original

brownrudnick

Michael R Dolan, Esq Direct Dial: 617-856-8548 Email: mdolan@brownrudnick.com

September 25, 2023

VIA OVERNIGHT MAIL

Town of Wareham Zoning Board of Appeals Memorial Town Hall 54 Marion Road Wareham, MA 02571

Re:

Application for a Special Permit as an Eligible Facilities Request for a Modification of an Existing Wireless Communications Services Facility for the Colocation of Transmission Equipment (the "Application")

Applicant:

New Cingular Wireless PCS, LLC d/b/a AT&T ("AT&T" or

"Applicant")

Site:

25 Brown Street, Wareham, MA (Assessor's Map 56, Lot 1000A) (the

"Site")

Owner:

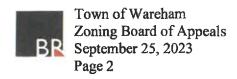
ITW Realty Trust,

Michael J. Umano, Trustee

40 Lone Street

Marshfield MA 02050

Facility:


Install six (6) panel antennas (two (2) antennas per sector) on a proposed ten (10) foot extension to the existing 150' lattice tower (the "Tower") at the Site as well as associated antenna equipment including remote radio heads, surge arrestors, coax cables, cable trays, global positioning system antennas and conduits for new network service with associated electronic equipment inside a walk-in cabinet on a concrete pad, and a diesel emergency generator (all of the foregoing collectively hereinafter

referred to as the "Facility").

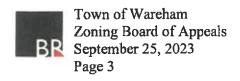
Relief Requested:

Approval of a Special Permit as an Eligible Facilities Request pursuant to Section 6409(a) of the Middle Class Tax Relief and Job Creation Act of 2012 (the "Spectrum Act"), and/or a Wireless Telecommunications Facility Special Permit pursuant to: Article 3, Section 321 and Article 5, Section 540; of the Zoning Bylaw of the Town of Wareham (hereinafter the "Bylaw"), Massachusetts General Laws chapter 40A, and the Telecommunications Act of 1996 (the "TCA") for the modification of the Existing Wireless Communication Facility, and such other relief as

deemed necessary, all rights reserved.

Dear Honorable Members of the Zoning Board of Appeals:

On behalf of AT&T, we are pleased to submit this memorandum to the Town of Wareham Zoning Board of Appeals (the "Board") in support of the Application for the modification of the Existing Wireless Tower at the Site, all in accordance with the Spectrum Act, the TCA and the Bylaw. As will be demonstrated in this memorandum and at the public hearing(s) before the Board, the modification to the Existing Wireless Tower qualifies as an Eligible Facilities Request that does not substantially change the physical dimensions of the Tower and also complies with the Bylaw to the extent possible. The following provides background information regarding the Facility and addresses each applicable section of the Bylaw. Capitalized terms not defined herein shall have the same meanings provided in the Spectrum Act and the associated Regulations, as defined below.

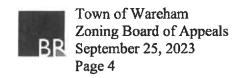

BACKGROUND

AT&T proposes to install six (6) panel antennas (two (2) panel antennas per sector) on a proposed 10 foot extension to the existing 150' Tower as well as install associated antenna related equipment including remote radio heads, surge arrestors, coax cables, cable trays, global positioning system antennas and conduits for new network service with associated electronic equipment inside a concrete walk-in cabinet, and a diesel emergency generator. The antennas will be attached at the 159' above ground level ("AGL") height of the extended tower and extend to a top height of 163'. The Facility is shown in detail on the plans (the "Plans") attached hereto and submitted with this Application, and the entire Facility is located within the existing fenced compound.

We note that the Tower has been previously approved by the Board for use as a wireless telecommunications facility pursuant to Board of Appeals decision dated November 3, 2015 (see attached). We also note that the federal Spectrum Act preempts conflicting provisions of the Bylaw as discussed below. However, while not waiving any rights, AT&T has submitted materials in the spirit of cooperation with the Board to also evidence compliance with the Bylaw to the extent possible.

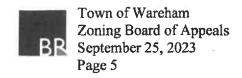
AT&T leases a portion of the Site from the tower owner, ITW Realty Trust a/k/a Industrial Communications. AT&T operates a nationwide wireless communications system that offers enhanced features such as caller ID, voice mail, e-mail, superior call clarity and high-speed data services. AT&T is in the process of building out a national network as required and authorized by license issued by the Federal Communications Commission (the "FCC"). The Facility aids in reaching AT&T's goal to provide reliable and cutting-edge wireless communication services in and around the Town of Wareham and to all of Massachusetts. AT&T strives to be a good neighbor to the communities where it has wireless communications facilities.

The modification to the Existing Tower will not be a threat to public health, safety and welfare. In fact, AT&T submits that the Facility will aid in public safety by providing additional FCC-licensed wireless communication services to the residents, businesses, commuters, and emergency personnel utilizing wireless communications in the immediate vicinity and along the


nearby roads. These services further the public interest of health and safety as they will provide wireless 911 services to the community and communication services for the public during power outages. According to published reports, 240 million 911-calls, or nearly 80% of all calls received by the 911 centers nationwide, are made annually from mobile devices in the United States. Today, wireless infrastructure is required to assist with public safety needs.

The proposed modification to the Existing Tower, and the collocation of the Facility will not generate any unreasonable noise, odor, fumes, glare, smoke, or dust or require additional lighting or signage. No significant increase in traffic or hindrance to pedestrian movements will result from the Facility. This Site is an unmanned facility and will have minimal negative effect on the adjoining lots in this area. The Facility will not be dangerous to the public health or safety as it is designed to comply with all applicable codes and regulations and will comply with all applicable requirements of the Massachusetts building code. As provided in the report submitted with the Application, the Facility will comply with the FCC guidelines relating to emissions. In fact, the emission at ground level will amount to a fraction of the FCC maximum. Further, the Facility will help to improve wireless communication coverage to residents, commercial establishments and travelers throughout the area. This facility does not require police or fire protection because the installation has its own monitoring equipment that can detect malfunction and/or tampering.

THE SPECTRUM ACT


We are submitting this analysis in support of AT&T's Eligible Facilities Request to collocate Transmission Equipment at the Site. As you now, Section 6409(a) of the Spectrum Act mandates that state and local governments "may not deny, and shall approve, any eligible facilities request for a modification of an existing wireless tower or base station that does not substantially change the physical dimensions of such tower or base station." Under Section 6409(a)(2)(A)-(C), an Eligible Facilities Request is any request to modify a Tower or Base Station that involves "collocation of new Transmission Equipment". In the applicable Regulations promulgated by the FCC (defined below), "Transmission Equipment" is defined as equipment that facilitates transmission for any Commission-licensed or authorized wireless communication service, including, but not limited to, radio transceivers, antennas, coaxial or fiber-optic cable, and regular and backup power supply. The term includes equipment associated with wireless communications services including, but not limited to, private, broadcast, and public safety services, as well as unlicensed wireless services and fixed wireless services such as microwave backhaul.

The FCC adopted a Report and Order, In re: Acceleration of Broadband Deployment by Improving Wireless Facilities Siting Policies, FCC Docket No. 13 238, Report and Order No. 14-153 (October 17, 2014) Final Rule codified at 47 CFR §1.6100 (the "Regulations") interpreting and implementing the provisions of the Spectrum Act. We have attached a copy of the Regulations for the Board's convenience. The Regulations determined that any modification to a Tower that meets the following six criteria does not substantially change the physical dimensions of the existing Tower and, therefore, is an Eligible Facilities Request which must be granted. We provide our analysis below in bold to demonstrate that the modification is NOT a substantial change to the Tower:

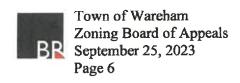
Substantial change. A modification substantially changes the physical dimensions of an eligible support structure if it meets any of the following criteria:

- (i) For towers other than towers in the public rights-of-way, the modification increases the height of the structure by more than 10% or more than twenty feet, whichever is greater;
 - AT&T's proposed modification will increase the height of the Tower by only ten (10) feet (with the antennas extending an additional 3 feet) thereby complying with this provision.
- (ii) For towers other than towers in the public right-of-way, the modification involves adding an appurtenance to the body of the structure that would protrude from the edge of the structure by more than twenty feet;
 - AT&T's modification to the existing Tower will not protrude more than seven feet (7') from the edge of the Tower, thereby complying with this provision.
- (iii) For any eligible support structure, it involves installation of more than the standard number of new equipment cabinets for the technology involved, but not to exceed four cabinets;
 - AT&T proposes to collocate one (1) equipment cabinet within the existing fenced compound area, thereby complying with this provision.
- (iv) It entails any excavation or deployment outside the current site;
 - AT&T does not propose any excavation or deployment outside the current Site in accordance with this provision. The proposed Transmission Equipment will be collocated within the existing fenced compound.
- (v) It would defeat the concealment elements of the eligible support structure; or
 - AT&T's proposal will not defeat and is consistent with the existing concealment elements in accordance with this provision. The Modification will be installed in a manner similar to the Transmission Equipment currently located at the Site.
- (vi) It does not comply with conditions associated with the siting approval of the construction or modification of the eligible support structure or base station equipment, provided however that this limitation does not apply to any modification that is non-compliant only in a manner that would not exceed the thresholds identified in §1.40001(b)(7)(i) through (iv).

AT&T's modification complies with the conditions of the siting approval of the existing wireless facility.

As evidenced on the Plans, AT&T's modification to the Tower contained in this Eligible Facilities Request fully conforms to the Regulations and Section 6409(a) of the Spectrum Act. We are confident that you will agree that AT&T's proposed modification does not substantially change the physical dimensions of the Tower at the Site as enumerated in the Regulations and therefore qualifies as an Eligible Facilities Request and we therefore respectfully request the Board's determination that the modification does not substantially change the physical dimensions of the Tower. AT&T is committed to working cooperatively with the Town of Wareham, and all jurisdictions around the country, to secure expeditious approval of requests to modify existing personal wireless service facilities.

COMPLIANCE WITH THE WAREHAM ZONING BY-LAW


ARTICLE 5, SECTION 540- WIRELESS COMMUNICATIONS FACILITIES

541 PURPOSE

It is the purpose of this Section to minimize the adverse impacts of communication structures, towers, and facilities by establishing requirements, guidelines, standards for review, and procedures to permit their installation in the Town of Wareham.

Consistent with the intent and purpose of the Bylaw, the proposed Facility will be collocated on an existing Tower so that constructing a new large antenna structure will not be necessary and thus the visual impact of the Facility is mitigated and the aesthetic qualities of the Town of Wareham are preserved. The Facility will not be contrary to the public interest and welfare. The Facility will benefit those living and working in, and traveling through the area by providing enhanced wireless telecommunication services. In fact, AT&T submits that the proposed Facility will aid in public safety by providing and improving wireless communications services to the residents, businesses, commuters, and emergency personnel utilizing wireless communications in the immediate vicinity and along the nearby roads. The Facility will not generate any objectionable noise, odor, fumes, glare, smoke, or dust or require additional lighting or signage. The Facility will have no negative impact on property values in the area. No significant increase in traffic or hindrance to pedestrian movements will result from the Facility. On average, only one or two round trip visits per month are required to service and maintain the Facility. The Facility is unmanned and will have no negative effect on the adjoining lots. This Facility does not require police or fire protection because the installation has its own monitoring equipment that can detect malfunction and/or tampering.

542 APPLICABILITY

542.1 No wireless communications facility or structure shall be erected or installed except in compliance with the provisions of this Section.

AT&T submits this Application in compliance with the terms of this provision of the Bylaw.

542.2 Any proposed extension in the height or construction of a new or replacement facility, or additional appurtenances, shall be subject to a new application.

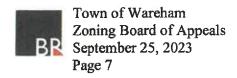
AT&T acknowledges the terms of this provision of the Bylaw.

543 GENERAL REQUIREMENTS

543.1 Only freestanding structures are allowed. Structures requiring guy wires for support are prohibited.

AT&T's Facility will be located upon an existing structure and will not require any guy wires.

543.2 All towers shall be set back a distance at least equal to the height of the tower from all property lines. Antennas or structures to be used exclusively by a federally licensed amateur radio operator may be closer than the above-described 300 feet, but must be located so as to minimize harm to any nearby structures.


AT&T's proposed 10' extension to the tower and additional 3' of antenna height above said extension, are exempt from this setback requirement pursuant to the Spectrum Act.

543.3 Abandoned structures shall be removed within one (1) year of cessation or use. The applicant shall post a performance bond of an amount, which the Board of Appeals deems to be sufficient for removal of the structure. If not removed within one year, the Town shall have the right to remove the structure at the owner's expense.

AT&T will comply with the terms of this provision of the Bylaw and will work with the Board to establish a mutually acceptable amount.

543.4 Applicant for a tower shall post an insurance certificate naming the Town as additional insured -minimum of \$1,000,000 - for general liability insurance for any lawsuit either for damage, interference, or health-related claims. Proof shall be furnished to the Town Clerk, including a stipulation claims. Proof shall be furnished to the Town Clerk, including a stipulation that if the policy is canceled due to nonpayment, the Town will be notified. Any cancellation shall constitute a violation of the Special Permit.

If the Board renders a favorable decision, AT&T will comply with the terms of this provision of the Bylaw.

544 DESIGN GUIDELINES

544.1 Towers and attached accessory antennas shall not exceed one hundred ninety (190) feet in height as measured from ground level at the base of the pole.

AT&T's proposed 10' tower extension and antennas which will extend 3' above said extension will have a top height of 163' and are thus will be well below the 190' height limit.

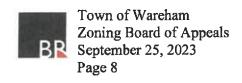
544.2 The height of a satellite dish located on a building or in the yards of residential structures shall not exceed the tree line on the lot. Satellite dishes located on non-residential buildings shall not exceed ten (10) feet in height above the highest point of the structure.

AT&T's Facility does not entail the installation of a satellite dish.

544.3 All wireless communication facilities shall be sited to limit visibility from abutting properties. Tower facilities may not be placed in open areas, but shall be surrounded by a mature stand of trees.

AT&T's proposed Facility will be attached to an existing Tower which obviates the need for the construction of a new antenna structure, which therefore results in a minimal visual impact on the surrounding area.

Towers and satellite dishes shall be painted or otherwise colored so they will blend in with the landscape or structure on which they are located. A different color scheme shall be used to blend the structure with the background below and above the tree or building line.


AT&T's proposed tower extension and antennas will generally match the color of the existing Tower and antennas and thus blend in for a minimal visual impact.

544.5 Towers and antennas shall be designed and constructed to withstand a category 5 hurricane.

AT&T's Facility will be designed and constructed in accordance with all applicable building codes and structural standards.

544.6 An applicant proposing a wireless communication facility in a residential zoning district shall prove to the satisfaction of the Board that the visual, economic, and aesthetic impacts of the facility on residential abutters will be minimal; and shall also prove that the proposed location is required due to technical, topographic or the unique circumstances.

AT&T's proposed Facility will blend with the existing tower and compound and thus the adverse impacts upon residential abutters will be minimized. The aesthetic qualities of

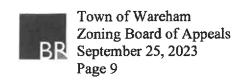
the Town of Wareham are thereby preserved. The Facility will not be contrary to the public interest and welfare. The Facility will benefit those living and working in, and traveling through the area by providing enhanced wireless telecommunication services. In fact, AT&T submits that the proposed Facility will aid in public safety by providing and improving wireless communications services to the residents, businesses, commuters, and emergency personnel utilizing wireless communications in the immediate vicinity and along the nearby roads. The Facility will not generate any objectionable noise, odor, fumes, glare, smoke, or dust or require additional lighting or signage. The Facility will have no negative impact on property values in the area. No significant increase in traffic or hindrance to pedestrian movements will result from the Facility. On average, only one or two round trip visits per month are required to service and maintain the Facility. The Facility is unmanned and will have no negative effect on the adjoining lots. This Facility does not require police or fire protection because the installation has its own monitoring equipment that can detect malfunction and/or tampering. The Facility is required to provide necessary coverage to fill a significant gap in AT&T's wireless communications services network. The Site is the least obtrusive means available by which AT&T may provide the necessary coverage to fill the significant gap in its network.

544.7 Lighting of communication facilities and other appurtenances shall be limited to that which is required by Federal Law.

There will be no additional exterior lighting added to the Site as a result of AT&T's Facility.

545 APPLICATION REQUIREMENTS

In addition to materials required by the Board of Appeals for a Special Permit application, the applicant for a communication facility shall provide.


545.1 A statement of need for the proposed facility with as much specific information is required to demonstrate the need, including a description of the proposed system and how the proposed facility would eliminate or alleviate an existing deficiency or limitation.

AT&T's engineers have determined that there is a need for coverage in this area of Wareham.

545.2 A color photograph or rendition of the proposed tower with its antenna and/or panels. A rendition shall also be prepared showing a view of the tower, antenna, or AT&T from the nearest street.

Please see the plans included with AT&T's application.

545.3 The following information prepared by one or more professional engineers;

- a) A description of the tower and the technical, economic, and other reasons for the proposed location, height, and design;
- b) Confirmation that the tower complies with Federal and State standards;
- c) A description of the capacity of the tower including the number and type of panels, antenna, and/or transmitter receivers that it can accommodate and the basis for these calculations.

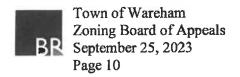
Per the Spectrum Act, AT&T's Facility will comply with all applicable building and life and safety rules and regulations and AT&T will comply with all building permit application requirements and submissions.

546 SPECIAL PERMIT REVIEW

546.1 Applications shall be approved or approved with conditions, if the petitioner can fulfill the requirements of these regulations to the satisfaction of the Board.

AT&T respectfully asserts that it has provided materials of sufficient detail for the Board to make an informed decision. AT&T will cooperate with the Board and will comply with all reasonable requests for additional information.

546.2 Applications shall be denied if the petitioner cannot fulfill the requirements for these regulations to the satisfaction of the Board.


AT&T acknowledges the terms of this provision of the Bylaw.

546.3 When considering an application for a communication facility, the Board shall place great emphasis on the proximity of the facility to residential dwellings and its impact on these residences, new facilities shall only be considered after a finding that existing (or previously approved) facilities cannot accommodate the proposed use(s).

Please refer to the RF Emissions Study submitted herewith which demonstrates that the Facility will comply with all applicable FCC RF emissions regulations. AT&T's Facility will blend with the existing Tower and fenced equipment compound. The Facility will not produce odor, smoke, glare, waste, unreasonable noise or significant amounts of traffic. AT&T's Facility will not adversely impact neighboring properties and will provide a benefit to the residents, businesses and travelers within the Town of Wareham in the form of improved wireless communications services infrastructure.

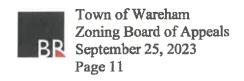
546.4 When considering an application for an antenna or dish to be placed on a structure, the Board shall consider the visual impact of the unit from the abutting neighborhoods and streets, and highways.

AT&T's Facility will blend with the existing Tower and equipment compound.

THE TELECOMMUNICATIONS ACT OF 1996

The Federal TCA provides that: no laws or actions by any local government or planning or zoning board may prohibit, or have the effect of prohibiting, the placement, construction, or modification of communications towers, antennas, or other wireless facilities in any particular geographic area, see 47 U.S.C. §332(c)(7)(B)(i); local government or planning or zoning boards may not unreasonably discriminate among providers of functionally equivalent services, see 47 U.S.C. §332(c)(7)(B)(i); health concerns may not be considered so long as the emissions comply with the applicable standards of the FCC, see 47 U.S.C. §332(c)(7)(B)(iv); and, decisions must be rendered within a reasonable period of time, see 47 U.S.C. §332(c)(7)(B)(ii) and the FCC's Regulations, commonly referred to as the "Shot Clock". The "Shot Clock" in this instance is ninety (90) days from the date of application. Pursuant to the Spectrum Act, the proposed modifications must be approved if they do not substantially change the physical dimension of the Tower as defined in the Regulations.

