2-Dichloropropane	53		5	ug/kg	50.0		106	70-130	1.85	20
trans-1,3-Dichloropropene 59 5 ug/kg 50.0 119 70-130 0.168 20 1,1-Dichloropropene 50 5 ug/kg 50.0 100 70-130 3.69 20 Diethyl ether 60 5 ug/kg 50.0 119 60-140 1.55 30 1,4-Dioxane 280 100 ug/kg 50.0 112 0-200 1.7.4 50 Ethylbenzene 51 5 ug/kg 50.0 111 70-130 6.83 20 Pexachlorobutadiene 56 5 ug/kg 50.0 111 70-130 5.24 20 2-Hexanne 58 5 ug/kg 50.0 117 50-150 0.700 20 p-lsopropylobunzene 53 5 ug/kg 50.0 113 70-130 4.41 20 Methylene Chloride 81 15 ug/kg 50.0 116 50-150 1.56 20 Naphtalene 65 5 ug/kg 50.0 108 70-130 4.22	cis-1,3-Dichloropropene	52		5	ug/kg	50.0		105	70-130	4.89	20
1,1-Dichloropropene505ug/kg50.010070-1303.6920Diethyl ether605ug/kg50.011960-1401.55301,4-Dioxane280100ug/kg2501120-20017.450Ethylbenzene515ug/kg50.010370-1306.8320Hexachlorobutadiene565ug/kg50.011170-1305.24202-Hexanone585ug/kg50.011750-1500.70020Isopropylbenzene535ug/kg50.011370-1305.0520p-Isopropylbenzene575ug/kg50.011370-1304.4120Methyl-2-pentanone585ug/kg50.011650-1501.5620Naphthalene655ug/kg50.011650-1501.5620Naphthalene655ug/kg50.011650-1501.5620Naphthalene555ug/kg50.010970-1304.42201,1,1,2-Tetrachloroethane555ug/kg50.010070-1304.42201,2,4-Trichlorobenzene505ug/kg50.010070-1304.42201,2,4-Trichlorobenzene505ug/kg50.010070-1304.42201,2,4-Trichlorobenzene50 </td <td>trans-1,3-Dichloropropene</td> <td>59</td> <td></td> <td>5</td> <td>ug/kg</td> <td>50.0</td> <td></td> <td>119</td> <td>70-130</td> <td>0.168</td> <td>20</td>	trans-1,3-Dichloropropene	59		5	ug/kg	50.0		119	70-130	0.168	20
Diethyl ether 60 5 ug/kg 50.0 119 60-140 1.55 30 1,4-Dioxane 280 100 ug/kg 250 112 0-200 17.4 50 Ethylbenzene 51 5 ug/kg 50.0 103 70-130 6.83 20 Hexachlorobutadiene 56 5 ug/kg 50.0 117 70-130 5.24 20 2-Hexanone 58 5 ug/kg 50.0 107 70-130 5.05 20 p-lsopropylbenzene 53 5 ug/kg 50.0 113 70-130 4.41 20 Methylene Chloride 81 15 ug/kg 50.0 116 50-150 1.56 20 Naphthalene 65 5 ug/kg 50.0 108 70-130 4.12 20 1,1,2-Tetrachloroethane 55 5 ug/kg 50.0 108 70-130 4.22 20 1,1,1_2-Tetrac	1,1-Dichloropropene	50		5	ug/kg	50.0		100	70-130	3.69	20
1,4-Dioxane280100ug/kg2501120-20017.450Ethylbenzene515ug/kg50.010370-1306.8320Hexachlorobutadiene565ug/kg50.011170-1305.24202-Hexanone585ug/kg50.011750-1500.70020Isopropylbenzene535ug/kg50.011770-1305.0520p-Isopropyltoluene575ug/kg50.011370-1304.4120Methylene Chloride8115ug/kg50.016260-1402.36304-Methyl-2-pentanone585ug/kg50.011650-1501.5620Naphthalene655ug/kg50.010870-1308.7720n-Propylbenzene545ug/kg50.010870-1304.4120Styrene555ug/kg50.010870-1304.92201,1,2-Tetrachloroethane505ug/kg50.010070-1304.9220Tetrahydrofruan505ug/kg50.010070-1304.92201,2,4-Trichlorobenzene575ug/kg50.010070-1304.92201,2,3-Trichlorobenzene575ug/kg50.098.770-1303.74201,2,4-Trichlorobenzene5	Diethyl ether	60		5	ug/kg	50.0		119	60-140	1.55	30
Ethylbenzene 51 5 ug/kg 50.0 103 70-130 6.83 20 Hexachlorobutadiene 56 5 ug/kg 50.0 111 70-130 5.24 20 2-Hexanone 58 5 ug/kg 50.0 117 50-150 0.700 20 Isopropylbenzene 53 5 ug/kg 50.0 107 70-130 5.05 20 p-Isopropylbenzene 57 5 ug/kg 50.0 113 70-130 4.41 20 Methyl-2-pentanone 81 15 ug/kg 50.0 162 60-140 2.36 30 4-Methyl-2-pentanone 58 5 ug/kg 50.0 162 60-140 2.36 30 n-Propylbenzene 58 5 ug/kg 50.0 116 50-150 1.56 20 Naphthalene 65 5 ug/kg 50.0 108 70-130 4.12 20 1,1,1,2-Tetrachloroethane 55 5 ug/kg 50.0 100 70-130 4.21 </td <td>1,4-Dioxane</td> <td>280</td> <td></td> <td>100</td> <td>ug/kg</td> <td>250</td> <td></td> <td>112</td> <td>0-200</td> <td>17.4</td> <td>50</td>	1,4-Dioxane	280		100	ug/kg	250		112	0-200	17.4	50
Hexachlorobutadiene565ug/kg50.011170-1305.24202-Hexanone585ug/kg50.011750-1500.70020Isopropylbenzene535ug/kg50.010770-1305.0520p-Isopropylbenzene575ug/kg50.011370-1304.4120Methylene Chloride8115ug/kg50.016260-1402.36304-Methyl-2-pentanone585ug/kg50.011650-1501.5620Naphthalene655ug/kg50.012970-1308.7720n-Propylbenzene545ug/kg50.010970-1304.42201,1,2-Tetrachloroethane555ug/kg50.010970-1304.21201,2,4-Trichlorobenzene505ug/kg50.010070-1304.21201,2,3-Trichloroethane575ug/kg50.098.770-1303.74201,2,4-Trichloroethane575ug/kg50.098.770-1303.74201,2,3-Trichlorobenzene605ug/kg50.010370-1306.89201,2-Trichloroethane525ug/kg50.010370-1306.89201,2-Trichloroethane525ug/kg50.010370-1306.8920<	Ethylbenzene	51		5	ug/kg	50.0		103	70-130	6.83	20
2-Hexanone 58 5 ug/kg 50.0 117 50-150 0.700 20 Isopropylbenzene 53 5 ug/kg 50.0 107 70-130 5.05 20 p-Isopropylboluene 57 5 ug/kg 50.0 113 70-130 4.41 20 Methylene Chloride 81 15 ug/kg 50.0 162 60-140 2.36 30 4-Methyl-2-pentanone 58 5 ug/kg 50.0 116 50-150 1.56 20 Naphthalene 65 5 ug/kg 50.0 129 70-130 8.77 20 n-Propylbenzene 54 5 ug/kg 50.0 108 70-130 4.12 20 1,1,1,2-Tetrachloroethane 55 5 ug/kg 50.0 109 70-130 4.21 20 Tetrachloroethane 50 5 ug/kg 50.0 100 70-130 4.21 20 Tetrachloroethene 50 5 ug/kg 50.0 99.8 50-150 1.	Hexachlorobutadiene	56		5	ug/kg	50.0		111	70-130	5.24	20
Isopropylbenzene 53 5 ug/kg 50.0 107 70-130 5.05 20 p-Isopropylboluene 57 5 ug/kg 50.0 113 70-130 4.41 20 Methylene Chloride 81 15 ug/kg 50.0 162 60-140 2.36 30 4-Methyl-2-pentanone 58 5 ug/kg 50.0 116 50-150 1.56 20 Naphthalene 65 5 ug/kg 50.0 129 70-130 8.77 20 n-Propylbenzene 54 5 ug/kg 50.0 108 70-130 4.12 20 1,1,1,2-Tetrachloroethane 55 5 ug/kg 50.0 109 70-130 4.21 20 Tetrachloroethane 50 5 ug/kg 50.0 100 70-130 4.21 20 Tetrachloroethane 50 5 ug/kg 50.0 100 70-130 4.21 20 Toluene 49 5 ug/kg 50.0 98.7 70-130 3.74 </td <td>2-Hexanone</td> <td>58</td> <td></td> <td>5</td> <td>ug/kg</td> <td>50.0</td> <td></td> <td>117</td> <td>50-150</td> <td>0.700</td> <td>20</td>	2-Hexanone	58		5	ug/kg	50.0		117	50-150	0.700	20
p-Isopropyltoluene575ug/kg50.011370-1304.4120Methylene Chloride8115ug/kg50.016260-1402.36304-Methyl-2-pentanone585ug/kg50.011650-1501.5620Naphthalene655ug/kg50.012970-1308.7720n-Propylbenzene545ug/kg50.010870-1304.1220Styrene555ug/kg50.010970-1304.92201,1,1,2-Tetrachloroethane555ug/kg50.010070-1304.2120Tetrachloroethane505ug/kg50.010070-1304.2120Toluene495ug/kg50.098.770-1303.74201,2,4-Trichloroethane575ug/kg50.011470-1306.19201,2,3-Trichloroethane575ug/kg50.011470-1306.19201,2,4-Trichloroethane575ug/kg50.011470-1306.19201,2,3-Trichloroethane525ug/kg50.010370-1306.89201,1,2-Trichloroethane525ug/kg50.010370-1306.89201,2,3-Trichloroethane525ug/kg50.010370-1306.8920	Isopropylbenzene	53		5	ug/kg	50.0		107	70-130	5.05	20
Methylene Chloride8115ug/kg50.016260-1402.36304-Methyl-2-pentanone585ug/kg50.011650-1501.5620Naphthalene655ug/kg50.012970-1308.7720n-Propylbenzene545ug/kg50.010870-1304.1220Styrene555ug/kg50.010970-1304.92201,1,2-Tetrachloroethane555ug/kg50.011070-1307.8420Tetrachloroethane505ug/kg50.010070-1304.2120Tetrachloroethane505ug/kg50.099.850-1501.8240Toluene495ug/kg50.098.770-1303.74201,2,4-Trichlorobenzene575ug/kg50.011470-1306.19201,2,3-Trichlorobenzene525ug/kg50.010370-1306.89201,1,2-Trichloroethane525ug/kg50.010370-1306.89201,2,4-Trichloroethane525ug/kg50.010370-1306.89201,2,2-Trichloroethane525ug/kg50.010370-1306.89201,2,2-Trichloroethane525ug/kg50.010370-1306.89201,2,2-Tri	p-Isopropyltoluene	57		5	ug/kg	50.0		113	70-130	4.41	20
4-Methyl-2-pentanone585ug/kg50.011650-1501.5620Naphthalene655ug/kg50.012970-1308.7720n-Propylbenzene545ug/kg50.010870-1304.1220Styrene555ug/kg50.010970-1304.92201,1,2-Tetrachloroethane555ug/kg50.011070-1307.8420Tetrachloroethane505ug/kg50.010070-1304.2120Tetrachloroethane505ug/kg50.099.850-1501.8240Toluene495ug/kg50.098.770-1303.74201,2,4-Trichlorobenzene575ug/kg50.011470-1306.19201,2,3-Trichlorobenzene605ug/kg50.010370-1306.89201,1,2-Trichloroethane525ug/kg50.010370-1306.8920	Methylene Chloride	81		15	ug/kg	50.0		162	60-140	2.36	30
Naphthalene655ug/kg50.012970-1308.7720n-Propylbenzene545ug/kg50.010870-1304.1220Styrene555ug/kg50.010970-1304.92201,1,1,2-Tetrachloroethane555ug/kg50.011070-1304.9220Tetrachloroethane505ug/kg50.010070-1304.2120Tetrachloroethane505ug/kg50.010070-1304.2120Tetrachloroethane505ug/kg50.099.850-1501.8240Toluene495ug/kg50.098.770-1303.74201,2,4-Trichlorobenzene575ug/kg50.011470-1306.19201,2,3-Trichlorobenzene605ug/kg50.010370-1306.89201,1,2-Trichloroethane525ug/kg50.010370-1306.8920	4-Methyl-2-pentanone	58		5	ug/kg	50.0		116	50-150	1.56	20
n-Propylbenzene 54 5 ug/kg 50.0 108 70-130 4.12 20 Styrene 55 5 ug/kg 50.0 109 70-130 4.92 20 1,1,1,2-Tetrachloroethane 55 5 ug/kg 50.0 110 70-130 4.92 20 Tetrachloroethane 50 5 ug/kg 50.0 100 70-130 4.21 20 Tetrachloroethane 50 5 ug/kg 50.0 100 70-130 4.21 20 Tetrachloroethane 50 5 ug/kg 50.0 99.8 50-150 1.82 40 Toluene 49 5 ug/kg 50.0 98.7 70-130 3.74 20 1,2,4-Trichlorobenzene 57 5 ug/kg 50.0 114 70-130 6.19 20 1,2,3-Trichlorobenzene 60 5 ug/kg 50.0 120 70-130 6.89 20 1,1,2-Trichloroethane 52 5 ug/kg 50.0 103 70-130	Naphthalene	65		5	ug/kg	50.0		129	70-130	8.77	20
Styrene 55 5 ug/kg 50.0 109 70-130 4.92 20 1,1,1,2-Tetrachloroethane 55 5 ug/kg 50.0 110 70-130 7.84 20 Tetrachloroethane 50 5 ug/kg 50.0 100 70-130 4.21 20 Tetrachloroethene 50 5 ug/kg 50.0 99.8 50-150 1.82 40 Toluene 49 5 ug/kg 50.0 98.7 70-130 3.74 20 1,2,4-Trichlorobenzene 60 5 ug/kg 50.0 114 70-130 6.19 20 1,2,3-Trichlorobenzene 60 5 ug/kg 50.0 120 70-130 6.89 20 1,1,2-Trichloroethane 52 5 ug/kg 50.0 103 70-130 6.89 20	n-Propylbenzene	54		5	ug/kg	50.0		108	70-130	4.12	20
1,1,1,2-Tetrachloroethane555ug/kg50.011070-1307.8420Tetrachloroethene505ug/kg50.010070-1304.2120Tetrahydrofuran505ug/kg50.099.850-1501.8240Toluene495ug/kg50.098.770-1303.74201,2,4-Trichlorobenzene575ug/kg50.011470-1306.19201,2,3-Trichlorobenzene605ug/kg50.012070-1306.89201,1,2-Trichloroethane525ug/kg50.010370-1306.8920	Styrene	55		5	ug/kg	50.0		109	70-130	4.92	20
Tetrachloroethene 50 5 ug/kg 50.0 100 70-130 4.21 20 Tetrahydrofuran 50 5 ug/kg 50.0 99.8 50-150 1.82 40 Toluene 49 5 ug/kg 50.0 98.7 70-130 3.74 20 1,2,4-Trichlorobenzene 57 5 ug/kg 50.0 114 70-130 6.19 20 1,2,3-Trichlorobenzene 60 5 ug/kg 50.0 120 70-130 6.39 20 1,1,2-Trichloroethane 52 5 ug/kg 50.0 103 70-130 6.39 20	1,1,1,2-Tetrachloroethane	55		5	ug/kg	50.0		110	70-130	7.84	20
Tetrahydrofuran 50 5 ug/kg 50.0 99.8 50-150 1.82 40 Toluene 49 5 ug/kg 50.0 98.7 70-130 3.74 20 1,2,4-Trichlorobenzene 57 5 ug/kg 50.0 114 70-130 6.19 20 1,2,3-Trichlorobenzene 60 5 ug/kg 50.0 103 70-130 6.89 20 1,1,2-Trichlorobethane 52 5 ug/kg 50.0 103 70-130 6.89 20	Tetrachloroethene	50		5	ug/kg	50.0		100	70-130	4.21	20
Toluene 49 5 ug/kg 50.0 98.7 70-130 3.74 20 1,2,4-Trichlorobenzene 57 5 ug/kg 50.0 114 70-130 6.19 20 1,2,3-Trichlorobenzene 60 5 ug/kg 50.0 120 70-130 6.89 20 1,1,2-Trichlorobenzene 52 5 ug/kg 50.0 103 70-130 6.89 20	Tetrahydrofuran	50		5	ug/kg	50.0		99.8	50-150	1.82	40
1,2,4-Trichlorobenzene 57 5 ug/kg 50.0 114 70-130 6.19 20 1,2,3-Trichlorobenzene 60 5 ug/kg 50.0 120 70-130 6.89 20 1,1,2-Trichlorobenzene 52 5 ug/kg 50.0 103 70-130 6.89 20	Toluene	49		5	ug/kg	50.0		98.7	70-130	3.74	20
1,2,3-Trichlorobenzene 60 5 ug/kg 50.0 120 70-130 6.89 20 1,1,2-Trichloroethane 52 5 ug/kg 50.0 103 70-130 20 20	1,2,4-Trichlorobenzene	57		5	ug/kg	50.0		114	70-130	6.19	20
1,1,2-Trichloroethane 52 5 ug/kg 50.0 103 70-130 20 10 20 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	1,2,3-Trichlorobenzene	60		5	ug/kg	50.0		120	70-130	6.89	20
	1,1,2-Trichloroethane	52		5	ug/kg	50.0		103	70-130	Pane	18 of 33

Volatile Organic Compounds 8260C (5035-LL) (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3L0785 - EPA 5035 (Cont	inued)									
LCS Dup (B3L0785-BSD1)					Prepared 8	& Analyzed: 12	2/18/23			
1,1,1-Trichloroethane	54		5	ug/kg	50.0		109	70-130	2.10	20
Trichloroethene	49		5	ug/kg	50.0		97.5	70-130	3.59	20
1,2,3-Trichloropropane	57		5	ug/kg	50.0		114	70-130	5.64	20
1,3,5-Trimethylbenzene	56		5	ug/kg	50.0		112	70-130	3.45	20
1,2,4-Trimethylbenzene	54		5	ug/kg	50.0		109	70-130	5.19	20
Vinyl Chloride	48		5	ug/kg	50.0		96.9	50-150	7.85	30
o-Xylene	52		5	ug/kg	50.0		104	70-130	6.34	20
m&p-Xylene	100		10	ug/kg	100		99.7	70-130	4.97	20
1,1,2,2-Tetrachloroethane	62		5	ug/kg	50.0		124	70-130	5.60	20
tert-Amyl methyl ether	54		5	ug/kg	50.0		108	70-130	2.86	20
1,3-Dichloropropane	54		5	ug/kg	50.0		107	70-130	4.13	20
Ethyl tert-butyl ether	55		5	ug/kg	50.0		110	70-130	4.73	20
Trichlorofluoromethane	60		5	ug/kg	50.0		120	50-150	6.66	20
Dichlorodifluoromethane	58		5	ug/kg	50.0		115	50-150	9.82	30
Surrogate: 4-Bromofluorobenzene			53.9	ug/kg	50.0		108	70-130		
Surrogate: 1,2-Dichloroethane-d4			50.1	ug/kg	50.0		100	70-130		
Surrogate: Toluene-d8			47.7	ug/kg	50.0		95.4	70-130		

