Stormwater Management Report

150 Tihonet Road PV+ES Project

150 Tihonet Road (aka 0 & 169 Tihonet Road) Wareham, Massachusetts

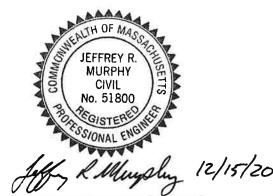
Prepared for:

Borrego Solar Systems, Inc. 55 Technology Drive, Suite 102 Lowell, MA 01851

ROPPEGO SOLAR

Prepared by:

BEALS+THOMAS


BEALS AND THOMAS, INC. 32 Court Street Plymouth, MA 02360

Revised: November 3, 2020 Revised: December 15, 2020

Calculated by: Nathaniel B. Bautz, EIT

Checked by: Jeffrey R. Murphy, PE

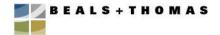
Approved by:

Jeffrey R. Murphy, PE

TABLE OF CONTENTS

1.0 IN	NTRODUCTION	1
	RE-DEVELOPMENT CONDITIONS	
	SITE CONDITIONS	
	SOIL DESCRIPTION	
	Hydrologic Analysis	
3.0 PC	OST-DEVELOPMENT CONDITIONS	3
3.1	DESIGN STRATEGY	3
3.2	HYDROLOGIC ANALYSIS METHODOLOGY	3
3.3	COMPLIANCE WITH MASSDEP STORMWATER MANAGEMENT STANDARDS	3
	ILLICIT DISCHARGE COMPLIANCE STATEMENT	
3.5	MASSDEP'S CHECKLIST FOR A STORMWATER REPORT	8

LIST OF ATTACHMENTS


ATTACHMENT 1: SOIL DATA

ATTACHMENT 2: PRE-DEVELOPMENT HYDROLOGIC ANALYSIS ATTACHMENT 3: POST-DEVELOPMENT HYDROLOGIC ANALYSIS

ATTACHMENT 4: DRAWDOWN AND GROUNDWATER RECHARGE CALCULATIONS

ATTACHMENT 5: SITE OWNER'S MANUAL

ATTACHMENT 6: STORMWATER POLLUTION PREVENTION PLAN

Wareham, Massachusetts 1833112RP004C

1.0 <u>INTRODUCTION</u>

The proposed project includes a stormwater management system designed to mitigate potential impacts the proposed project could have on the existing watershed. Stormwater controls are proposed to control peak runoff rates, provide water quality, promote groundwater recharge and sediment removal. The proposed system has been designed to comply with:

- The 2008 Massachusetts Department of Environmental Protection (MassDEP) Stormwater Management Handbook,
- The Massachusetts Wetland Protection Act (310 CMR 10.00), and
- Town of Wareham Zoning Bylaw
- Wareham Wetland Protective Bylaw

The pre- and post-development hydrologic conditions were modeled using HydroCADTM version 10.00 to demonstrate that post-development stormwater runoff rates will be less than or equal to the pre-development rates. Watershed maps with soil types as well as detailed analysis of the model results are also included. The following table summarizes the peak runoff rates for the pre- and post-development conditions.

Table 1: Pre- & Post-development Peak Runoff Rate Comparison, units are in cubic feet per second (cfs).

Stame Event	2 Year		10 Year		100 Year	
Storm Event	Pre	Post	Pre	Post	Pre	Post
Design Point 1	0.2	0.1	0.8	0.5	2.4	1.6
Design Point 2	2.4	2.3	4.6	4.4	9.7	8.8
Design Point 3	0.0	0.0	0.0	0.0	0.3	0.1
Design Point 4	0.0	0.0	0.1	0.0	2.1	0.1
Design Point 5	0.0	0.0	0.1	0.0	2.1	1.3
Design Point 6	2.6	2.3	5.4	4.6	15.2	12.5

2.0 PRE-DEVELOPMENT CONDITIONS

2.1 Site Conditions

The site is accessed from Tihonet Road. The site is currently undeveloped and is primarily wooded. Runoff from the northern most portion discharges to an existing stream on the northern side of the property. Runoff from the eastern most portion of the site flow to a wetland system on the east side of the property. Runoff from the western most portion of the site flow to a wetland and potential vernal pool system on the west side of the property. Runoff from the southwestern portion of the site drain to a wetland system on the southwest side of the property. Runoff from the northwestern portion of the site drain to a wetland and potential vernal pool system on the northwest side of the property. Runoff from the southwest, west and northwest wetland system ultimately discharge to Tihonet Pond. South of the proposed solar array, there is an existing cleared utility transmission easement.