CONCLUSION

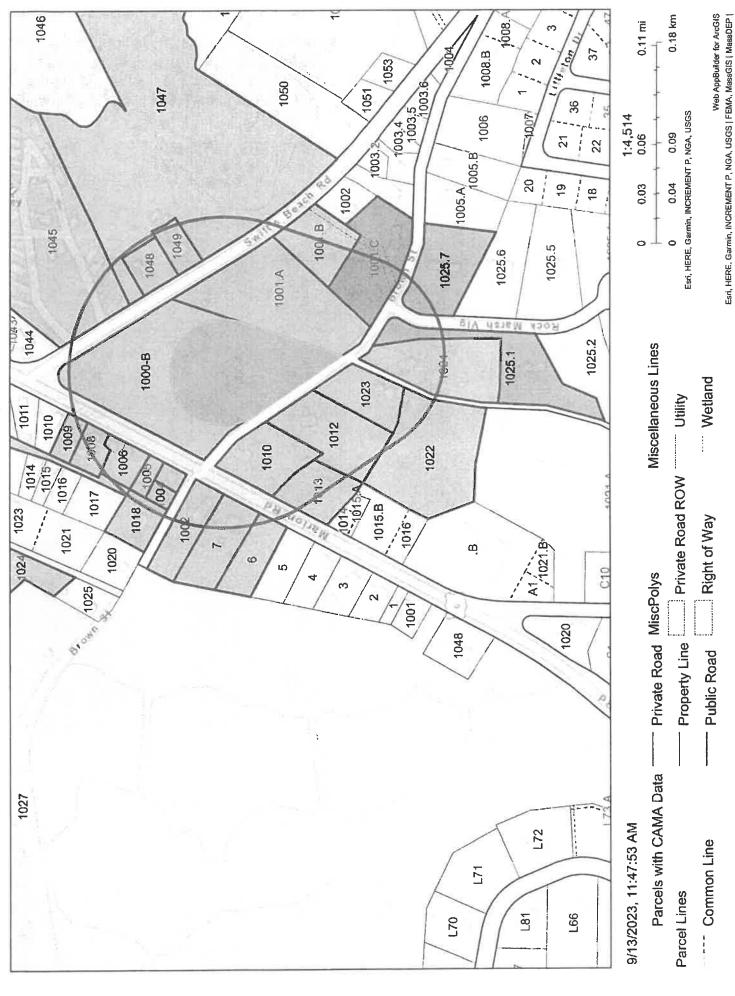

As evidenced by the materials submitted with the Application and as will be further demonstrated by AT&T through evidence submitted to the Board at the public hearing(s) in connection herewith, in light of the Spectrum Act and the TCA, the proposed modification satisfies the intent and objectives of the Bylaw. The Facility will be collocated on an Existing Tower and within the existing fenced compound area and will not have any adverse effect on property values in the area. The Facility will not be dangerous to the public health or safety as it is designed to comply with all applicable codes and regulations and will comply with all applicable requirements of the Massachusetts building code. As provided in the report submitted with the Application, the Facility will comply with the FCC guidelines relating to emissions. The Facility will not cause any nuisance such as unreasonable noise, vibration, smoke, odor or dust. Further, the Facility will help to improve communication coverage to residents, commercial establishments and travelers throughout the area.

AT&T respectfully requests that the Board grant all necessary relief to install, operate and maintain the Facility. Accordingly, a denial of the Application would violate the Spectrum Act and materially inhibit AT&T from providing adequate service to the Town of Wareham.

Sincerely,

Brown Rudnick LLP

Michael R. Dolan (SMA)


ATTACHMENTS

- 1. Special Permit Application Form
- 2. Letter of Authorization
- 3. Emissions Report Demonstrating Compliance
- 4. Plans
- 5. FCC Regulations
- 6. Building Commissioner Denial Letter
- 7. Original Approval for Tower
- 8. Structural Report

65142525 v2-WorkSiteUS-024519/1752

77 77 77		i		
OWNERITW REALTY	MAP SELDI JOUDYA OWNERITW REALTY TRUST, MICHAEL J UMANO			
		OTOCITY APPROPER	TOWN 9 CTATE	July CO.
MAP & LOT	OWNERS	SIRCEL AUDRESS	CONN & STATE	מבטר
48-0-1045	RIPLEY'S MANUFACTURED HOME, % SWIFT'S BEACH MANUFACTURED HOME	COMMUNITY INC. PO BOX 54	SALEIVI, NH	3073
48-0-1047	ROGERS FANNIE W ET ALS, C/O DANIEL MCASSEY	12 SWIFTS BEACH RD,	WAREHAM, MA	2571
48-0-1048	GAUDETTE BRIAN, BELROSE EMILY	12 SWIFTS BCH RD,	WAREHAM, MA	2571
48-0-1049	THOMAS RONALD E,	14 SWIFTS BEACH RD,	WAREHAM, MA	2571
56-0-1000-A	UMANO MICHAEL J TRUSTEE, ITW REALTY TRUST	40 LONE ST,	MARSHFIELD, MA	2050
56-0-1001.A	SWEBCO LLC,	20 NORTH PARK AVE,	PLYMOUTH, MA	2360
56-0-1001.B	HICKIE WILLIAM, HICKIE SAMANTHA	23 SWIFTS BEACH RD,	WAREHAM, MA	2571
56-0-1001.C1	STENSON THOMAS, STENSON EILEEN	11 BROWN ST,	WAREHAM, MA	2571
56-0-1001.C2	WANDRIE KATIE-ANNE,	13 BROWN ST,	WAREHAM, MA	2571
56-0-1010	246 MARION ROAD LLC,	7 FIELDSTONE LN,	MARION, MA	2738
56-0-1012	TATRO TANYA M, PIRES DEREK J JR	22 BROWN ST,	WAREHAM, MA	2571
56-0-1013	OLIVEIRA BARBARA, C/O HABITAT FOR HUMANITY	PO BOX 1584,	MATTAPOISETT, MA	2739
56-0-1022	FRANKLIN HARRY,	18 BROWN ST,	WAREHAM, MA	2571
56-0-1023	PATRAS NORMAN J, BRITO-PATRAS PAULA	3 OLD BEAVERDAM RD,	WAREHAM, MA	2571
S6-0-1025/1A		SA ROCK MARSH RD,	WAREHAM, MA	2571
56-0-1025/18		52 GILBERT ST	RIDGEFIELD, ,T	6877
56-0-1025/7A		2A ROCK MARSH RD,	WAREHAM, MA	2571
56-0-1025/78	1	2B ROCK MARSH RD,	WAREHAM, MA	2571
59-0-1002	CANNATA EDWARD N III, CANNATA KAREN J	247 MARION RD,	WAREHAM, MA	2571
59-0-1003	CNS HOME SOLUTIONS LLC,	128 UNION ST SUITE LL5	NEW BEDFORD, MA	2740
59-0-1004	MARSHALKA DAVID,	29 BROWN ST,	WAREHAM, MA	2571
59-0-1005	BISCEGLIA PAUL M & PAUL M JR, BISCEGLIA KEITH TRUSTEES	106 GUNNING PT RD,	PLYMOUTH, MA	2360
59-0-1006	BTF LLC	410 GREAT RD STE 6-2-2-G	LITTLETON, MA	1460
59-0-1008	FELDMAN GREGORY S, WORTHINGTON BARBARA	2729 CRANBERRY HWY,	WAREHAM, MA	2571
59-0-1018	WHEATON TAYLOR, HOWELL SHERYL K	33 BROWN ST,	WAREHAM, MA	2571
59-0-1024	TAVARES ARTHUR,	64 CREST RD,	MUNSON, MA	1057
59-0-5	CRISPIN MICHAEL,	251 MARION RD,	WAREHAM, MA	2571
29-0-7	KIRKLAND MITCHELL V III, KIRKLAND ELEANOR M TRUSTEES	541 MAIN ST,	WAREHAM, MA	2571
56-0-1000-B	FAMILY PANTRY, THE - DAMIEN'S PLACE CORP 3065 CRAN HWY #B820	PO BOX 730	E WAREHAM, MA	2538
CERTIFIED AB	CERTIFIED ABUTTERS AS THEY APPEAR ON			
OUR TAX ROL	TAX ROLS AS OF 9/13/2023			-
3/25	emer atoms			
ASSESSORS OFFICE	FICE			
			1	,
REQUESTED BY		Wil		
MICHAEL DOLAN	LAN		e ge typing i vity typingamanan i sariya manan yana yana yana manan maha vana en e	
401 201-5128	#UL Z01-5120			

ArcGIS Web Map

Home » Departments » Assessing Department » Abutter Request Form - Online » Webform results

Submission #206

View

Delete.

Welcome to the website. For Help Documentation & Videos, please visit our Municipal User Center or, for schools, visit our Schools User Center. It is recommended you write down the following credentials to login to the User Center - Username: "CivicOpen" and Password: "ClientUser10!"

Previous submission

Next submission

Resend e-mails **Print**

Submission information-

Form: Abutter Request Form - Online Submitted by Anonymous (not verified)

September 13, 2023 - 9:24am

24.253,190,105

Contact Information

Michael Dolan

Phone Number:

4012615128

Email Address:

mdolan@brownrudnick.com

Date of Request:

September 13, 2023

Owners Name:

ITW Realty Trust, Michael J. Umano, Trusteee

Property Location:

25 Brown Street

Map/Lot

56/1000A

Distance Required

300'

Which Board are you appearing before?

Zoning Board of Appeals

Previous submission

Next submission

This	form	was	received	on	the	date
stam	ped h	ere:				

TOWN OF WAREHAM

ZONING BOARD OF APPEALS APPLICATION FOR A:

- VARIANCE
- SPECIAL PERMIT
- SITE PLAN REVIEW
- APPEAL

Certain uses are allowed in zoning districts only by means of a Variance and/or Special Permit from the Zoning Board of Appeals. Those uses are indicated in the Wareham Zoning By-Laws. Permits may be issued only after a public hearing. To apply for a public hearing for a Permit from the Zoning Board of Appeals, please do the following:

- o Complete this form.
- o Read information packets. (Directions attached)
- o Submit application form and packet of information to Town Clerk for signature.
- o Submit application form to Town Collector for signature.
- Submit completed form, packets, and appropriate fees[™] to the Planning and Community Development Office.

** See Directions for fees, or ask at the Planning and Community Development Office.

I hereby apply for a [check applicable]:VarianceXXSpecial PermitSite PlanAppeal for a use at the following place:
STREET & NUMBER: 25 Brown Street MAP: 56 LOT: 1000A
ZONING DISTRICT: MR30
USE REQUESTED: Wireless Communications Facility
OWNER OF LAND & BUILDING: ITW Realty Trust, Michael J. Umano, Trustee
ADDRESS OF OWNER: 40 Lone Street, Mansfield MA 02050
PERSON(S) WHO WILL UTILIZE PERMIT: New Cingular Wireless PCS, LLC d/b/a AT&T
ADDRESS: c/o Michael Dolan, Esq., Brown Rudnick LLP, One Financial Center, Boston, MA 02111
DATE: September 13, 2023 SIGNATURE: Michael Dolan, as agent for New Cingular Wireless PCS LLC
Town Clerk: Date:
Tax Collector: Danille Cambola Date: 10:30-33
Planning/Zoning Dept.: Sonia Raposo Date: 10/30/23
Application fee paid: Check #: Receipt:
Advertising fee paid: Check # Receipt:
Abutters for paid: 776.30 Check # 1063 Receipt:

SHEET NOT TO BE POSTED FOR OFFICE USE ONLY

TOWN OF WAREHAM

APPLICANT/CONTRACTOR/REPRESENATIVE INFORMATION SHEET

Check Applicable: _	Variance	XX	_Special Permit _	Site Pl	anAppeal
Date stamped in:					
Applicant's Name:	New Cingular \	Wireles	ss PCS, LLC d/b/a	a AT&T	
Applicant's Address	c/o Michael Dolan Boston, MA 0211	, Esq., E 1	Brown Rudnick LLP,	One Financial	Center,
Telephone Number:	6178568200				
Cell Phone Number:	4012615128				
Email Address: md	olan@brownrudnick	k.com			
Address of Property/	Project: 25 Bro	wn Stre	et		
Landowner's Name:	_ITW Realty Trust,	, Michae	l J. Umano, Trustee		
Owner's Address:	10 Lone Street, Mar	nsfield M	1A 02050		
Telephone Number:	(781) 319-1100				
Contact Person:	om Lennon		Telepho	one Number:	(781) 319-1100
Map56	Lot	1000A	Z	one MR 30	
Date Approved			Date Deni	ed	
Comments:					
					-

Industrial Communications & Electronics, Inc. Industrial Tower and Wireless, LLC Industrial Communications, LLC

40 Lone Street Marshfield, Massachusetts 02050 781-319-1111 • Fax 781-837-4000

LETTER OF AUTHORIZATION

This letter of Authorization dated this 13th day of September 2023 provides written authorization for AT&T Wireless (Licensee) its attorney, agents or representatives to apply for any necessary zoning petitions, permits or any other approvals, including but not limited to the filing of a building permit application on behalf of Industrial Communications LLC/Industrial Tower and Wireless, LLC (after required zoning approval if required has been completed) which are necessary for Licensee's installation of its communication equipment on Licensor's tower at 25 Brown St, Wareham, MA.

Industrial Tower and Wireless, LLC

Thomas Lennon

Vice President

	*		

C Squared Systems, LLC
65 Dartmouth Drive
Auburn, NH 03032
(603) 644-2800
support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

MA1883 25 Brown Street, Wareham, MA

September 5, 2023

Table of Contents

1. Introduction	2
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits	2
3. RF Exposure Prediction Methods	3
4. Antenna Inventory	4
5. Calculation Results	5
6. Conclusion	7
7. Statement of Certification	7
Attachment A: References	8
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	9
Attachment C: AT&T Mobility Antenna Model Data Sheets and Electrical Patterns	11
List of Figures	
Figure 1: Graph of General Population % MPE vs. Distance	5
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	
List of Tables	
Table 1: Proposed Antenna Inventory	4
Table 2: Maximum Percent of General Population Exposure Values	6
Table 3: FCC Limits for Maximum Permissible Exposure	9

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed installation of AT&T antenna arrays to be mounted at 159' AGL on an existing self-support tower located at 25 Brown Street in Wareham, MA. The coordinates of the tower are 41° 45' 11.7" N, 70° 43' 57" W.

AT&T is proposing the following:

1) Install six (6) multi-band antennas (two (2) per sector) to support its commercial LTE network and the FirstNet National Public Safety Broadband Network ("NPSBN").

This report considers the planned antenna configuration for AT&T¹ and the existing² antennas for DISH, T-Mobile, and Verizon to derive the resulting % MPE of its proposed installation.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

MA1883 2 September 5, 2023

As referenced to AT&T's Radio Frequency Design Sheet, dated 07/06/2023.

² As referenced to Tower Engineering Professionals Structural Analysis Report, dated 03/24/2023

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{GRF \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance =
$$\sqrt{(H^2 + V^2)}$$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

GRF = Ground Reflection Factor of 2.0

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

4. Antenna Inventory

Table 1 below outlines AT&T's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		763	160	15.6	5809		73			
		1900	160	18.1	10330	TPA65R-BU8D	66	0	8.0	159
	Alpha /	2100	240	18.3	16226		66			
	60°	739	160	15.1	5177		75			
		850	160	16.0	6370	DMP65R-BU8D	64	0	8.0	159
		2300	100	18.1	6457		54			
		763	160	15.6	5809		73			
		1900	160	18.1	10330	TPA65R-BU8ID	66	0	8.0	159
4 (13 o (13	Beta /	2100	240	18.3	16226		66			
АТ&Т	150°	739	160	15.1	5177		75			
		850	160	16.0	6370	DMP65R-BU8D	64	0	8.0	159
		2300	100	18.1	6457		54			
		763	160	15.6	5809		73			
		1900	160	18.1	10330	TPA65R-BU8D	66	0	8.0	159
	Gamma /	2100	240	18.3	16226		66			
	270°	739	160	15.1	5177		75			
		850	160	16.0	6370	DMP65R-BU8D	64	0	8.0	159
		2300	100	18.1	6457		54			

Table 1: Proposed Antenna Inventory^{3 4}

MA1883 4 September 5, 2023

³ Antenna heights are in reference to the Trylon TSF. Construction Drawings, dated 06/19/2023.

⁴ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

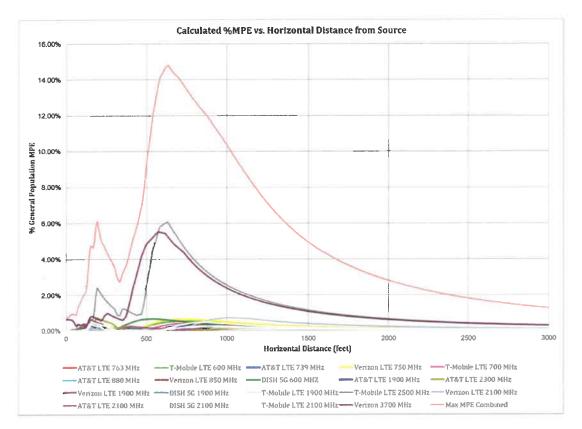


Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (14.82% of the General Population limit) is calculated to occur at a horizontal distance of 630 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

MA1883 5 September 5, 2023

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 630 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six-foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm²)	Limit (mW/cm ²)	% MPE
AT&T LTE 1900 MHz	1	160.0	159.0	630	0.000747	1.000	0.07%
AT&T LTE 2100 MHz	1	240.0	159.0	630	0.001121	1.000	0.11%
AT&T LTE 2300 MHz	1	100.0	159.0	630	0.000960	1.000	0.10%
AT&T LTE 739 MHz	1	160.0	159.0	630	0.000718	0.493	0.15%
AT&T LTE 763 MHz	1	160.0	159.0	630	0.000902	0.509	0.18%
AT&T LTE 880 MHz	1	160.0	159.0	630	0.000502	0.587	0.09%
DISH 5G 1900 MHz	1	160.0	129.0	630	0.001425	1.000	0.14%
DISH 5G 2100 MHz	1	160.0	129.0	630	0.001256	1.000	0.13%
DISH 5G 600 MHZ	1	246.0	129.0	630	0.003459	0.567	0.61%
T-Mobile LTE 1900 MHz	1	120.0	140.0	630	0.000755	1.000	0.08%
T-Mobile LTE 2100 MHz	1	120.0	140.0	630	0.000694	1.000	0.07%
T-Mobile LTE 2500 MHz	1	240.0	140.0	630	0.060874	1.000	6.09%
T-Mobile LTE 600 MHz	1	160.0	140.0	630	0.001982	0.400	0.50%
T-Mobile LTE 700 MHz	1	160.0	140.0	630	0.001529	0.467	0.33%
Verizon 3700 MHz	1	200.0	148.0	630	0.052675	1.000	5.27%
Verizon LTE 1900 MHz	1	160.0	148.0	630	0.000477	1.000	0.05%
Verizon LTE 2100 MHz	1	240.0	148.0	630	0.001038	1.000	0.10°′o
Verizon LTE 750 MHz	1	160.0	148.0	630	0.002990	0.500	0.60%
Verizon LTE 850 MHz	1	160.0	148.0	630	0.001025	0.567	0.18%
						Total	14.82%

Table 2: Maximum Percent of General Population Exposure Values

MA1883 6 September 5, 2023

6. Conclusion

The above analysis verifies that RF exposure levels from the site with AT&T's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 14.82% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 630 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya

RF Engineer 1

C Squared Systems, LLC

September 5, 2023

Date

Reviewed/Approved By:

Martin J. Lavin

Senior RF Engineer C Squared Systems, LLC

Mach of Fand

September 5, 2023 Date

Attachment A: References

<u>OET Bulletin 65 - Edition 97-01 - August 1997</u> Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

MA1883 8 September 5, 2023

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure⁵

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure⁶

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

MA1883 9 September 5, 2023

-

⁵ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁶ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

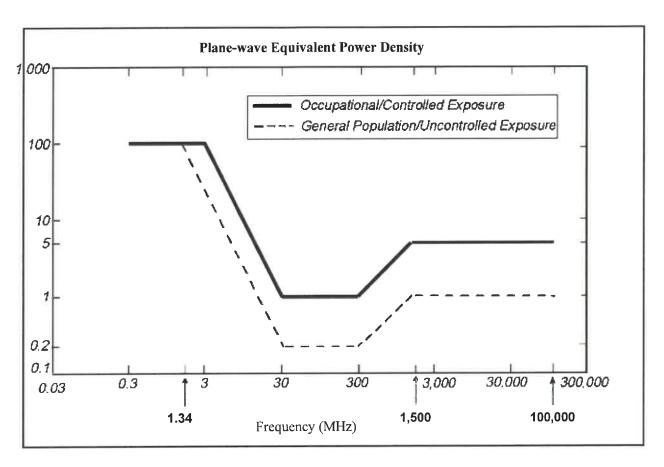


Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: AT&T Mobility Antenna Model Data Sheets and Electrical Patterns

739 MHz

Manufacturer: CCI

Model #: DMP65R-BU8D

Frequency Band: 698-798 MHz

Gain: 15.1 dBi

Vertical Beamwidth: 9.5°

Horizontal Beamwidth: 75°

Polarization: Dual Linear 45°

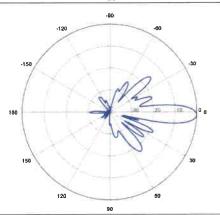
Dimensions (L x W x D): 96" x 20.7" x 7.7"

763 MHz

Manufacturer: CCI

Model #: TPA65R-BU8D

Frequency Band: 698-806 MHz


Gain: 15.6 dBi

Vertical Beamwidth: 9.5°

Horizontal Beamwidth: 73°

Polarization: Dual Linear 45°

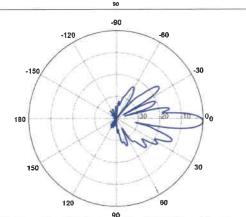
Dimensions (L x W x D): 96.0" x 21.0" x 7.8"

885 MHz

Manufacturer: CCI

Model #: DMP65R-BU8D

Frequency Band: 824-896 MHz


Gain: 16.0 dBi

 8.0° Vertical Beamwidth:

Horizontal Beamwidth: 64°

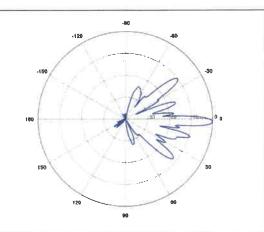
Polarization: Dual Linear 45°

Dimensions (L x W x D): 96" x 20.7" x 7.7"

1900 MHz

Manufacturer: CCI

Model #: TPA65R-BU8D


Frequency Band: 1850-1990 MHz

Gain: 18.1 dBi

Vertical Beamwidth: 5.1° Horizontal Beamwidth: 66°

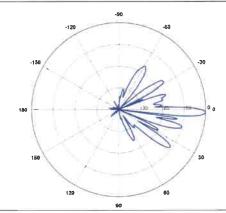
Polarization: Dual Linear 45°

Dimensions (L x W x D): 96.0" x 21.0" x 7.8"

2100 MHz

Manufacturer: CCI

Model #: TPA65R-BU8D


Frequency Band: 1920-2180 MHz

Gain: 18.3 dBi

Vertical Beamwidth: 4.8° Horizontal Beamwidth: 66°

Polarization: Dual Linear 45°

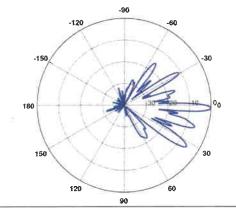
Dimensions (L x W x D): 96.0" x 21.0" x 7.8"

2300 MHz

Manufacturer: CCI

Model #: DMP65R-BU8D

Frequency Band: 2300-2400 MHz


Gain: 18.1 dBi

Vertical Beamwidth: 4.1°

Horizontal Beamwidth: 54°

Polarization: Dual Linear 45°

Dimensions (L x W x D): 96" x 20.7" x 7.7"

Subpart U—State and Local Government Regulation of the Placement, Construction, and Modification of Personal Wireless Service Facilities

Contents

§1.6001 Purpose.