			Quality (Conti	Control	l					
Volatile Organic Compounds										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0960 - Purge-Trap										
Blank (B3L0960-BLK1)					Prepared 8	& Analyzed: 1	2/20/23			
Acetone	ND		100	ug/l						
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		100	ug/i						
	ND		5	ug/i						
sec-Butylbenzene	ND		1	ug/i						
n-Butylbenzene			1	ug/l						
Methyl t-butyl etber (MTRE)			1	ug/l						
Carbon Disulfide			1	ug/l						
Carbon Tetrachloride			1	ug/l						
Chlorobenzene	ND		1	ua/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
1,2 Dichloroethene, Total	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/i						
1,2-Dichloropropane	ND		1	ug/i						
2,2-Dichloropropane	ND		1	ug/i						
cis-1,3-Dichloropropene	ND		1	ug/l						
1 1-Dichloropropopo			1	ug/l						
1,1-Dichloropropene (cis \pm trans)			1	ug/l						
Diethyl ether			5	ug/l						
1.4-Dioxane	ND		100	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		100	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		1	ug/l						
4-Methyl-2-pentanone	ND		100	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l						
Toluene	ND		1	ug/l						
1,2,4-Trichlorobenzene	ND		1	ug/l						

Analyte	Result	Qual	Reporting Limit	Units	Spike	Source	%RFC	%REC	RPD	RPD Limit
Patah P210060 Purras Tran (Cant	kinuad)		2	011103	Level		JUNEC	Linito		
Batch: B3L0960 - Purge-Trap (Cont	inuea)				Propared 8	Analyzod: 13	0/20/23			
1 2 3-Trichlorobenzene	ND		1	ua/l	Fiepareu e	CAnalyzeu. 12	20/25			
1 1 2-Trichloroethane			1	ug/l						
1 1 1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,3,5-Trimethylbenzene	ND		1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND		1	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
Ethyl tert-butyl ether	ND		1	ug/l						
Diisopropyl ether	ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
Surrogate: 4-Bromofluorobenzene			48.3	ug/l	50.0		96.6	70-130		
Surrogate: 1,2-Dichloroethane-d4			50.5	ug/l	50.0		101	70-130		
Surrogate: Toluene-d8			47.9	ug/l	50.0		95.7	70-130		
LCS (B3L0960-BS1)					Prepared 8	Analyzed: 12	2/20/23			
Acetone	26		5	ug/l	50.0	cruidij2cui 11	52.8	50-150		
Benzene	46		1	ug/l	50.0		91.3	70-130		
Bromobenzene	47		1	ug/l	50.0		93.3	70-130		
Bromochloromethane	45		1	ug/l	50.0		90.2	70-130		
Bromodichloromethane	48		1	ug/l	50.0		96.0	70-130		
Bromoform	40		1	ug/l	50.0		79.1	70-130		
Bromomethane	70		1	ug/l	50.0		139	50-150		
2-Butanone	32		5	ug/l	50.0		63.1	50-150		
tert-Butyl alcohol	52		5	ug/l	50.0		104	70-130		
sec-Butylbenzene	50		1	ug/l	50.0		100	70-130		
n-Butylbenzene	54		1	ug/l	50.0		109	70-130		
tert-Butylbenzene	49		1	ug/l	50.0		98.5	70-130		
Methyl t-butyl ether (MTBE)	48		1	ug/l	50.0		96.0	70-130		
Carbon Disulfide	52		1	ug/l	50.0		104	50-150		
Carbon Tetrachloride	49		1	ug/l	50.0		97.5	70-130		
Chlorobenzene	49		1	ug/l	50.0		97.4	70-130		
Chloroethane	57		1	ug/l	50.0		114	50-150		
Chloroform	50		1	ug/l	50.0		99.2	70-130		
Chloromethane	43		1	ug/l	50.0		86.5	50-150		
4-Chlorotoluene	51		1	ug/l	50.0		102	70-130		
2-Chlorotoluene	49		1	ug/l	50.0		97.3	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	37		1	ug/l	50.0		74.5	70-130		
Dibromochloromethane	43		1	ug/l	50.0		85.2	70-130		
1,2-Dibromoethane (EDB)	46		1	ug/l	50.0		91.8	70-130		
Dibromomethane	46		1	ug/i	50.0		92.5	70-130		
1,2-Dichlorobenzene	50		1	ug/i	50.0		99.4	/0-130		
1,3-Dichlorobenzene	51		1	ug/i	50.0		102	70-130		
1,4-Dichloropenzene	47		1	ug/l	50.0		94.3	/0-130		
	51		1	ug/i	50.0		101	70-130		
r,2-Dichloroethane	54		1	ug/l	50.0		109	70-130		
u ans-1,2-Dichloroothono	49		1	ug/l	50.0		ס./כ רפס	70-130		
1 1-Dichloroethene	44 17		1	ug/i	50.0		00.2 0/ 0	70-130		
1 2-Dichloropropage	77 20		1 1	ug/l	50.0		97.U 95.6	70-130		
	70		1	49/1	20.0		95.0	10-120		

Quality Control

(Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0960 - Purge-Trap (Con	tinued)									
LCS (B3L0960-BS1)					Prepared 8	Analyzed: 12	/20/23			
2,2-Dichloropropane	49		1	ug/l	50.0		98.8	70-130		
cis-1,3-Dichloropropene	48		1	ug/l	50.0		95.1	70-130		
trans-1,3-Dichloropropene	49		1	ug/l	50.0		98.9	70-130		
1,1-Dichloropropene	48		1	ug/l	50.0		95.1	70-130		
Diethyl ether	55		5	ug/l	50.0		110	70-130		
1,4-Dioxane	164		100	ug/l	250		65.8	50-150		
Ethylbenzene	50		1	ug/l	50.0		100	70-130		
Hexachlorobutadiene	51		1	ug/l	50.0		102	70-130		
2-Hexanone	36		5	ug/l	50.0		71.4	50-150		
Isopropylbenzene	50		1	ug/l	50.0		99.4	70-130		
p-Isopropyltoluene	51		1	ug/l	50.0		101	70-130		
Methylene Chloride	49		1	ug/l	50.0		97.8	70-130		
4-Methyl-2-pentanone	48		5	ug/l	50.0		95.7	50-150		
Naphthalene	42		1	ug/l	50.0		84.4	70-130		
n-Propylbenzene	52		1	ug/l	50.0		105	70-130		
Styrene	49		1	ug/l	50.0		98.5	70-130		
1,1,1,2-Tetrachloroethane	47		1	ug/l	50.0		93.8	70-130		
Tetrachloroethene	45		1	ug/l	50.0		90.5	70-130		
Tetrahydrofuran	43		5	ug/l	50.0		86.6	50-150		
Toluene	45		1	ug/l	50.0		89.9	70-130		
1,2,4-Trichlorobenzene	52		1	ug/l	50.0		105	70-130		
1,2,3-Trichlorobenzene	52		1	ug/l	50.0		105	70-130		
1,1,2-Trichloroethane	43		1	ug/l	50.0		86.4	70-130		
1,1,1-Trichloroethane	50		1	ug/l	50.0		99.3	70-130		
Trichloroethene	44		1	ug/l	50.0		88.2	70-130		
1,2,3-Trichloropropane	51		1	ug/l	50.0		102	70-130		
1,3,5-Trimethylbenzene	51		1	ug/l	50.0		102	70-130		
1,2,4-Trimethylbenzene	50		1	ug/l	50.0		99.3	70-130		
Vinyl Chloride	46		1	ug/l	50.0		92.0	50-150		
o-Xylene	48		1	ug/l	50.0		96.2	70-130		
m&p-Xylene	97		2	ug/l	100		96.6	70-130		
1,1,2,2-Tetrachloroethane	48		1	ug/l	50.0		95.1	70-130		
tert-Amyl methyl ether	47		1	ug/l	50.0		93.1	70-130		
1,3-Dichloropropane	49		1	ug/l	50.0		97.1	70-130		
Ethyl tert-butyl ether	49		1	ug/l	50.0		97.5	70-130		
Trichlorofluoromethane	55		1	ug/l	50.0		110	50-150		
Dichlorodifluoromethane	36		1	ug/l	50.0		72.5	50-150		
Surrogate: 4-Bromofluorobenzene			50.5	ug/l	50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4			51.6	ug/l	50.0		103	70-130		
Surrogate: Toluene-d8			48.4	ug/l	50.0		96.9	70-130		

			Dongsting		C''	6		0/ 550		
Analyte	Result	Qual	Keporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
· · · · · · · · · · · · · · · · · · ·		-			-		-			-
Batch: B3L0960 - Purge-Trap (Cont	tinued)				Duranada) Augustum di 17				
LCS Dup (B3L0960-BSD1)	25		-		Prepared a	& Analyzed: 12	2/20/23	50 450	4.26	20
Acetone	25		5	ug/i	50.0		50.6	50-150	4.26	20
Benzene	4/		1	ug/i	50.0		93.7	/0-130	2.57	20
Bromobenzene	48		1	ug/i	50.0		95.6	70-130	2.39	20
Bromochloromethane	46		1	ug/i	50.0		92.2	70-130	2.13	20
Bromodichloromethane	4/		1	ug/i	50.0		93.6	/0-130	2.51	20
Bromoform	41		1	ug/i	50.0		81.7	70-130	3.21	20
Bromomethane	71		1	ug/i	50.0		142	50-150	1.87	20
2-Butanone	34		5	ug/l	50.0		67.5	50-150	6.77	20
tert-Butyl alcohol	53		5	ug/l	50.0		107	70-130	3.19	20
sec-Butylbenzene	51		1	ug/l	50.0		102	70-130	1.82	20
n-Butylbenzene	55		1	ug/l	50.0		110	70-130	0.933	20
tert-Butylbenzene	50		1	ug/l	50.0		99.7	70-130	1.25	20
Methyl t-butyl ether (MTBE)	48		1	ug/l	50.0		96.5	70-130	0.499	20
Carbon Disulfide	53		1	ug/l	50.0		106	50-150	1.33	20
Carbon Tetrachloride	50		1	ug/l	50.0		99.2	70-130	1.65	20
Chlorobenzene	50		1	ug/l	50.0		99.1	70-130	1.71	20
Chloroethane	62		1	ug/l	50.0		124	50-150	8.63	20
Chloroform	52		1	ug/l	50.0		103	70-130	3.76	20
Chloromethane	44		1	ug/l	50.0		87.2	50-150	0.806	20
4-Chlorotoluene	53		1	ug/l	50.0		105	70-130	3.20	20
2-Chlorotoluene	50		1	ug/l	50.0		100	70-130	2.98	20
1,2-Dibromo-3-chloropropane (DBCP)	37		1	ug/l	50.0		73.0	70-130	2.01	20
Dibromochloromethane	44		1	ug/l	50.0		87.7	70-130	2.89	20
1,2-Dibromoethane (EDB)	46		1	ug/l	50.0		92.5	70-130	0.738	20
Dibromomethane	45		1	ug/l	50.0		91.0	70-130	1.70	20
1,2-Dichlorobenzene	51		1	ug/l	50.0		102	70-130	3.05	20
1,3-Dichlorobenzene	51		1	ug/l	50.0		102	70-130	0.489	20
1,4-Dichlorobenzene	47		1	ug/l	50.0		93.6	70-130	0.745	20
1,1-Dichloroethane	51		1	ug/l	50.0		102	70-130	0.926	20
1,2-Dichloroethane	54		1	ug/l	50.0		108	70-130	0.627	20
trans-1,2-Dichloroethene	49		1	ug/l	50.0		97.8	70-130	0.184	20
cis-1,2-Dichloroethene	46		1	ug/l	50.0		91.3	70-130	3.39	20
1,1-Dichloroethene	49		1	ug/l	50.0		97.3	70-130	3.43	20
1,2-Dichloropropane	50		1	ug/l	50.0		99.8	70-130	4.32	20
2,2-Dichloropropane	50		1	ug/l	50.0		99.8	70-130	0.987	20
cis-1,3-Dichloropropene	49		1	ug/l	50.0		98.5	70-130	3.49	20
trans-1,3-Dichloropropene	51		1	ug/l	50.0		101	70-130	2.22	20
1,1-Dichloropropene	49		1	ug/l	50.0		98.9	70-130	3.90	20
Diethyl ether	56		5	ug/l	50.0		111	70-130	0.739	20
1,4-Dioxane	178		100	ug/l	250		71.4	50-150	8.16	20
Ethylbenzene	51		1	ug/l	50.0		102	70-130	1.69	20
Hexachlorobutadiene	52		1	ug/l	50.0		103	70-130	1.50	20
2-Hexanone	37		5	ug/l	50.0		73.1	50-150	2.30	20
Isopropylbenzene	51		1	ug/l	50.0		102	70-130	2.72	20
p-Isopropyltoluene	51		1	ug/l	50.0		103	70-130	1.24	20
Methylene Chloride	49		1	ug/l	50.0		98.7	70-130	0.977	20
4-Methyl-2-pentanone	48		5	ug/l	50.0		95.8	50-150	0.146	20
Naphthalene	45		1	ug/l	50.0		89.9	70-130	6.36	20
n-Propylbenzene	54		1	ug/l	50.0		107	70-130	1.91	20
Styrene	50		1	ug/l	50.0		100	70-130	1.59	20
1,1,1,2-Tetrachloroethane	48		1	ug/l	50.0		96.4	70-130	2.71	20
Tetrachloroethene	47		1	ug/l	50.0		93.0	70-130	2.79	20
Tetrahydrofuran	45		- 5	ua/l	50.0		89.0	50-150	2.73	20
Toluene	48		1	ua/l	50.0		95.6	70-130	6.19	20
1.2.4-Trichlorobenzene	51		1	ua/l	50.0		107	70-130	2.45	20
1.2.3-Trichlorobenzene	51		1	ua/l	50.0		102	70-130	2.15	20
1 1 2-Trichloroethane	ר 48		1	ua/l	50.0		96.7	70-130		
	10		Ŧ	3	55.0		50.7	,0 150	Page	23 of 33

volatile organie compounds (co	, inclinaca y									
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3L0960 - Purge-Trap (Continued)									
LCS Dup (B3L0960-BSD1)					Prepared 8	& Analyzed: 12	2/20/23			
1,1,1-Trichloroethane	52		1	ug/l	50.0		104	70-130	4.93	20
Trichloroethene	45		1	ug/l	50.0		90.6	70-130	2.69	20
1,2,3-Trichloropropane	52		1	ug/l	50.0		104	70-130	1.51	20
1,3,5-Trimethylbenzene	52		1	ug/l	50.0		104	70-130	1.89	20
1,2,4-Trimethylbenzene	51		1	ug/l	50.0		101	70-130	1.84	20
Vinyl Chloride	47		1	ug/l	50.0		94.5	50-150	2.70	20
o-Xylene	49		1	ug/l	50.0		97.9	70-130	1.77	20
m&p-Xylene	99		2	ug/l	100		99.3	70-130	2.74	20
1,1,2,2-Tetrachloroethane	48		1	ug/l	50.0		96.2	70-130	1.19	20
tert-Amyl methyl ether	48		1	ug/l	50.0		96.1	70-130	3.17	20
1,3-Dichloropropane	50		1	ug/l	50.0		99.6	70-130	2.56	20
Ethyl tert-butyl ether	50		1	ug/l	50.0		99.8	70-130	2.29	20
Trichlorofluoromethane	57		1	ug/l	50.0		114	50-150	3.30	20
Dichlorodifluoromethane	37		1	ug/l	50.0		73.2	50-150	1.04	20
Surrogate: 4-Bromofluorobenzene			51.2	ug/l	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4			50.4	ug/l	50.0		101	70-130		
Surrogate: Toluene-d8			48.6	ug/l	50.0		97.3	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L06/3 - MADEP VPH										
Blank (B3L0673-BLK1)					Prepared 8	& Analyzed: 12	2/14/23			
Unadjusted C5-C8 Aliphatic Hydrocarbons	ND		10.0	mg/kg						
C5-C8 Aliphatic Hydrocarbons	ND		10.0	mg/kg						
C9-C12 Aliphatic Hydrocarbons	ND		12.5	mg/kg						
C9-C10 Aromatic Hydrocarbons	ND		12.5	mg/kg						
Surrogate: 2,5- Dibromotoluene-PID			57.5	ug/l	50.0		115	70-130		
Surrogate: 2,5- Dibromotoluene-FID			52.8	ug/l	50.0		106	70-130		
LCS (B3L0673-BS1)					Prepared 8	& Analyzed: 12	2/14/23			
n-Butylcylohexane	2.1		250	mg/kg	2.50		83.0	70-130		
n-Pentane	2.3		250	mg/kg	2.50		92.4	70-130		
1,2,4-Trimethylbenzene	2.5		0.5	mg/kg	2.50		102	70-130		
VPH_LCS_Aliphatic_C5-C8	6.9		0.5	mg/kg	7.50		91.4	70-130		
VPH_LCS_Aliphatic_C9-C12	4.1		0.5	mg/kg	5.00		82.0	70-130		
VPH_LCS_Aromatic_C9-C10	2.5		0.5	mg/kg	2.50		102	70-130		
2,2,4-Trimethylpentane	2.4		0.2	mg/kg	2.50		94.2	70-130		
Surrogate: 2,5- Dibromotoluene-PID			56.8	ug/l	50.0		114	70-130		
Surrogate: 2,5- Dibromotoluene-FID			52.7	ug/l	50.0		105	70-130		
LCS Dup (B3L0673-BSD1)					Prepared 8	& Analyzed: 12	2/14/23			
n-Butylcylohexane	1.9		250	mg/kg	2.50		75.4	70-130	9.62	25
n-Pentane	2.2		250	mg/kg	2.50		86.2	70-130	6.92	25
1,2,4-Trimethylbenzene	2.6		0.5	mg/kg	2.50		103	70-130	0.861	25
VPH_LCS_Aliphatic_C5-C8	6.3		0.5	mg/kg	7.50		84.3	70-130	8.03	25
VPH_LCS_Aliphatic_C9-C12	3.7		0.5	mg/kg	5.00		73.5	70-130	10.9	25
VPH_LCS_Aromatic_C9-C10	2.6		0.5	mg/kg	2.50		103	70-130	0.861	25
2,2,4-Trimethylpentane	2.1		0.2	mg/kg	2.50		85.0	70-130	10.2	25
Surrogate: 2,5- Dibromotoluene-PID			58.6	ug/l	50.0		117	70-130		
Surrogate: 2,5- Dibromotoluene-FID			54.3	ug/l	50.0		109	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0674 - MADEP VPH										
Blank (B3L0674-BLK1)					Prepared 8	& Analvzed: 1	2/15/23			
Unadjusted C5-C8 Aliphatic Hydrocarbons	ND		100	ug/l		· · , · ·	, -, -			
C5-C8 Aliphatic Hydrocarbons	ND		100	ug/l						
C9-C12 Aliphatic Hydrocarbons	ND		150	ug/l						
C9-C10 Aromatic Hydrocarbons	ND		150	ug/l						
Surrogate: 2,5- Dibromotoluene-PID			59.4	ug/l	50.0		119	70-130		
Surrogate: 2,5- Dibromotoluene-FID			56.9	ug/l	50.0		114	70-130		
LCS (B3L0674-BS1)					Prepared 8	& Analyzed: 1	2/15/23			
n-Butylcylohexane	42.1		5.0	ug/l	50.0		84.1	70-130		
n-Pentane	47.7		5.0	ug/l	50.0		95.3	70-130		
1,2,4-Trimethylbenzene	50.2		10.0	ug/l	50.0		100	70-130		
VPH_LCS_Aliphatic_C5-C8	140		5.0	ug/l	150		93.5	70-130		
VPH_LCS_Aliphatic_C9-C12	82.6		10.0	ug/l	100		82.6	70-130		
2,2,4-Trimethylpentane	47.7		5.0	ug/l	50.0		95.3	70-130		
VPH_LCS_Aromatic_C9-C10	50.2		10.0	ug/l	50.0		100	70-130		
Surrogate: 2,5- Dibromotoluene-PID			58.2	ug/l	50.0		116	70-130		
Surrogate: 2,5- Dibromotoluene-FID			56.3	ug/l	50.0		113	70-130		
LCS Dup (B3L0674-BSD1)					Prepared 8	& Analyzed: 1	2/15/23			
n-Butylcylohexane	37.6		5.0	ug/l	50.0		75.3	70-130	11.1	25
n-Pentane	43.8		5.0	ug/l	50.0		87.6	70-130	8.49	25
1,2,4-Trimethylbenzene	49.5		10.0	ug/l	50.0		98.9	70-130	1.56	25
VPH_LCS_Aliphatic_C5-C8	129		5.0	ug/l	150		85.7	70-130	8.65	25
VPH_LCS_Aliphatic_C9-C12	72.8		10.0	ug/l	100		72.8	70-130	12.6	25
VPH_LCS_Aromatic_C9-C10	49.5		10.0	ug/l	50.0		98.9	70-130	1.56	25
2,2,4-Trimethylpentane	43.4		5.0	ug/l	50.0		86.8	70-130	9.33	25
Surrogate: 2,5- Dibromotoluene-PID			59.9	ug/l	50.0		120	70-130		
Surrogate: 2,5- Dibromotoluene-FID			56.5	ug/l	50.0		113	70-130		