The site does not contain, nor is it tributary to any Critical Areas.

The site does not discharge to a surface water with a TMDL or draft TMDL.

2.2 Soil Description

The Natural Resources Conservation Service (NRCS) lists the on-site soils groups as hydrologic soil class A, B and D. The soil groups classified by NRCS as hydrologic soil class A include Carver coarse sand, Poquonock sand, and Windsor loamy sand. These soil groups constitute a large portion of the project area. On-site areas mapped as Canton fine sandy loam are classified as hydrologic soil class B. Hydrologic soil class D series found on-site include Birchwood sand, Massasoit-complex and Udipsamments.

2.3 Hydrologic Analysis

Sub-catchment areas were delineated based on existing runoff patterns and topographic information. This information is shown on the *Pre-Development Conditions Hydrologic Areas Map* included in Attachment 2. Summaries of each area with respect to Curve Number and Time of Concentration calculations can be found in the model results also in Attachment 2.

3.0 POST-DEVELOPMENT CONDITIONS

3.1 Design Strategy

During the design phase of the site layout, consideration was given to conserving environmentally sensitive features and minimizing impact on the existing hydrology. To achieve this, the proposed grading endeavored to match the existing drainage patterns where feasible.

The wetland systems in the vicinity of the site were evaluated as individual design points to demonstrate that these systems maintain their existing hydrology.

The proposed solar panels are raised above the ground with the leading edge tilted to the south. Stormwater that lands on the panels will sheet down off the front edge to the pervious sandy ground below, which will be vegetated with an herbaceous seed mix.

There will be several concrete pads associated with the utility equipment that will produce a negligible amount of runoff which will flow to adjacent pervious soils. These have been accounted for in the stormwater design and analysis.

3.2 Hydrologic Analysis Methodology

The established design points used in the pre-development conditions analysis were used in the post-development analysis for direct comparison. The tributary areas and flow paths were modified to reflect post-development conditions. See Attachment 3 for the *Post-Development Conditions Hydrologic Areas Map*. Summaries of each area with respect to Curve Number and Time of Concentration calculations can be found in the model results in Attachment 3.

3.3 Compliance with MassDEP Stormwater Management Standards

The proposed stormwater management system was designed in compliance with the ten (10) MassDEP Stormwater Management Standards. The following summary provides key information related to the design approach and mitigation measures for stormwater.

STANDARD 1:

No new stormwater conveyance (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

There will be no direct discharge of untreated stormwater from the site. Erosion control barriers will be installed as depicted on the plans and will remain in place throughout construction and until the site is stabilized with vegetation.

STANDARD 2:

Stormwater management systems shall be designed so that postdevelopment peak discharge rates do not exceed pre-development peak discharge rates.

The proposed stormwater management system will effectively maintain the post-development peak discharge rates for the 2-, 10-, and 100-year, 24-hour storms. Refer to Section 1.0 Introduction for a summary of the peak runoff rates.

STANDARD 3:

Loss of annual recharge to groundwater shall be eliminated or minimized through the use of environmentally sensitive site design, low impact development techniques, stormwater management practices and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil types. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The proposed solar panels, while covering a large footprint, will allow water to sheet flow to the ground below where it can be absorbed into the sandy on-site soils. Other minimal areas of impervious (i.e. concrete pads) as well as the proposed changes in vegetative cover have been accounted for in the design. Proposed infiltration basins will provide the required recharge based on the impervious footprint of the various concrete pads. Therefore, recharge of groundwater will be maintained under the post-development condition.

1833112RP004C

STANDARD 4: Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS).

The proposed project does not include any proposed impervious surfaces requiring treatment for water quality. Therefore, the 80% TSS removal requirement does not apply.

STANDARD 5:

For land uses with higher potential pollutant loads (LUHPPLs), source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

The proposed project is not associated with stormwater discharges from land uses with higher potential pollutant loads.