§1.6002 Definitions.

§1.6003 Reasonable periods of time to act on siting applications.

§1.6100 Wireless Facility Modifications.

Source: 83 FR 51884, Oct. 15, 2018, unless otherwise noted.

§1.6001 Purpose.

This subpart implements 47 U.S.C. 332(c)(7) and 1455.

§1.6002 Definitions.

Terms not specifically defined in this section or elsewhere in this subpart have the meanings defined in this part and the Communications Act of 1934, 47 U.S.C. 151 et seq. Terms used in this subpart have the following meanings:

- (a) Action or to act on a siting application means a siting authority's grant of a siting application or issuance of a written decision denying a siting application.
- (b) *Antenna*, consistent with §1.1320(d), means an apparatus designed for the purpose of emitting radiofrequency (RF) radiation, to be operated or operating from a fixed location pursuant to Commission authorization, for the provision of personal wireless service and any commingled information services. For purposes of this definition, the term antenna does not include an unintentional radiator, mobile station, or device authorized under part 15 of this chapter.
- (c) Antenna equipment, consistent with §1.1320(d), means equipment, switches, wiring, cabling, power sources, shelters or cabinets associated with an antenna, located at the same fixed location as the antenna, and, when collocated on a structure, is mounted or installed at the same time as such antenna.
 - (d) Antenna facility means an antenna and associated antenna equipment.
- (e) Applicant means a person or entity that submits a siting application and the agents, employees, and contractors of such person or entity.

- (f) Authorization means any approval that a siting authority must issue under applicable law prior to the deployment of personal wireless service facilities, including, but not limited to, zoning approval and building permit.
- (g) Collocation, consistent with §1.1320(d) and the Nationwide Programmatic Agreement (NPA) for the Collocation of Wireless Antennas, appendix B of this part, section I.B, means—
 - (1) Mounting or installing an antenna facility on a pre-existing structure; and/or
 - (2) Modifying a structure for the purpose of mounting or installing an antenna facility on that structure.
 - (3) The definition of "collocation" in §1.6100(b)(2) applies to the term as used in that section.
- (h) *Deployment* means placement, construction, or modification of a personal wireless service facility.
- (i) Facility or personal wireless service facility means an antenna facility or a structure that is used for the provision of personal wireless service, whether such service is provided on a stand-alone basis or commingled with other wireless communications services.
- (j) Siting application or application means a written submission to a siting authority requesting authorization for the deployment of a personal wireless service facility at a specified location.
- (k) Siting authority means a State government, local government, or instrumentality of a State government or local government, including any official or organizational unit thereof, whose authorization is necessary prior to the deployment of personal wireless service facilities.
- (1) Small wireless facilities, consistent with §1.1312(e)(2), are facilities that meet each of the following conditions:

(1) The facilities—

- (i) Are mounted on structures 50 feet or less in height including their antennas as defined in §1.1320(d); or
- (ii) Are mounted on structures no more than 10 percent taller than other adjacent structures; or
- (iii) Do not extend existing structures on which they are located to a height of more than 50 feet or by more than 10 percent, whichever is greater;

- (2) Each antenna associated with the deployment, excluding associated antenna equipment (as defined in the definition of "antenna" in §1.1320(d)), is no more than three cubic feet in volume:
- (3) All other wireless equipment associated with the structure, including the wireless equipment associated with the antenna and any pre-existing associated equipment on the structure, is no more than 28 cubic feet in volume;
- (4) The facilities do not require antenna structure registration under part 17 of this chapter;
- (5) The facilities are not located on Tribal lands, as defined under 36 CFR 800.16(x); and
- (6) The facilities do not result in human exposure to radiofrequency radiation in excess of the applicable safety standards specified in §1.1307(b).
- (m) Structure means a pole, tower, base station, or other building, whether or not it has an existing antenna facility, that is used or to be used for the provision of personal wireless service (whether on its own or comingled with other types of services).

§1.6003 Reasonable periods of time to act on siting applications.

- (a) *Timely action required*. A siting authority that fails to act on a siting application on or before the shot clock date for the application, as defined in paragraph (e) of this section, is presumed not to have acted within a reasonable period of time.
 - (b) Shot clock period. The shot clock period for a siting application is the sum of—
 - (1) The number of days of the presumptively reasonable period of time for the pertinent type of application, pursuant to paragraph (c) of this section; plus
 - (2) The number of days of the tolling period, if any, pursuant to paragraph (d) of this section.
 - (c) Presumptively reasonable periods of time—
 - (1) Review periods for individual applications. The following are the presumptively reasonable periods of time for action on applications seeking authorization for deployments in the categories set forth in paragraphs (c)(1)(i) through (iv) of this section:
 - (i) Review of an application to collocate a Small Wireless Facility using an existing structure: 60 days.

- (ii) Review of an application to collocate a facility other than a Small Wireless Facility using an existing structure: 90 days.
- (iii) Review of an application to deploy a Small Wireless Facility using a new structure: 90 days.
- (iv) Review of an application to deploy a facility other than a Small Wireless Facility using a new structure: 150 days.
- (2) Batching.
- (i) If a single application seeks authorization for multiple deployments, all of which fall within a category set forth in either paragraph (c)(1)(i) or (iii) of this section, then the presumptively reasonable period of time for the application as a whole is equal to that for a single deployment within that category.
- (ii) If a single application seeks authorization for multiple deployments, the components of which are a mix of deployments that fall within paragraph (c)(1)(i) of this section and deployments that fall within paragraph (c)(1)(iii) of this section, then the presumptively reasonable period of time for the application as a whole is 90 days.
- (iii) Siting authorities may not refuse to accept applications under paragraphs (c)(2)(i) and (ii) of this section.
- (d) *Tolling period*. Unless a written agreement between the applicant and the siting authority provides otherwise, the tolling period for an application (if any) is as set forth in paragraphs (d)(1) through (3) of this section.
- (1) For an initial application to deploy Small Wireless Facilities, if the siting authority notifies the applicant on or before the 10th day after submission that the application is materially incomplete, and clearly and specifically identifies the missing documents or information and the specific rule or regulation creating the obligation to submit such documents or information, the shot clock date calculation shall restart at zero on the date on which the applicant submits all the documents and information identified by the siting authority to render the application complete.
 - (2) For all other initial applications, the tolling period shall be the number of days from—
 - (i) The day after the date when the siting authority notifies the applicant in writing that the application is materially incomplete and clearly and specifically identifies the missing documents or information that the applicant must submit to render the application complete and the specific rule or regulation creating this obligation; until

- (ii) The date when the applicant submits all the documents and information identified by the siting authority to render the application complete;
- (iii) But only if the notice pursuant to paragraph (d)(2)(i) of this section is effectuated on or before the 30th day after the date when the application was submitted; or
- (3) For resubmitted applications following a notice of deficiency, the tolling period shall be the number of days from—
 - (i) The day after the date when the siting authority notifies the applicant in writing that the applicant's supplemental submission was not sufficient to render the application complete and clearly and specifically identifies the missing documents or information that need to be submitted based on the siting authority's original request under paragraph (d)(1) or (2) of this section; until
 - (ii) The date when the applicant submits all the documents and information identified by the siting authority to render the application complete;
 - (iii) But only if the notice pursuant to paragraph (d)(3)(i) of this section is effectuated on or before the 10th day after the date when the applicant makes a supplemental submission in response to the siting authority's request under paragraph (d)(1) or (2) of this section.
- (e) Shot clock date. The shot clock date for a siting application is determined by counting forward, beginning on the day after the date when the application was submitted, by the number of calendar days of the shot clock period identified pursuant to paragraph (b) of this section and including any pre-application period asserted by the siting authority; provided, that if the date calculated in this manner is a "holiday" as defined in §1.4(e)(1) or a legal holiday within the relevant State or local jurisdiction, the shot clock date is the next business day after such date. The term "business day" means any day as defined in §1.4(e)(2) and any day that is not a legal holiday as defined by the State or local jurisdiction.

§1.6100 Wireless Facility Modifications.

- (a) [Reserved]
- (b) Definitions. Terms used in this section have the following meanings.
- (1) *Base station*. A structure or equipment at a fixed location that enables Commission-licensed or authorized wireless communications between user equipment and a communications network. The term does not encompass a tower as defined in this subpart or any equipment associated with a tower.

- (i) The term includes, but is not limited to, equipment associated with wireless communications services such as private, broadcast, and public safety services, as well as unlicensed wireless services and fixed wireless services such as microwave backhaul.
- (ii) The term includes, but is not limited to, radio transceivers, antennas, coaxial or fiber-optic cable, regular and backup power supplies, and comparable equipment, regardless of technological configuration (including Distributed Antenna Systems and small-cell networks).
- (iii) The term includes any structure other than a tower that, at the time the relevant application is filed with the State or local government under this section, supports or houses equipment described in paragraphs (b)(1)(i) through (ii) of this section that has been reviewed and approved under the applicable zoning or siting process, or under another State or local regulatory review process, even if the structure was not built for the sole or primary purpose of providing such support.
- (iv) The term does not include any structure that, at the time the relevant application is filed with the State or local government under this section, does not support or house equipment described in paragraphs (b)(1)(i)-(ii) of this section.
- (2) *Collocation*. The mounting or installation of transmission equipment on an eligible support structure for the purpose of transmitting and/or receiving radio frequency signals for communications purposes.
- (3) *Eligible facilities request*. Any request for modification of an existing tower or base station that does not substantially change the physical dimensions of such tower or base station, involving:
 - (i) Collocation of new transmission equipment;
 - (ii) Removal of transmission equipment; or
 - (iii) Replacement of transmission equipment.
- (4) *Eligible support structure*. Any tower or base station as defined in this section, provided that it is existing at the time the relevant application is filed with the State or local government under this section.
- (5) *Existing*. A constructed tower or base station is existing for purposes of this section if it has been reviewed and approved under the applicable zoning or siting process, or under another State or local regulatory review process, provided that a tower that has not been reviewed and approved because it was not in a zoned area when it was built, but was lawfully constructed, is existing for purposes of this definition.

- (6) Site. For towers other than towers in the public rights-of-way, the current boundaries of the leased or owned property surrounding the tower and any access or utility easements currently related to the site, and, for other eligible support structures, further restricted to that area in proximity to the structure and to other transmission equipment already deployed on the ground. The current boundaries of a site are the boundaries that existed as of the date that the original support structure or a modification to that structure was last reviewed and approved by a State or local government, if the approval of the modification occurred prior to the Spectrum Act or otherwise outside of the section 6409(a) process.
- (7) Substantial change. A modification substantially changes the physical dimensions of an eligible support structure if it meets any of the following criteria:
 - (i) For towers other than towers in the public rights-of-way, it increases the height of the tower by more than 10% or by the height of one additional antenna array with separation from the nearest existing antenna not to exceed twenty feet, whichever is greater; for other eligible support structures, it increases the height of the structure by more than 10% or more than ten feet, whichever is greater;
 - (A) Changes in height should be measured from the original support structure in cases where deployments are or will be separated horizontally, such as on buildings' rooftops; in other circumstances, changes in height should be measured from the dimensions of the tower or base station, inclusive of originally approved appurtenances and any modifications that were approved prior to the passage of the Spectrum Act.
 - (ii) For towers other than towers in the public rights-of-way, it involves adding an appurtenance to the body of the tower that would protrude from the edge of the tower more than twenty feet, or more than the width of the tower structure at the level of the appurtenance, whichever is greater; for other eligible support structures, it involves adding an appurtenance to the body of the structure that would protrude from the edge of the structure by more than six feet;
 - (iii) For any eligible support structure, it involves installation of more than the standard number of new equipment cabinets for the technology involved, but not to exceed four cabinets; or, for towers in the public rights-of-way and base stations, it involves installation of any new equipment cabinets on the ground if there are no pre-existing ground cabinets associated with the structure, or else involves installation of ground cabinets that are more than 10% larger in height or overall volume than any other ground cabinets associated with the structure;
- (iv) It entails any excavation or deployment outside of the current site, except that, for towers other than towers in the public rights-of-way, it entails any excavation or deployment of transmission equipment outside of the current site by more than 30 feet in any direction. The site

boundary from which the 30 feet is measured excludes any access or utility easements currently related to the site;

- (v) It would defeat the concealment elements of the eligible support structure; or
- (vi) It does not comply with conditions associated with the siting approval of the construction or modification of the eligible support structure or base station equipment, provided however that this limitation does not apply to any modification that is non-compliant only in a manner that would not exceed the thresholds identified in §1.40001(b)(7)(i) through (iv).
- (8) *Transmission equipment*. Equipment that facilitates transmission for any Commission-licensed or authorized wireless communication service, including, but not limited to, radio transceivers, antennas, coaxial or fiber-optic cable, and regular and backup power supply. The term includes equipment associated with wireless communications services including, but not limited to, private, broadcast, and public safety services, as well as unlicensed wireless services and fixed wireless services such as microwave backhaul.
- (9) *Tower*. Any structure built for the sole or primary purpose of supporting any Commission-licensed or authorized antennas and their associated facilities, including structures that are constructed for wireless communications services including, but not limited to, private, broadcast, and public safety services, as well as unlicensed wireless services and fixed wireless services such as microwave backhaul, and the associated site.
- (c) *Review of applications*. A State or local government may not deny and shall approve any eligible facilities request for modification of an eligible support structure that does not substantially change the physical dimensions of such structure.
- (1) Documentation requirement for review. When an applicant asserts in writing that a request for modification is covered by this section, a State or local government may require the applicant to provide documentation or information only to the extent reasonably related to determining whether the request meets the requirements of this section. A State or local government may not require an applicant to submit any other documentation, including but not limited to documentation intended to illustrate the need for such wireless facilities or to justify the business decision to modify such wireless facilities.
- (2) Timeframe for review. Within 60 days of the date on which an applicant submits a request seeking approval under this section, the State or local government shall approve the application unless it determines that the application is not covered by this section.
- (3) Tolling of the timeframe for review. The 60-day period begins to run when the application is filed, and may be tolled only by mutual agreement or in cases where the reviewing

State or local government determines that the application is incomplete. The timeframe for review is not tolled by a moratorium on the review of applications.

- (i) To toll the timeframe for incompleteness, the reviewing State or local government must provide written notice to the applicant within 30 days of receipt of the application, clearly and specifically delineating all missing documents or information. Such delineated information is limited to documents or information meeting the standard under paragraph (c)(1) of this section.
- (ii) The timeframe for review begins running again when the applicant makes a supplemental submission in response to the State or local government's notice of incompleteness.
- (iii) Following a supplemental submission, the State or local government will have 10 days to notify the applicant that the supplemental submission did not provide the information identified in the original notice delineating missing information. The timeframe is tolled in the case of second or subsequent notices pursuant to the procedures identified in this paragraph (c)(3). Second or subsequent notices of incompleteness may not specify missing documents or information that were not delineated in the original notice of incompleteness.
- (4) Failure to act. In the event the reviewing State or local government fails to approve or deny a request seeking approval under this section within the timeframe for review (accounting for any tolling), the request shall be deemed granted. The deemed grant does not become effective until the applicant notifies the applicable reviewing authority in writing after the review period has expired (accounting for any tolling) that the application has been deemed granted.
- (5) Remedies. Applicants and reviewing authorities may bring claims related to Section 6409(a) to any court of competent jurisdiction.

[80 FR 1269, Jan. 8, 2015. Redesignated and amended at 83 FR 51886, Oct. 15, 2018; 85 FR 78018, Dec. 3, 2020]

63512646 v2

Federal Communications Commission 445 12th St., S.W. Washington, D.C. 20554

News Media Information 202 / 418-0500 Internet: http://www.fcc.gov TTY: 1-888-835-5322

WIRELESS TELECOMMUNICATIONS BUREAU OFFERS GUIDANCE ON INTERPRETATION OF SECTION 6409(a) OF THE MIDDLE CLASS TAX RELIEF AND JOB CREATION ACT OF 2012

DA 12-2047 January 25, 2013

On February 22, 2012, the Middle Class Tax Relief and Job Creation Act of 2012 (Tax Act)¹ became law. Section 6409(a) of the Tax Act provides that a state or local government "may not deny, and shall approve" any request for collocation, removal, or replacement of transmission equipment on an existing wireless tower or base station, provided this action does not substantially change the physical dimensions of the tower or base station.² The full text of Section 6409(a) is reproduced in the Appendix to this Public Notice.

To date, the Commission has not received any formal petition to interpret or apply the provisions of Section 6409(a). We also are unaware of any judicial precedent interpreting or applying its terms. The Wireless Telecommunications Bureau has, however, received informal inquiries from service providers, facilities owners, and state and local governments seeking guidance as to how Section 6409(a) should be applied. In order to assist interested parties, this Public Notice summarizes the Bureau's understanding of Section 6409(a) in response to several of the most frequently asked questions.³

What does it mean to "substantially change the physical dimensions" of a tower or base station?

Section 6409(a) does not define what constitutes a "substantial[] change" in the dimensions of a tower or base station. In a similar context, under the *Nationwide Collocation Agreement* with the Advisory Council on Historic Preservation and the National Conference of State Historic Preservation Officers, the Commission has applied a four-prong test to determine whether a collocation will effect a "substantial increase in the size of [a] tower." A proposed collocation that does not involve a substantial increase in

¹ Middle Class Tax Relief and Job Creation Act of 2012, Pub. L. 112-96, H.R. 3630, 126 Stat. 156 (enacted Feb. 22, 2012) (Tax Act).

² Id., § 6409(a).

Although we offer this interpretive guidance to assist parties in understanding their obligations under Section 6409(a), see, e.g., Truckers United for Safety v. Federal Highway Administration, 139 F.3d 934 (D.C.Cir. 1998), the Commission remains free to exercise its discretion to interpret Section 6409(a) either by exercising its rulemaking authority or through adjudication. With two exceptions not relevant here, the Tax Act expressly grants the Commission authority to "implement and enforce" this and other provisions of Title VI of that Act "as if this title is a part of the Communications Act of 1934 (47 U.S.C. 151 et seq.)." Tax Act § 6003.