			Quality (Conti	Contro	l					
Extractable Petroleum Hydroc	carbons (MADE	P-EPH)								
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0678 - 2_Sep-Fun	nel-extraction	(Aqueo	us)							
Blank (B3L0678-BLK1)			2	F	Prepared: 12/1	L5/23 Analyze	ed: 12/18/23			
Unadjusted C11-C22 Aromatic	ND		100	ug/l						
Hydrocarbons										
Naphthalene	ND		1.0	ug/l						
2-Methylnaphthalene	ND		1.0	ug/l						
Phenanthrene	ND		1.0	ug/l						
Acenaphthene	ND		5.0	ug/l						
Acenaphthylene	ND		1.0	ug/l						
Fluorene	ND		5.0	ug/l						
Anthracene	ND		5.0	ug/l						
Fluoranthene	ND		5.0	ug/l						
Pyrene	ND		5.0	ug/l						
Benzo(a)anthracene	ND		1.0	ug/l						
Chrysene	ND		2.0	ug/l						
Benzo(b)fluoranthene	ND		1.0	ug/l						
Benzo(k)fluoranthene	ND		1.0	ug/l						
Benzo(a)pyrene	ND		0.2	ug/l						
Indeno(1,2,3-cd)pyrene	ND		0.5	ua/l						
Dibenz(a h)anthracene	ND		0.5	ua/l						
Benzo(a h i)pen/lene	ND		5.0	<u>-</u>						
CQ-C18 Aliphatic Hydrocarbons	ND		200	ug/l						
C10 C26 Aliphatic Hydrocarbons	ND		200	ug/l						
C11-C22 Aromatic Hydrocarbons	ND		100	ug/l						
Current Chlores to despes					125		45.0	40 140		
Surrogate, Chiloroocladecane			50.5	ug/l	125		45.0	40-140		
Surrogale: 0-Terphenyi			30.0	ug/l	125		44.0 70.0	40-140		
Surrogate: 2-riuoropipnenyi Surrogate: 2-Bromonanhthalene			35.3 36.4	ug/i ug/l	50.0 50.0		70.6 72.8	40-140 40-140		
			50.1	3	Dropprod: 12/1	E/22 Analyze	/2.0 d. 12/10/22	10 1 10		
Nanhthalono	20.8		1.0	ua/l	40.0	LJ/ZJ Alidiyze	52 1	40-140		
Naphunalene	20.8		1.0	ug/l	40.0		52.1	40-140		
2-Meuryinaphulaiene	17.5		1.0	ug/l	40.0		43.8	40-140		
Assessed to the second s	18.3		1.0	ug/l	40.0		45.7	40-140		
Acenaphthene	17.8		5.0	ug/i	40.0		44.5	40-140		
Acenaphthylene	17.0		1.0	ug/i	40.0		42.6	40-140		
Fluorene	17.6		5.0	ug/i	40.0		43.9	40-140		
Anthracene	21.1		5.0	ug/i	40.0		52.8	40-140		
Fluoranthene	23.4		5.0	ug/l	40.0		58.6	40-140		
Pyrene	22.9		5.0	ug/l	40.0		57.3	40-140		
Benzo(a)anthracene	31.3		1.0	ug/l	40.0		78.3	40-140		
Chrysene	27.5		2.0	ug/l	40.0		68.8	40-140		
Benzo(b)fluoranthene	32.8		1.0	ug/l	40.0		82.1	40-140		
Benzo(k)fluoranthene	36.3		1.0	ug/l	40.0		90.8	40-140		
Benzo(a)pyrene	27.8		0.2	ug/l	40.0		69.6	40-140		
Indeno(1,2,3-cd)pyrene	32.0		0.5	ug/l	40.0		79.9	40-140		
Dibenz(a,h)anthracene	30.8		0.5	ug/l	40.0		77.1	40-140		
Benzo(g,h,i)perylene	35.3		5.0	ug/l	40.0		88.3	40-140		
Nonane	12.8		5.0	ug/l	40.0		32.0	30-140		
Decane	17.9		5.0	ug/l	40.0		44.8	40-140		
Dodecane	16.4		5.0	ug/l	40.0		41.0	40-140		
Tetradecane	16.1		5.0	ug/l	40.0		40.2	40-140		
Hexadecane	17.4		5.0	ug/l	40.0		43.4	40-140		
Octadecane	16.9		5.0	ug/l	40.0		42.2	40-140		
Nonadecane	18 5		5.0	ua/l	40.0		46.2	40-140		
Ficosane	20.0		5.0	ua/l	40.0		50.2	40-140		
Docosane	20.0		5.0	9/1	40.0 40 0		54.2	40-140		
Totracosano	21./		5.0	ug/i	40.0		JH.J	40 140		
	22.4		5.0	ug/i	40.0		50.1	40 140		
	22./		5.0	ug/I	40.0		56./	40-140		
Uctacosane	22.1		5.0	ug/I	40.0		55.3	40-140		
Triacontane	21.3		5.0	ug/l	40.0		53.2	40-140	Page	27 of 3