STANDARD 6:

Stormwater discharges to critical areas must utilize certain stormwater management BMPs approved for critical areas. Critical areas are Outstanding Resource Waters, shellfish beds, swimming beaches, coldwater fisheries and recharge areas for public water supplies.

There are no stormwater discharges to critical areas associated with this project.

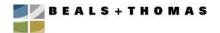
STANDARD 7:

Redevelopment of previously developed sites must meet the Stormwater Management Standards to the maximum extent practicable. However, if it is not practicable to meet all the Standards, new (retrofitted or expanded) stormwater management systems must be designed to improve existing conditions.

The proposed project is a new development, and therefore this standard does not apply.

STANDARD 8:

A plan to control construction-related impacts during erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.


Since the project will disturb greater than 1 acre, a DRAFT Stormwater Pollution Prevention Plan (SWPPP) has been developed and is included in Attachment 6. The SWPPP will be finalized prior to construction to comply with Section 3 of the NPDES Construction General Permit for Stormwater Discharges; therefore the requirements of Standard 8 are fulfilled.

STANDARD 9: A Long-Term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

The Site Owner's Manual complies with the Long-Term Pollution Prevention Plan (Standard 4) and the Long-Term Operation and Maintenance Plan (Standard 9) requirements of the 2008 MassDEP Stormwater Management Standards. The Manual outlines source control and pollution prevention measures and maintenance requirements associated with the proposed development. A Site Owner's Manual is included as Attachment 5.

STANDARD 10: All illicit discharges to the stormwater management system are prohibited.

There will be no illicit discharges to the proposed stormwater management system associated with the proposed project. An Illicit Discharge Compliance Statement is provided on the following page.

3.4 Illicit Discharge Compliance Statement

An illicit discharge is any discharge to a stormwater management system that is not comprised entirely of stormwater, discharges from fire-fighting activities, and certain non-designated non-stormwater discharges.

To the best of my knowledge, no detectable illicit discharge exists on site. The site plans included with this report detail the storm sewers that convey stormwater on the site and demonstrate that these systems do not include the entry of an illicit discharge. A Site Owner's Manual is included, which contains the Long Term Pollution Prevention Plan that outlines measures to prevent future illicit discharges. As the Site Owner, I will ultimately be responsible for implementing the Long Term Pollution Prevention Plan.

Signature:

Owner's Name

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

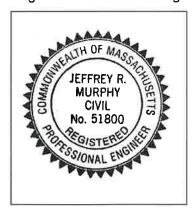
² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date	12/15/20
Signature and Date	

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new a redevelopment?	ınd
New development ■ New development New development ■ New development New developme	
Redevelopment	
Mix of New Development and Redevelopment	

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	☐ Credit 2
	☐ Credit 3
\boxtimes	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
\boxtimes	No new untreated discharges
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist for Stormwater Report

Checklist (continued)							
Sta	ındard 2: Peak Rat	te Attenuation					
	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.						
	Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.						
Sta	ındard 3: Recharge	•					
\boxtimes	Soil Analysis provid	ded.					
\boxtimes	Required Recharge	e Volume calculation provided.					
	Required Recharge	e volume reduced through use of	the LID site Design Credits.				
\boxtimes	Sizing the infiltratio	n, BMPs is based on the followir	g method: Check the method used.				
	Static	⊠ Simple Dynamic	☐ Dynamic Field¹				
\boxtimes	Runoff from all imp	ervious areas at the site dischar	ging to the infiltration BMP.				
	Runoff from all impervious areas at the site is <i>not</i> discharging to the infiltration BMP and calculation are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.						
\boxtimes	Recharge BMPs ha	ave been sized to infiltrate the Re	equired Recharge Volume.				
	Recharge BMPs have been sized to infiltrate the Required Recharge Volume <i>only</i> to the maximum extent practicable for the following reason:						
	☐ Site is comprise	ed solely of C and D soils and/or	bedrock at the land surface				
	☐ M.G.L. c. 21E s	sites pursuant to 310 CMR 40.00	00				
	☐ Solid Waste La	andfill pursuant to 310 CMR 19.0	00				
	Project is other practicable.	wise subject to Stormwater Man	agement Standards only to the maximum extent				
\boxtimes	Calculations showing	ng that the infiltration BMPs will o	drain in 72 hours are provided.				
	Property includes a	a M.G.L. c. 21E site or a solid wa	ste landfill and a mounding analysis is included.				