⁴ 47 C.F.R. Part 1, App. B, Nationwide Programmatic Agreement for the Collocation of Wireless Antennas, § I.C (Nationwide Collocation Agreement).

size is ordinarily excluded from the Commission's required historic preservation review under Section 106 of the National Historic Preservation Act (NHPA).⁵ The Commission later adopted the same definition in the 2009 Declaratory Ruling to determine whether an application will be treated as a collocation when applying Section 332(c)(7) of the Communications Act of 1934.⁶ The Commission has also applied a similar definition to determine whether a modification of an existing registered tower requires public notice for purposes of environmental review.⁷

Under Section I.C of the *Nationwide Collocation Agreement*, a "substantial increase in the size of the tower" occurs if:

- 1) [t]he mounting of the proposed antenna on the tower would increase the existing height of the tower by more than 10%, or by the height of one additional antenna array with separation from the nearest existing antenna not to exceed twenty feet, whichever is greater, except that the mounting of the proposed antenna may exceed the size limits set forth in this paragraph if necessary to avoid interference with existing antennas; or
- 2) [t]he mounting of the proposed antenna would involve the installation of more than the standard number of new equipment cabinets for the technology involved, not to exceed four, or more than one new equipment shelter; or
- 3) [t]he mounting of the proposed antenna would involve adding an appurtenance to the body of the tower that would protrude from the edge of the tower more than twenty feet, or more than the width of the tower structure at the level of the appurtenance, whichever is greater, except that the mounting of the proposed antenna may exceed the size limits set forth in this paragraph if necessary to shelter the antenna from inclement weather or to connect the antenna to the tower via cable; or
- 4) [t]he mounting of the proposed antenna would involve excavation outside the current tower site, defined as the current boundaries of the leased or owned property surrounding the tower and any access or utility easements currently related to the site.

Although Congress did not adopt the Commission's terminology of "substantial increase in size" in Section 6409(a), we believe that the policy reasons for excluding from Section 6409(a) collocations that substantially change the physical dimensions of a structure are closely analogous to those that animated the Commission in the *Nationwide Collocation Agreement* and subsequent proceedings. In light of the Commission's prior findings, the Bureau believes it is appropriate to look to the existing definition of "substantial increase in size" to determine whether the collocation, removal, or replacement of equipment

⁵ See 16 U.S.C. § 470f, see also 47 C.F.R. § 1.1307(a)(4) (requiring applicants to determine whether proposed facilities may affect properties that are listed, or are eligible for listing, in the National Register of Historic Places).

⁶ See Petition for Declaratory Ruling to Clarify Provisions of Section 332(c)(7)(B) to Ensure Timely Siting Review and to Preempt Under Section 253 State and Local Ordinances that Classify All Wireless Siting Proposals as Requiring a Variance, WT Docket No. 08-165, Declaratory Ruling, 24 FCC Rcd. 13994, 14012, para. 46 & n.146 (2009) (2009 Declaratory Ruling), recon. denied, 25 FCC Rcd. 11157 (2010), pet. for review denied sub nom. City of Arlington, Texas v. FCC, 668 F.3d 229 (5th Cir.), cert. granted, 113 S.Ct. 524 (2012); 47 U.S.C. § 332(c)(7).

⁷ See 47 C.F.R. § 17.4(c)(1)(B); National Environmental Policy Act Compliance for Proposed Tower Registrations, WT Docket No. 08-61, Order on Remand, 26 FCC Red. 16700, 16720-21, para. 53 (2011).

on a wireless tower or base station substantially changes the physical dimensions of the underlying structure within the meaning of Section 6409(a).

What is a "wireless tower or base station"?

A "tower" is defined in the *Nationwide Collocation Agreement* as "any structure built for the sole or primary purpose of supporting FCC-licensed antennas and their associated facilities." The Commission has described a "base station" as consisting of "radio transceivers, antennas, coaxial cable, a regular and backup power supply, and other associated electronics. Section 6409(a) applies to the collocation, removal, or replacement of equipment on a wireless tower or base station. In this context, we believe it is reasonable to interpret a "base station" to include a structure that currently supports or houses an antenna, transceiver, or other associated equipment that constitutes part of a base station. Moreover, given the absence of any limiting statutory language, we believe a "base station" encompasses such equipment in any technological configuration, including distributed antenna systems and small cells.

Section 6409(a) by its terms applies to any "wireless" tower or base station. By contrast, the scope of Section 332(c)(7) extends only to facilities used for "personal wireless services" as defined in that section. Given Congress's decision not to use the pre-existing definition from another statutory provision relating to wireless siting, we believe the scope of a "wireless" tower or base station under Section 6409(a) is not intended to be limited to facilities that support "personal wireless services" under Section 332(c)(7).

May a state or local government require an application for an action covered under Section 6409(a)?

Section 6409(a) states that a state or local government "may not deny, and shall approve, any eligible facilities request...." It does not say that a state or local government may not require an application to be filed. The provision that a state or local government must approve and may not deny a request to take a covered action, in the Bureau's view, implies that the relevant government entity may require the filing of an application for administrative approval.

⁸ See Nationwide Collocation Agreement, § I.B.

⁹ See Implementation of Section 6002(b) of the Omnibus Budget Reconciliation Act of 1993, WT Docket No. 10-133, Annual Report and Analysis of Competitive Market Conditions With Respect to Mobile Wireless, Including Commercial Mobile Services, Fifteenth Report, 26 FCC Rcd. 9664, 9481, para. 308 (2011).

¹⁰ See also 47 C.F.R. Part 1, App. C, Nationwide Programmatic Agreement Regarding the Section 106 National Historic Preservation Act Review Process, § II.A.14 (defining "tower" to include "the on-site fencing, equipment, switches, wiring, cabling, power sources, shelters, or cabinets associated with that Tower but not installed as part of an Antenna as defined herein").

¹¹ 47 U.S.C. § 332(c)(7)(A). "Personal wireless services" is in turn defined to mean "commercial mobile services, unlicensed wireless services, and common carrier wireless exchange access services." *Id.* § 332(c)(7)(C)(1).

Is there a time limit within which an application must be approved?

Section 6409(a) does not specify any period of time for approving an application. However, the statute clearly contemplates an administrative process that invariably ends in approval of a covered application. We believe the time period for processing these applications should be commensurate with the nature of the review.

In the 2009 Declaratory Ruling, the Commission found that 90 days is a presumptively reasonable period of time to process collocation applications. ¹² In light of the requirement of Section 6409(a) that the reviewing authority "may not deny, and shall approve" a covered request, we believe that 90 days should be the maximum presumptively reasonable period of time for reviewing such applications, whether for "personal wireless services" or other wireless facilities.

Wireless Telecommunications Bureau contact: Maria Kirby at (202) 418-1476 or by email: Maria.Kirby@fcc.gov.

-FCC-

For more news and information about the Federal Communications Commission please visit: www.fcc.gov

¹² See 2009 Declaratory Ruling, 24 FCC Rcd. at 14012-13, paras. 46-47.

APPENDIX

SEC. 6409. WIRELESS FACILITIES DEPLOYMENT.

(a) FACILITY MODIFICATIONS.

- (1) IN GENERAL. Notwithstanding section 704 of the Telecommunications Act of 1996 (Public Law 104–104) or any other provision of law, a State or local government may not deny, and shall approve, any eligible facilities request for a modification of an existing wireless tower or base station that does not substantially change the physical dimensions of such tower or base station.
- (2) ELIGIBLE FACILITIES REQUEST. For purposes of this subsection, the term "eligible facilities request" means any request for modification of an existing wireless tower or base station that involves —
- (A) collocation of new transmission equipment;
- (B) removal of transmission equipment; or
- (C) replacement of transmission equipment.
- (3) APPLICABILITY OF ENVIRONMENTAL LAWS. Nothing in paragraph (1) shall be construed to relieve the Commission from the requirements of the National Historic Preservation Act or the National Environmental Policy Act of 1969.

TOWN of WAREHAM

Massachusetts

BUILDING DEPARTMENT

Paul Turner Director of Inspectional Services

June 21, 2023

Mr. David Walsh 85 Rangeway Road Building 3-Suite 102 Billerica, Massachusetts 01862

RE: 25 Brown Street / Map 56, Lot 1000 A

Mr. Walsh,

I have reviewed your Building Permit application B-23-335, submitted June 5, 2023 with a description of work stating "Extent existing 150' communications tower by 10' to a new structure height of 160' (overall height with antennas will be 163'). On extension install (6) panel antenna's, (12) radios and 1 new cable demarcation unit. On grade with the existing fenced compound an 8'x8'walk in equipment shelter on a concrete pad and a 20KW diesel backup generator for emergency power." located at 25 Brown Street, Wareham, Massachusetts. At this time I must deny your request.

Your application is being denied under the following section of the Wareham Zoning By-Laws:

Article 5 Supplemental Regulations;

540 Wireless Communications Facilities, 542.2

Any proposed extension in the height or construction of a new or replacement facility, or additional appurtenances, shall be subject to a new application.

543 General Requirements, 543.2

All towers shall be set back a distance at least equal to the height of the tower from all property lines.

The proposed extension to the tower's height increases its fall zone resulting in an encroachment to all of its abutter's. To the north, map 56, lot 1000B, to the east, map 56, lot 1001A and to the southwest, the public way know as Brown Street.

Therefore, a **Special Permit** must be secured from the Zoning Board of Appeals in order to proceed with your application.

The subject dwelling is located in M-R30 zoning district.

Respectfully,

Paul F Turner

Building Commissioner Zoning Enforcement Officer

It is the owners' responsibility to check with other departments to ensure full compliance.

In accordance with the provisions of MGL chapter $40A \S\S 15$, you may apply to the Zoning Board of Appeals for the above noted relief within thirty (30) days of receipt of this letter.

		*	

THE COMMONWEALTH OF MASSACHUSETTS

Wareham

. City or Town of Wareham

BOARD OF APPEALS

Petition No.: 20-15
Book: Page:

Book: Page:
Date: November 3, 2015

Certificate of Granting of Warrance of Special Permit
(General Laws Chapter 40A, Section 11)

The Board of Appeals of the City or Town of Wareham hereby certifies that a ********************************	
To: Industrial Tower & Wireless, LLC	
Address: 40 Lone Street	
City or Town: Marshfield, MA 02050	
Affecting the rights of the owner with respect to land or buildings at Assessors Map 56 -	
Lot 1000A - Brown Street (formally a part of 242 Marion Road	ø
Wareham, MA 02571 The Board of Appeals certifies that the decision attached hereto is a true and correct copy of its decision to grant a special permit - variance and that copies of said decision, and of all plans referred to in the decision, have been filed with the ZBA, Conservation Commission, and the Town Clerk.	
The Board of Appeals also calls to the attention of the owner or applicant that General Laws, Chapter 40A, Section 11 provides that no special permit, or any extension, modification or renewal thereof, shall take	

The Board of Appeals also calls to the attention of the owner or applicant that General Laws, Chapter 40A, Section 11 provides that no special permit, or any extension, modification or renewal thereof, shall take effect until a copy of the decision bearing the certification of the Town Clerk that twenty days have elapsed after the decision has been filed in the office of the Town Clerk and no appeal has been filed or that, if such appeal has been filed, that it has been dismissed or denied, is recorded in the Registry of Deeds for the county and district in which the land is located and indexed in the grantor index under the name of the owner of record or is recorded and noted on the owner's certificate of title. The owner or applicant shall pay the fee for such recording or registering. A copy of the registered decision shall be returned to the Board of Appeals as proof of filing.

Any person aggrieved by this decision may appeal to the Superior Court of Land Court as in Section 17 of Chapter 40A, M.G.L. by filing a NOTICE OF ACTION AND COMPLAINT within twenty (20) days of the date of filing of this decision.

hairman

Clerk

TOWN OF WAREHAM Board of Appeals CLERK'S RECORD OF NOTIFICATION

No. 20-15

Petition of: Industrial Tower & Wirelesss, LLC, 40 Lone Street, Marshfield, MA 02050

Location of Property: Assessors Map 56 - Lot 1000A - (Brown Street) formally a part of 242 Marion Road, Wareham, MA 02571 Date of Notification of Hearing: October 8, 2015 & October 15, 2015

Date of Hearing: October 28, 2015

Date of Notification of Decision: November 3, 2015

DECISION: The Board voted to approve a Special Permit for Petition #20-15 - Industrial Tower & Wireless, LLC - 242 Marion Road to construct a cell communication tower based on the following:

REASON: - There were no objections from neighbors or abutters;

- The tower complies with fall-zone requirement;

- The tower will serve to provide improved cellular service to the community; and further, the Special Permit is granted with the following condition: 1. The lot is not to be further subdivided during the tenure of the tower.

VOTE: (4-1-0)

Name and Address of Abutting Owners: CERTIFIED ABUTTERS LIST ATTACHED

Board of Appeals

		1.00

March 24, 2023

Tom Lennon Industrial Communications 40 Lone Street Marshfield, MA 02050 (781) 319-1012 Tower Engineering Professionals 326 Tryon Road Raleigh, NC 27603 (919) 661-6351 Structures@tepgroup.net

Subject:

Structural Analysis Report

Carrier Designation:

AT&T Mobility Reconfiguration

Carrier Site Number:

MA1883S

Carrier Site Name:

Wareham

FA Location Code:

15283436

Client Designation:

Site Number:

N/A

Site Name:

Wareham, MA

Engineering Firm Designation:

TEP Project Number:

75332.828773

Site Data:

25 Brown Street, Wareham, Plymouth County, MA 02571

Latitude 41° 45' 11.70", Longitude -70° 43' 57.00"

160± Foot - Self-Support Tower

Dear Tom Lennon,

Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the stress level for the tower and foundation structure, under the following load case, to be:

LC2: Existing + Proposed + Reserved Loading with Proposed Modifications
Note: See Table 1 for the existing, proposed, and reserved loading

Sufficient Capacity

Structure Capacity	Foundation Capacity
75.8%	55.9%

The analysis has been performed in accordance with the ANSI/TIA-222-G-2-2009 <u>Structural Standard for Antenna Supporting Structures and Antennas – Addendum 2</u> and the <u>Massachusetts State Building Code</u>, 9th Edition.

All modifications and equipment proposed in this report shall be installed in accordance with the appurtenances listed in Table 1 and the attached drawings for the determined available structural capacity to be effective.

We at *Tower Engineering Professionals* appreciate the opportunity of providing our continuing professional services to you and *Industrial Communications*. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Peter J. Laird / AEW

Respectfully submitted by:

Ronald E. Glover, P.E., S.E.

RONALD E.
GLOVER, JR.
STRUCTURAL
NO. 52093

03/24/2023

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Existing, Proposed, and Reserved Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Table 4 - Tower Component Stresses vs. Capacity

Table 5 - Dish Twist/Sway Results for 60 mph Service Wind Speed

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Additional Calculations

1) INTRODUCTION

The tower is a 150± Foot Self-Support Tower designed by Valmont in December of 2015. A proposed 10-ft tower extension has been considered in this analysis, increasing the overall height of the tower to 160-ft. The tower was originally designed for a 3-second gust wind speed of 157 mph with no ice, 40 mph with 1.25 inch radial ice thickness and 60 mph under service loads using Structure Class III, Exposure Category C, and Topographic Category 1 per ANSI/TIA-222-G. All information provided to TEP was assumed to be accurate and complete.

2) ANALYSIS CRITERIA

TIA-222 Revision:

ANSI/TIA-222-G-2-2009

Type of Analysis:

Rigorous

Risk Category:

Ш

Wind Speed:

149 mph (Ultimate)

Exposure Category:

С

Topographic Category:

1 (Kzt = 1.0)

Ice Thickness:

0.75 in

Wind Speed with Ice: Seismic Design Category: C

50 mph

Seismic Ss:

0.173 0.059

Seismic S1: Service Wind Speed:

60 mph

Table 1 - Existing Proposed and Reserved Antenna and Cable Information

Existing/ Proposed/ Reserved	Mount Level (ft)	Ant CL (ft)	Qty	Antenna Model	Mount Type	Qty Coax	Coax Size	Coax Location	Owner/ Tenant
			3	CCI TPA65R-BU8DA-K					
			3	CCI DMP65R-BU8DA-K				AB Face	ΔΤ&Τ
			3	Ericsson 4478 B14	(0) 014 - 0 - 4	1			
Proposed	159.0	159.0	3	Ericsson 4449 B5-B12	(3) Site Pro 1 VFA12-WLL-	3 1	DC Fiber		
			3	Ericsson 8843 B2/B66A	30120			ABTACE	Arar
			1	Raycap DC9-48-60-24-8C-EV					
Reserved	159.0	159.0	3	Ericsson 4415 B30					
			3	NL Sub6 Antenna	(3) Sector		6x12		
			3	Samsung B2/B66a RRH BR049		3			
	4.40.0		3	Samsung B5/B13 RRH BR04C					
Existing	148.0	148.0	3	VZS01	Mounts		Hybrid	CA Face	verizon
			4	Commscope SBNHH-1D45B		į			
			2	Commscope SBNHH-1D85C					
			2	Raycap DB-B1-6C-12AB-0Z					

Table 1 - Existing, Proposed, and Reserved Antenna and Cable Information - Continued

Existing/ Proposed/ Reserved	Mount Level (ft)	Ant CL (ft)	Qty	Antenna Model	Mount Type	Qty Coax	Coax Size	Coax Location	Owner/ Tenant
Existing 14			3	Ericsson AIR32 KRD901146-1 B66A B2A			Ĭ		ı
			3	Ericsson AIR6449 B41			6x12 Hybrid	BC Face	,T-Mobile
			3	RFS APXVAARR24 43-U-NA20	(3) Sector Mounts	4			
	140.0	140.0	3	Ericsson Radio 4449 B71+B85					
			3	Ericsson RRUS11 B4					
			3	Ericsson RRUS 4415 B25					
			3	Microdata MI-54131 Diplexer					
	1		6	JMA MX08FRO665-21					
	120.0	120.0	6	Fujitsu TA8025-B605	(3) Commscope (MTC3975083	, 2	المنسطة وال	AB Face	Dish
Existing	129.0	129.0	6	Fujitsu TA8025-B604			Typhu	AD Face	DISH
			2	Raycap RDIDC-9181-PF-48					

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks			
Tower and Foundation Design	Valmont, dated December 4, 2015 Dwg. No. 260865T	Industrial Comm.		
Geotechnical Report R.W. Gillespie & Associates, Inc., dated August 25, 2015 Project No. 0379-113				
Structural Modification Tower Engineering Professionals, dated April 7, 2022 Analysis TEP Project No. 75332.680284				
Engineering Letter	Tower Engineering Professionals, Inc., dated December 15, 2022 TEP Project No. 75332.797322	TEP		
Construction Drawings	Trylon, dated February 27, 2023	Industrial Comm.		
Mount Analysis	Trylon, dated March 15, 2023 Project No. 203685	Industrial Comm.		
Correspondence	Correspondence in reference to the existing, proposed, and reserved loading.	Industrial Comm.		