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Reporting Spike Source WREC INSE RPD Lene Analyte Radio Value Value Value Radio R				(0011110							
Product Decklit Outs Link Units Units<		D	Qual	Reporting		Spike	Source	0/ DEC	%REC		RPD
Batch: s21.0627 - 2_Sep-Funnel-extrexition (Aqueeus): Pointer: 12/16/23 Analyset: 12/16/23 Version: 16.2 0 Pointer: 12/16/23 Analyset: 12/16/23 Colspan="2">Desire: 12/16/23 Analyset: 12/16/23 Version: 16.2 Pointer: 12/16/23 Analyset: 12/16/23 Version: 16.2 Pointer: 12/16/23 Analyset: 12/16/23 Version: 12/16/23 Version: 12/16/23 Sumgate: Abnormalyshifter: 0 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Sumgate: Abnormalyshifter: 0 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23 Version: 12/16/23	Analyte	Result	Quai	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
LCS (BLOP78-B3.) interaction	Batch: B3L0678 - 2_Sep-Funn	el-extraction	(Aqueo	ous) (Contin	nued)						
Index outbom 16.2 5.0 up1 40.0 40.5 40.10 EPH_LIS_Alphatic_US-CIB 97.4 0.0 up1 240 0.0 40.4 40.4 40.4 EPH_LIS_Alphatic_US-CIB 97.4 0.0 up1 257 57.9 49.16 57.3 49.16 52.2 55 <	LCS (B3L0678-BS1)			2.	-	Prepared: 12/1	5/23 Analyze	ed: 12/18/23			
DFH.LGS.Alphabic.C19-C36 165 0.0 up1 320 1.6. 49-10 EFH.LGS.Alphabic.G11-G21 330 0.0 up1 660 63.3 40-10 EFH.LGS.Alphabic.G11-G21 330 0.0 up1 125 57.9 47.17 40-140 Sumgate: - Priconcephenyl 35.4 up1 52.7 47.4 40-140 - Sumgate: - Priconcephenyl 35.4 up1 52.0 77.7 40-140 17.3 25 Sumgate: - Priconcephenyl 35.4 up1 40.0 43.0 40.10 12.3 25 Mathination 17.5 1.0 up1 40.0 47.3 40.10 22.5 25 Accmaphtheme 17.3 1.0 up1 40.0 47.3 40.10 23 25 Pricert 22.8 5.0 up1 40.0 67.3 40.10 23 25 Pricert 22.8 5.0 up1 40.0 67.4 40.10	Hexatriacontane	16.2		5.0	ug/l	40.0		40.5	40-140		
BPH LGS Alphanet. C9-C18 97.4 0.0 up1 240 40.5 40-10 EPH LGS Anomatic. C11-C2 430 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00	EPH_LCS_Aliphatic_C19-C36	165		0.0	ug/l	320		51.6	40-140		
FPH_LCS_MondatC_C11-C22 430 0.0 491 680 6.3.3 40-14 Surragate: Chilocottoheane 64.8 ugl 12.5 37.9 40-14 Surragate: Chilocottoheane 35.4 ugl 50.0 70.8 40-14 Surragate: Chilocottoheany 35.4 ugl 50.0 70.8 40-14 Surragate: Chilocottoheany 35.4 ugl 40.0 43.8 40-14 2.5 Surragate: Chilocottoheany 17.5 1.0 ugl 40.0 43.8 40-14 2.25 2.5 Accenghthean 17.6 1.0 ugl 40.0 47.5 1.6 2.2 Accenghthean 19.3 1.0 ugl 40.0 67.3 40-14 2.2 2.5 Accenghtheane 2.9 5.0 ugl 40.0 67.3 40-14 2.2 2.5 Accenghtheane 2.4 5.0 ugl 40.0 68.4 40-10 2.1 2.5 Accenyghthean	EPH_LCS_Aliphatic_C9-C18	97.4		0.0	ug/l	240		40.6	40-140		
Surrogatic Chiroscataleane 64.8 ugl 1.25 5.1.9 40-14 Surrogatic - Tephenyi 38.9 ugl 0.20 7.2 47.1 49-14 Surrogatic - Tephenyi 35.4 ugl 0.00 7.2 47.1 47.1 Surrogatic - Tephenyi 55.4 ugl 40.0 7.2 47.4 7.2 57.2 Maphhaleare 17.5 1.0 ugl 40.0 45.8 49.40 17.3 25 Phenthingathiane 17.6 1.0 ugl 40.0 47.3 49.140 6.22 25 Accmaphthylene 19.0 5.0 Ugl 40.0 47.3 49.140 14.9 25 Procence 20.4 5.0 Ugl 40.0 49.140 14.9 25 Procence 20.4 5.0 Ugl 40.0 49.140 14.9 25 Procence 27.8 5.0 Ugl 40.0 68.4 49.140 24.2 25 <td>EPH_LCS_Aromatic_C11-C22</td> <td>430</td> <td></td> <td>0.0</td> <td>ug/l</td> <td>680</td> <td></td> <td>63.3</td> <td>40-140</td> <td></td> <td></td>	EPH_LCS_Aromatic_C11-C22	430		0.0	ug/l	680		63.3	40-140		
Surrogate: or Traphenyl St 9 ugl S25 S25 Ugl Ugl G0.0 G1.0 Ugl G0.0 G1.0 G2.0 G2.0 G2.0 G2.0 G1.0 G1.0 G1.0 G2.0 G2.0 G2.0 G1.0	Surrogate: Chlorooctadecane			64.8	ug/l	125		51.9	40-140		
Surragete: 2-Riomonph/haleme 35.4 ugil 50.0 70.8 40-140 Surragete: 2-Riomonph/haleme 35.4 ugil 50.0 70.7 40-140 LCS Dug (SSL0678-BSD) Preservet: 12/15/23 Analyzet: 12/18/23 Analyzet:	Surrogate: o-Terphenyl			58.9	ug/l	125		47.1	40-140		
Simpatic 2-Monoaphthalene 95.4 91 50.0 70.7 40-140 LCS borg (B3L678-BSD) 5 2-Methylaphthalene 17.5 1.0 40.9 40.0 44.0 40.140 0.23 25 Acenaphthalene 17.6 1.0 40.0 47.5 40-140 22.5 25 Acenaphthene 19.3 1.0 40.0 47.5 40-140 2.5 25 Acenaphthene 19.3 1.0 40.1 40.0 46.2 40-140 1.2 25 Acenaphthene 2.9 5.0 40.9 40.0 6.3 40-140 1.5 25 Flucarthene 2.7 5.5 40.9 40.0 7.3 40-140 1.6 25 Flucarthene 3.1 1.0 40.1 40.0 8.6 40.4 2.5 Semat(Shuranthene 3.1 1.0 40.1 40.0 8.1 40-140 1.5	Surrogate: 2-Fluorobiphenyl			35.4	ug/l	50.0		70.8	40-140		
LCS Dup (B3L0678-BSD1) Prepared: 12/15/23 Analyzed: 12/18/23 Naphthalene 17.5 1.0 ugl 40.0 41.8 40-140 0.228 25 Attentyniaphtalene 12.6 1.0 ugl 40.0 47.3 40-140 0.228 25 Phenanthrene 2.9 1.0 ugl 40.0 47.5 40-140 6.52 25 Accmaphthene 19.0 5.0 ugl 40.0 47.5 40-140 6.52 25 Accmaphthylene 19.3 1.0 ugl 40.0 57.3 40-140 8.27 25 Authracene 22.9 5.0 ugl 40.0 67.3 40-140 1.68 25 Pyrene 28.5 5.0 ugl 40.0 67.8 40-140 2.12 25 Benxo(yhlucanthene 33.1 1.0 ugl 40.0 87.8 40-140 3.62 25 Benxo(yhlucanthene 34.7 1.0 ugl 40.0 81.8 25 25 Benxo(yhlucanthene 34.4 0.5 <t< td=""><td>Surrogate: 2-Bromonaphthalene</td><td></td><td></td><td>35.4</td><td>ug/l</td><td>50.0</td><td></td><td>70.7</td><td>40-140</td><td></td><td></td></t<>	Surrogate: 2-Bromonaphthalene			35.4	ug/l	50.0		70.7	40-140		
Naphthalene 17.5 1.0 ug/l 40.0 43.8 40.10 17.3 25 2*Methynaphthalene 17.6 1.0 ug/l 40.0 47.5 40.10 22.5 25 Acenapithyne 15.0 5.0 ug/l 40.0 47.5 40.10 12.3 25 Fueranthene 19.3 1.0 ug/l 40.0 47.5 40.10 12.3 25 Fueranthene 20.4 5.0 ug/l 40.0 5.0 40.10 15.0 27.2 25 Anthracene 22.8 5.0 ug/l 40.0 6.8 40.10 25.8 25 Pyrene 28.5 5.0 ug/l 40.0 8.8 40.10 25.8 25 Benzo(h)noranthene 35.1 2.0 ug/l 40.0 8.8 40.10 17.3 25 Benzo(h)noranthene 34.7 1.0 ug/l 40.0 8.1 40.10 15.5 25 Dibenz(h)noranthene 34.7 1.0 ug/l 40.0 8.6 40.10	LCS Dup (B3L0678-BSD1)					Prepared: 12/1	5/23 Analyze	ed: 12/18/23			
2-Methylaphtalene17.61.0ugl40.044.040.100.22825Phenanthrene2.91.0ugl40.07.340.100.2525Accnapithylene19.31.0ugl40.048.240.101.325Antracene2.95.0ugl40.057.340.108.2725Antracene2.95.0ugl40.057.340.108.2725Puranthrene2.8.55.0ugl40.068.440.102.525Derscalpanthracene33.11.0Ugl40.08.840.102.525Chrysene35.12.0Ugl40.08.840.102.525Bernz(b/huranthene34.71.0Ugl40.08.640.101.62.5Bernz(b/huranthene3.40.1Ugl40.08.640.101.62.5Dibernz(a/h)ervinen3.60.5Ugl40.08.640.101.62.5Dibernz(a/h)ervinen3.60.5Ugl40.08.140.101.62.5Dibernz(a/h)ervinen3.45.0Ugl40.08.140.101.62.5Dibernz(a/h)ervinen3.45.0Ugl40.08.140.101.62.5Dibernz(a/h)ervinen3.45.0Ugl40.04.04.04.52.5Dibernz(a/h)ervinen3.4 <td< td=""><td>Naphthalene</td><td>17.5</td><td></td><td>1.0</td><td>ug/l</td><td>40.0</td><td></td><td>43.8</td><td>40-140</td><td>17.3</td><td>25</td></td<>	Naphthalene	17.5		1.0	ug/l	40.0		43.8	40-140	17.3	25
Phenomitheme 22.9 1.0 upl 40.0 57.3 40-140 22.5 25 Acemaphtheme 19.0 5.0 upl 40.0 47.5 40-140 12.3 25 Acemaphthylene 19.3 1.0 upl 40.0 51.0 40-140 12.3 25 Fluorene 22.9 5.0 upl 40.0 51.3 40-140 15.3 25 Fluorente 22.9 5.0 upl 40.0 69.4 40-140 16.8 25 Fluorente 27.8 5.0 upl 40.0 69.4 40-140 21.8 25 Berax(olfmorantene 35.1 2.0 upl 40.0 87.8 40-140 36.2 25 Berax(olfmorantene 34.7 1.0 upl 40.0 86.7 40-140 1.5 25 Indem(1,2,3-cd)pyrene 33.9 0.2 upl 40.0 86.7 40-140 1.5 25 Berax	2-Methylnaphthalene	17.6		1.0	ug/l	40.0		44.0	40-140	0.228	25
Accanaphthylene 19.0 5.0 40/l 40.0 47.5 40-140 6.52 25 Accanaphthylene 19.3 1.0 ug/l 40.0 48.2 40-140 12.3 25 Inurene 22.4 5.0 ug/l 40.0 57.3 40-140 8.2 25 Inurente 27.8 5.0 ug/l 40.0 67.3 40-140 25.5 Pyrene 28.5 5.0 ug/l 40.0 67.8 40-140 5.8 25.5 Densol/phuranthene 31.1 1.0 ug/l 40.0 67.8 40-140 3.62 25.5 Bernzo(h/huranthene 34.0 1.0 ug/l 40.0 68.1 40-140 1.49 25.5 Bernzo(h/huranthene 34.0 50 ug/l 40.0 68.1 40-140 1.49 25.5 Bernzo(h/huranthene 34.4 50 ug/l 40.0 67.6 40-140 1.49 25.5 Ber	Phenanthrene	22.9		1.0	ug/l	40.0		57.3	40-140	22.5	25
Acenapithylene 19.3 1.0 ug/l 40.0 48.2 49.140 12.3 25 Fluorene 20.4 5.0 ug/l 40.0 51.0 40-140 16.8 25 Fluoranthene 27.8 5.0 ug/l 40.0 73.3 40-140 5.8 25 Pyrene 28.5 5.0 ug/l 40.0 82.8 40-140 5.8 25 Benzo(a)anthracene 33.1 1.0 ug/l 40.0 87.8 40-140 3.62 25 Benzo(a)fluoranthene 34.0 1.0 ug/l 40.0 85.1 40-140 3.62 25 Benzo(a)fluoranthene 34.0 1.0 ug/l 40.0 86.7 40-140 1.62 25 Desco(a)fluoranthene 34.7 1.0 ug/l 40.0 86.1 40-140 1.62 25 Desco(a)fluoranthene 34.4 5.0 ug/l 40.0 86.1 40-140 2.52 25 Desco(a)fluoranthene 12.3 5.0 ug/l 40.0 36.1 <t< td=""><td>Acenaphthene</td><td>19.0</td><td></td><td>5.0</td><td>ug/l</td><td>40.0</td><td></td><td>47.5</td><td>40-140</td><td>6.52</td><td>25</td></t<>	Acenaphthene	19.0		5.0	ug/l	40.0		47.5	40-140	6.52	25
Huorene 20.4 5.0 ug/l 40.0 51.0 40-140 14.9 25 Anthracene 22.9 5.0 ug/l 40.0 66.4 40-140 8.27 25 Pyrene 28.5 5.0 Ug/l 40.0 68.4 40-140 21.7 25 Benzo(a)nthracene 33.1 1.0 Ug/l 40.0 87.8 40-140 24.3 25 Benzo(b)fluoranthene 34.0 1.0 Ug/l 40.0 85.1 40-140 3.42 25 Benzo(b)fluoranthene 34.0 1.0 Ug/l 40.0 86.6 40-140 1.45 25 Benzo(b)fluoranthene 33.9 0.2 Ug/l 40.0 86.1 40-140 1.55 25 Dibenz(a,h)entracene 30.6 0.5 Ug/l 40.0 86.1 40-140 2.55 25 Nonane 12.3 5.0 Ug/l 40.0 46.3 25 25 Dodecane 16	Acenaphthylene	19.3		1.0	ug/l	40.0		48.2	40-140	12.3	25
Anthracene 22.9 5.0 ug/l 40.0 57.3 40-140 8.27 25 Fluranthene 27.8 5.0 ug/l 40.0 69.4 40-140 21.7 25 Beraz(a)panthracene 33.1 1.0 ug/l 40.0 82.8 40-140 21.7 25 Chrysene 35.1 2.0 ug/l 40.0 87.8 40-140 24.2 25 Beraz(a)prome 34.0 1.0 ug/l 40.0 86.7 40-140 24.5 25 Indenc(1,2,3-cd)prome 33.9 0.2 ug/l 40.0 86.1 40-140 1.5 25 Indenc(1,2,3-cd)prome 32.4 0.5 ug/l 40.0 86.1 40-140 2.5 25 Nonane 12.3 5.0 ug/l 40.0 30.7 30-140 4.23 25 Detacane 16.6 5.0 ug/l 40.0 41.4 40.40 5.9 25 No	Fluorene	20.4		5.0	ug/l	40.0		51.0	40-140	14.9	25
Fluoranthene 27.8 5.0 ug/l 40.0 69.4 40-140 16.8 25 Pyrene 28.5 5.0 ug/l 40.0 71.3 40-140 2.17 25 Beraz(a)nthracene 35.1 2.0 ug/l 40.0 87.8 40-140 5.58 25 Chrysene 35.1 2.0 ug/l 40.0 87.8 40-140 3.62 25 Beraz(A)Iuranthene 34.7 1.0 ug/l 40.0 86.1 40-140 46.5 25 Beraz(A)Iuranthene 32.4 0.5 ug/l 40.0 81.1 40-140 1.68 25 Indeno(1,2,3-cd)pyrene 32.4 0.5 ug/l 40.0 86.1 40-140 0.58 25 Norane 12.3 5.0 ug/l 40.0 30.7 30-140 4.52 25 Decane 16.6 5.0 ug/l 40.0 40.140 6.91 25 Decane <td< td=""><td>Anthracene</td><td>22.9</td><td></td><td>5.0</td><td>ug/l</td><td>40.0</td><td></td><td>57.3</td><td>40-140</td><td>8.27</td><td>25</td></td<>	Anthracene	22.9		5.0	ug/l	40.0		57.3	40-140	8.27	25
Pyrene 28.5 5.0 ug/l 40.0 71.3 40-140 21.7 25 Benzo(a)anthracene 33.1 1.0 ug/l 40.0 82.8 40-140 5.58 25 Chrysene 35.1 2.0 ug/l 40.0 85.1 40-140 3.62 25 Benzo(k)prone 33.9 0.2 ug/l 40.0 86.7 40-140 1.62 25 Indeno(1,2,3-cd)pyrene 32.4 0.5 ug/l 40.0 81.1 40-140 1.49 25 Dibera(a,h)anthracene 30.6 0.5 ug/l 40.0 86.1 40-140 2.55 25 Nonane 12.3 5.0 ug/l 40.0 30.7 30-140 4.23 25 Decane 16.6 5.0 ug/l 40.0 41.5 40-140 2.42 25 Decane 16.6 5.0 ug/l 40.0 41.5 40-140 4.23 25 Octadecan	Fluoranthene	27.8		5.0	ug/l	40.0		69.4	40-140	16.8	25
Benzo(a)anthracene 33.1 1.0 ug/l 40.0 82.8 40-140 5.58 25 Chrysene 35.1 2.0 ug/l 40.0 87.8 40-140 24.3 25 Benzo(b)fuoranthene 34.0 1.0 ug/l 40.0 85.1 40-140 4.65 25 Benzo(b)fuoranthene 34.7 1.0 ug/l 40.0 86.6 40-140 1.49 25 Dihern(2,3)-chyprene 32.4 0.5 ug/l 40.0 86.1 40-140 1.49 25 Dihern(2,h)anthracene 30.6 0.5 ug/l 40.0 86.1 40-140 2.55 25 Nonane 12.3 5.0 ug/l 40.0 42.0 40-140 6.34 25 Decane 16.6 5.0 ug/l 40.0 41.2 40-140 9.49 25 Tetradecane 17.7 5.0 ug/l 40.0 43.3 40-140 5.9 25 N	Pyrene	28.5		5.0	ug/l	40.0		71.3	40-140	21.7	25
Chrysne 35.1 2.0 ug/l 40.0 87.8 40.10 24.3 25 Benzo(h)fluoranthene 34.0 1.0 ug/l 40.0 85.1 40-140 3.62 25 Benzo(h)fluoranthene 34.7 1.0 ug/l 40.0 86.7 40-140 1.65 25 Benzo(h)fluoranthene 33.9 0.2 ug/l 40.0 81.1 40-140 1.45 25 Benzo(g)pyrene 32.4 0.5 ug/l 40.0 86.1 40-140 1.49 25 Benzo(g),)perylene 34.4 5.0 ug/l 40.0 86.1 40-140 2.55 25 Decane 16.6 5.0 ug/l 40.0 30.7 30.140 4.23 25 Decane 16.6 5.0 ug/l 40.0 41.5 40-140 6.09 25 Teradecane 17.7 5.0 ug/l 40.0 44.2 40-140 6.09 25 Octadecane 17.7 5.0 ug/l 40.0 5.3 40-140 6.5	Benzo(a)anthracene	33.1		1.0	ug/l	40.0		82.8	40-140	5.58	25
Benzo(b)fuoranthene 34.0 1.0 ug/l 40.0 85.1 40-140 36.2 25 Benzo(k)fluoranthene 34.7 1.0 ug/l 40.0 86.7 40-140 4.65 25 Benzo(k)fluoranthene 32.4 0.5 ug/l 40.0 81.1 40-140 1.49 25 Dibenz(a,h)anthracene 30.6 0.5 ug/l 40.0 86.1 40-140 2.55 25 Decane 34.4 5.0 ug/l 40.0 30.7 30-140 4.23 25 Decane 16.8 5.0 ug/l 40.0 42.0 40-140 4.23 25 Decane 16.6 5.0 ug/l 40.0 41.5 40-140 6.09 25 Ctadecane 17.7 5.0 ug/l 40.0 44.2 40-140 5.97 25 Nonadecane 21.7 5.0 ug/l 40.0 44.2 40-140 5.97 25 <t< td=""><td>Chrysene</td><td>35.1</td><td></td><td>2.0</td><td>ug/l</td><td>40.0</td><td></td><td>87.8</td><td>40-140</td><td>24.3</td><td>25</td></t<>	Chrysene	35.1		2.0	ug/l	40.0		87.8	40-140	24.3	25
Benzo(k)fluoranthene 34.7 1.0 ug/l 40.0 86.7 40-140 4.65 25 Benzo(k)pyrene 33.9 0.2 ug/l 40.0 81.1 40-140 19.5 25 Dibenz(a,h)anthracene 30.6 0.5 ug/l 40.0 81.1 40-140 2.5 25 Nonane 12.3 5.0 ug/l 40.0 30.7 30-140 4.23 25 Decane 16.8 5.0 ug/l 40.0 42.0 40-140 6.34 25 Decane 16.6 5.0 ug/l 40.0 42.0 40-140 6.34 25 Decane 16.6 5.0 ug/l 40.0 44.2 40-140 6.99 25 Octadecane 17.7 5.0 ug/l 40.0 44.2 40-140 6.99 25 Octadecane 17.9 5.0 ug/l 40.0 50.3 40-140 6.89 25 Tetracesane	Benzo(b)fluoranthene	34.0		1.0	ug/l	40.0		85.1	40-140	3.62	25
Benzo(g)pyrene 33.9 0.2 ug/l 40.0 84.6 40-140 19.5 25 Indeno(1,2,3-cd)pyrene 32.4 0.5 ug/l 40.0 81.1 40-140 1.49 25 Dibenz(a)hanthracene 30.6 0.5 ug/l 40.0 86.1 40-140 2.55 25 Benzo(g)h,i)perylene 34.4 5.0 ug/l 40.0 30.7 30-140 4.23 25 Decane 16.8 5.0 ug/l 40.0 41.5 40-140 1.09 25 Tetradecane 16.6 5.0 ug/l 40.0 44.2 40-140 6.09 25 Octadecane 17.7 5.0 ug/l 40.0 44.1 6.09 25 Nonadecane 17.9 5.0 ug/l 40.0 45.1 40-140 5.97 25 Docosane 23.3 5.0 ug/l 40.0 54.2 40-140 6.89 25 Tracosane	Benzo(k)fluoranthene	34.7		1.0	ug/l	40.0		86.7	40-140	4.65	25
Inden(1,2,3-cd)pyree 32,4 0.5 ug/l 40.0 81.1 40-140 1.49 25 Dibenz(a,h)anthracene 30.6 0.5 ug/l 40.0 76.6 40-140 0.618 25 Nonane 34.4 5.0 ug/l 40.0 30.7 30-140 4.23 25 Nonane 12.3 5.0 ug/l 40.0 30.7 30-140 4.23 25 Decane 16.8 5.0 ug/l 40.0 41.2 40-140 6.34 25 Dodecane 16.6 5.0 ug/l 40.0 41.2 40-140 9.49 25 Hexadecane 17.7 5.0 ug/l 40.0 46.1 40-140 5.97 25 Nonadecane 17.7 5.0 ug/l 40.0 5.3 40-140 5.82 25 Docosane 20.1 5.0 ug/l 40.0 5.42 40-140 7.65 25 Docosane 21.7 5.0 ug/l 40.0 60.2 40-140 7.65 25	Benzo(a)pyrene	33.9		0.2	ug/l	40.0		84.6	40-140	19.5	25
Diberg(a,h))perylene 30.6 0.5 ug/l 40.0 76.6 40.140 0.618 25 Benza(g,h,i)perylene 34.4 5.0 ug/l 40.0 86.1 40-140 2.55 25 Nonane 12.3 5.0 ug/l 40.0 30.7 30-140 4.23 25 Decane 16.8 5.0 ug/l 40.0 41.5 40-140 1.09 25 Detecane 16.6 5.0 ug/l 40.0 41.5 40-140 9.9 25 Detecane 17.7 5.0 ug/l 40.0 44.2 40-140 9.9 25 Octadecane 17.9 5.0 ug/l 40.0 44.8 40-140 5.97 25 Nonadecane 20.1 5.0 ug/l 40.0 54.2 40-140 7.87 25 Docosane 23.3 5.0 ug/l 40.0 58.2 40-140 6.89 25 Decasane 24.1 5.0 ug/l 40.0 66.8 40-140 6.89 25	Indeno(1,2,3-cd)pyrene	32.4		0.5	ug/l	40.0		81.1	40-140	1.49	25
Benzo(g,h,l)perylene 34.4 5.0 Ug/l 40.0 86.1 40.140 2.55 25 Nonane 12.3 5.0 Ug/l 40.0 30.7 30-140 4.23 25 Decane 16.6 5.0 Ug/l 40.0 41.5 40-140 6.34 25 Dodecane 16.6 5.0 Ug/l 40.0 41.5 40-140 6.34 25 Tetradecane 17.7 5.0 Ug/l 40.0 46.1 40-140 6.09 25 Octadecane 17.7 5.0 Ug/l 40.0 44.8 40-140 5.97 25 Nonadecane 17.9 5.0 Ug/l 40.0 54.1 40-140 5.97 25 Docosane 21.7 5.0 Ug/l 40.0 54.2 40-140 7.87 25 Docosane 23.3 5.0 Ug/l 40.0 60.2 40-140 6.89 25 Tetracosane 24.1 5.0 Ug/l 40.0 60.2 40-140 6.89 25 </td <td>Dibenz(a,h)anthracene</td> <td>30.6</td> <td></td> <td>0.5</td> <td>ug/i</td> <td>40.0</td> <td></td> <td>76.6</td> <td>40-140</td> <td>0.618</td> <td>25</td>	Dibenz(a,h)anthracene	30.6		0.5	ug/i	40.0		76.6	40-140	0.618	25
Nonane12.35.0Ug/l40.030.730.7430.744.2325Decane16.65.0Ug/l40.042.040.1406.3425Dodecane16.65.0Ug/l40.041.540-1401.0925Tetradecane17.75.0Ug/l40.044.240-1406.0925Octadecane18.45.0Ug/l40.044.840-1405.9725Nonadecane20.15.0Ug/l40.050.340-1407.8725Docosane21.75.0Ug/l40.054.240-1407.8725Docosane23.35.0Ug/l40.058.240-1407.8725Tetracosane24.15.0Ug/l40.060.240-1407.8725Decosane23.35.0Ug/l40.060.240-1407.0525Tetracosane24.35.0Ug/l40.060.840-1406.9825Octacosane23.35.0Ug/l40.059.340-1406.9825Triacontane22.85.0Ug/l40.057.040-1406.9825EPH_LCS_Aliphatic_C19-C361780.0Ug/l32055.740-14011.025EPH_LCS_Aliphatic_C11-C224640.0Ug/l68068.340-1407.5425Surrogate: Chloroottadecane1	Benzo(g,h,ı)perylene	34.4		5.0	ug/i	40.0		86.1	40-140	2.55	25
Decame 16.8 5.0 Ug/I 40.0 42.0 40.140 6.34 25 Dodecame 16.6 5.0 Ug/I 40.0 41.5 40-140 1.09 25 Tetradecame 17.7 5.0 Ug/I 40.0 44.2 40-140 9.49 25 Octadecame 17.9 5.0 Ug/I 40.0 44.8 40-140 5.97 25 Nonadecame 20.1 5.0 Ug/I 40.0 50.3 40-140 8.56 25 Eicosane 21.7 5.0 Ug/I 40.0 54.2 40-140 7.87 25 Docosane 23.3 5.0 Ug/I 40.0 58.2 40-140 7.87 25 Octasoane 24.1 5.0 Ug/I 40.0 60.2 40-140 6.89 25 Octacosane 23.7 5.0 Ug/I 40.0 59.3 40-140 6.89 25 Triacontane 18.1 </td <td>Nonane</td> <td>12.3</td> <td></td> <td>5.0</td> <td>ug/i</td> <td>40.0</td> <td></td> <td>30.7</td> <td>30-140</td> <td>4.23</td> <td>25</td>	Nonane	12.3		5.0	ug/i	40.0		30.7	30-140	4.23	25
Dodecane 16.6 5.0 49/l 40.0 41.5 40-140 1.09 25 Tetradecane 17.7 5.0 ug/l 40.0 44.2 40-140 9.49 25 Octadecane 18.4 5.0 ug/l 40.0 46.1 40-140 6.09 25 Octadecane 17.9 5.0 ug/l 40.0 44.8 40-140 5.97 25 Nonadecane 20.1 5.0 ug/l 40.0 50.3 40-140 7.87 25 Eicosane 21.7 5.0 ug/l 40.0 58.2 40-140 7.87 25 Docosane 23.3 5.0 ug/l 40.0 68.2 40-140 7.87 25 Hexacosane 24.1 5.0 ug/l 40.0 60.2 40-140 6.89 25 Octacosane 23.7 5.0 ug/l 40.0 57.0 40-140 6.89 25 Triacontane 2	Decane	16.8		5.0	ug/i	40.0		42.0	40-140	6.34	25
Hexadecane17.75.0ug/r40.044.240.1405.4323Hexadecane18.45.0ug/l40.046.140-1406.0925Octadecane17.95.0ug/l40.050.340-1408.5625Eicosane20.15.0ug/l40.054.240-1407.8725Docosane23.35.0ug/l40.058.240-1407.8725Docosane23.35.0ug/l40.060.240-1407.8725Hexacosane24.15.0ug/l40.060.240-1407.0525Octacosane23.75.0ug/l40.060.840-1406.9825Octacosane23.75.0ug/l40.059.340-1406.9825Triacontane22.85.0ug/l40.057.040-1406.8925EPH_LCS_Aliphatic_C19-C361780.0ug/l32055.740-14011.025EPH_LCS_Aliphatic_C11-C224640.0ug/l68068.340-1407.5425Surrogate: c-Terphenyl152ug/l12511140-1407.5425Surrogate: 2-Fluorobiphenyl152ug/l50.085.440-1401.5Surrogate: 2-Fluorobiphenyl152ug/l50.085.440-1401.5Surrogate: 2-Fluorobiphenyl52.7ug/l5	Totradecano	10.0		5.0	ug/l	40.0		41.5	40-140	0.40	25
Interaction 10.4 5.0 ug/l 40.0 40.1 40.140 5.05 25 Octadecane 17.9 5.0 ug/l 40.0 44.8 40-140 5.97 25 Nonadecane 20.1 5.0 ug/l 40.0 56.2 40-140 8.56 25 Eicosane 21.7 5.0 ug/l 40.0 58.2 40-140 7.87 25 Docosane 23.3 5.0 ug/l 40.0 60.2 40-140 7.87 25 Docosane 24.1 5.0 ug/l 40.0 60.2 40-140 7.05 25 Hexacosane 24.3 5.0 ug/l 40.0 60.8 40-140 6.98 25 Octacosane 23.7 5.0 ug/l 40.0 59.3 40-140 6.98 25 Octacosane 23.7 5.0 ug/l 40.0 57.0 40-140 6.98 25 Triacontane 18.1 5.0 ug/l 40.0 55.7 40-140 11.0 25 <td>Hovadocano</td> <td>17.7</td> <td></td> <td>5.0</td> <td>ug/l</td> <td>40.0</td> <td></td> <td>46.1</td> <td>40-140</td> <td>5.15 6.00</td> <td>25</td>	Hovadocano	17.7		5.0	ug/l	40.0		46.1	40-140	5. 1 5 6.00	25
Decodecarie 17.3 5.0 19,1 40.0 41.5 40-140 5.97 2.5 Nonadecane 20.1 5.0 ug/l 40.0 50.3 40-140 8.56 25 Eicosane 21.7 5.0 ug/l 40.0 58.2 40-140 7.87 25 Docosane 23.3 5.0 ug/l 40.0 58.2 40-140 6.89 25 Tetracosane 24.1 5.0 ug/l 40.0 60.2 40-140 6.98 25 Octacosane 23.7 5.0 ug/l 40.0 6.8 40-140 6.98 25 Triacontane 22.8 5.0 ug/l 40.0 57.0 40-140 6.89 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 240 41.5 40-140 2.31 25 EPH_LCS_Aromatic_C11-C22 464 0.0 ug/l 680 68.3 40-140	Octadocano	17.4		5.0	ug/l	40.0		40.1	40-140	5.07	25
Nondectance 20.1 3.0 40.0 50.5 40.140 6.30 25 Eicosane 21.7 5.0 ug/l 40.0 54.2 40-140 7.87 25 Docosane 23.3 5.0 ug/l 40.0 58.2 40-140 6.89 25 Tetracosane 24.1 5.0 ug/l 40.0 60.2 40-140 6.98 25 Hexacosane 24.3 5.0 ug/l 40.0 60.8 40-140 6.98 25 Octacosane 23.7 5.0 ug/l 40.0 59.3 40-140 6.98 25 Triacontane 22.8 5.0 ug/l 40.0 57.0 40-140 6.89 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C11-C22 464 0.0 ug/l 680 68.3 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25	Nonadecane	20.1		5.0	ug/l	40.0		50.3	40-140	8 56	25
Docosane 23.3 5.0 ug/l 40.0 58.2 40-140 6.69 25 Tetracosane 24.1 5.0 ug/l 40.0 60.2 40-140 7.05 25 Hexacosane 24.1 5.0 ug/l 40.0 60.2 40-140 7.05 25 Hexacosane 24.3 5.0 ug/l 40.0 60.8 40-140 6.98 25 Octacosane 23.7 5.0 ug/l 40.0 59.3 40-140 6.98 25 Triacontane 22.8 5.0 ug/l 40.0 57.0 40-140 6.89 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C9-C18 99.7 0.0 ug/l 240 41.5 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 122 40-140 55 <td>Ficosane</td> <td>20.1</td> <td></td> <td>5.0</td> <td>ug/l</td> <td>40.0</td> <td></td> <td>54.2</td> <td>40-140</td> <td>7.87</td> <td>25</td>	Ficosane	20.1		5.0	ug/l	40.0		54.2	40-140	7.87	25
Tetracosane 24.1 5.0 ug/l 40.0 60.2 40-140 7.05 25 Hexacosane 24.3 5.0 ug/l 40.0 60.8 40-140 6.98 25 Octacosane 23.7 5.0 ug/l 40.0 59.3 40-140 6.98 25 Triacontane 22.8 5.0 ug/l 40.0 57.0 40-140 6.89 25 Hexatriacontane 18.1 5.0 ug/l 40.0 57.0 40-140 6.89 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C1-C19-C38 99.7 0.0 ug/l 240 41.5 40-140 2.31 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25 Surrogate: Chloroobiphenyl 152 ug/l 125 122 40-140 50.0 50.0 84.5 40-140 50.0 50.0 50.0 50.0 50.0 50.0 50.0 <td>Docosane</td> <td>23.3</td> <td></td> <td>5.0</td> <td>ug/l</td> <td>40.0</td> <td></td> <td>58.2</td> <td>40-140</td> <td>6.89</td> <td>25</td>	Docosane	23.3		5.0	ug/l	40.0		58.2	40-140	6.89	25
Hexacosane 24.3 5.0 ug/l 40.0 60.8 40-140 6.98 25 Octacosane 23.7 5.0 ug/l 40.0 59.3 40-140 6.98 25 Triacontane 22.8 5.0 ug/l 40.0 57.0 40-140 6.89 25 Hexatriacontane 18.1 5.0 ug/l 40.0 57.0 40-140 6.89 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C9-C18 99.7 0.0 ug/l 240 41.5 40-140 2.31 25 Surrogate: Chlorooctadecane 139 ug/l 680 68.3 40-140 7.54 25 Surrogate: c-Terphenyl 152 ug/l 125 111 40-140 40-1	Tetracosane	24.1		5.0	ug/l	40.0		60.2	40-140	7.05	25
Octacosane 23.7 5.0 ug/l 40.0 59.3 40-140 6.98 25 Triacontane 22.8 5.0 ug/l 40.0 57.0 40-140 6.89 25 Hexatriacontane 18.1 5.0 ug/l 40.0 45.2 40-140 11.0 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C9-C18 99.7 0.0 ug/l 240 41.5 40-140 2.31 25 EPH_LCS_Aromatic_C11-C22 464 0.0 ug/l 680 68.3 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25 Surrogate: C-Fluorobiphenyl 152 ug/l 125 122 40-140 <td>Hexacosane</td> <td>24.3</td> <td></td> <td>5.0</td> <td>ug/l</td> <td>40.0</td> <td></td> <td>60.8</td> <td>40-140</td> <td>6.98</td> <td>25</td>	Hexacosane	24.3		5.0	ug/l	40.0		60.8	40-140	6.98	25
Triacontane 22.8 5.0 ug/l 40.0 57.0 40-140 6.89 25 Hexatriacontane 18.1 5.0 ug/l 40.0 45.2 40-140 11.0 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C9-C18 99.7 0.0 ug/l 240 41.5 40-140 2.31 25 EPH_LCS_Aromatic_C11-C22 464 0.0 ug/l 680 68.3 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25 Surrogate: Chloroobiphenyl 152 ug/l 50.0 84.5 40-140 40.140 40.140 Surrogate: 2-Fluorobiphenyl 42.7 ug/l 50.0 85.4 40-140 40.140 40.140	Octacosane	23.7		5.0	ug/l	40.0		59.3	40-140	6.98	25
Hexatriacontane 18.1 5.0 ug/l 40.0 45.2 40-140 11.0 25 EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C9-C18 99.7 0.0 ug/l 240 41.5 40-140 2.31 25 EPH_LCS_Aromatic_C11-C22 464 0.0 ug/l 680 68.3 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25 Surrogate: o-Terphenyl 152 ug/l 125 122 40-140 7.54 25 Surrogate: 2-Fluorobiphenyl 152 ug/l 50.0 84.5 40-140 40-140 40-140 Surrogate: 2-Bromonaphthalene 42.7 ug/l 50.0 85.4 40-140 40-140 40-140	Triacontane	22.8		5.0	ug/l	40.0		57.0	40-140	6.89	25
EPH_LCS_Aliphatic_C19-C36 178 0.0 ug/l 320 55.7 40-140 7.65 25 EPH_LCS_Aliphatic_C9-C18 99.7 0.0 ug/l 240 41.5 40-140 2.31 25 EPH_LCS_Aromatic_C11-C22 464 0.0 ug/l 680 68.3 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25 Surrogate: o-Terphenyl 152 ug/l 125 122 40-140 7.54 25 Surrogate: 2-Fluorobiphenyl 152 ug/l 50.0 84.5 40-140 40-140 40-140 Surrogate: 2-Bromonaphthalene 42.7 ug/l 50.0 85.4 40-140 40-140	Hexatriacontane	18.1		5.0	ug/l	40.0		45.2	40-140	11.0	25
EPH_LCS_Aliphatic_C9-C18 99.7 0.0 ug/l 240 41.5 40-140 2.31 25 EPH_LCS_Aromatic_C11-C22 464 0.0 ug/l 680 68.3 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 - - - Surrogate: o-Terphenyl 152 ug/l 125 122 40-140 -	EPH_LCS_Aliphatic_C19-C36	178		0.0	ug/l	320		55.7	40-140	7.65	25
EPH_LCS_Aromatic_C11-C22 464 0.0 ug/l 680 68.3 40-140 7.54 25 Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 7.54 25 Surrogate: o-Terphenyl 152 ug/l 125 122 40-140 7.54 25 Surrogate: 2-Fluorobiphenyl 42.2 ug/l 50.0 84.5 40-140 7.54 25 Surrogate: 2-Bromonaphthalene 42.7 ug/l 50.0 85.4 40-140 7.54 25	EPH_LCS_Aliphatic_C9-C18	99.7		0.0	ug/l	240		41.5	40-140	2.31	25
Surrogate: Chlorooctadecane 139 ug/l 125 111 40-140 Surrogate: o-Terphenyl 152 ug/l 125 122 40-140 Surrogate: 2-Fluorobiphenyl 42.2 ug/l 50.0 84.5 40-140 Surrogate: 2-Bromonaphthalene 42.7 ug/l 50.0 85.4 40-140	EPH_LCS_Aromatic_C11-C22	464		0.0	ug/l	680		68.3	40-140	7.54	25
Surrogate: o-Terphenyl 152 ug/l 125 122 40-140 Surrogate: 2-Fluorobiphenyl 42.2 ug/l 50.0 84.5 40-140 Surrogate: 2-Bromonaphthalene 42.7 ug/l 50.0 85.4 40-140	Surrogate: Chlorooctadecane			139	ug/l	125		111	40-140		
Surrogate: 2-Fluorobiphenyl 42.2 ug/l 50.0 84.5 40-140 Surrogate: 2-Bromonaphthalene 42.7 ug/l 50.0 85.4 40-140	Surrogate: o-Terphenyl			152	ug/l	125		122	40-140		
Surrogate: 2-Bromonaphthalene 42.7 ug/l 50.0 85.4 40-140	Surrogate: 2-Fluorobiphenyl			42.2	ug/l	50.0		84.5	40-140		
	Surrogate: 2-Bromonaphthalene			42.7	ug/l	50.0		85.4	40-140		