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist for Stormwater Report

Checkli	st (continued)
Standard 3	3: Recharge (continued)
year 24	iltration BMP is used to attenuate peak flows during storms greater than or equal to the 10- 1-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding s is provided.
	entation is provided showing that infiltration BMPs do not adversely impact nearby wetland ce areas.
Standard 4	1: Water Quality
 Good h 	Ferm Pollution Prevention Plan typically includes the following: nousekeeping practices; ons for storing materials and waste products inside or under cover;
 Vehicle Require Spill pro Provision Require Pet was Provision Provision Snow of the control of the contro	ewashing controls; ements for routine inspections and maintenance of stormwater BMPs; evention and response plans; ons for maintenance of lawns, gardens, and other landscaped areas; ements for storage and use of fertilizers, herbicides, and pesticides; ste management provisions; ons for operation and management of septic systems; ons for solid waste management; disposal and plowing plans relative to Wetland Resource Areas; Road Salt and/or Sand Use and Storage restrictions; sweeping schedules; ons for prevention of illicit discharges to the stormwater management system; tentation that Stormwater BMPs are designed to provide for shutdown and containment in the of a spill or discharges to or near critical areas or from LUHPPL; g for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; Emergency contacts for implementing Long-Term Pollution Prevention Plan.
attachn Treatm	I-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an nent to the Wetlands Notice of Intent. Ient BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule fo ting the water quality volume are included, and discharge:
☐ is v	within the Zone II or Interim Wellhead Protection Area
☐ is r	near or to other critical areas
☐ is v	within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
inve	olves runoff from land uses with higher potential pollutant loads.

☐ The Required Water Quality Volume is reduced through use of the LID site Design Credits.

applicable, the 44% TSS removal pretreatment requirement, are provided.

☐ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

Checklist for Stormwater Report

Cr	lecklist (continued)
Sta	ndard 4: Water Quality (continued)
	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	☐ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior to</i> the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

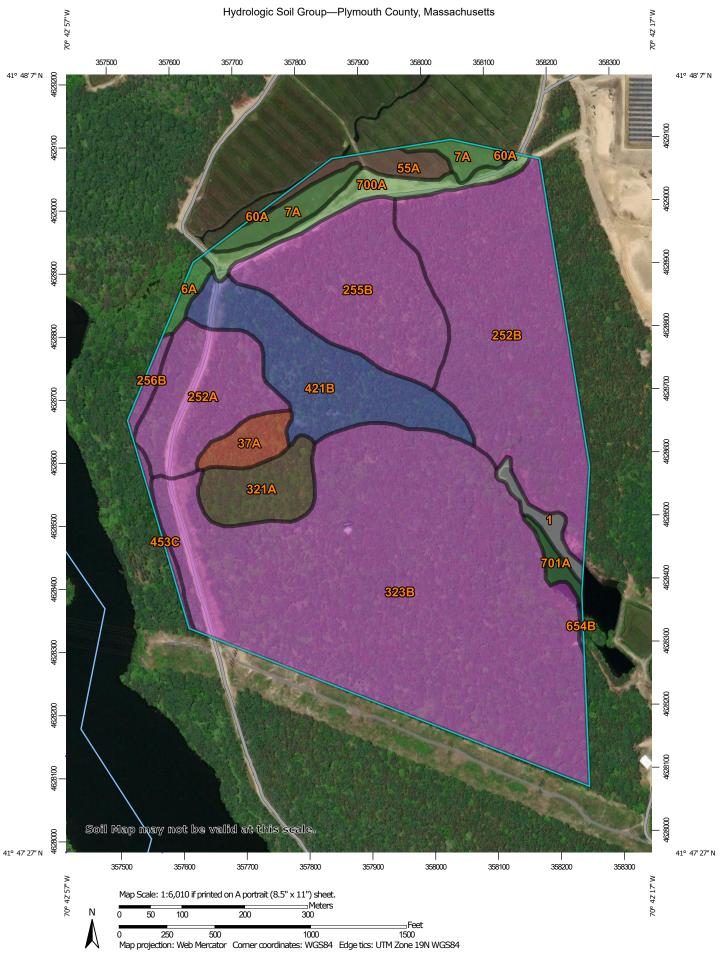
Checklist (continued)