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Analysis Assumptions

- The tower and foundation were built and maintained in accordance with the manufacturer's specification.
- Unless specified by the client or tower mapping, the location of the existing and proposed coax is assumed by TEP and listed in Table 1.
- 3) All tower components are in sufficient condition to carry their full design capacity.
- Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
- All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not perform a site visit to verify the size, condition or capacity of the antenna mounts and did not analyze antennas supporting mounts as part of this structural analysis report.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	øP _{allow} (K)	% Capacity	Pass / Fail
T1	160 - 150	Leg	Valmont 196994 - 10-ft Section	3	-7483.23	145979.00	59.2	Pass
T2	150 - 140	Leg 1	Valmont 196994 (10-ft 58ksi)	15	-25889.00	165942.00	43.9	Pass
T3	140 - 120	Leg	Valmont 194434	27	-87373.60	166292.00	52.5	Pass
T4	120 - 100	Leg	Valmont 194651	42	-151074.00	248431.00	60.8	Pass
T5	100 - 80	Leg	Valmont 195213	57	-209721.00	347961.00	60.3	Pass
T6	80 - 60	Leg	Valmont 195637	72	-246093.00	401936.00	61.2	Pass
T7	60 - 40	Leg	Valmont 195960	81	-300300.00	508981.00	59.0	Pass
T8	40 - 20	Leg	Valmont 195962	90	-349937.00	628758.00	55.7	Pass
Т9	20 - 0	Leg	Valmont 195964	99	-393691.00	628758.00	62.6	Pass
T1	160 - 150	Diagonal	L2 1/2x2 1/2x3/16	12	-5247.08	12259.40	42.8 45.4 (b)	Pass
T2	150 - 140	Diagonal	L2 1/2x2 1/2x3/16	23	-8299.81	10949.10	75.8	Pass
Т3	140 - 120	Diagonal	L3x3x5/16	33	-13018.60	23616.10	55.1 65.7 (b)	Pass
T4	120 - 100	Diagonal	L3 1/2x3 1/2x5/16	48	-12308.40	30260.70	40.7 48.4 (b)	Pass
T5	100 - 80	Diagonal	L3 1/2x3 1/2x5/16	61	-12035.00	24882.90	48.4	Pass
T6	80 - 60	Diagonal	2L3 1/2x3 1/2x1/4x1/2	75	-18997.30	41714.90	45.5 60.4 (b)	Pass
T7	60 - 40	Diagonal	2L3 1/2x3 1/2x1/4x1/2	84	-17791.90	37782.20	47.1 58.2 (b)	Pass
T8	40 - 20	Diagonal	2L3 1/2x3 1/2x1/4x1/2	93	-16611.40	34156.40	48.6 57.7 (b)	Pass
Т9	20 - 0	Diagonal	2L3 1/2x3 1/2x1/4x1/2	102	-19746.80	30862.80	64.0	Pass
T1	160 - 150	Top Girt	L3x3x3/16	5	-1065.80	19238.00	5.5 7.5 (b)	Pass
T2	150 - 140	Top Girt	L3x3x3/16	18	-460.43	17167.80	2.7 4.4 (b)	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	øP _{allow} (K)	% Capacity	Pass / Fail
				i			Summary	
						Leg (T9)	62.6	Pass
					Literary - Missiere	Diagonal (T2)	75.8	Pass
						Top Girt (T1)	7.5	Pass
						Bolt Checks	74.9	Pass
						RATING =	75.8	Pass

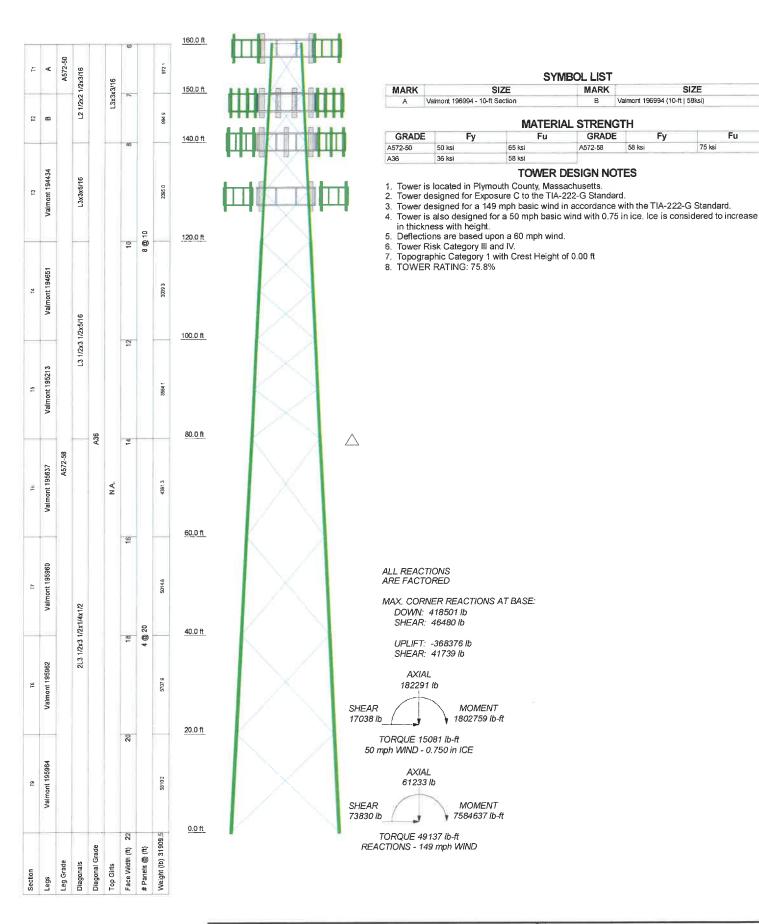
Table 4 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	-	44.0	Pass
1	Base Foundation Structural	-	48.3	Pass
1	Base Foundation Soil Interaction	- 1	55.9	Pass

Structure Rating (max from all components) =	75.8%

Notes:

Table 5 - Dish Twist/Sway Results for 60 mph Service Wind Speed


Elevation	Diah Madal	E	Beam Deflection	
(ft)	Dish Model	Deflection (in)	Tilt (deg)	Twist (deg)
-	-	-	-	-

4.1) Recommendations

- If the load differs from that described in Table 1 of this report or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
- 2) The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix B - Additional Calculations" for calculations supporting the % capacity listed.

APPENDIX A TNX TOWER OUTPUT

i	Tower Engineering Professionals, Inc.	Wareham, MA		
l å	326 Tryon Road	Project: TEP No. 75332.828773		
	Raleigh, NC 27603	Client: Industrial Communications	Drawn by: Peter Laird	App'd:
Tower Engineering Professionals, Inc.		Code: TIA-222-G	Date: 03/24/23	Scale: NTS
Tower Engineering Professionals, inc.	FAX: (919) 661-6350	Path:	Construer Annua & ThONAbanda am 188 am	Dwg No. E-1

SIZE

Fu

Valmont 196994 (10-ft | 58ksi)

MARK

GRADE

	dob	Page
inxlower	Wareham, MA	1 of 22
Tower Engineering Professionals, Inc. 326 Tron Road	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
Raleigh, NC 27603 Phone: (919) 661-6351 FAIX: (919) 661-6350	Client Industrial Communications	Designed by Peter Laird

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 160 00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The stee width of the tower is 6.00 ft at the top and 22.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Plymouth County, Massachusetts.

ASCE 7-10 Wind Data is used.

Basic wind speed of 140 mph

Risk Category III and IV.

Exposure Category C.

Topographic Category 1. Crest Height 0.00 ft.

Nominal icc thickness of 0.750 in. Ice thickness is considered to increase with height. Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °P.
Deflections calculated using a wind speed of 60 mph.
Pressures are calculated at each section

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Assume Leg Loads As Uniform
Assume Rigid India: Plan.

Assume Rigid India: Plan.

Use Clear Span Sh Wind Area

Use Clear Span Sh Wind Area

Use Clear Span Sh Wind Area

Vose Clear Span Sh Clark
Redenson (Gay 16 India: Lenson

Next Capacity Reports 19; Component

Trangulate Diamond Inner Rearing

Trangulate Diamond Inner Rearing

Trent Reed Inne Phundles Are (Jinder

Ignore KLIry Fer 60 IDsg. Angle Logs

Ignore KLIry Fer 60 IDsg. Angle Logs Consider Moments - Lags
Consider Moments - Lags
Consider Moments - Lags
Consider Moments - Lagonals
Use Mumen Magnification
Use Code Stress Ratios
V Use Special Wind Profile
V Use Code Stress
V Use Code Stre

Use ASCI: 10 X-Brane Ly Roles

**Caloular Redundan Ramone Porces
Igener Rolandan Rambers in Fish

**SIL og Balls Ressal Cumpression

**Offset Garls Ressal Cumpression

**Offset Garl Art Foundario

**Cansaler Feed Line Turque

**Cansaler Feed Line Turque

**Use TIA-222-G Braning Resst Escontion

Bis TIA-222-G Francian Reset Escontion

Bis TIA-222-G Francian Splice Resemblan

include Shear-Toxson Interaction
Always I bas She-Critical How
Tax Top Moneral Sweders
Pole Without Linear Attachments
Pole With Should Or No Appartenances
Outside and Inside Comer Rath Are
Known

14:42:30 03/24/23 Peter Laird 2 of 22 Designed by Industrial Communications TEP Na. 75332,828773 Wareham, MA Project Client qoP Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27693 Phone: (919) 661-6351 E.IX: (919) 661-6359 tnxTower

		Leg B			
Wind 180	Kara Kara		Face C	Wind Normal	Triangular Tower
	Nind 90	Leg C Z	T.		Triangu
	Wind				

Tower Section Geometry

И	10:00	10.00	20.00	20.00	20.00	20.00	20.00	20 00	20.00
Sections	_	_	_	_	_	_	-	_	_
14	00.9	7 00	(i)	10.00	12.00	14.00	16.00	18.00	20.00
J,	160:00-150:00	150 00-140:00	140,05-120,00	120.00-100.00	100:00-80 00	80.00-60.00	60 00-40 00	10.00-20.00	20:00-0:00
	Ξ	7.7	13	17.	IS	,10	11.	201	6.1.
	Sections	ft hetions (5.00	Action () () () () () () () () () () () () ()	ft Aktiona 6.00 7.00 8.00	6.00 8.00 1 10.00 10.0	ft Netitions 6 000 7 000 1 12.	Metitions ft 5.00 7.00 10.00 12.00 14.00	6.00 1 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1

Tower Section Geometry (cont'd)

S.	Spacing	Туре	Has K Bruce	Has	Yop Gurt Offset	Bottom Guri Offset
	ų,	:	End Punch		: 5	3 5
-	000	X Brace	ž	°Z	0.00	0000
	00.01	X Brace	ž	No	0.000	0.000
	0.00	X Brace	S.	Š	0.000	0.000
	000	X Brace	Š	ž	0.000	0.000
	000	X Brace	οŽ	Š	0.000	0.000
	100	X Brace	ŝ	ž	0000	0.000

	dob	Page
mxlower	Wareham, MA	3 of 22
F	Project	Date
Professionals, Inc.	TEP No. 75332.828773	14:42:30 03/24/23
326 Pryon Ruad		
Ruleigh, NC 27603	Client	Designed by
Phone: (919) 661-6351 FAX: (919) 661-6350	Industrial Communications	Peter Laird

Tower	Tower	Diagonal	Bracing	Has	Has	Tup Gird	Bottom Cirt
Section	Elevation	Spacing	Type	K Bruce End	Horizontals	Offset	Offset
)(H		Panets		113	111
17	60:00-40:00	20.00	X Brace	No	Νo	0.000	0000
<u>%</u>	40.00-20.00	20.00	X Brace	Ñ	No	0.000	0.000
1,6	20,00-0,00	20.00	X Brace	Š	ž	0.000	0000

(cont'd)
Geometry
Section
Tower

	1								
Diagonal	A36 (36 ksi)	A36 (36 ksi)	A36 (36 ks1)	A36 (36 ks)	A36 (36 ks)	A36 (36 ksı)	A36 (36 ksi)	A36 (36 ksi)	A36 (36 kst)
Dugonul Size	1.2 1/2x2 1/2x3/16	1.2 1/2x2 1/2x3/16	1,3x3x5/16	L3 1/2x3 1/2x5/16	L3 1/2x3 1/2x5/16	21.3 1/2x3 1/2x1/4x1/2	21,3 1/2x3 1/2x1/4x1/2	21.3 1/2x3 1/2x1/4x1/2	21.3 1/2x3 1/2x1/4x1/2
Diagonal Type	Hqual Angle	Equal Angle	Equal Angle	Equal Angle	Equal Angle	Double Equal Angle	Double Equal	Double Equal Angle	Double Equal
Grade	A572-50 (50 ksi)	A572-58 (58 ksi)	A572-58 (58 ksi)	A572-58 (58 ksi)	AS72-S8 (58 ksi)	A572-58 (58 ksi)	A572-58 (58 ksi)	A572-58 (58 ksi)	A572-58 (58 ksi)
leg Size	Valmont 196994 - 10-ft Section	Valmont 196994 (10-ft 58kst)	Valmont 194434	Valmont 194651	Valmont 195213	Valmont 195637	Valmont 195960	Valmont 195962	Valmont 195964
l'eg Type	Truss Leg	Truss Leg	Truss Leg	Truss Leg	Truss 1.cg	Truss Leg	friss l.eg	Truss Leg	Truss Leg
Tower Elevation ft	F1 160 00-150.00	12 150:00-140:00	l3 140 00-120.00	r4 120 06-100.00	T5 100.00-80 00	Te 80 00-60.00	T7 60 00-40 00	T8 40 00-20 00	T9 20 00-0 00

Tower Section Geometry (cont'd)

Bottom Girt Grade	A36	(36 ks) A36 (36 ks)
Rottom Girt Size		
Battom Girt Type	Solid Round	Solid Round
Top Girl Grade	A36	A36 A36 (36 ksi)
Top Ger Size	1.3x3x3/16	1.3x3x3/16
Pop Girt Type	Fqual Angle	Equal Angle
Tower Elevation	T1 160 (10-150.00 Hqual Angle	l'2 150 (10-140.00 - Byual Angle

Tower Section Geometry (cont'd)

						Name and Address of the Owner, when the Owner, which the Owner, whi	-		
Toner	Canssel	Gusset	Crissel Grade	Gussel Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Caevanon	na.ii/	1111Ch IICh		fr,	Lactur		SHEW BOIL	Stach Soft	SHICH SOIL
	(ber. fare)				∹ :		Spacing	Sparing	Spacing
							Diagonals	Horizontals	Redundants
11	113	111					in	ti)	m
Ξ	00'0	0.500	A36	1.03	-	1.05	36.000	36 000	36 000
0.00-150.00			(36 ksi)						

8	Job	Page
inxlower	Wareham, MA	4 of 22
Tower Engineering Professionals, Inc.	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
326 Prom Road Ralegh, NC 27603 Phone: (919) 661-6351 P:1X: (919) 661-6350	Client Industrial Communications	Designed by Peter Laird

Elevation	Area (per fuce)	Thickness	ousset trade	ousselvrade Jajust, Pacior	Adjust. Factor A,	Weight Mult.	Double Angle Stuch Bott Spacing Diagonals	Double Angle Stitch Bolt Spueng Honzontok	Double Angle Stitch Bolt Spacing Redindants
"	F.	in					i.	in	111
172	00.0	0.500	A36	1.03	-	105	36,000	36.000	36 000
50 00-140.00			(36 ksi)						
T	0.00	0.500	A36	1.03	_	1.05	36.000	36.000	36 000
140 00-120:00			(36 ksi)						
14	0.00	0.500	A36	1.03		1.05	36.000	36.000	36 000
20 00-100:00			(36 ksi)						
Ľ	000	0.500	A36	1.03	-	1.05	36.000	36.000	36.000
00'08-00'001			(36 ksi)						
P6 80.00-60.00	0.00	0.500	A36	1.03	-	1 05	49.750	36.000	36 000
			(36 ksi)						
7 60,00-40.00	000	0.500	A36	1.03	-	1 05	51.813	36.000	36 000
			(36 ksi)						
F8 40.00-20.00	00.0	0.500	A36	1.03	_	1.05	54.188	36.000	36 000
			(36 ksi)						
F9 20 00-0 00	000	0 500	A36	1.03	_	1.05	56.750	36.000	36 000
			(36 ksi)						

Tower Section Geometry (cont'd)

Turner	7	,	1,000	1	-	Cinna	Charles .	I Learn		
lone	200	1111	c X 2.7	7	<	STATE OF	0.073	LIDIAZ.	.280	Thire
Elevation	×	¥		Brace	Brace	Diags			Horiz.	Brace
	Single	Solul		Dags	Drags					
		Rounds		×	74	×	۳,	λ,	Δţ	<u>بر</u>
1/			I		<u>.</u>	`~	-	'n	`~	-
Ţ	Yes	Yes	_	-	-	-	~	-		-
160 00-150 00				_	_	_		-	-	
T2	Yes	Yes	-	-	-	-	,~	_	-	-
50:00-140:00				-	-	_	-	_	-	-
n	Yes	Yes	-	-	-		-		_	-
140:00-120:00					-	_	_	-	_	-
74	Yes	Yes	-		-	-	-	-	-	-
120:00-100:00				_	-	-	-	-	_	-
15	Yes	Yes	-	**	-		-	-	_	-
100 00-80 00				-	-	-	-	-	_	-
1.0	Yus	Yes	-	-	-	Ţ,	-	-		-
80.00-60.00				-	-	3	-	-	-	-
1,1	Yes	Yes	-	_	-	=		-	-	-
60.00-40.00					-	-	-	-	-	
1.8	Yes	Yes	-		-	7.	-	-	-	
40.00-20.00				ipa .	-	=		-	-	-
F9 20 00-0 00	Yes	Yus	-		-	-	-	-	-	
				_	_	7	-	-	-	-

Now. K lacins are applied to member seguing lengths. Reference orthonic ampairting aembers will have the K lastin in the introl-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

CLOUS		Truss-Legs Used As Inner Members
Truss-las K.Fu	A STATE OF THE PROPERTY AND ASSESSMENT OF THE PROPERTY OF THE	Truss-Legs Used As Inchembers

	dob	Page
Inxlower	Wareham, MA	5 of 22
Tower Engineering Professionals, Inc. 320 Tren Road	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
Ralingh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350	Client Industrial Communications	Designed by Peter Laird

×	Brace	Diagonals	0.85		0.85		0.85		0.85		0.85		0.85		0.85		0.85		0.85
<i>x</i> :	Brace	Diagonals	0.5		0.5		0.5		0.5		0.5		0.5		0.5		50		0.5
Leg	Panels		_		_		_		_		-		_		_		_		-
×	Brace	Dayonals	0.7		0.7		0.7		0.7		0.7		0.7		0.7		0.3		0.1
×.	Hruce	Dagonals	0.5		0.5		0.5		0.5		6.5		0.5		0.5		0.5		0.5
Lek	Panels		-		_		-		-		-		_		_		_		-
Томег	Flevation	J/	Ξ	160.00-150.00	.1.2	150.00-140.00	П	140 00-120.00	13	120.00-100.00	TS	100 00-80 001	3.6	80:00-60:00	17	60.00-40.00	3.8	40.00-20.00	1.9 20 00-0 00

Tower Section Geometry (cont'd)

Toner	l.eg		Diagonal	ıkal	Top Cirr	į.	Bottom Cirr	Gird	MidGirt	int	Long Horizontal	rezontal	Short Horrzontal	rrzontal
ξ	Net l'Edih Deduct sn	n	Net Width Deduct in	13	Net Width Deduct in	U	Net Width Deduct	5	Net Width Deduct	11	Net Width Deduct	3	Net Illidih Dechect	1)
T	0000	! !-	0000	0.75	0000	0.75	0(00.0	0.75	0000	0.75	0.000	0.75	0.000	0.75
60 00-150 0N														
75	0000	_	0.000	0.75	0000	0.75	0.000	0.75	0000	0.75	0000	0.75	0.000	0.75
50 00-140 00														
13	0000	-	0.000	0.75	0,000	0.75	0000	0.75	0000	0.75	0000	0.75	0.000	0.75
40 00-120 00														
Ę	0000	-	0000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75
20.00-100.00														
13	0000	-	0.000	0.75	0,000	0.75	0000	0.75	0000	0.75	0.000	0.75	0.000	0.75
00 08-00 001														
To 80 00-60 co	0000	_	0000	0.75	0.000	0.75	00000	0.75	0000	0.75	0.000	0.75	0.000	0.75
17 60 UO-40.00	0000	-	0.000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75
18 40 00-20.00	_	-	0000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0000	0.75	0.000	0.75
1'9 20 00-0.00	0.000	-	0000	0.75	0.000	0.75	0000	0.75	0.000	11.75	DUNG	0.75	0000	0.75

Elevation	Horizontal	nal	Diagonal	nal	Sub-Diagonal	pond	Sub-Hovizontal		Redundant Fertical	Fertical	Redundant Inp	nd Hip	Redundant (11p Dagonal	ant iSp onal
	Net Width Deduct m	i)	Net Fedh (f. Net Fedh (f. Deduct) in in	3	Net Wath U Deduct in	п	Net Width Dechici	9	Net Width Deduct	n	Net Width Dechict in	ū	Net Width Deduct	n
T]	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75
12	00000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	00000	0.75
T3 140 00-120 000	00000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

	dol	Page
inxlower	Wareham, MA	6 of 22
Tourism Description	Project	Date
Professionals, Inc.	TEP No. 75332.828773	14:42:30 03/24/23
326 Tryon Road		
Ruleugh, N.C. 27603	Client	Designed by
Phone: (919) 661-6351	Industrial Communications	Peter Laird