			Quality (Conti	Control nued)						
Extractable Petroleum Hydrod	carbons (MADEP	-EPH)	(Continue	d)						
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0698 - 1_Semivola	atiles Extraction	5								
Blank (B3L0698-BLK1)				Pr	epared: 12/1	5/23 Analyze	d: 12/20/23			
Unadjusted C11-C22 Aromatic	ND		6.67	mg/kg						
Hydrocarbons										
Naphthalene	ND		0.33	mg/kg						
2-Methylnaphthalene	ND		0.33	mg/kg						
Phenanthrene	ND		0.33	mg/kg						
Acenaphthene	ND		0.33	mg/kg						
Acenaphthylene	ND		0.33	mg/kg						
Fluorene	ND		0.33	mg/kg						
Anthracene	ND		0.33	mg/kg						
Fluoranthene	ND		0.33	mg/kg						
Pyrene	ND		0.33	mg/kg						
Benzo(a)anthracene	ND		0.33	mg/kg						
Chrysene	ND		0.33	mg/kg						
Benzo(b)fluoranthene	ND		0.33	mg/kg						
Benzo(k)fluoranthene	ND		0.33	mg/kg						
Benzo(a)pyrene	ND		0.33	mg/kg						
Indeno(1,2,3-cd)pyrene	ND		0.33	mg/kg						
Dibenz(a,h)anthracene	ND		0.33	mg/kg						
Benzo(g,h,i)perylene	ND		0.33	mg/kg						
C9-C18 Aliphatic Hydrocarbons	ND		13.3	mg/kg						
C19-C36 Aliphatic Hydrocarbons	ND		13.3	mg/kg						
C11-C22 Aromatic Hydrocarbons	ND		6.67	mg/kg						
Surragete: Chlorooctedecene			3 43	ma/ka	g 33		<u>41</u> 2	 		
Surrogate: c-Ternhenv/			2.75 4.37	ma/ka	8 33		51.0	40-140		
Surrogate: 0-Terphenyl			7.J2 2.72	ma/ka	2 22		117	40-140 40-140		
Surrogate: 2-Bromonaphthalene			3.73	mg/kg	3.33		112	40-140 40-140		
				Dr	onarod: 12/1	5/23 Analyza	d. 12/20/23			
Nanhthalene	1 77		0.33	ma/ka	2 67	J/2J Andry2C	u. 12/20/23	40-140		
	1.77		0.33	ma/ka	2.07		60.3	40-140		
2-Meurymaphunalene	1.01		0.33	mg/kg	2.07		50.5 E9.0	40-140		
Aconomitione	1.55		0.33	mg/kg	2.07		50.0	40-140		
Acenaphthelene	1.59		0.33	mg/kg	2.07		59.0	40-140		
Acenaphilitylene	1.55		0.33	mg/kg	2.07		57.5	40-140		
Anthrasens	1.58		0.33	mg/kg	2.07		59.1	40-140		
Anthracene	1.//		0.33	mg/kg	2.67		66.3	40-140		
Fluoranthene	1.56		0.33	mg/kg	2.67		58.4	40-140		
Pyrene	1.72		0.33	mg/kg	2.67		64.4	40-140		
Benzo(a)anthracene	1.68		0.33	mg/kg	2.67		62.8	40-140		
Chrysene	1.91		0.33	mg/kg	2.67		/1./	40-140		
Benzo(b)fluoranthene	1.70		0.33	mg/kg	2.67		63.6	40-140		
Benzo(k)fluoranthene	1.83		0.33	mg/кg	2.67		68.8	40-140		
Benzo(a)pyrene	1.69		0.33	mg/kg	2.67		63.5	40-140		
Indeno(1,2,3-cd)pyrene	1.61		0.33	mg/kg	2.67		60.6	40-140		
Dibenz(a,h)anthracene	1.77		0.33	mg/kg	2.67		66.4	40-140		
Benzo(g,h,i)perylene	1.84		0.33	mg/kg	2.67		69.0	40-140		
EPH_LCS_Aliphatic_C19-C36	10.1		0.00	mg/kg	21.3		47.2	40-140		
EPH_LCS_Aliphatic_C9-C18	6.45		0.00	mg/kg	16.0		40.3	40-140		
EPH_LCS_Aromatic_C11-C22	28.7		0.00	mg/kg	45.3		63.3	40-140		
Nonane	0.84		0.33	mg/kg	2.67		31.5	30-140		
Decane	1.08		0.33	mg/kg	2.67		40.6	40-140		
Dodecane	1.11		0.33	mg/kg	2.67		41.5	40-140		
Tetradecane	1.11		0.33	mg/kg	2.67		41.7	40-140		
Hexadecane	1.09		0.33	mg/kg	2.67		40.9	40-140		
Octadecane	1.15		0.33	mg/kg	2.67		43.2	40-140		
Nonadecane	1.19		0.33	mg/kg	2.67		44.7	40-140		
Eicosane	1.21		0.33	mg/kg	2.67		45.5	40-140		
Docosane	1.24		0.33	mg/kg	2.67		46.7	40-140		
Tetracosane	1.28		0.33	mg/kg	2.67		47.9	40-140	Page	29 of 3

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3L0698 - 1_Semivolatiles	Extractio	ons (Con	ntinued)							
LCS (B3L0698-BS1)		-	-	Pr	epared: 12/1	5/23 Analyze	d: 12/20/23			
Hexacosane	1.30		0.33	mg/kg	2.67		48.6	40-140		
Octacosane	1.28		0.33	mg/kg	2.67		48.0	40-140		
Triacontane	1.27		0.33	mg/kg	2.67		47.6	40-140		
Hexatriacontane	1.30		0.33	mg/kg	2.67		48.7	40-140		
Surrogate: Chlorooctadecane			3.86	mg/kg	8.33		46.3	40-140		
Surrogate: o-Terphenyl			5.04	mg/kg	8.33		60.4	40-140		
Surrogate: 2-Fluorobiphenyl			3.36	mg/kg	3.33		101	40-140		
Surrogate: 2-Bromonaphthalene			3.38	mg/kg	3.33		101	40-140		
LCS Dup (B3L0698-BSD1)				Pr	epared: 12/1	5/23 Analvze	d: 12/20/23			
Naphthalene	1.79		0.33	mg/kg	2.67	-,,	67.2	40-140	1.16	25
2-Methylnaphthalene	1.39		0.33	mg/kg	2.67		52.0	40-140	14.7	25
Phenanthrene	1.37		0.33	mg/kg	2.67		51.2	40-140	12.5	25
Acenaphthene	1.66		0.33	mg/kg	2.67		62.3	40-140	4.09	25
Acenaphthylene	1.53		0.33	mg/kg	2.67		57.4	40-140	0.305	25
Fluorene	1.57		0.33	mg/kg	2.67		58.7	40-140	0.679	25
Anthracene	1.59		0.33	mg/kg	2.67		59.5	40-140	10.8	25
Fluoranthene	1.51		0.33	mg/kg	2.67		56.4	40-140	3.40	25
Pvrene	1.57		0.33	mg/kg	2.67		58.8	40-140	9.01	25
Benzo(a)anthracene	1.50		0.33	mg/kg	2.67		56.2	40-140	11.1	25
Chrysene	1.73		0.33	mg/kg	2.67		64.9	40-140	9.92	25
Benzo(b)fluoranthene	1.44		0.33	mg/kg	2.67		53.9	40-140	16.6	25
Benzo(k)fluoranthene	1.84		0.33	mg/kg	2.67		69.1	40-140	0.507	25
Benzo(a)pyrene	1.68		0.33	mg/kg	2.67		63.1	40-140	0.632	25
Indeno(1,2,3-cd)pyrene	1.59		0.33	mg/kg	2.67		59.8	40-140	1.25	25
Dibenz(a,h)anthracene	1.75		0.33	mg/kg	2.67		65.7	40-140	1.06	25
Benzo(a,h,i)pervlene	1.69		0.33	mg/kg	2.67		63.3	40-140	8.69	25
EPH LCS Aliphatic C19-C36	9.33		0.00	mg/kg	21.3		43.7	40-140	7.67	25
EPH LCS Aliphatic C9-C18	6.41		0.00	mg/kg	16.0		40.1	40-140	0.643	25
EPH LCS Aromatic C11-C22	27.2		0.00	mg/kg	45.3		60.0	40-140	5.41	25
Nonane	0.84		0.33	mg/kg	2.67		31.6	30-140	0.317	25
Decane	1.11		0.33	mg/kg	2.67		41.6	40-140	2.55	25
Dodecane	1.12		0.33	mg/kg	2.67		41.8	40-140	0.840	25
Tetradecane	1.09		0.33	ma/ka	2.67		41.0	40-140	1.93	25
Hexadecane	1.12		0.33	ma/ka	2.67		42.1	40-140	3.07	25
Octadecane	1 13		0.33	ma/ka	2.67		42.2	40-140	2 40	25
Nonadecane	1.08		0.33	ma/ka	2.67		40.5	40-140	9.92	25
Ficosane	1.10		0.33	ma/ka	2.67		41.4	40-140	9.50	25
Docosane	1.15		0.33	ma/ka	2.67		43.2	40-140	7.85	25
Tetracosane	1.19		0.33	mg/kg	2.67		44.7	40-140	6.92	25
Hexacosane	1.21		0.33	mg/kg	2.67		45.5	40-140	6.59	25
Octacosane	1.20		0.33	mg/kg	2.67		45.1	40-140	6.12	25
Triacontane	1.20		0.33	mg/kg	2.67		44.8	40-140	5.90	25
Hexatriacontane	1.19		0.33	mg/kg	2.67		44.6	40-140	8.84	25
Currageta, Chlaragetadageta			2 40	malka			A1 0	10 1 10		
Surrogate: ChiorooctadeCane			3.48 2.42	mg/kg	8.33 0 77		41.8	40-140		
Surrogate: 2 Elucrohinhami			3.43 2.55	mg/kg	0.JJ 2 77		41.2 76 4	40-140		
Surrogata: 2-Fluorodiphenyi			2.55	mg/kg	3.33 2 22		/0.4 76 2	40-140		
วนทบyate. 2-อเบทบกลุ่มที่มีกล่าย 			2.34	ing/ing	3.33		/0.3	4 0-140		
Item	Definition									
------	---									
Wet	Sample results reported on a wet weight basis.									
ND	Analyte NOT DETECTED at or above the reporting limit.									