<u> </u>	•
Practicable as a:	
 □ Limited Project □ Small Residential Projects: 5-9 single family houses or 5-9 units in a provided there is no discharge that may potentially affect a critical ar □ Small Residential Projects: 2-4 single family houses or 2-4 units in a with a discharge to a critical area □ Marina and/or boatyard provided the hull painting, service and maint from exposure to rain, snow, snow melt and runoff 	ea. multi-family development
□ Bike Path and/or Foot Path□ Redevelopment Project	
☐ Redevelopment portion of mix of new and redevelopment.	
explanation of why these standards are not met is contained in the Storn	nwater Report. at have been taken to edevelopment checklist found be used to document that rds 2, 3 and the pretreatment

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.


Checklist for Stormwater Report

Checklist (continued)

	Indard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control ntinued)
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
	The project is <i>not</i> covered by a NPDES Construction General Permit.
\boxtimes	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the
	Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.
Sta	ndard 9: Operation and Maintenance Plan
\boxtimes	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
	Name of the stormwater management system owners;
	□ Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;
	□ Description and delineation of public safety features;
	The responsible party is <i>not</i> the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	ndard 10: Prohibition of Illicit Discharges
\boxtimes	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
\boxtimes	An Illicit Discharge Compliance Statement is attached;
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.

Attachment 1 Soil Data

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:12.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 12, Sep 12, 2019 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Dec 31, 2009—Jul 3. 2017 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		1.2	0.9%
6A	Scarboro muck, coastal lowland, 0 to 3 percent slopes	A/D	0.8	0.6%
7A	Rainberry coarse sand, 0 to 3 percent slopes, sanded surface	A/D	3.3	2.4%
37A	Massasoit - Mashpee complex, 0 to 3 percent slopes	D	2.2	1.6%
55A	Freetown coarse sand, 0 to 3 percent slopes, sanded surface	B/D	2.0	1.5%
60A	Swansea coarse sand, 0 to 2 percent slopes	B/D	0.1	0.1%
252A	Carver coarse sand, 0 to 3 percent slopes	А	8.7	6.4%
252B	Carver coarse sand, 3 to 8 percent slopes	А	25.5	18.8%
255B	Windsor loamy sand, 3 to 8 percent slopes	А	14.0	10.3%
256B	Deerfield loamy fine sand, 3 to 8 percent slopes	A	0.8	0.6%
321A	Birchwood sand, 0 to 3 percent slopes, very stony	B/D	4.4	3.3%
323B	Poquonock sand, 3 to 8 percent slopes, very stony	A	56.6	41.8%
421B	Canton fine sandy loam, 0 to 8 percent slopes, very stony	В	11.1	8.2%
453C	Gloucester - Canton complex, 8 to 15 percent slopes, extremely bouldery	A	0.6	0.4%
654B	Udorthents, loamy, 0 to 8 percent slopes	В	0.1	0.1%
700A	Udipsamments, wet substratum, 0 to 3 percent slopes	A/D	3.3	2.4%
701A	Rainberry coarse sand, 0 to 3 percent slope, sanded surface, inactive	A/D	0.8	0.6%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
Totals for Area of Interest			135.3	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

Tie-break Rule: Higher

252B—Carver coarse sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2y07x

Elevation: 0 to 240 feet

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Carver, coarse sand, and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Carver, Coarse Sand

Setting

Landform: Outwash plains, moraines

Landform position (two-dimensional): Summit, shoulder,

backslope, footslope, toeslope

Landform position (three-dimensional): Crest, head slope, nose

slope, side slope, tread

Down-slope shape: Linear, convex

Across-slope shape: Linear

Parent material: Sandy glaciofluvial deposits

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material Oe - 2 to 3 inches: moderately decomposed plant material

A - 3 to 7 inches: coarse sand E - 7 to 10 inches: coarse sand Bw1 - 10 to 15 inches: coarse sand Bw2 - 15 to 28 inches: coarse sand BC - 28 to 32 inches: coarse sand C - 32 to 67 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high to very high (1.42 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm) Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: A

Ecological site: Dry Outwash (F149BY005MA)