Tower Elevation	Redundan	lani mal	Redundam Diagonal	hari	Redumbra Sub-Diagonal	na	Redundom Sub-Horrzoni	Redundant ub-Hortzontal	Redundan	l l'ertical	Redundant Hip	out Hip	Redundant I Diagonal	e dandant IInp Dagonal
Ξ,	Net Width Dechier in	3	Net Width Deduct in	13	Net Width Deduct m	()	Net Width Deduct	Б	Net Width Deduct in	19	Net Width Deduct	U	Net Width Deduct	-
Ξ	0000	0.75	0000	0.75	0.000	0.75	0000	0.75	0000	0.75	0.000	0.75	0.000	0.75
00-100:00														
13	0000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
00 08-00 00						Ī								
00.00-00.08 a	~	0.75	0000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	0.000	0.75
50.00-40.00	00000 6	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0000	0.75	0.000	0.75	(r.00X)	0.75
8 40.00-20.00	0000	0.75	0.000	0.75	0.00.0	0.75	0.000	0.75	0000	0.75	0.000	0.75	6 000	0.75
20,00-0 00	0.000	0.75	0000	0.75	0000	0.75	0.000	0.75	0000	0.75	OUU	172	Grinn	11.75

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	leg		Diagonal	lul a	Гор Сіім	int	Bottom Girt	Dill.	Mid Cim	=	Long Hore	zontal	fang Horzontal Short Horzonta	munz
,		Holt Size	No.	Bolt Size	.Vo	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Roh Size	10	Holt Size	,v.
		u		٤		2		cı		u		u		u	
Ξ	Flange	1.000	9	1.000	1	1.000	-	0.625	2	0.625	0	0.625	Þ	0.625	0
50.00-150.00		A325N		A325X		A325X		A325N		A325N		A325N		A325N	
T2	Flange	1.000	5	1.000	2	1.000	-	0.625	=	0.625	0	0.625	0	0.625	0
50 00-140 (X)		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
13	Flange	1.000	9	0001		0.625	0	0.625	=	0.625	0	0.625	D	0.625	0
40 00-120.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T4	Plange	0001	9	1.000	-	0.625	0	0.625	=	0.625	0	0.625	0	0.625	0
120 00-100 001		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
D	Flange	1.250	s	1.000	-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
00:00-80:00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
00 00-00 08 9	Flange	1.000	12	0.875	-	0.625	0	0.625	0	0.625	0	0.625	Þ	0.625	0
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
7 60:00-40:00	Flange	1.000	2	0.875	-	0.625	0	0.625	Ð	0.625	0	0.625	0	0.625	0
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
8 40 00-26 00	Flange	1.250	13	0.875	-	0.625	0	0.625	0	0.625	0	0.625	¢	0.625	0
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
19 20 0040 00	Flange	0.000	0	0.875	-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
		A325N		A325X		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Weight		7.66	0.22	1.06
Permeter	m m			
Width or	n n	4.800	0.375	1.750
Clear	Row in	0.500	0.375	38 000
# 2	Row	-	-	cı
2%		-	-	rı
fatoral	(Fruc FIF)	Q	0.5	0
Face	m m	0000	00000	0000
Placement	*	129 00 - 2.00	160 00 -	150 06 -
Companem Placement	aik.	Aľ (CuAa) 13	Аг (СаАа)	AF (CaAu)
Exclude	Turque Cokulcuion	2	ź	ź
Face Allow		No.	No	No.
Face	1,43	m	<	<
Description		12" Waveguide	Safety 1.inc	Kail 1.1 3/4 x

	qor	Page
mxlower	Wareham, MA	7 of 22
Towns Ducingsonias	Project	Date
Professionals, Inc.	TEP No. 75332.828773	14:42:30 03/24/23
326 Pron Road		
Raleigh, NC 27603	Client	Designed by
Phone: (919) 661-6351	Industrial Communications	Date Laire
F.1V: (919) 661-6350		Letel Lailu

	Pace or Leg	Mon	Exclude From Torque Culculation	Сопронен Расепен Туре Д	Ріосетені Л	Face Offset in	Lateral Offset (Frac FW)		Per Row	Clear Spacing in	# Chear Width or Per Spacing Diameter cost in in	Welth or Perimeter Diameter in in	Weight plf
3/4 x 1/8 Rung C 1 3/4x13/16x1/8 (38.25* Wide,	<	ž	Ž	AT (CaAu)	2.00 150.00 - 2.00	0.000	D	-	-	0.500 0.500 1.673	1.673		1.27
40" Step) Rail L.1 3/4 x 3/4 x 1/8	22	ž	No	Af (CaAa)	150.00	0000	0	2	2	38 000	1.750		1.06
Rung C 1 3/4x13/16x1/8 (38.25" Wide. 40" Steb)	22	Š	Š	Al (CaAu)	150.00 - 2.00	0.000	o	-	-	0.500	1 673		1 27
8ail 1.1 3/4 x 3/4 x 1/8	æ	c _N	ź	Af(CaAa)	2.00	0.000	4).25	5	2	38,000	1.750		1 06
Rung C 1 3/4x13/16x1/8 (38.25" Wide, 40" Step)	<u>r</u>	ž	ż	Aľ(CaAu)	2.00	0.000	-0.25	-		0 Su0 1 673	1.673		1 27
HCS 6X12 6AWG(1-3/8) ****	<	Sc	Š.	Ar (CaAa)	148 00 - 2.00	0.000	0		۳.	0.500	1.380		1.70
HCS 6X12 4AWG(1-5/8")	U	ž	Ž	Ar (CaAa)	140.00 -	0.000	0	44	4	0.500	1.660		2 40
L584" Hybrid Cable ***	x	No	Ž	Аг (СаАв)	129.00 - 2.00	0.000	0	~	7	0.500	1.584		0.58
5/8" DC	ĸ	N _o	ž	Ar(CaAa)	159.00 -	0000	-0.25	3	67	0 500	0.625		1 10
3/8" Fiber Cable	r	Š	Ž	Ar(CaAa)	159.00 -	0000	-0.25	-		0.375	0.375		8

	ı
m	
Area	
₹	
Ø	
⋖	l
ered	ı
Ë	
Ш	
٠	ľ
es	
ЭČ	
9	
등	
ť	
릇	
ā	
⋖	
ĕ	
'n	
Ě	
<u>~</u>	
ξ	
_	
9	
Fee	
_	
	ı

Description	Face	Mon.	f. cc lude	Face Allow Exclude Component	Placement	Total	Cids	IFer
	or	Shield	From	Type		Number		
	leg		Torque		*		16.11	(d
	-		(alculation					

Feed Line/Linear Appurtenances Section Areas

DEEP	Tower	Face	A_n	Ą	Cada	Caka	Weight
	Lievation				In Pace	Out Face	
	11		5/	JF.	11.5	15	11
	160 00-150.00	<	0000	0.000	0.375	0000	2.20
		33	0000	(100)	10.647	0000	65 30
		ນ	0.000	0.000	0.000	0000	00.0
	150.00-140.00	<	0.000	0.000	12 309	0.000	76 98

8	dob	Page
thxlower	Wareham, MA	8 of 22
Tomos Francosomos	Project	Date
Professionals, Inc.	TEP No. 75332.828773	14:42:30 03/24/23
326 Tryon Road		
Ralengh, N.C. 27603	Client	Designed by
Phone: (919) 661-6351	Industrial Communications	
F.1X: (919) 661-6350		בבובו דשונו

Tower	Tower	Face	da	40	7,47	C. 4 L.	Weight
ec fron	Flevation				In Face	Out Face	
	1/		11.	lt.	Jri	11.	97
		E	0.000	0.000	19 493	0000	102.76
		ပ	0.00	0.000	000 0	0.000	0.00
T3	140:00-120:00	<	0000	0.000	26 273	0000	174.36
		Œ	0.000	0.000	49 038	0000	284 89
		ن	0.00	0.000	13 280	0.000	192.00
14	120,00-100 00	<	0.000	0.000	26 273	0.000	17436
		33	0.00	0.000	61 323	0.000	381.91
		Ü	0.000	0.000	13 280	0.000	192.00
TS	100 00-80 00	<	0.000	0.000	26 273	0.000	174.36
		æ	0.000	0.000	61 323	0.000	381.91
		IJ	0.000	0.000	13 280	0.000	192.00
116	80:00-60 00	<	0,000	0.000	26 273	0.000	174.36
		£	0.000	0.000	61 323	0.000	381.91
		J	0000	0.000	13 280	0000	192.00
۲.	60.00-40 10	<	O O DO	0.000	26 273	0.000	174.36
		33	0.000	0.000	61.323	0.000	381.91
		U	0.000	0.000	13.280	0.000	192.00
×	40.00-20.00	<	0.000	0.000	26 273	0.000	174.36
		£	0.000	0000	61 323	0.000	381.91
		ပ	0.000	0.000	13 280	0.000	192.00
61.	20 00-0 00	<	0.000	0000	23 721	0.000	157.36
		E	0.000	0000	55 190	0.000	343.72
		ے	OTH) O	OULD	11 952	0000	172 80

Feed Line/Linear Appurtenances Section Areas - With Ice

Size too Horsing on the period or Thickness ff	Tower	Tower	Face	lce	Λn	4,	Carla	C.A.	Weight
164 10 163 163 17 164	Section	Elevation	.to	Thickness			In Face	Out Face	:
164100-150 00		11	148	E	14	JE.	14.	F	97
150,00-140 to 0	=	160:00-150:00	<	2 189	0.000	0000	4.752	0000	70 75
150,100-140 to 0			E		0.000	0.000	35 942	0.000	585 59
150.00-140.00			Ü		0.000	0.000	0.000	0.000	000
140,00-120 07 1	172	150.00-140.00	<	2 174	0.000	0.000	37 473	0.000	627.80
140.09-120.00			m		0.000	0000	810.65	0.000	985.73
140,00-120-00			Ų		0.000	0.000	0000	0.000	0.00
10 00-100 to 0	13	140.00-120.00	V	2.151	0.000	0000	79 948	0.000	1323 14
120,00-100 to 1,000 1,000 1,44 1,000 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,000 1,44 1,44 1,000 1,44 1,44 1,000 1,44 1,4			=		0.000	0.000	139 427	0.00	2350 37
120.00-100-00			Ú		0.000	0.000	34 489	0.000	642.17
11 0.000 0.000 164-94 0.000 164-94 0.000 164-94 0.000 164-94 0.000 164-94 0.000 164-94 0.000 0.000 164-94 0.000 0.000 0.000 164-94 0.000 0.000 0.000 164-94 0.000 0.000 0.000 0.000 164-94 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	7.4	120.00-100 00	•	2 115	0.000	0000	79 134	0.000	1294 05
100 101-80 0 0			Ξ		0.000	0.000	164.943	0.000	2789.19
101 00-80 00			Ų		0.000	0000	34 251	0.000	633.42
86.06-60-01 1 0.000 0.000 163.01 0.000 163.01 1 0.0	13	100 00-80 00	V	2 073	0.000	0.000	78 173	0000	1260 20
80,00-60-00 1 2 0.21 0.000 0.000 139.71 0.000 10.000 139.71 0.000 10.000 139.71 0.000 10.000 10.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.630 0.000 160.000 160.630 0.000 16			1		0.000	0.000	163,013	0000	2717.36
80.00-40.04 A 2.021 0.000 0.000 76.998 0.000 0.000 4.0000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000			J		0.000	0.000	33 971	0.000	623.18
60.00-40.00 A 1955 0.000 0.000 160.639 0.000 140.00 154.79 0.000 140.00 154.79 0.000 140.00 154.79 0.000 154.	J.C	80.00-60.00	<	2 021	0.00.0	0.000	866.92	0.000	1219 41
60.00-40.00 1 1955 0.000 0.000 136.24 0.000 146.00 0.000 136.24 0.000 0.000 157.579 0.000 0.000 0.000 157.579 0.000 0.000 0.000 157.579 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.			=		0.000	0.000	160.650	0.000	2630 75
60.00-40.00 A 1.955 0.000 0.000 75479 0.0000 40.00-20.00 A 1.857 0.000 0.000 157.879 0.000 40.00-20.00 A 1.857 0.000 0.000 157.879 0.000 20.00-20.00 A 1.867 0.000 0.000 153.140 0.000 20.00-20.00 A 1.864 0.000 0.000 153.140 0.000 20.00-20.00 A 1.864 0.000 0.000 129.819 0.000			١		0.000	0.000	33.629	0.00	610.76
11 0.000 0.000 157.579 0.000 40.00-20.00 A 1.857 0.000 0.000 153.247 0.000 20.00-30.0 A 1.664 0.000 0.000 153.149 0.000 20.00-30.0 A 1.664 0.000 0.000 25.40 0.000 1 0.000 0.000 129.40 0.000 1 0.000 0.000 129.49 0.000 1 0.000 0.000 129.49 0.000	41.	60.00-40 00	<	1 955	0.00.0	0.000	75 470	0.000	1167 46
40,00-20 00 A 1857 0.000 0.000 33.185 0.000 0.000 1.53.170 0.000 0.000 1.53.170 0.000 0.000 1.53.170 0.000 0.000 0.000 1.53.170 0.00			-		0.000	0.000	157.579	000 0	2520 36
40.00-20 01 A 1837 0.020 0.000 73.247 0.000 11 0.000 0.000 153.110 0.000 20.00-0x0 A 1.664 0.000 0.000 75.240 0.000 11 0.000 0.000 75.240 0.000 12.000 12.949 0.000 1.000 0.000 12.948 0.000			ند		0.000	0.000	33 185	0.00	594.83
10 0.000 (0.000	80	40.00-20 00	~	1.857	0 000	0.000	73 247	0.00	1094 05
20 00-0,00 72 5.40 0.000 25.540 0.000 20 0.000			=		0.00.0	0.000	153,110	0.000	2364 18
20 (19-1), (10) 1 (664 0 0 0, 0) 0 (10) 62 (6)6 0 (80) 1 (10) 1 (J		0.000	0.000	32 540	0000	571.98
0.000 129.819 0.000 0.000 28.138 0.000	T9	20.0049.00	<	1 664	0.000	0000	62 696	0000	869.16
0.000 28.138 0.000			T.		0.000	0.000	129.819	0000	1862.85
			٠		0.000	0.000	28 138	0.000	475.24

Job W/areham, MA Page 9 of 22 Project Date 14:42:30 03/24/23 Client Industrial Communications Designed by Paper I aird
--

Page 10 of 22 Date 14:42:30 03/24/23

Designed by Peter Laird

Industrial Communications

Tower Engineering Professionals, Inc. 32d Tryon Road Raleigh, NC 27603 Phone: (919) 661-6351 E.IX: (919) 661-6350

tnxTower

Wareham, MA TEP No. 75332.828773

		ĭ	ed Line (center o	reed Line Center of Pressure
-	a - Tablemento	-	-		
Section	Flevation	CP _X	CP_2	ď	Ch's
				lee	lee
	11	н	in	111	m
	160.00-150.00	1.652	-5.376	1431	-5 177
	150.00-140.00	0.737	-7 763	0.900	-8 107
	140.00-120.00	1.842	-8.529	2 007	-10.147
	120.00-100.00	3.334	-9.835	3 695	-12.697
	100:00-80:00	3.668	-10 893	4.272	-14.757
	80.00-60.00	4.411	-13 035	5030	-17.306
	60.00-40.00	4.777	-14157	5 483	-18.986
	40.00-20.00	5.110	-15.182	5 9114	-20.473
	20 00-0:00	5 105	-15 274	5 834	-20.477

	0.5218	5218	521K	5218	5218	2005.0		0 5218	0 5218	0 5218	0 521x	5734	0.5734	5734	5734	5734	5734	5734	5734	5734	5734	5734	5734	5734	0 6000	6000	9000	6000	9000	6000	0.6000	0 6000	0.6000
No Ice Ice	0.6000 0	0.6000	0.6000	0.6000	0.6000	O GOOD		0.6000 0	0.6000	0.6000	0.6000	0 0009 0	0.0000 0	0.6000	0.6000	0.6000	0.6000	0.6000	0.0000 0	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0 0	0.6000	0.6000	٥	0 000910	0.6000		0.6900
Segment Flev.	-	120 00 -	120 00 -	_	-	120 00	•	120 00 -	_	_	_	_		_	_	_	_	_		120.00		_	_			80 00	S0 00 - 100 00	80 90 - 100.00 8 80 90 - 100.00			80.00 - 100.00		5/8" Der Cable 80.00 - 100.00
inescription.	Rung C 3/4x13/16x1/R	(38 25" Wide, 40" Step) Rail I.1 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	Rul L.1 3/4 x 3/4 x 1/8	Rung C 1 374x13/16x1/8	(38.25" Wide, 40" Step)		HCS 6X12 4AWG(1-5/8")	1 584" Tybrid Cable	5/8" DC	3/8" Fiber Cable	12" Waveguide 0% Shielded	Sufety Line 3/8	Rail L.1 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	(38 25" Wide, 40" Slep) Rail 3.1 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	(38.25" Wide, 40" Slep) Rail J. J. 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	(38.25" Wide. 10" Step) 11CS 6X12 6AWG(1-3/8)	HCS 6X12 4AWG(1-5/8")	1 584" Tiybud Cable	5/8" 13C	3/8" Fiber Cable	12" Waveguide 0% Shielded	Safety Line 3/8	Rung C 1 3/4x13/16x1/8	(38.25" Wide: 40" Step) Rail J.J. 3/4 x 3/4 x 1/8 Rung C. J. 3/4x [3/16x1/8]	(38 25" Wide, 40" Slep) Ruil 1,1 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	HCS 6X12 6AWG(1-3/8) HCS 6X12 4AWG(1-3/8)	1 584" Hybrid Cable	3/8" Esher Cable
Record No.	7	œ	On .	lu I	Ξ	~	3	15	17	61	20	ec.	4	9	7	30	6	02	Ξ	13	15	17	61	20	3	4 ,	7	36 D	10	11	13	17	20
Хеспои	T3	12	12	T3	Ē	Ę	-	£	T3	T3	.13	T4	.T4	1.4	T4	14	T4	T4	T.4	T4	T4	1.4	T4	1.4	TS	TS	TS TS	12 12	TI5	132	ZT 72	21.	C 12

Page 11 of 22	Date 14:42:30 03/24/23	Designed by Peter Laird
Wareham, MA	TEP No. 75332.828773	Industrial Communications
qor	Project	Client
tnxTower	Tower Engineering Professionals, Inc. 326 Pron Road	Ruleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