New England Testing Laboratory

59 Greenhill Street West Warwick, RI 02893

1-888-863-8522

Chain of Custody Record

Project No.	Project Na	me/	Loca	ation:										Te	ests	**		
Client: Lic	HTSHN E	A.C.I.	JEE	RINGLLC	N	<i>l</i> latri	x		a	NTX N								
Report To:	Kern P.	ARA I	DISC	e					vativ	222		2						
Invoice To:	LIGNTSHIP KEUIN P	' Ем , а.г.а.	6120 215	EENG, LLC				No. of	lesen	Activ	હિ	de la	-					
Date	Time	Comp	Grab	Sample I.D.	Aqueous	Soil	Other	Containers	Ā	IPH CF	npc (Est	(PH ~]	6.001					
12/11/2003	0900		X	10-501	X			8	Her	X	X	X	X					
12/11/2023	0915		X	LE-SEDI		X		4	MEOH	${\color{black}{\succ}}$	X	X						
		<u> </u>												L				
						_		<u> </u>										
											<u> </u>			<u> </u>				
				· · · · · · · · · · · · · · · · · · ·										<u> </u>				
					_													
						-												
	L	Diata (T.I												
Sampled By:			emir	Received By:	171	Ime	Lab	oratory Remar	'KS:	Spe	cial I	nstru	ction	IS:				
KRl	· •	1270	1/2023 D	Mum	2/14 123	123 C3												
Relinquished	By:	Date/	Time	Received By:	Date/	Time												
folge	7	12/14 16	1/23 CC	ZIR	12/	14	Ten	np. Received:	2									
**Netlab Subd	contracts the	e folic	owing	g tests: Radiologicals, Radon, T	°OC, A	sbe	stos	, UCMRs, Per	chlorate,									
Bromate, Bron	nide, Sieve	, Salı	mone	ella, Carbamates						Turn	arou	nd T	ime	Busi	iness	Day	s]: 5	Days

MassDEP Analytical Protocol Certification Form									
Labo	Laboratory Name: New England Testing Laboratory, Inc. Project #: 1075.1.2								
Proje	Project Location: Wareham, MA RTN:								
This 3	Form pro L14040	ovides certificatio	ons for the followin	g data set: list Lab	ooratory Sample ID N	lumber(s):			
Matrio	ces: 🗵 G	roundwater/Surfa	ce Water 🗵 Soil/Se	ediment 🛛 Drinking	g Water 🛛 Air 🗆 Oth	ner:			
CAM	Protoco	ol (check all that a	apply below):						
8260 CAM	VOC II A ⊠	7470/7471 Hg CAM III B □	MassDEP VPH (GC/PID/FID) CAM IV A ⊠	8082 PCB CAM V A □	9014 Total Cyanide/PAC CAM VI A □	6860 Perchlorate CAM VIII B □			
8270 CAM	SVOC II B □	7010 Metals CAM III C □	MassDEP VPH (GC/MS) CAM IV C □	8081 Pesticides CAM V B □	7196 Hex Cr CAM VI B □	MassDEP APH CAM IX A			
6010 CAM	Metals Ⅲ A □	6020 Metals CAM III D □ □	MassDEP EPH CAM IV B ⊠	8151 Herbicides CAM V C □	8330 Explosives CAM VIII A □	TO-15 VOC CAM IX B □			
A	Affirmativ	ve Responses to	Questions A throug	gh F are required f	for "Presumptive Ce	rtainty" status			
А	Were all Custody, prepared	samples received properly preserv /analyzed within me	in a condition consis ved (including temp ethod holding times?	stent with those des erature) in the fie	cribed on the Chain-of ld or laboratory, and	d ⊠Yes □No			
В	Were the CAM pro	e analytical method tocol(s) followed?	l(s) and all associated	d QC requirements s	pecified in the selected	d ⊠ Yes □ No			
с	Were all CAM pro	required corrective tocol(s) implemente	e actions and analytica ed for all identified perf	al response actions s ormance standard no	specified in the selected n-conformances?	d ⊠ Yes □ No			
D	Does the "Quality Analytica	e laboratory report Assurance and C Il Data"?	comply with all the re quality Control Guide	porting requirements lines for the Acquis	specified in CAM VII A ition and Reporting o	, f ⊠ Yes □ No			
Е	VPH, EP a. VPH, modificat b. APH a	H, APH, and TO-15 EPH, and APH I ion(s)? (Refer to the ind TO-15 Methods	only Methods only: Was e individual method(s) only: Was the complet	each method condu for a list of significant te analyte list reported	icted without significan modifications). I for each method?	t ⊠ Yes □ No □ Yes □ No			
F	Were all and eval	applicable CAM pruated in a laborator	otocol QC and perform y narrative (including a	mance standard non- Ill "No" responses to C	conformances identified Questions A through E)?	d ⊠ Yes □ No			
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	atus			
G	Were the protocol(e reporting limits at o s)?	or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No¹			
<u>Da</u> re	ata User No presentati	<u>ote</u> : Data that achiev veness requirements	ve "Presumptive Certain s described in 310 CMR	nty" status may not ne 2 40. 1056 (2)(k) and WS	cessarily meet the data u SC-07-350.	isability and			
Н	Were all	QC performance st	andards specified in th	ne CAM protocol(s) ac	chieved?	⊠ Yes □ No ¹			
I	Were res	sults reported for the	e complete analyte list	specified in the select	ted CAM protocol(s)?	□ Yes ⊠ No ¹			
¹ All r	negative r	esponses must be	addressed in an attac	ched laboratory narra	ative.				
l, the respoi and be	undersign nsible for o elief, is acc	ed, attest under the obtaining the inform of the observed set of the o	e pains and penalties ation, the material con	s of perjury that, bas tained in this analytic	sed upon my personal al report is, to the best	inquiry of those of my knowledge			
Sign	ature: 🖗	AOW -		Positio	Dn: Laboratory Director				
Print	ted Name	: Richard Warila		— Date: <u>1</u> 2	2/21/2023				

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 4A15038 Client Project: 1075 - Wareham

Report Date: 22-January-2024

Prepared for:

Kevin Paradise Lightship Engineering 6 Resnik Raod, Suite 207 Plymouth, MA 02360

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted :

The samples listed below were submitted to New England Testing Laboratory on 01/15/24. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 4A15038. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
4A15038-01	LE-TMW1	Water	01/12/2024	01/15/2024
4A15038-02	LE-TMW2	Water	01/12/2024	01/15/2024
4A15038-03	LE-TMW3	Water	01/12/2024	01/15/2024
4A15038-04	LE-TMW4	Water	01/12/2024	01/15/2024

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

LE-TMW1 (Lab Number	r: 4A15038-01)
---------------------	------------------------

	<u>Method</u>
Volatile Organic Compounds	EPA 8260C
LE-TMW2 (Lab Number: 4A15038-02)	
	<u>Method</u>
Volatile Organic Compounds	EPA 8260C
LE-TMW3 (Lab Number: 4A15038-03)	
	<u>Method</u>
Volatile Organic Compounds	EPA 8260C
LE-TMW4 (Lab Number: 4A15038-04)	
	<u>Method</u>
Volatile Organic Compounds	EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Sample: LE-TMW1

Lab Number: 4A15038-01 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	100	ua/l	01/17/24	01/17/24
Benzene	ND	1	ug/l	01/17/24	01/17/24
Bromobenzene	ND	1	ug/l	01/17/24	01/17/24
Bromochloromethane	ND	1	ug/l	01/17/24	01/17/24
Bromodichloromethane	ND	1	ug/l	01/17/24	01/17/24
Bromoform	ND	1	ug/l	01/17/24	01/17/24
Bromomethane	ND	1	ug/l	01/17/24	01/17/24
2-Butanone	ND	100	ug/l	01/17/24	01/17/24
tert-Butyl alcohol	ND	5	ug/l	01/17/24	01/17/24
sec-Butylbenzene	ND	1	ug/l	01/17/24	01/17/24
n-Butylbenzene	ND	1	ug/l	01/17/24	01/17/24
tert-Butylbenzene	ND	1	ug/l	01/17/24	01/17/24
Methyl t-butyl ether (MTBE)	ND	1	ug/l	01/17/24	01/17/24
Carbon Disulfide	ND	1	ug/l	01/17/24	01/17/24
Carbon Tetrachloride	ND	1	ug/l	01/17/24	01/17/24
Chlorobenzene	ND	1	ug/l	01/17/24	01/17/24
Chloroethane	ND	1	ug/l	01/17/24	01/17/24
Chloroform	ND	1	ug/l	01/17/24	01/17/24
Chloromethane	ND	1	ug/l	01/17/24	01/17/24
4-Chlorotoluene	ND	1	ug/l	01/17/24	01/17/24
2-Chlorotoluene	ND	1	ug/l	01/17/24	01/17/24
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	01/17/24	01/17/24
Dibromochloromethane	ND	1	ug/l	01/17/24	01/17/24
1,2-Dibromoethane (EDB)	ND	1	ug/l	01/17/24	01/17/24
Dibromomethane	ND	1	ug/l	01/17/24	01/17/24
1,2-Dichlorobenzene	ND	1	ug/l	01/17/24	01/17/24
1,3-Dichlorobenzene	ND	1	ug/l	01/17/24	01/17/24
1,4-Dichlorobenzene	ND	1	ug/l	01/17/24	01/17/24
1,1-Dichloroethane	ND	1	ug/l	01/17/24	01/17/24
1,2-Dichloroethane	ND	1	ug/l	01/17/24	01/17/24
1,2 Dichloroethene, Total	ND	1	ug/l	01/17/24	01/17/24
trans-1,2-Dichloroethene	ND	1	ug/l	01/17/24	01/17/24
cis-1,2-Dichloroethene	ND	1	ug/l	01/17/24	01/17/24
1,1-Dichloroethene	ND	1	ug/l	01/17/24	01/17/24
1,2-Dichloropropane	ND	1	ug/l	01/17/24	01/17/24
2,2-Dichloropropane	ND	1	ug/l	01/17/24	01/17/24
cis-1,3-Dichloropropene	ND	1	ug/l	01/17/24	01/17/24
trans-1,3-Dichloropropene	ND	1	ug/l	01/17/24	01/17/24
1,1-Dichloropropene	ND	1	ug/l	01/17/24	01/17/24
1,3-Dichloropropene (cis + trans)	ND	2	ug/l	01/17/24	01/17/24
Diethyl ether	ND	5	ug/l	01/17/24	01/17/24
1,4-Dioxane	ND	100	ug/l	01/17/24	01/17/24
Ethylbenzene	ND	1	ug/l	01/17/24	01/17/24
Hexachlorobutadiene	ND	1	ug/l	01/17/24	01/17/24
2-Hexanone	ND	100	ug/l	01/17/24	01/17/24
Isopropylbenzene	ND	1	ug/l	01/17/24	01/17/24
p-Isopropyltoluene	ND	1	ug/l	01/17/24	^{01/1} Page 5 of 20
					1 490 0 01 20

Sample: LE-TMW1 (Continued)

Lab Number: 4A15038-01 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Methylene Chloride	ND		1	ug/l	01/17/24	01/17/24
4-Methyl-2-pentanone	ND		100	ug/l	01/17/24	01/17/24
Naphthalene	ND		1	ug/l	01/17/24	01/17/24
n-Propylbenzene	ND		1	ug/l	01/17/24	01/17/24
Styrene	ND		1	ug/l	01/17/24	01/17/24
1,1,1,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24
Tetrachloroethene	ND		1	ug/l	01/17/24	01/17/24
Tetrahydrofuran	ND		5	ug/l	01/17/24	01/17/24
Toluene	ND		1	ug/l	01/17/24	01/17/24
1,2,4-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,2,3-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,1,2-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24
1,1,1-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24
Trichloroethene	ND		1	ug/l	01/17/24	01/17/24
1,2,3-Trichloropropane	ND		1	ug/l	01/17/24	01/17/24
1,3,5-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24
1,2,4-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24
Vinyl Chloride	ND		1	ug/l	01/17/24	01/17/24
o-Xylene	ND		1	ug/l	01/17/24	01/17/24
m&p-Xylene	ND		2	ug/l	01/17/24	01/17/24
Total xylenes	ND		1	ug/l	01/17/24	01/17/24
1,1,2,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24
tert-Amyl methyl ether	ND		1	ug/l	01/17/24	01/17/24
1,3-Dichloropropane	ND		1	ug/l	01/17/24	01/17/24
Ethyl tert-butyl ether	ND		1	ug/l	01/17/24	01/17/24
Diisopropyl ether	ND		1	ug/l	01/17/24	01/17/24
Trichlorofluoromethane	ND		1	ug/l	01/17/24	01/17/24
Dichlorodifluoromethane	ND		1	ug/l	01/17/24	01/17/24
Surrogate(s)	Recovery%		Limits	5		
4-Bromofluorobenzene	96.1%		70-130	0	01/17/24	01/17/24
1,2-Dichloroethane-d4	104%		70-130	0	01/17/24	01/17/24
Toluene-d8	99.4%		70-130	0	01/17/24	01/17/24

Sample: LE-TMW2

Lab Number: 4A15038-02 (Water)

		Rep	orting		
Analyte	Result	Qual L	imit Units	Date Prepared	Date Analyzed
Acetone	ND	1	.00 ua/l	01/17/24	01/17/24
Benzene	ND		1 ug/l	01/17/24	01/17/24
Bromobenzene	ND		1 ug/l	01/17/24	01/17/24
Bromochloromethane	ND		1 ug/l	01/17/24	01/17/24
Bromodichloromethane	ND		1 ug/l	01/17/24	01/17/24
Bromoform	ND		1 ug/l	01/17/24	01/17/24
Bromomethane	ND		1 ug/l	01/17/24	01/17/24
2-Butanone	ND	1	.00 ug/l	01/17/24	01/17/24
tert-Butyl alcohol	ND		5 ug/l	01/17/24	01/17/24
sec-Butylbenzene	ND		1 ug/l	01/17/24	01/17/24
n-Butylbenzene	ND		1 ug/l	01/17/24	01/17/24
tert-Butylbenzene	ND		1 ug/l	01/17/24	01/17/24
Methyl t-butyl ether (MTBE)	ND		1 ug/l	01/17/24	01/17/24
Carbon Disulfide	ND		1 ug/l	01/17/24	01/17/24
Carbon Tetrachloride	ND		1 ug/l	01/17/24	01/17/24
Chlorobenzene	ND		1 ug/l	01/17/24	01/17/24
Chloroethane	ND		1 ug/l	01/17/24	01/17/24
Chloroform	ND		1 ug/l	01/17/24	01/17/24
Chloromethane	ND		1 ug/l	01/17/24	01/17/24
4-Chlorotoluene	ND		1 ug/l	01/17/24	01/17/24
2-Chlorotoluene	ND		1 ug/l	01/17/24	01/17/24
1,2-Dibromo-3-chloropropane (DBCP)	ND		1 ug/l	01/17/24	01/17/24
Dibromochloromethane	ND		1 ug/l	01/17/24	01/17/24
1,2-Dibromoethane (EDB)	ND		1 ug/l	01/17/24	01/17/24
Dibromomethane	ND		1 ug/l	01/17/24	01/17/24
1,2-Dichlorobenzene	ND		1 ug/l	01/17/24	01/17/24
1,3-Dichlorobenzene	ND		1 ug/l	01/17/24	01/17/24
1,4-Dichlorobenzene	ND		1 ug/l	01/17/24	01/17/24
1,1-Dichloroethane	ND		1 ug/l	01/17/24	01/17/24
1,2-Dichloroethane	ND		1 ug/l	01/17/24	01/17/24
1,2 Dichloroethene, Total	ND		1 ug/l	01/17/24	01/17/24
trans-1,2-Dichloroethene	ND		1 ug/l	01/17/24	01/17/24
cis-1,2-Dichloroethene	ND		1 ug/l	01/17/24	01/17/24
1,1-Dichloroethene	ND		1 ug/l	01/17/24	01/17/24
1,2-Dichloropropane	ND		1 ug/l	01/17/24	01/17/24
2,2-Dichloropropane	ND		1 uq/l	01/17/24	01/17/24
cis-1,3-Dichloropropene	ND		1 ug/l	01/17/24	01/17/24
trans-1,3-Dichloropropene	ND		1 ug/l	01/17/24	01/17/24
1,1-Dichloropropene	ND		1 ug/l	01/17/24	01/17/24
1,3-Dichloropropene (cis + trans)	ND		2 ug/l	01/17/24	01/17/24
Diethyl ether	ND		5 ug/l	01/17/24	01/17/24
1,4-Dioxane	ND	1	.00 ug/l	01/17/24	01/17/24
Ethylbenzene	ND		1 uq/l	01/17/24	01/17/24
Hexachlorobutadiene	ND		1 uq/l	01/17/24	01/17/24
2-Hexanone	ND	1	.00 ug/l	01/17/24	01/17/24
Isopropylbenzene	ND		1 ug/l	01/17/24	01/17/24
p-Isopropyltoluene	ND		1 ug/l	01/17/24	
			5.		Fage / 0120

Sample: LE-TMW2 (Continued)

Lab Number: 4A15038-02 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Methylene Chloride	ND		1	ug/l	01/17/24	01/17/24
4-Methyl-2-pentanone	ND		100	ug/l	01/17/24	01/17/24
Naphthalene	ND		1	ug/l	01/17/24	01/17/24
n-Propylbenzene	ND		1	ug/l	01/17/24	01/17/24
Styrene	ND		1	ug/l	01/17/24	01/17/24
1,1,1,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24
Tetrachloroethene	ND		1	ug/l	01/17/24	01/17/24
Tetrahydrofuran	6		5	ug/l	01/17/24	01/17/24
Toluene	ND		1	ug/l	01/17/24	01/17/24
1,2,4-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,2,3-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,1,2-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24
1,1,1-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24
Trichloroethene	ND		1	ug/l	01/17/24	01/17/24
1,2,3-Trichloropropane	ND		1	ug/l	01/17/24	01/17/24
1,3,5-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24
1,2,4-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24
Vinyl Chloride	ND		1	ug/l	01/17/24	01/17/24
o-Xylene	ND		1	ug/l	01/17/24	01/17/24
m&p-Xylene	ND		2	ug/l	01/17/24	01/17/24
Total xylenes	ND		1	ug/l	01/17/24	01/17/24
1,1,2,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24
tert-Amyl methyl ether	ND		1	ug/l	01/17/24	01/17/24
1,3-Dichloropropane	ND		1	ug/l	01/17/24	01/17/24
Ethyl tert-butyl ether	ND		1	ug/l	01/17/24	01/17/24
Diisopropyl ether	ND		1	ug/l	01/17/24	01/17/24
Trichlorofluoromethane	ND		1	ug/l	01/17/24	01/17/24
Dichlorodifluoromethane	ND		1	ug/l	01/17/24	01/17/24
Surrogate(s)	Recovery%		Limit	S		
4-Bromofluorobenzene	98.1%		70-13	80	01/17/24	01/17/24
1,2-Dichloroethane-d4	104%		70-13	80	01/17/24	01/17/24
Toluene-d8	100%		70-13	80	01/17/24	01/17/24

Sample: LE-TMW3

Lab Number: 4A15038-03 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		100	ug/l	01/17/24	01/17/24
Benzene	ND		1	ug/l	01/17/24	01/17/24
Bromobenzene	ND		1	ug/l	01/17/24	01/17/24
Bromochloromethane	ND		1	ug/l	01/17/24	01/17/24
Bromodichloromethane	ND		1	ug/l	01/17/24	01/17/24
Bromoform	ND		1	ug/l	01/17/24	01/17/24
Bromomethane	ND		1	ug/l	01/17/24	01/17/24
2-Butanone	ND		100	ug/l	01/17/24	01/17/24
tert-Butyl alcohol	ND		5	ug/l	01/17/24	01/17/24
sec-Butylbenzene	ND		1	ug/l	01/17/24	01/17/24
n-Butylbenzene	ND		1	ug/l	01/17/24	01/17/24
tert-Butylbenzene	ND		1	ug/l	01/17/24	01/17/24
Methyl t-butyl ether (MTBE)	ND		1	ug/l	01/17/24	01/17/24
Carbon Disulfide	ND		1	ug/l	01/17/24	01/17/24
Carbon Tetrachloride	ND		1	ug/l	01/17/24	01/17/24
Chlorobenzene	ND		1	ug/l	01/17/24	01/17/24
Chloroethane	ND		1	ug/l	01/17/24	01/17/24
Chloroform	ND		1	ug/l	01/17/24	01/17/24
Chloromethane	ND		1	ug/l	01/17/24	01/17/24
4-Chlorotoluene	ND		1	ug/l	01/17/24	01/17/24
2-Chlorotoluene	ND		1	ug/l	01/17/24	01/17/24
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l	01/17/24	01/17/24
Dibromochloromethane	ND		1	ug/l	01/17/24	01/17/24
1,2-Dibromoethane (EDB)	ND		1	ug/l	01/17/24	01/17/24
Dibromomethane	ND		1	ug/l	01/17/24	01/17/24
1,2-Dichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,3-Dichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,4-Dichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,1-Dichloroethane	ND		1	ug/l	01/17/24	01/17/24
1,2-Dichloroethane	ND		1	ug/l	01/17/24	01/17/24
1,2 Dichloroethene, Total	ND		1	ug/l	01/17/24	01/17/24
trans-1,2-Dichloroethene	ND		1	ug/l	01/17/24	01/17/24
cis-1,2-Dichloroethene	ND		1	ug/l	01/17/24	01/17/24
1,1-Dichloroethene	ND		1	ug/l	01/17/24	01/17/24
1,2-Dichloropropane	ND		1	ug/l	01/17/24	01/17/24
2,2-Dichloropropane	ND		1	ug/l	01/17/24	01/17/24
cis-1,3-Dichloropropene	ND		1	ug/l	01/17/24	01/17/24
trans-1,3-Dichloropropene	ND		1	ug/l	01/17/24	01/17/24
1,1-Dichloropropene	ND		1	ug/l	01/17/24	01/17/24
1,3-Dichloropropene (cis + trans)	ND		2	ug/l	01/17/24	01/17/24
Diethyl ether	ND		5	ug/l	01/17/24	01/17/24
1,4-Dioxane	ND		100	ug/l	01/17/24	01/17/24
Ethylbenzene	ND		1	ug/l	01/17/24	01/17/24
Hexachlorobutadiene	ND		1	ug/l	01/17/24	01/17/24
2-Hexanone	ND		100	ug/l	01/17/24	01/17/24
Isopropylbenzene	ND		1	ug/l	01/17/24	01/17/24
p-Isopropyltoluene	ND		1	ug/l	01/17/24	01/1 Page 9 of 20
				-		Fage 3 01 20

Sample: LE-TMW3 (Continued)

Lab Number: 4A15038-03 (Water)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Methylene Chloride	ND		1	ug/l	01/17/24	01/17/24			
4-Methyl-2-pentanone	ND		100	ug/l	01/17/24	01/17/24			
Naphthalene	ND		1	ug/l	01/17/24	01/17/24			
n-Propylbenzene	ND		1	ug/l	01/17/24	01/17/24			
Styrene	ND		1	ug/l	01/17/24	01/17/24			
1,1,1,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24			
Tetrachloroethene	ND		1	ug/l	01/17/24	01/17/24			
Tetrahydrofuran	ND		5	ug/l	01/17/24	01/17/24			
Toluene	ND		1	ug/l	01/17/24	01/17/24			
1,2,4-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24			
1,2,3-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24			
1,1,2-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24			
1,1,1-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24			
Trichloroethene	ND		1	ug/l	01/17/24	01/17/24			
1,2,3-Trichloropropane	ND		1	ug/l	01/17/24	01/17/24			
1,3,5-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24			
1,2,4-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24			
Vinyl Chloride	ND		1	ug/l	01/17/24	01/17/24			
o-Xylene	ND		1	ug/l	01/17/24	01/17/24			
m&p-Xylene	ND		2	ug/l	01/17/24	01/17/24			
Total xylenes	ND		1	ug/l	01/17/24	01/17/24			
1,1,2,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24			
tert-Amyl methyl ether	ND		1	ug/l	01/17/24	01/17/24			
1,3-Dichloropropane	ND		1	ug/l	01/17/24	01/17/24			
Ethyl tert-butyl ether	ND		1	ug/l	01/17/24	01/17/24			
Diisopropyl ether	ND		1	ug/l	01/17/24	01/17/24			
Trichlorofluoromethane	ND		1	ug/l	01/17/24	01/17/24			
Dichlorodifluoromethane	ND		1	ug/l	01/17/24	01/17/24			
Surrogate(s)	Recovery%		Limits	5					
4-Bromofluorobenzene	97.2%		70-130)	01/17/24	01/17/24			
1,2-Dichloroethane-d4	105%		70-130)	01/17/24	01/17/24			
Toluene-d8	99.9%		70-130)	01/17/24	01/17/24			

Sample: LE-TMW4

Lab Number: 4A15038-04 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	100	ug/l	01/17/24	01/17/24
Benzene	ND	1	ug/l	01/17/24	01/17/24
Bromobenzene	ND	1	ug/l	01/17/24	01/17/24
Bromochloromethane	ND	1	ug/l	01/17/24	01/17/24
Bromodichloromethane	ND	1	ug/l	01/17/24	01/17/24
Bromoform	ND	1	ug/l	01/17/24	01/17/24
Bromomethane	ND	1	ug/l	01/17/24	01/17/24
2-Butanone	ND	100	ug/l	01/17/24	01/17/24
tert-Butyl alcohol	ND	5	ug/l	01/17/24	01/17/24
sec-Butylbenzene	ND	1	ug/l	01/17/24	01/17/24
n-Butylbenzene	ND	1	ug/l	01/17/24	01/17/24
tert-Butylbenzene	ND	1	ug/l	01/17/24	01/17/24
Methyl t-butyl ether (MTBE)	ND	1	ug/l	01/17/24	01/17/24
Carbon Disulfide	ND	1	ug/l	01/17/24	01/17/24
Carbon Tetrachloride	ND	1	ug/l	01/17/24	01/17/24
Chlorobenzene	ND	1	ug/l	01/17/24	01/17/24
Chloroethane	ND	1	ug/l	01/17/24	01/17/24
Chloroform	ND	1	ug/l	01/17/24	01/17/24
Chloromethane	ND	1	ug/l	01/17/24	01/17/24
4-Chlorotoluene	ND	1	ug/l	01/17/24	01/17/24
2-Chlorotoluene	ND	1	ug/l	01/17/24	01/17/24
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	01/17/24	01/17/24
Dibromochloromethane	ND	1	ug/l	01/17/24	01/17/24
1,2-Dibromoethane (EDB)	ND	1	ug/l	01/17/24	01/17/24
Dibromomethane	ND	1	ug/l	01/17/24	01/17/24
1,2-Dichlorobenzene	ND	1	ug/l	01/17/24	01/17/24
1,3-Dichlorobenzene	ND	1	ug/l	01/17/24	01/17/24
1,4-Dichlorobenzene	ND	1	ug/l	01/17/24	01/17/24
1,1-Dichloroethane	ND	1	ug/l	01/17/24	01/17/24
1,2-Dichloroethane	ND	1	ug/l	01/17/24	01/17/24
1,2 Dichloroethene, Total	ND	1	ug/l	01/17/24	01/17/24
trans-1,2-Dichloroethene	ND	1	ug/l	01/17/24	01/17/24
cis-1,2-Dichloroethene	ND	1	ug/l	01/17/24	01/17/24
1,1-Dichloroethene	ND	1	ug/l	01/17/24	01/17/24
1,2-Dichloropropane	ND	1	ug/l	01/17/24	01/17/24
2,2-Dichloropropane	ND	1	ug/l	01/17/24	01/17/24
cis-1,3-Dichloropropene	ND	1	ug/l	01/17/24	01/17/24
trans-1,3-Dichloropropene	ND	1	ug/l	01/17/24	01/17/24
1,1-Dichloropropene	ND	1	ug/l	01/17/24	01/17/24
1,3-Dichloropropene (cis + trans)	ND	2	ug/l	01/17/24	01/17/24
Diethyl ether	ND	5	ug/l	01/17/24	01/17/24
1,4-Dioxane	ND	100	ug/l	01/17/24	01/17/24
Ethylbenzene	ND	1	ug/l	01/17/24	01/17/24
Hexachlorobutadiene	ND	1	ug/l	01/17/24	01/17/24
2-Hexanone	ND	100	ug/l	01/17/24	01/17/24
Isopropylbenzene	ND	1	ug/l	01/17/24	01/17/24
p-Isopropyltoluene	ND	1	ug/l	01/17/24	01/1 Page 1
					i age i

Page 11 of 20

Sample: LE-TMW4 (Continued)

Lab Number: 4A15038-04 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Methylene Chloride	ND		1	ug/l	01/17/24	01/17/24
4-Methyl-2-pentanone	ND		100	ug/l	01/17/24	01/17/24
Naphthalene	ND		1	ug/l	01/17/24	01/17/24
n-Propylbenzene	ND		1	ug/l	01/17/24	01/17/24
Styrene	ND		1	ug/l	01/17/24	01/17/24
1,1,1,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24
Tetrachloroethene	ND		1	ug/l	01/17/24	01/17/24
Tetrahydrofuran	ND		5	ug/l	01/17/24	01/17/24
Toluene	ND		1	ug/l	01/17/24	01/17/24
1,2,4-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,2,3-Trichlorobenzene	ND		1	ug/l	01/17/24	01/17/24
1,1,2-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24
1,1,1-Trichloroethane	ND		1	ug/l	01/17/24	01/17/24
Trichloroethene	ND		1	ug/l	01/17/24	01/17/24
1,2,3-Trichloropropane	ND		1	ug/l	01/17/24	01/17/24
1,3,5-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24
1,2,4-Trimethylbenzene	ND		1	ug/l	01/17/24	01/17/24
Vinyl Chloride	ND		1	ug/l	01/17/24	01/17/24
o-Xylene	ND		1	ug/l	01/17/24	01/17/24
m&p-Xylene	ND		2	ug/l	01/17/24	01/17/24
Total xylenes	ND		1	ug/l	01/17/24	01/17/24
1,1,2,2-Tetrachloroethane	ND		1	ug/l	01/17/24	01/17/24
tert-Amyl methyl ether	ND		1	ug/l	01/17/24	01/17/24
1,3-Dichloropropane	ND		1	ug/l	01/17/24	01/17/24
Ethyl tert-butyl ether	ND		1	ug/l	01/17/24	01/17/24
Diisopropyl ether	ND		1	ug/l	01/17/24	01/17/24
Trichlorofluoromethane	ND		1	ug/l	01/17/24	01/17/24
Dichlorodifluoromethane	ND		1	ug/l	01/17/24	01/17/24
Surrogate(s)	Recovery%		Limits	5		
4-Bromofluorobenzene	96.4%		70-130	9	01/17/24	01/17/24
1,2-Dichloroethane-d4	102%		70-130	2	01/17/24	01/17/24
Toluene-d8	98.8%		70-130)	01/17/24	01/17/24

Quality Control

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B4A0760 - Purge-Trap										
Blank (B4A0760-BLK1)					Prepared 8	Analyzed: 01	l/17/24			
Acetone	ND		5	ug/l	•	,				
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
1,2 Dichloroethene, Total	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		100	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/i						
Methylene Chloride	ND		5	ug/l						
4-Methyl-2-pentanone	ND		5	ug/I						
	ND		1	ug/l						
n-Propyidenzene	ND		1	ug/I						
	ND		1	ug/I						
1,1,1,2-1 etrachioroethane	ND		1	ug/I						
retrachioroethene	ND		1	ug/i						

			Quality (Conti	Control nued)						
Volatile Organic Compounds (C	Continued)									
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B4A0760 - Purge-Trap	(Continued)									
Blank (B4A0760-BLK1)					Prepared 8	& Analyzed: 0	1/17/24			
Tetrahydrofuran	ND		5	ug/l						
Toluene	ND		1	ug/l						
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1.2.3-Trichloropropane	ND		1	ug/l						
1.3.5-Trimethylbenzene	ND		1	ug/l						
1.2.4-Trimethylbenzene	ND		- 1	ua/l						
Vinyl Chloride	ND		1	ua/l						
o-Xvlene	ND		1	ua/l						
m&n-Xylene	ND		2	ua/l						
Total xylenes	ND		1	ua/l						
1 1 2 2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether			1	ug/l						
1.3-Dichloropropage	ND		1	ug/l						
Ethyl tort butyl othor			1	ug/l						
Discorrend other	ND		1	ug/l						
	ND		1	ug/l						
Dichlorodifluoromethane			1	ug/l						
Surragita: 4-Bramafuarahanzana			1	ug/l	50.0		06 7	70_120		
Surrogate: 1 2-Dichloroothano-da			-0.J	ug/l	50.0		90.7 104	70-130		
Surrogate: 1,2-Dichloroethane-04			51.9	ug/i	50.0		104	70-130		
			50.4	ugn	Duranada	. A	1/17/24	70-130		
LCS (B4A0760-BS1)	10		-		Prepared &	s Analyzed: U	1/1//24	50 4 50		
Acetone	49		5	ug/i	50.0		97.2	50-150		
Benzene	52		1	ug/i	50.0		103	/0-130		
Bromobenzene	52		1	ug/i	50.0		104	/0-130		
Bromochloromethane	55		1	ug/i	50.0		111	70-130		
Bromodichloromethane	56		1	ug/i	50.0		111	/0-130		
Bromoform	44		1	ug/i	50.0		88.3	70-130		
Bromomethane	60		1	ug/l	50.0		120	50-150		
2-Butanone	52		5	ug/l	50.0		103	50-150		
tert-Butyl alcohol	48		5	ug/l	50.0		96.6	70-130		
sec-Butylbenzene	55		1	ug/l	50.0		110	70-130		
n-Butylbenzene	56		1	ug/l	50.0		112	70-130		
tert-Butylbenzene	55		1	ug/l	50.0		110	70-130		
Methyl t-butyl ether (MTBE)	54		1	ug/l	50.0		107	70-130		
Carbon Disulfide	58		1	ug/l	50.0		116	50-150		
Carbon Tetrachloride	55		1	ug/l	50.0		110	70-130		
Chlorobenzene	50		1	ug/l	50.0		99.8	70-130		
Chloroethane	63		1	ug/l	50.0		127	50-150		
Chloroform	51		1	ug/l	50.0		102	70-130		
Chloromethane	58		1	ug/l	50.0		116	50-150		
4-Chlorotoluene	52		1	ug/l	50.0		104	70-130		
2-Chlorotoluene	49		1	ug/l	50.0		97.5	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	43		1	ug/l	50.0		86.2	70-130		
Dibromochloromethane	56		1	ug/l	50.0		112	70-130		
1,2-Dibromoethane (EDB)	58		1	ug/l	50.0		115	70-130		

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

trans-1,2-Dichloroethene

56

50

53

48

51

53

51

1

1

1

1

1

1

1

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

50.0

50.0

50.0

50.0

50.0

50.0

50.0

113

99.4

105

95.8

102

106

103

70-130

70-130

70-130

70-130

70-130

70-130

70-130

Quality Control

(Continued)