Zoe Toe	0.6000	0 6000	0 6000		0.6000	0.000 0		0 6000	0 6000		0 6000	0 6000	0 6000	0.009 0	0 6000	0 6000	0 6000	0.6000	0 6000	0.6000	O CONTO	2000	O GONTO	0.600		0.6000	0.6000	0 6000	0 6000	0.6000	O COUNT	00000	0 6000		0 64100	0.009 0		0.6000	0 6000		0 6000	0 6000	0.6000	0.6000	0 6000	0.6000	0 6000	0 6000	0 6000		0 6000	0 6000	O GOND	0 6000	5	0.000	0 6000	Control Co.
No Ice	0.6000	0 6000	0.000		00090	0.6000		0.6000	0.6000		0.6000	0.6000	0.6000	0.6000	0.6000	00090	00090	0 6000	0.000	00000	010000	2000	OCHIDO	0.6000		0.6000	0.6000	0.6000	0.6000	0.0000	0.0000	0.000.0	00000		0.6000	0 6000		0.6000	0.000		0.6000	0.6000	0 6000	00000	0.6000	0.6000	0.6000	0.6000	0.6000		0.6000	0.000	O KNOW	0.0000	AGUAL IN	0009 0	0.6000	
Segment Fler.	00 08 - 00 09	60.00 - 80.00	00.00 - 90.00		60 00 - 80 da	00.08 - 00.09		00 08 - 00 09	00.08 - 00.09		00:00 - 80:00	(00.00) - 800 (00)	00:00 - 80:00	00.08 - 00.09	00 08 - 00 D9	40:00 - 60:00	40.00 - 60.00	40.00 - 60.00	40.00 - 60.00	00 00 00 00	40.00 - 60.00	W 00 - W 00	00.00 - 60.00	40.00		40.00	40.00 - 60.00	40.00 - 60.00	40.00 - 60.00	40.00 - e0.00 20.00 40.00	20.00 - 40.00	20.00 - 40.00	20.00 - 40.00		20.00 - 40.00	20.00 - 40.00		20.00 - 40.00	20.00 - 40.00		20 00 - 40 00	20.00 - 40.00	20.00 - 40.00	20.00 - 40.00	20.00 - 40.00			2.00 - 20.00	2.00 - 20.00		2.00 - 20.00	2.00 - 20.00	000 Junio	2 00 - 20 00		2.00 - 20.00	2.00 - 20.00	
	12" Waveguide 0% Shielded	Safety Line 3/8	Burn (* 1345x 274 x 176	(38.25" Wide 40" Step)	Raill. 13/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	(38 25" Wide, 40" Step)	Rad L.1 3/4 x 3/4 x 1/8	Rung C 1 3/4×13/16×1/8	(38.25" Wide, 40" Slep)	HCS 6X12 6AWG(1-3/8)	IICS 6X12 4AWG(1-5/8")	1 584" By brid Cable	5/8" DC	3/8" Fiber Cable	12" Waveguide 0% Shielded	Safety 1.me 3/8	Raill.1 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	[38 25" Wide, 40" Slep.)	Puno C 1 3/4x 13/16x 1/8	(38.35" Wide 40" Step)	Roll 1 3/4 × 3/4 × 1/8	Rung C 1 3/4x13/16x1/8	(38 25" Wide, 40" Step)	HCS 6X12 6AWG(1-3/8)	HCS 6X12 4AWG(1-5/8")	1 584" Hybrid Cable	208.00	12" W	12 waveguide 07s Shielded	Date of 1 100 D	Rult L1 3/4 x 3/4 x 1/8 Rung C 1 3/8x 13/16x 1/8	(38.25" Wide, 40" Step)	Rail1.13/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	(38 25" Wide, 40" Step)	Rad L.J. 374 x 374 x 178	Rung C 1 3/4x13/16x1/8	(38.25" Wide, 40" Step)	HCS 6X12 6AWG(1-3/8)	HCS 6X12 4AWG(1-5/8")	1.584" Hybrid Cable	5/8" DC	3/8" Fiber Cable	12" Waveguide 0% Shielded	Safety Line 3/8	Rail L.1 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	(38 25" Wide, 40" Step)	Rail I. 1 3/4 x 3/4 x 1/8	Rung C 1 3/4x13/16x1/8	(38.25" Wide, 40" Step)	Runa C 1 3/4 x 3/4 x 1/6	(38 25" Wide, 40" Step)	HCS 6X12 6AWG(1-3/8)	HCS 6X12 4AWG(1-5/8")	
Record No.	en .	4 0	9 10		æ	6		9	=		<u>~</u>	2	17	19	20	m	7	9	7	0	9 9	•	01	Ξ		13	15	17	61	62,5	9.9	# 4	2 7		30	6		0.1	Ξ		13	15	17	19	20	m.	4	9	1		oc :	6	91	2 2		13	15	
Section	1,6	9 2	0 12	2	Te	Pl 9		Ĭ6	9		9	LI LI	9.I.	91	<u>1</u>	1.7	LY	17	1.7	1	1	-	1.1	1		7.1	2			<u> </u>	9 6	C P	c 25		20	18		20	78		20	96.T	90	200	 	2	5	13	6J.		T2	64	ů.	02		T9	T9	

tnxTower	Job Wareham, MA	Page 12 of 22
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
Ralengh, NC 27603 Phone: (919) 661-6351 EUX: (919) 661-6350	Client Industrial Communications	Designed by Peter Laird

I					
Tower	Fred Line	Description	Feed Line	Κ,	Κ.,
Section	Record No.		Segment Flev.	No Ice	Ice
LO LO	61	5/8" DC	2 00 - 20 00	0.6000	0.6000
6.I.	20	3/8" Fiber Cable	2 00 - 20 00	0.6000	0 6000

						200			
Description	Fuce or Leg	Offset Type	Offsens: Horz Lateral Fan	Azimuth .!djustment	Рисетен		CA, Front	C.A. Side	Weight
			444	0	<i>"</i>	127 Water State of Sta	th.	H	91
TPA65R-BUKD w/ Mount Pipe	<	From Leg	0.00	20.000	159.00	No Ice 1/2" Ice	18.31	10 18	238.04
PASSR-HUSD w/ Mount Pipe	æ	From Lag	9 9 9 9	-10 000	159.00	No lee	8.31 9.06 8.31	2 2 2 2 5 2 5 5 5 2 5 5 5	238.04
FPA65R-BUSD w/ Mount Ptpc	၁	From Leg	0000	-10.000	159.00	No lee 1/2" Lee	18.31	2012	238.04
DMP65R-BURD w/ Mount Pipe	<	From Leg	0.00	20.000	159.00	No Ice 1/2" Ice	18 09	1009	249.84
DMP65R-BURD w/ Mount Pipe	r	From f.eg	9 8 8	-10 000	159.00	No lee	18 09	1000 178	249 84
DMP65R-BUSD w/ Mount Pipe	ວ	From Leg	0000	-10 000	159.00	No lee	18.09	1009	249 84
RRUS 4478 B14	<	From Leg	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	201000	00.651	No Ice 1/2" Ice	201	900	29 90 87 57
RRUS 4478 B14	x	From Leg	24 2 2 20 2 2 20 2 3	-10.000	159.00	No Lee 1/2" Lee 1" Pee	2.19 2.01 2.19	106	59 90 75 78
RR11S 4478 B14	Ü	From Leg	000	-10 000	159.00	No Ice 1/2" Ice	201	8 2 2	59.90 75.78
IRUS 4449 B5/B12	<	From Leg	0000	20.000	159.00	No lee 1/2" lee 1" lee	2.14 2.33	126 E	71 00 89 51 110.84
RRUS 4449 BS/B12 RRUS 4449 BS/B12	ള വ	From Leg From Leg	00 0 00 0 00 0 00 0	-10 000	159.00	No Ice 1/2" Ice 1" Ice No Ice	2.14 2.33 1.97	141 173 174 174	71 U0 89.51 110.84 71 00
RRUS 18843 H2/B66A	<	From Leg	0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.	20.000	159.00	1/2" loe 1" lee No lee 1/2" foe	2.14 2.33 1.64 1.80	135	89 51 110 84 72 00 89 60
RRUS 1843 B2/B66A	æ	From Leg	0.0 0.00 0.00	-10 000	159.00	l" fee No lee 1/2" lee	180	1.65 1.36	72 00 89 60
			000			l' lee	1.97	1.65	10991

tnxTower	Job Wareham, MA	Page 13 of 22
Tower Engineering Professionals, Inc.	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
Raleigh, NC 27603 Phone: (91) 661-6351	Client Industrial Communications	Designed by Peter Laird

Description Face or Leg		RRUS 8843 B2/B66A C		RRUS 4415 1330 A		RRUS 4415 1830 H			108178 4415 H30		NC9248-(4):24-8C-45V		(3) 2,4" × 10" pape A			(3,2,4" x 10" pipe B		(3) 2,4" x (0" nine C			Stepro VFA12-WLL-30120 C Sector Mount (3)		A A Long Clark of THE LANGES AND	Mount Pipe		(2) SBNHII-1D45B w/ B	wiount ripe	(2) SBNIBL-DR5C w/ C	Mount Pipe	Subs. A minner at/Mount Pres-			Subb Antenna W/ Mount Pipe 13		Sub6 Antenna w/ Mount Pipe C		VZS01 w/ Mount Proc			VZS01 w/ Mount Pipe B		VZS01 w/ Mount Pape C			DB-B1-6C-12AB-0Z. A
Offset Type		From Leg		From J.cg		From Leg		3	far mou		From Leg		From Leg	1		From I.eg		From Leg			None		The last	riom i.eg		From Leg		From Leg		From Lon			From Leg		From Leg		From Leg			From Leg		From Leg			From Leg
Offsets. Horz Loteral Lert	عرعر =	4000	0.110	4.00	0.00	4.00	0.00	0.00	0.00	000	4.00	000	00.4	000	0.00	4.00	000	4 00	000	0000			4 00	907	0.00	4.00	000	4.00	000	900	00.0	0.00	00.9	0.00	4.00	0.00	4.00	000	000	4.00	0000	4.00	0.00	0.00	0.50
. Izimuth Adjustment	D	-10 000		20.000		10.000			-10.000		20.000		0000			0000		0000			0000		0.000	000.00-		50.000		50.000		55,000			-55.000		-55 000		-55.000			-55.000		-55.000			0000
Placement	N	159 00		159 00		150.00			100 651		159 00		159 00			159 00		159 00			29 00		1,40,447	149 00		148.00		148 00		148.00			00.841		148.00		148 00			148 00		148 00		1 400 400	148 00
		No Jee	l" Ice	No lec	1/2 lee	No loc	1/2" Ice	3 . ;	No Ice	1 15	Ne fee	1/2" loc	No lec	1/2" Ice	3 .	No loc	1/2" lee	No Jee	1/2" Icc], [c	No lee	l' lee	M. C.	I/2" Ice	l" Icc	No lee	1, Jee	No loc	1/2" Ice	- N	1/2" Ice	1, Icc	No los	l" Jee	No Jee	1/2" lee	No les	1/2" Ice	l. Jee	No Fee	1/2 loc 1" lec	Zo Ec	1/2" Icc	<u>.</u>	No Ice
C.vls Front	ĴĘ,	2 2	1 97	- S	10.7	- 84	201	5 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 19	1 14	1.79	2 18	3.40	4 45	5 20	3 40	2 20	3.40	4 45	29.70 43.88	58.05	13.53	12.23	12.78	1.62	12.23	11.61	12.35	13.07	4 56	4 89	4 56	4 89	4 22	2 5 5 6	2 20	6 97	7.58	2.83	7 58	5.82	6 97	200	583
C.A., Side	ĬĮ,	1.35	165	0.82	107	0.82	0.94	201	0.82	107	- 4	1.79	2 2 2	3.40	4 45	5 38	3 40	12 1	3.40	4 45	20.70 32.85	43 88	5	20.80	9.02	6 82	9 13	9 63	11.31	7.87	330	3.75	3 40	3.75	2 83	330	3.60	5 20	5 92	360	5 92	3 60	5 20	266	75.7
Weight	q _I	72.00	16 601	47.40	78.18	47.40	61.47	78.06	61.40	78.06	26 20	46.59	36.60	54.45	78.81	36 (6)	24.45	36.60	54.45	78.81	30418 (30)	340100	40.00	172.44	26488	88.35	254 88	76.95	166 26	265 SI	133.57	177 54	133.57	177 54	94.50	133 57	133.42	187 58	248 72	133 42	248.72	133 42	187 58	248 72	52 00

tnxTower	Job Wareham, MA	Page 14 of 22
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 75332.628773	Date 14:42:30 03/24/23
Raleigh, NC 27603 Phone: (919) 661-6351 F.IX: (919) 661-6350	Client Industrial Communications	Designed by Peter Laird

	or	lype	Horz	. legustment			rron	Side	
	1.48		Lateral						
			* * *		1/		Jt.	J.	91
20 d ACT 10 d BT	2	Mercan Lon	000	90000	14010	1º lee	4.34	2.96	99 00
70417041704	2	der mer i	000	ODG:	45.00	1/2" fee	807	274	63.61
Control of the Contro			000			1. Ice	1.34	2.96	00 66
152/1500A KRI 1-11RU49	<	From Leg	0.00	100 cc-	148.00	No Ice	2.05	9.8	84 40
			0.00			1" lee	2.22	1.54	123.8
132/1366A RRIE-131R049	œ	From Leg	4.00	-55 000	148 00	No Ice	887	52.	8440
			0.00			72 ICC	2.23	1.39	123.8
B2/H66A RRIL-HR049	b	From Leg	4.00	-55 000	148.00	No Icc	88.	55.	8440
			0.00			1/2" Ice	2.05	1.39	102.7
BS/B13 PB1LBR040	<	From Lev	4.00	-55 000	148 ()()	N Fee	77.7	5 3	7030
	:		0.00			1/2" lee	2.05	4	86 73
THE COURSE STREET, STR	:		000			l" Jec	2.22	1.28	105.K
150/1513 KTG I-1510/4C	2	From Leg	90.0	000 66-	148.00	No fee	20.5	101	10.50
			000			1. 100	2.22	1 28	105.8
B5/B13 RRI FBR04C	J	From Leg	4.00	-55 000	148.00	No Ice	88 1	101	70.30
			000			72 (66	2.05	4 6	86.7
Sector Marint LSM 502-31	:	None.	0.00	0000	00 874	N. 150	77.7	30.83	8.501
C TOTAL NUMBER OF THE PARTY OF	,	-			00001	1/2" Jue	42.21	42.21	2266
9 9						l" lee	54 43	5443	3051
AJR32 KRD901146-1 1866a	<	From Leg	4.00	-10 000	140.00	No lee	7.55	07.0	134.20
w/ Mount Pipe			00.0			1/2" Jee	8.30	8.09	203
A 10 3.2 P/D 1/0(11/46 1366	g	Erron I am	90 7	10.000	140.06	T. Joe	3.90	9.14	279.5
w/ Mount Prac	3	1011176	000	TOTAL STREET	00.041	1/2" Juc	830	808	203.1
1			00.0			l" Jee	8.96	9.14	279.5
AIR32 KRD901146-1 B66a	J	From Leg	4.00	-20 (100	140.00	No Ice	7.55	6.76	134.2
w/ Mount Pipe			0.00			1/2" Jue	8.30	8.09	203
			000			ool	96.00	9.14	2795
Alkoges 15-1 W/ Mount Pipe	<	From t.cg	4.00	-101100	140.00	No Ice	200	3.24	
			000			1" lee	6.63	4.00	221.5
AIR6449 B41 w/ Mount Pipe	œ	From Leg	4.00	10.000	140.00	No Ice	5.88	3.24	1177
			000			1/2" 100	6.26	3.74	166.8
	7		0.00]" lee	6.63	4.22	221.5
Alk6449 B41 W/ Mount Pipe	ن	From Leg	4 00	-20 000	140.00	No Ice	80.0	3.74	117.7
			000			201 2/1 	6.20	13.74	321 4
APXVAARR24 43-U-NA20	<	From Leg	4.00	-10 000	140 00	No Ice	20.24	99 01	157.2
w/ MP			00.0			1/2" Icc	20.89	12.21	290.8
			0.00			l" lee	21 55	13 49	435.2
APXVAARR24_43-U-NA20	22	From Leg	4.00	10.000	140.00	No Ice	20.24	10 66	157.2
w/ MP			0.00			1/2" Ice	20.89	12.21	290.89
APXVA ABB21 43-II-NA 20		Broom Loss	4 00	-211 Cust	140.00	No Inc	20.00	13.49	157.7
w/MP	J	Sar mar	000	10 mm	140.00	1/2" Tes	20.80	15 00	2000
			0.00			1" lee	21.55	13.49	435.2
RR0511B4	<	From Leg	4.00	-10.000	140.00	No Icc	2.79	61.1	50.7
			00.0			1/2" Ice	3.00	1.34	715
			000] Joe	3.21	1.50	35.4
		Total Comments of the comments of							

-	qor	Page
mxiower	Wareham, MA	15 of 22
Transfer During to Same	Project	Date
Professionals, Inc.	TEP No. 75332.828773	14:42:30 03/24/23
326 Tizon Road		
Raleigh, VC 27603	Client	Designed by
Phone: (919) 661-6351	Industrial Communications	1
F4F: (919) 661-6350		Lallu Lallu

Peter Lai	C,v1,1 F'eight Side
	Cods Cods Front Side
	Рисетен
indusinal Communications	. Izmuth Aehwinent
	Offsets: Horz Luteral
	Offset Type
20	Fuce or Leg
Phone: (919) 661-6350 FAV: (919) 661-6350	

	dol	Page
inxlower	Wareham, MA	16 of 22
Tower Engineering Professionals, Inc. 326 Tryon Road	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
Kulengh, NC 27603 Phone: (919) 661-6351 F.IX: (919) 661-6350	Client Industrial Communications	Designed by Peter Laird

From Side	H ergin
Af the	91
1 96	63 90
2.14	80 65
2.32	100.10
1.96	63 90
2.14	80.65
2.32	100.10
2.01	21.85
2.19	39 53
2.37	59 97
2.01	21.85
2.19	39 53
2.37	59 97
23.85	1260 00
34 12	1803.00
14.39	2346 OI
77 lee 1" lee	34 12 34 12 44 39 44 39

			2	SS-Lec	I russ-Leg Properties	Suries	
Section Designation	nau.	. Irea Ice	Self Weight	he Weight	Equiv. Diameter	Equiv. Diameter Ice	Leg
	im²	in	91	4	111	Ξ	1113
Valmont 196994 -	870 2K9	3052 793	446 74	923 30	6.1144	21 2001	3 682
Vahnont 196994 (10-)(158ks)	870 289	3047 597	446 74	912.68	6.044	21.164	3 682
Valmont 194434	1793 736	6090 756	455.13	1939 50	6.228	21 148	3.682
Valmont 194651	1911 152	6137 546	565 79	1662 95	6.636	21.311	5.301
Valmont 195213	2040 959	6179.815	701 14	1629 98	7.087	21.458	7.216
Valmont 195637	2178712	6215 412	859 24	1600 50	7 565	21.581	9.425
Valmont 195960	2314648	6240,085	1036 66	1535 98	8.037	21.667	11.928
Valmont 195962	2454 943	6243 210	1235 13	1435 32	8.524	21.678	14.726
Valmont 195964	2454 943	6106.482	1235 13	1206 45	8 524	21.203	14.726
			Pos	d Con	Load Combinations	ons	
Camb.			Desc	Description			
No.							
_							
1.2 Dead+1.6	1.2 Dead+1.0 Wind 0 deg - No lee	To lee					
11.9 Dead+1.6	0.9 Dead+1 0 Wml 0 deg - No lee	do lee					
4 12Dend+10	1.2 Dend+1.0 Wind 30 deg - No lee	No lee					
).[+bud(10.0	0.9 Dead+1.0 Wind 30 deg - No Ice	No Ice					
5 1.2 Dead+1 C	1.2 Dead+1 0 Wind 60 deg - No Ice	No Ice					
7 0.9 Dead+1 0 Wind 60 day - No Lee	Wend 60 day	Mrs Issu					
The state of the s	A TITLE CO. CO.	770 77					

Š	Valmont 195962	2454 943	6243 210	235 13	435 32	8.524	21.678	14.726
Val	Valmont 195964	2454 943	6106.482	1235 13	1206 45	8 524	21.203	14.726
								•
				Loa	Load Combinations	binatic	Suc	
mb.				Desc	Description			
. 5								
_	Dead Only							
2	1.2 Dead+1.0	Wind 0 deg - h	to lee					
~	0.9 Dead+1.0	0.9 Dead+1.6 Wml 0 drg - No fee	Jo lee					
4	1.2 Dend+1 (1.2 Dend+1 0 Wand 30 deg - No lee	No lee					
.0	0.9 Dead+1.6	0.9 Dead+1.0 Wind 30 deg - No Ice	No Ice					
و	1.2 Dead+1 (1.2 Dead+1 0 Wind 60 deg - No Ice	No Ice					
7	0.9 Dead+1.0	0.9 Dead+1.0 Wind 60 deg - No Ice	No Ice					
ж	1.2 Dead+1.0	1.2 Dead+1.0 Wind 90 deg - No Ice	No Icc					

	Maximum	Tower	Maximum Tower Deflections - Service Wind	- Service	Wind
Elevation	Horz	Gov.	Titt	Twist	
, ii	Deflection	loud (·	
160 - 150	2310	39	0 131	0.014	
150 - 140	2 029	39	0.130	0.013	
140 - 120	81-2.1	39	0.1.6	0,011	
120 - 100	1 239	36	0.105	0.009	
100 - 80	0.830	39	0.082	0.007	
80 - 60	0.515	36	0.000	0.005	
50 - 40	0.284	39	0.042	0.004	
40 - 20	0 134	39	0.026	0.002	
0-02	0.034	36	0.013	0.001	

Page 18 of 22	Date 14:42:30 03/24/23	Designed by Peter Laird
Wareham, MA	TEP No. 75332.828773	Industrial Communications
Job	Project	Client
mxTower	Tower Engineering Professionals, Inc. 326 Tryon Road	Raleigh, NC 27603 Phone: (919) 661-6351 FAX: (919) 661-6350

	Crincal Deflections and Radius of Curvature - Service Wind	IS all	Naulus o	2017	יייייייייייייייייייייייייייייייייייייי	AICC MILITE
Elevation	hpurtenance	Gov.	Deflection	71.11	74151	Radius of
		lond				Curvature
¥		Comb.	13	6	a	1/
159.00	TPA65R-BURD w/ Mount Pipe	30	2.282	0.131	0014	400545
148.00	(2) SBNI II I-11345/3 w/ Mount Pipe	39	1.973	0 130	0.013	Jul
140.00	AR32 KRD901146-1 B66a w/	36	1.748	0.126	0.011	69154
	Mount Pape					
129 00	(2) MX08FRO665-21 w/ Mount	36	1.457	0.116	0100	52083
	Prince					

		Maximum	Tower	Deflections	Maximum Tower Deflections - Design Wind
Section	Elevation	Horz.	Gow.	Tilt	THIST
No.		Deffection	part		
	1/	in	Comb	٥	ū
Ξ	160 - 150	14 084	2	797.0	0.085
17	150 - 140	12.378	7	0.792	0.080
T3	140 - 120	10.668	7	0.769	0.070
1.4	120 - 100	7 567	2	() 642	0.055
TS	100 - 80	5 069	2	0.497	0.043
.Te	80 - 60	3 146	7	0 366	0.032
1.1	60 - 40	1 7.38	2	0.254	0.023
7.8	40 - 20	0.823	2	0.160	0.014
L6	20 - 0	0 207	7	0.080	0.007

	Critical Deflections and Radius of Curvature - Design Wind	ns and	Kadius o	T Curvat	nre - Des	ign Wind
Flevation	, Ippurtenance	Gov. Load	Deflection	744	Twast	Radius of Curvature
11		Comb.	in a		4	· ·
159.00	TPAGSR-BU8D w/ Mount Pipe	2	13 914	797	0.084	65751
148 00	(2) SBNIIII-1D45B w/ MountPipe	2	12.034	0.789	0.078	306951
140.00	AIR32 KRD901146-1 B66a w/	2	10 668	0.769	0.020	11309
129.00	Mount Pipe (2) MX08FRO665-21 w/ Mount Pipe	2	8.894	0.708	0.061	122

	Criteria	Bolt Tension Member Block Shear
	. Howable Ratio	
	Ratio Loud Mowable	0.019
Data	Mowable Food per Bott	53014 40
Bolt Design [Maximum faud per Bott	1010 73
olt D	Number Of Botis	9
ш	Bolt Size	000 1
	1	A325N A325X
	Сопротен Тург	Leg
	Изечанов Я	160
	Section No.	ī.