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B4A0760 - Purge-Tran (Con	tinued)									
LCS (B4A0760-BS1)					Prepared 8	Analvzed: 01	/17/24			
cis-1,2-Dichloroethene	51		1	ug/l	50.0	,	101	70-130		
1,1-Dichloroethene	53		1	ug/l	50.0		106	70-130		
1,2-Dichloropropane	54		1	ug/l	50.0		109	70-130		
2,2-Dichloropropane	53		1	ug/l	50.0		105	70-130		
cis-1,3-Dichloropropene	48		1	ug/l	50.0		95.7	70-130		
trans-1,3-Dichloropropene	49		1	ug/l	50.0		97.8	70-130		
1,1-Dichloropropene	57		1	ug/l	50.0		114	70-130		
Diethyl ether	51		5	ug/l	50.0		102	70-130		
1,4-Dioxane	296		100	ug/l	250		119	50-150		
Ethylbenzene	52		1	ug/l	50.0		105	70-130		
Hexachlorobutadiene	51		1	ug/l	50.0		102	70-130		
2-Hexanone	52		5	ug/l	50.0		105	50-150		
Isopropylbenzene	54		1	ug/l	50.0		109	70-130		
p-Isopropyltoluene	55		1	ug/l	50.0		110	70-130		
Methylene Chloride	56		1	ug/l	50.0		112	70-130		
4-Methyl-2-pentanone	47		5	ug/l	50.0		94.6	50-150		
Naphthalene	54		1	ug/l	50.0		108	70-130		
n-Propylbenzene	56		1	ug/l	50.0		112	70-130		
Styrene	55		1	ug/l	50.0		110	70-130		
1,1,1,2-Tetrachloroethane	53		1	ug/l	50.0		106	70-130		
Tetrachloroethene	54		1	ug/l	50.0		107	70-130		
Tetrahydrofuran	54		5	ug/l	50.0		108	50-150		
Toluene	53		1	ug/l	50.0		105	70-130		
1,2,4-Trichlorobenzene	52		1	ug/l	50.0		104	70-130		
1,2,3-Trichlorobenzene	50		1	ug/l	50.0		100	70-130		
1,1,2-Trichloroethane	59		1	ug/l	50.0		118	70-130		
1,1,1-Trichloroethane	53		1	ug/i	50.0		107	70-130		
Trichloroethene	53		1	ug/i	50.0		106	70-130		
1,2,3- I richloropropane	50		1	ug/i	50.0		100	/0-130		
1,3,5- I rimethylbenzene	55		1	ug/i	50.0		109	70-130		
1,2,4- I rimetnyibenzene	54		1	ug/i	50.0		109	70-130		
	57		1	ug/i	50.0		113	50-150		
o-xylene	54		1	ug/l	50.0		108	70-130		
m&p-xylene	106		2	ug/l	100		106	70-130		
1,1,2,2-1 et activo detilane	55		1	ug/l	50.0		100	70-130		
1.3-Dichloropropago	55		1	ug/l	50.0		110	70-130		
Ethyl tort-butyl othor	54		1	ug/l	50.0		109	70-130		
	54		1	ug/l	50.0		100	70-150 50-150		
Dichlorodifluoromothano	24 19		1	ug/l	50.0		109	50-150		
	40		1		JU.U			J0-1J0		
Surrogate: 4-Bromofluorobenzene			51.7	ug/l	50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4			48.8	ug/l	50.0		97.5	70-130		
Surrogate: Toluene-d8			50.1	ug/l	50.0		100	70-130		

Quality Control (Continued)

Volatile Organic Compounds (Continued)

Result Qual Limit Units Level Result %REC Limits RP Batch: B4A0760 - Purge-Trap (Continued) Example Prepared & Analyzed: 01/17/24 Prepared & Analyzed: 01/17/24 Acetone 50 5 ug/l 50.0 99.2 50-150 2.0 Benzene 51 1 ug/l 50.0 102 70-130 0.7 Bromobenzene 52 1 ug/l 50.0 104 70-130 0.1 Bromothloromethane 56 1 ug/l 50.0 112 70-130 0.6	RPD Limit 20 20 5 20 5 20 5 20 5 20 5 20 20 20 20 20 20 20 20 20 20 20 20 20 2
Batch: B4A0760 - Purge-Trap (Continued) LCS Dup (B4A0760-BSD1) Prepared & Analyzed: 01/17/24 Acetone 50 5 ug/l 50.0 99.2 50-150 2.0 Benzene 51 1 ug/l 50.0 102 70-130 0.7 Bromobenzene 52 1 ug/l 50.0 104 70-130 0.1 Bromochloromethane 56 1 ug/l 50.0 112 70-130 0.6	20 1 20 5 20 5 20 5 20 5 20 20 2 20 2 20 2 2
Batch: B4A0760 - Purge-Trap (Continued) Prepared & Analyzed: 01/17/24 Acetone 50 5 ug/l 50.0 99.2 50-150 2.0 Benzene 51 1 ug/l 50.0 102 70-130 0.7 Bromobenzene 52 1 ug/l 50.0 104 70-130 0.1 Bromochloromethane 56 1 ug/l 50.0 112 70-130 1.2 Bromodichloromethane 56 1 ug/l 50.0 112 70-130 0.6	20 1 20 5 20 5 20 5 20 20 20 20 20 20 20 20 20 20 20 20 20 2
LCS Dup (B4A0760-BSD1) Prepared & Analyzed: 01/17/24 Acetone 50 5 ug/l 50.0 99.2 50-150 2.0 Benzene 51 1 ug/l 50.0 102 70-130 0.7 Bromobenzene 52 1 ug/l 50.0 104 70-130 0.1 Bromochloromethane 56 1 ug/l 50.0 112 70-130 1.2 Bromodichloromethane 56 1 ug/l 50.0 112 70-130 6.6	20 1 20 5 20 5 20 5 20 20 20 20 20 20 20 20 20 20 20 20 20 2
Acetone 50 5 ug/l 50.0 99.2 50-150 2.0 Benzene 51 1 ug/l 50.0 102 70-130 0.7 Bromobenzene 52 1 ug/l 50.0 104 70-130 0.1 Bromochloromethane 56 1 ug/l 50.0 112 70-130 1.2 Bromodichloromethane 56 1 ug/l 50.0 112 70-130 0.6	20 1 20 5 20 5 20 5 20 20 20 20 20 20 20 20 20 20
Benzene 51 1 ug/l 50.0 102 70-130 0.7 Bromobenzene 52 1 ug/l 50.0 104 70-130 0.1 Bromochloromethane 56 1 ug/l 50.0 112 70-130 1.2 Bromodichloromethane 56 1 ug/l 50.0 112 70-130 0.6	1 20 5 20 5 20 5 20 6 20 8 20 9 20 9 20 9 20 9 20 9 20 9 20 9 20 9 20 9 20 9 20
Bromobenzene 52 1 ug/l 50.0 104 70-130 0.1 Bromochloromethane 56 1 ug/l 50.0 112 70-130 1.2 Bromodichloromethane 56 1 ug/l 50.0 112 70-130 0.6	5 20 5 20 5 20 2 20 2 20 5 20 5 20 5 20
Bromochloromethane 56 1 ug/l 50.0 112 70-130 1.2 Bromodichloromethane 56 1 ug/l 50.0 112 70-130 0.6	20 5 20 20 20 20 20 20 20 20 20 20 20
Bromodichloromethane 56 1 ug/l 50.0 112 70-130 0.64	5 20 20 20 20 20 20 20 20 20
	20 20 20 20 20 20 20 20
Bromoform 45 1 ug/l 50.0 89.9 70-130 1.8	20 20 20 20 20 20
Bromomethane 58 1 ug/l 50.0 116 50-150 2.8	20 20 20 20
2-Butanone 53 5 ug/l 50.0 105 50-150 1.7	20 20 20
tert-Butyl alcohol 45 5 ug/l 50.0 90.1 70-130 6.9	0 20
sec-Butylbenzene 56 1 ug/l 50.0 111 70-130 0.8	
n-Butylbenzene 57 1 ug/l 50.0 114 70-130 1.4	20
tert-Butylbenzene 55 1 ug/l 50.0 111 70-130 1.0	20
Methyl t-butyl ether (MTBE) 54 1 ug/l 50.0 108 70-130 0.8	4 20
Carbon Disulfide 57 1 ug/l 50.0 115 50-150 0.64	2 20
Carbon Tetrachloride 56 1 ug/l 50.0 113 70-130 2.5	20
Chlorobenzene 50 1 ug/l 50.0 100 70-130 0.2	0 20
Chloroethane 61 1 ug/l 50.0 122 50-150 3.7	20
Chloroform 51 1 ug/l 50.0 103 70-130 1.0	20
Chloromethane 58 1 ug/l 50.0 115 50-150 0.9.	2 20
4-Chlorotoluene 52 1 ug/l 50.0 105 70-130 0.84	3 20
2-Chlorotoluene 49 1 ug/l 50.0 98.9 70-130 1.3	20
1,2-Dibromo-3-chloropropane (DBCP) 46 1 ug/l 50.0 91.8 70-130 6.2	20
Dibromochloromethane 57 1 ug/l 50.0 113 70-130 1.6	20
1,2-Dibromoethane (EDB) 58 1 ug/l 50.0 117 70-130 1.2	20
Dibromomethane 57 1 ug/l 50.0 113 70-130 0.4	7 20
1,2-Dichlorobenzene 51 1 ug/l 50.0 102 70-130 2.3	20
1,3-Dichlorobenzene 53 1 ug/l 50.0 105 70-130 0.09	0 20
1,4-Dichlorobenzene 48 1 ug/l 50.0 96.3 70-130 0.5-	1 20
1.1-Dichloroethane 52 1 ug/l 50.0 103 70-130 0.7	8 20
1.2-Dichloroethane 52 1 ug/l 50.0 103 70-130 3.0	20
trans-1.2-Dichloroethene 52 1 ug/l 50.0 104 70-130 0.9	1 20
cis-1,2-Dichloroethene 50 1 ug/l 50.0 99.5 70-130 1.8	20
1.1-Dichloroethene 53 1 ug/l 50.0 107 70-130 0.5	7 20
1 2-Dichloropropage 54 1 UQ/ 50 0 109 70-130 0.0	20
2.2-Dichloropropane 53 1 ug/l 50.0 106 70-130 0.5	7 20
cis-1 3-Dichloropropene 50 1 ug/l 50 0 101 70-130 52	20
trans-1 3-Dichloropropene 50 1 ug/l 50.0 99.4 70.130 1 6	20
$1 - \frac{1}{2} - $	20
Diathyl ether 51 51 5 $10/1$ 50.0 103 $70-130$ 1.1	20
$14-\text{Diovane} \qquad 304 \qquad 100 \qquad a / 250 \qquad 122 50.150 26$	20
$\frac{1}{100} \frac{1}{100} \frac{1}{200} \frac{1}{200} \frac{1}{122} \frac{1}{200} \frac{1}{122} \frac{1}{200} \frac{1}{120} \frac{1}{200} \frac{1}{100} \frac{1}{200} \frac{1}{100} \frac{1}$	7 20
Heyenburgeheed 55 1 100	20
1000000000000000000000000000000000000	20
$\frac{2-16x^{2}}{100} = \frac{54}{5} = \frac{1}{100} = \frac{100}{500} = \frac{100}{100} =$	20 R 20
130p10py10e12e1e 54 1 $0g/r$ 50.0 108 $70-130$ 0.7	5 20
p-Isopropyicolucine 56 I ug/i 50.0 III /0-130 0.80	5 20 1 20
Methylene Chloride 56 1 Ug/l 50.0 112 /0-130 0.4 4 Methyle 2 september 40 5 5 1 Ug/l 50.0 112 /0-130 0.4	+ 20
4-methyl-2-pentanone 48 5 ug/i 50.0 97.0 50-150 2.5	20
Naphthalene 57 1 Ug/l 50.0 113 /0-130 4.5	20
In-Propyluenzene 56 I ч9/1 50.0 11.3 70-130 0.6 Character FE 1 ч9/1 50.0 11.4 70-130 0.6	D 20
Styrene 55 I ug/ 50.0 111 70-130 1.1	20
1,1,1,2,- i etracnioroetnane 53 1 ug/i 50.0 107 70-130 0.5	5 20
i etrachioroethene 55 1 ug/i 50.0 109 70-130 1.7	20
Tetrahydrofuran 56 5 ug/l 50.0 111 50-150 2.7	20
Toluene 53 1 ug/l 50.0 106 70-130 0.24	5 20
1,2,4-Trichlorobenzene 56 1 ug/l 50.0 111 70-130 6.5	20
1,2,3-Trichlorobenzene 56 1 ug/l 50.0 112 70-130 11.	20
1,1,2-Trichloroethane 52 1 ug/l 50.0 104 70-130 P	ae 16 of 20

Quality Control (Continued)

Volatile Organic Compounds (Continued)

Volutile organie compounds (ee	minueu)											
			Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit		
Batch: B4A0760 - Purge-Trap (Satch: B4A0760 - Purge-Trap (Continued)											
LCS Dup (B4A0760-BSD1)					Prepared 8	& Analyzed: 0	1/17/24					
1,1,1-Trichloroethane	55		1	ug/l	50.0		109	70-130	2.02	20		
Trichloroethene	54		1	ug/l	50.0		108	70-130	2.05	20		
1,2,3-Trichloropropane	50		1	ug/l	50.0		101	70-130	0.397	20		
1,3,5-Trimethylbenzene	55		1	ug/l	50.0		110	70-130	0.657	20		
1,2,4-Trimethylbenzene	55		1	ug/l	50.0		110	70-130	1.48	20		
Vinyl Chloride	57		1	ug/l	50.0		113	50-150	0.124	20		
o-Xylene	54		1	ug/l	50.0		107	70-130	0.223	20		
m&p-Xylene	106		2	ug/l	100		106	70-130	0.198	20		
1,1,2,2-Tetrachloroethane	53		1	ug/l	50.0		106	70-130	0.397	20		
tert-Amyl methyl ether	55		1	ug/l	50.0		110	70-130	1.38	20		
1,3-Dichloropropane	55		1	ug/l	50.0		111	70-130	0.598	20		
Ethyl tert-butyl ether	55		1	ug/l	50.0		109	70-130	1.27	20		
Trichlorofluoromethane	54		1	ug/l	50.0		108	50-150	0.646	20		
Dichlorodifluoromethane	49		1	ug/l	50.0		98.9	50-150	3.25	20		
Surrogate: 4-Bromofluorobenzene			51.0	ug/l	50.0		102	70-130				
Surrogate: 1,2-Dichloroethane-d4			47.8	ug/l	50.0		95.6	70-130				
Surrogate: Toluene-d8			49.6	ug/l	50.0		99.1	70-130				

Item	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

New England Testing Laboratory 59 Greenhill Street

West Warwick, RI 02893

1-888-863-8522

Chain of Custody Record

Project No. Project Name/Location: Wareham										Tes	ts**						
Client: Lightship Engineering	LLC					/latr	ix		. 01								
Report To:	Kevin Par	radise,	Krist	in Maloney					ative			1					
Invoice To:	Kevin	Para	dise)				No. of Containers	reserv	260)							
Date	Time	Comp	Grab	Sample I.D.	Aqueous	Soil	Other		Containers	Containers	Containers	а.	VOCs (8				
1/12/2024	9:20		X	LE-TMW1	X			2	HCL	X					_		
1/12/2024	9:45		X	LE-TMW2	X			2	HCL	X							
1/12/2024	10:15		X	LE-TMW3	X			2 • *	HCL	X							
1/12/2024	10:40		X	LE-TMW4	X			2	HCL	X							
	2					-											
													_	23			
						-	-										
							-								-		
		-				-	-										
						-	-								-		
							-										
						-									_		
Sampled By:		Date/	Time	Received By:	Date	/Time	Lab	oratory Remar	ks:	Special	Instruction	ns:	_	A			
K. Malone	У																
Relinquished	By:	Date/	Time	Received By:	Date	Time	1										
11	0 -	- 1.	14		1/1	15											
K. mal	nh.	211	26	1 in	1.	n			. /								
	Z	115	20	4/0	1/5	20	Ter	np. Received	4								
**Netlab Subo	contracts th	ne follo	win	g tests: Radiologicals, Rado	n, TOC.	Asbe	stos	UCMRs. Perc	chlorate								
Bromate, Bro	mide, Siev	e, Salr	mon	ella, Carbamates		126.2				Turnard	ound Time	[Busine	ess Day	s]: 5 Days			
4	N	1/1	5	p ms	1	115	5/2	4							1		
			11	21 C										F	Pag		

MassDEP Analytical Protocol Certification Form										
Labo	oratory Na	me: New England	d Testing Laboratory	, Inc.	Project #: 1075.1.	2				
Project Location: Wareham, MA RTN:										
This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 4A15038										
Matrices: I Groundwater/Surface Water Soil/Sediment Drinking Water Air Other:										
CAM Protocol (check all that apply below):										
8260 CAM	VOC II A ⊠	7470/7471 Hg CAM III B □	MassDEP VPH (GC/PID/FID) CAM IV A □	8082 PCB CAM V A □	9014 Total Cyanide/PAC CAM VI A □	6860 Perchlorate CAM VIII B □				
8270 CAM	SVOC II B □	C 7010 Metals MassDEP VPH (GC/MS) CAM III C □ CAM IV C □ CAM V B □ CAM VI B		MassDEP APH CAM IX A □						
6010 CAM	Metals Ⅲ A □	6020 Metals CAM III D □	MassDEP EPH CAM IV B □	8151 Herbicides CAM V C □	8330 Explosives CAM VIII A □	TO-15 VOC CAM IX B □				
	Affirmativ	/e Responses to	Questions A throug	gh F are required t	for "Presumptive Ce	rtainty" status				
А	A Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and ⊠ Yes □ No prepared/analyzed within method holding times?									
в	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?									
с	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?									
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?									
E	VPH, EP a. VPH, modificat b. APH a	H, APH, and TO-15 EPH, and APH I tion(s)? (Refer to th and TO-15 Methods	only Methods only: Was e individual method(s) only: Was the complet	each method condu for a list of significant te analyte list reported	ucted without significar modifications). d for each method?	nt □ Yes □ No □ Yes □ No				
F	Were all and eval	applicable CAM prused in a laborator	rotocol QC and perfor y narrative (including a	mance standard non- all "No" responses to (-conformances identifie Questions A through E)?	d ⊠ Yes □ No				
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	tatus				
G	Were the protocol(e reporting limits at o s)?	or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No ¹				
<u>Da</u> re	ata User No presentati	<u>ote</u> : Data that achiev veness requirements	ve "Presumptive Certail s described in 310 CMR	nty" status may not ne 240. 1056 (2)(k) and WS	ecessarily meet the data (SC-07-350.	usability and				
Н	Were all	QC performance st	andards specified in th	ne CAM protocol(s) ad	chieved?	⊠ Yes □ No ¹				
Ι	Were res	sults reported for the	e complete analyte list	specified in the selec	ted CAM protocol(s)?	⊠ Yes □ No ¹				
¹ All I	negative r	esponses must be	addressed in an attac	ched laboratory narra	ative.					
l, the respo and be	undersign nsible for e elief, is acc	ned, attest under the obtaining the inform surate and complete.	ne pains and penalties nation, the material con	s of perjury that, bas ntained in this analytic	sed upon my personal cal report is, to the best	inquiry of those of my knowledge				
Sign	ature: 🖗	A Charles		Positio	on: Laboratory Director					
Print	ted Name	: Richard Warila		Date:	1/22/2024					
<u> </u>						Page 20 of 20				