8	doL	Page
Inxlower	Wareham, MA	19 of 22
Tower Engineering Professionals Inc	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
326 Tiyon Road		
Raleigh, NC 27603	Client	Designed by
Phone: (919) 661-6351 Falt: (919) 661-6350	Industrial Communications	Peter Laird

.Vo.	Lilevation	Type	Grade	BOIL NEE	Number Of Holis	Load	Load	Load	лиожарте Капо	כעובעם
	· !				none	the non	lh lh	Allowable	!	
		Top Girt	A325X	1 000	-	1183.23	15760.50	0 075	-	Member Block Shear
1,5	150	Leg	A325N	0001	9	3517.65	53014.40	990.0	-	Bolt Tension
		Diagonal	A325X	1 000	-	7989.65	10662.90	0.749	-	Member Block Shear
		Тор Сил	A325N	000	-	692.86	15760.50	0.044	_	Member Block
13	9	l.ca	A325N	000	9	12312.60	53014.40	0.232	-	Shear Boft Tension
		Dagonal	A325X	1 000	-	12788.90	19470.70	0 657	-	Member Block
					,				,	Shear
7	120	g3:	A325N	1 000	S	22107.30	53014.40	0 417	_	Bolt Tension
		Diagonal	A325X	1000	-	12720.30	26267 60	0 484		Member Block
										Shear
LS	COL	1.0,8	A325N	1250	9	31029.30	82835.00	0.375		Bolt Tension
		Dagonal	A325X	1 000	_	12557.80	26267.60	0.478	-	Member Block
										Shear
16	80	1,08	A325N	1 000	12	18251.40	53014.40	0 344	-	Bolt Tension
		Dagonal	A325X	0.875		17865.30	29580.00	0 604	_	Gussel Bearing
1.1	90	I.cg	A325N	1 000	13	2222K IG	53014.40	0.419	-	Bolt Tension
		Diagonal	A325X	0.875	-	17225.30	29580.00	0 582	-	Gussel Bearing
28	40	l.eg	A325N	1250	13	25808.50	82835.00	0.312	-	Bolt Tension
		Diagonal	A325X	0.875	_	17069.70	29580.00	0.577	-	Gussel Hearing
6.1	20	Dagonal	A325X	0.875	-	18406.30	29580.00	0 622	_	Gusset Bearing

Compression Checks

Section No.	Elevation	Size	Ţ	I.a	KUr	V	. d	φ.	Ratio
	¥		1/	11		711	41	41	4/2
TI	160 - 150	Valmont 196994 - 10-ft	10.02	10 02	416	3.682	-7744.08	145979 00	0.053
T2	150 - 140	Valmont 196994 (10-ft.)	10 02	10 02	416 K=100	3 682	-26550 10	165942.00	0.160
T3	140 - 120	Valmont 194434	20.03	10.02	413 K=100	3.682	-87373.60	166292 00	0.525
T4	120 - 100	Valmont 194651	20.03	10.02	35.7 K=1.00	5.301	-151074 00	248431 00	909.0
T.5	(18 - 001	Valmont 195213	20.03	10.02	30.6 K=1.00	7.216	-209721.00	34796100	0.603
T6	09 - 08	Valmont 195637	20.03	20.03	48.8 K=1.00	9,425	-246093.00	401936.00	0.612
4.1	00 - 40	Valmont 195960	20 03	20.03	48.8 K=1.00	11 928	-300300.00	00 186805	0.590
78	40 - 20	Valmont 195962	20.03	20.03	48.7 K=1.00	14 726	-349937 00	628758 00	0.557
T:0	20 - 0	Valmont 195964	20.03	20 03	48.7 K=1.00	14.726	-393691 00	628758 00	0.626

E	dol	Page
Inxlower	Wareham, MA	20 of 22
Tourse Businessies	Project	Date
Professionals, Inc.	TEP No. 75332.828773	14:42:30 03/24/23
326 Tryon Road		
Raleigh, N.C. 27603	Client	Designed by
Phone: (919) 661-6351	Industrial Communications	Peter Laird

1 P., / \phiP., controls

0.104 0.169 0.227 0.239	4568.17 4607.46 4671.02 4709.25 4746.81	741.87 741.87 789.16 1070.29 1229.39	0.196 0.196 0.196 0.196	376667 00 491973.00 622654 00 768708.00	93.2 93.2 92.4 97.6	138 138 136	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120 - 100 100 - 80 80 - 60 60 - 40 40 - 20 20 - 0	
0 104	4568.17	47571	0.196	276735.00	95.2	1.42	0.5	120 - 100	
0.514	4712 08	2421.49	0.196	192177.00	94.1	1.40	6.0	140 - 120	
0.439	4674.98	2054.54	961 0	192177.00	94.5	1.41	5.0	150 - 140	
0.592	4674 98	2765.45	0.196	165670.00	94.5	14.1	50	160 - 150	
Ratio	9	41	'111	119		II.		"	
Siress		1.	7	φ'',	KIV	Ld	Dugonul Size	Elevation	
			I Data	iagonal	eg D	Truss-Le			

Diagonal Design Data (Compression)

$L = L_u = K P F = A = P_u = \varphi P_u$		11.93 5.30 128.5 0.902 -5247.08 12239.40 $K = 1.001$	12.50 5.63 13.00 -82.99.81 10949.10 10.50 2.50 10.50 1	13.80 6.33 13.02 1.780 -13018.60 23616.10	15.24 7 08 12.1 2.100 -12308.40 3026070	16.80 7.88 128.1 2.190 -12035.00 24882.90	25.01 12.30 13.2 3.375 -18997.30 41714.90	26.26 12.92 1421 3.375 -17791.90 37782.20	27.59 13.59 149.4 3.375 -16611.40 34456.40	29.01 14.29 157.2 3.375 -19746.80 30862.80
Size		1.2 1/2x2 1/2x3/16	1.2 1/2x2 1/2x3/16	L3x3x5/16	L.3 1/2x3 1/2x5/16	L3 1/2x3 1/2x5/16	21.3 1/2x3 1/2x1/4x1/2	21.3 1/2x3 1/2x1/4x1/2	21.3 1/2x3 1/2x1/4x1/2	21.3 1/2x3 1/2x1/4x1/2
Elevation	"	160 - 150	150 - 140	140 - 120	120 - 100	100 - 80	09 - 08	(1) - (1)	40 - 20	20 - 0
Section		Ε	172	g	크	ST.	Ţ.	17	178	179

¹ P., / \P. controls

Top Girt Design Data (Compression)

Ratio P.,	41,	0.055	0.027
4P., Ratio	47	19238 00	1716780
P _u	41	1.090 -1065 80	-460.43
V	in	1.090	1.090
KUr			116.2 K=1.03
120	*	4 58	5.58
Т	11	00.9	7.00
Size		1.3x3x3/16	1.3x3x3/16
Elevation	"	160 - 150	150 - 140
Section No.		=	7.7

Towns,	qop	Page
INXIONEL	Wareham, MA	21 of 22
Towner Francisco	Project	Date
Professionals, Inc.	TEP No. 75332.828773	14:42:30 03/24/23
326 Tryon Roud		
Ratergh, NC 27603	Client	Designed by
Phone: (919) 661-6351	Industrial Communications	7.000
EAV: 1070) 661-6250		במומורמוומ

1 P. / \phiP. controls

Tension Checks

		F	g Des	ign D	ata (Leg Design Data (Tension)	(uc			
Section	Elevation	Size	7	1,4	KVr	4	F.	φ <i>P</i> ,	Ratio	
	ij		¥	11		in.	97	9)	. I.o.	
	160 - 150	Valmont 196994 - 10-ft	10.02	10.02	416	3.682	6064.36	165670 00	0.037	
<u> </u>	150 - 140	Valmont 196994 (10-tt.] 58ksin	10 02	10 02	416	3 682	21105.90	192177 00	0.1101	
E:	140 - 120	Valmont 194434	20 03	10.02	41.3	3 682	73875 60	192177 00	0.384	
7.4	120 - 100	Valmont 194651	20 03	10 02	35.7	5.301	132644.00	276735 00	0.479	
13	100 - 80	Valmont 195213	20 03	10 02	30.6	7.216	186176.00	376667 00	0.4941	
1,0	09 - 08	Valmont 195637	20.03	20.03	48.8	9.425	219017.00	491973 00	0.445	
1.1	60 - 40	Valmont 195960	20.03	20 03	488	11 928	266738 (10	622654 00	0.428	
20	40 - 20	Valmont 195962	20 03	20.03	48.7	14 726	309702 00	768708 00	0.403 2	
T.	Z0 - D	Valmont 195964	20.03	20 03	48.7	14 726	347282.00	768708 00	0.452 1	

1 P. / 4P. controls

Truss-Leg Diagonal Data

ection	Elevation	Diagonal Size	1.4	Kl/r	41,	Ψ,	<u>.</u> -	.14	Stress
No.	Ĵŧ		¥		q)	in	119	q	Rano
Ξ	160 - 150	0.5	14.	94.5	165670.00	0 196	2765.45	4674.98	0.592
1.5	150 - 140	0.5	14.1	94.5	192177.00	961 ()	2054.54	4574.98	0.439
Ω	140 - 120	0.5	01:10	1.46	192177.00	961 0	2421.49	4712.08	0.514
1.4	120 - 100	0.5	1.43	95.2	276735.00	961 0	475.71	4568.17	0 104
115	08 - 001	0.5	1 40	94.4	376667.00	0.196	741.87	4607.46	1910
91.	80 - 60	0.5	1.39	93.2	491973.00	961.0	789 16	4671 02	0.169
LJ.	00 - 40	0.5	38	92.1	62265 1.00	961.0	1070.29	4709.25	0 227
<u></u>	40 - 20	0.5	1.36	91.6	758708.00	0.196	1229.39	47.46.K1	0.259
13	20-0	0.5	36	916	768708.00	0 196	1132.65	4746.83	0.239

		Diagona	=1	Jesigr	n Data	_	(eusion)		
Section No.	Elevation	Size	1,	Lu	Kir		p	d.	Ratio P.
	ll l		1	11		111	q)	q	0/,
F	160 - 150	1.2 1/2×2 1/2×3/16	11 93	5.30	846	0.519	4842.18	22557.10	0.215
2	150 - 140	1.2 1/2x2 1/2x3/16	12.50	5.63	90.0	0.519	7989.65	22557.10	0.354
Ľ	140 - 120	1.3x3x5/16	13.80	6.33	85 d	1.071	12788.90	46602.80	0.274
T4	120 - 100	1.3 1/2x3 1/2x5/16	14.50	6.73	77.0	1.311	12720.30	57042.80	0.223
TS	100 - 80	L3 1/2x3 1/2x5/16	16.80	7.88	6 68	1.311	12557.80	57042.80	0.220
Té	09 - 08	21.3 1/2x3 1/2x1/4x1/2	25.01	12.30	137.5	2.156	17865.30	93796.90	0.190
[]	05-40	21.3 1/2x3 1/2x1/4x1/2	26.26	12.92	14.3	2.156	17225.30	93796.90	0.184
×	40 - 20	213 L2x3 L2x1/4x1/2	27 59	13 59	151.7	2.156	17069.70	93796.90	0.182
47	20 - 0	21.3 1/2x3 1/2x1/4x1/2	10.67	14 29	159.5	2 156	18406.30	93796.90	961 0

	dob	Page
INXIOWER	Wareham, MA	22 of 22
Tower Engineering	Project TEP No. 75332.828773	Date 14:42:30 03/24/23
326 Tryon Road		
Kalesgh, NC 27603	Client	Designed by
Phone: (919) 661-6351	Industrial Communications	Peter Laird

1 P., / W. controls

Top Girt Design Data (Tension)

Sevenon	Size	T	14	VEN	7	, ,	01,0	Katro
"		Ŋ	¥		in	419		, , , , , , , , , , , , , , , , , , ,
60 - 150	L3x3x3/16	009	458	689	63.9 0.659	1183.23	38679 40	0.041
50 - 140	L3x3x3/16	7.00	5.58	767	0.659	692.86		0.024

¹ P., / \(\phi\), controls

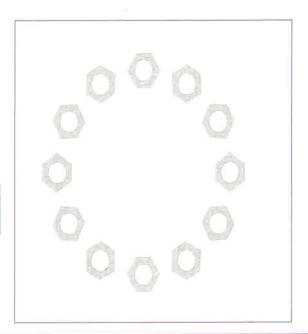
Section Capacity Table

No.	Elevation	Сомронем	Syze	Critical Element	d. 49	of the	% Capacity	Pass
Ξ	160 - 150	Lug	Valmont 196994 - 10-ft Section	m	-7483 23	145979.00	59.2	Puss
2	150 - 140	Leg	Valmont 196994 (10-ft 58ksr)	15	-25889.00	165942 00	43.9	Pass
13	140 - 120	1.09	Vulmont 194434	27	-87373.60	166292.00	525	Pass
7.	120 - 100	1.08	Valmont 194651	42	-151074 00	248431.00	8 (99	Pass
13	100 - 80	I.c.	Valmont 195213	57	-209721-00	347961.00	603	Pass
9.L	09 - 08	l.eg	Valmont 195637	72	-246093 00	401936.00	612	Pass
Ţ	60 - 40	I.c.	Valmont 195960	83	-300300 00	508981.00	59.0	Pass
ž	40 - 20	LCR	Valmont 195962	06	-349937 00	628758.00	557	Pass
61.	20 - 0	1.сд	Valimont 195964	66	-393691 00	628758.00	62.6	Pass
Ξ	160 - 150	Dingonal	L2 1/2x2 1/2x3/16	12	-5247.08	12259 40	42.8	Pass
							45.4 (b)	
탈	150 - 140	Diagonal	1.2 1/2x2 1/2x3/16	23	-8299.81	10949 10	75.8	Pass
Ω.	140 - 120	Diagonal	L3x3x5/16	33	-13018.60	2361610	55.1	Pass
							65.7 (h)	
7.	120 - 100	Diagonal	1.3 1/2x3 1/2x5/16	87	-12308 40	30260 70	40.7	Pass
							48.4 (b)	
13	100 - 80	Diagonal	1,3 1/2x3 1/2x5/16	(9)	-12035.00	24882 90	48.4	Pass
9,1.	80 - 60	Diagonal	21.3 1/2x3 1/2x1/4x1/2	75	-18997.30	4171490	455	Pass
							60 4 (b)	
LI.	60 - 40	Diagonal	2I.3 1/2x3 1/2x1/4x1/2	84	-17791 90	37782 20	17.1	Pass
							58.2 (b)	
.L8	40 - 20	Dagonal	2L3 1/2x3 1/2x1/4x1/2	66	-16611.40	3415640	48.6	Pass
							57.7 (b)	
6.1.	20 - 0	Diagonal	21.3 1/2x3 1/2x1/4x1/2	102	-19746.80	30862 80	640	Pass
=	160 - 150	Top Gut	L3x3x3/16	'n	-1065 80	19238 00	5.5	Puss
							7.5 (h)	
.1.5	150 - 140	Top Girt	L.3x3x3/16	ж 	-460.43	1716780	2.7	Pass
							44(b)	
							Summary	
						Leg (79)	62.6	Pass
						Dingonal	758	Pass
						(2)		
						Top Chrt	7.5	Pass
						Œ.		
						Boll Cheeks	749	a SS
						RATING =		Pass

Program Version B 1.1 (1 - 6/3/2021 Pric G /Shared drives/75265 - 75650/75321P-391863_L-828773__Wachan. MA_Shuchusl Analysis/TXX/Wachan MA.cri

APPENDIX B ADDITIONAL CALCULATIONS

Self Support Anchor Rod Capacity


Site Info	
Site #	N/A
Site Name	Wareham, MA
TEP#	75332.828773

Analysis Considerations	
TIA-222 Revision	G
Grout Considered:	No
I _{ar} (in)	1.25
Eta Factor, η	0.5

Applied Loads	THE PARTY NAMED IN	77-1-12
	Comp.	Uplift
Axial Force (kips)	418.50	368.38
Shear Force (kips)	46.48	41.74

nsidered Eccentricity	II Wales
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties		Analysis Results	
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(12) 1-1/4" ø bolts (F1554-105 N; Fy=105 ksi, Fu=125 ksi)	Pu_c = 34.88	φPn_t = 96.9	Stress Rating
l _{ar} (in): 1.25	Vu = 3.87	φVn = n/a	44.0%
- · · ·	Mu = n/a	φMn = n/a	Pass

CCIplate - Version 4.1.2 Analysis Date: 3/24/2023

SST Unit Base Foundation

Site # : N/A
Site Name: Wareham
TEP Number: 75332.828773

TIA-222 Revision:

G

Top & Bot, Pad Rein, Different?:	
Tower Centroid Offset?:	V
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Re	actions	
Global Moment, M:	7584.637	ft-kips
Global Axial, P:	61.233	kips
Global Shear, V:	73.83	kips
Leg Compression, P _{comp} :	418.501	kips
Leg Comp. Shear, V _{u_comp} :	46.48	kips
Leg Uplift, Puplift:	368.376	kips
Leg Uplift. Shear, V _{u_uplift} :	41.739	kips
Tower Height, H:	160	ft
Base Face Width, BW:	22	ft
BP Dist. Above Fdn, bp dist:	3	in

Found	ation Anal	ysis Check	s	
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	189.72	73.83	38.9%	Pass
Bearing Pressure (ksf)	3.00	0.99	33.0%	Pass
Overturning (kip*ft)	14922.44	8344.76	55.9%	Pass
Pier Flexure (Comp.) (kip*ft)	2753.59	220.78	8.0%	Pass
Pier Flexure (Tension) (kip*ft)	1480.93	198.26	13.4%	Pass
Pier Compression (kip)	15912.00	434.73	2.7%	Pass
Pad Flexure (kip*ft)	5681.85	1236.38	21.8%	Pass
Pad Shear - 1-way (kips)	798.31	212.13	26.6%	Pass
Pad Shear - Comp 2-way (ksi)	0.190	0.092	48.3%	Pass

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier:	5.00	ft
Ext. Above Grade, E:	0.50	ft
Pier Rebar Size, Sc:	8	
Pier Rebar Quantity, mc:	24	
Pier Tie/Spiral Size, St:	5	
Pier Tie/Spiral Quantity, mt:	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Structural Rating:	48.3%
Soil Rating:	55.9%

Pad Properties		
Depth, D :	6.00	ft
Pad Width, W ₁ :	43.00	ft
Pad Thickness, T :	1.75	ft
Pad Rebar Size (Bottom dir. 2), \$p ₂ :	9	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	85	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, δc:	150	pcf

Soil Properties			
Total Soil Unit Weight, γ :	100	pcf	
Ultimate Gross Bearing, Qult:	4.000	ksf	
Cohesion, Cu:		ksf	
Friction Angle, $oldsymbol{arphi}$:	30	degrees	
SPT Blow Count, Nolows:	8		
Base Friction, μ :	0.25		
Neglected Depth, N:	4.0	ft	
Foundation Bearing on Rock?	No		
Groundwater Depth, gw:	1.5	ft	

<-- Toogle between Gross and Net