Hydric soil rating: No

Minor Components

Deerfield

Percent of map unit: 10 percent

Landform: Outwash plains, outwash terraces, outwash deltas,

kame terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Concave

Hydric soil rating: No

Hinckley

Percent of map unit: 5 percent

Landform: Moraines, kames, outwash terraces, eskers, kame

terraces, outwash plains, outwash deltas

Landform position (two-dimensional): Summit, toeslope, shoulder,

backslope, footslope

Landform position (three-dimensional): Side slope, crest, head

slope, nose slope, riser, tread Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

Merrimac

Percent of map unit: 3 percent

Landform: Outwash terraces, outwash deltas, kame terraces

Landform position (three-dimensional): Tread, riser

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Mashpee

Percent of map unit: 2 percent

Landform: Terraces, drainageways, depressions Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts

Survey Area Data: Version 12, Sep 12, 2019

323B—Poquonock sand, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: bcz7

Elevation: 0 to 400 feet

Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F

Frost-free period: 145 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Poquonock, very stony, and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Poquonock, Very Stony

Setting

Landform: Drumlins, ground moraines, till plains

Landform position (two-dimensional): Shoulder, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Sandy eolian deposits and/or glaciofluvial deposits

over coarse-loamy lodgment till

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material
Oe - 1 to 2 inches: moderately decomposed plant material

A - 2 to 4 inches: sand E - 4 to 5 inches: sand

Bs - 5 to 7 inches: loamy sand Bw - 7 to 26 inches: sand

BC - 26 to 35 inches: loamy sand

2Cd1 - 35 to 49 inches: gravelly sandy loam 2Cd2 - 49 to 71 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent

Percent of area covered with surface fragments: 1.5 percent Depth to restrictive feature: 20 to 39 inches to densic material

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very

low to moderately low (0.00 to 0.14 in/hr) Depth to water table: About 22 to 35 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Birchwood, very stony

Percent of map unit: 8 percent

Landform: Drumlins, ground moraines, till plains

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: No

Mattapoisett, extremely stony

Percent of map unit: 7 percent

Landform: Depressions, drainageways

Landform position (two-dimensional): Toeslope, footslope

Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Montauk, very stony

Percent of map unit: 3 percent

Landform: Drumlins, ground moraines, till plains
Landform position (two-dimensional): Summit, shoulder
Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

Scituate, very stony

Percent of map unit: 2 percent Landform: Ridges, drumlins

Landform position (two-dimensional): Footslope, shoulder

Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts

Survey Area Data: Version 12, Sep 12, 2019

321A—Birchwood sand, 0 to 3 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9y46

Elevation: 0 to 400 feet

Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F

Frost-free period: 145 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Birchwood, very stony, and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Birchwood, Very Stony

Setting

Landform: Drumlins, ground moraines, till plains

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Sandy eolian deposits and/or sandy glaciofluvial

deposits over coarse-loamy lodgment till

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material
Oe - 1 to 3 inches: moderately decomposed plant material
Oa - 3 to 4 inches: highly decomposed plant material

E - 4 to 5 inches: sand

Ap - 5 to 8 inches: loamy sand Bs - 8 to 13 inches: loamy sand Bw1 - 13 to 19 inches: loamy sand Bw2 - 19 to 29 inches: loamy sand

BC - 29 to 40 inches: sand

Cd1 - 40 to 55 inches: gravelly sandy loam Cd2 - 55 to 75 inches: gravelly sandy loam

Properties and qualities

Slope: 0 to 3 percent

Percent of area covered with surface fragments: 1.0 percent Depth to restrictive feature: 35 to 59 inches to densic material

Natural drainage class: Moderately well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very

low to moderately high (0.00 to 0.20 in/hr) Depth to water table: About 12 to 29 inches

Frequency of flooding: None

37A—Massasoit - Mashpee complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: bd1q

Elevation: 0 to 400 feet

Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F

Frost-free period: 145 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Massasoit and similar soils: 55 percent Mashpee and similar soils: 35 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Massasoit

Setting

Landform: Terraces, depressions, drainageways

Landform position (two-dimensional): Footslope, toeslope

Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Sandy and gravelly glaciofluvial deposits

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material Oa - 1 to 3 inches: highly decomposed plant material

A - 3 to 5 inches: fine sand Eg1 - 5 to 11 inches: fine sand Eg2 - 11 to 13 inches: fine sand Bhs - 13 to 17 inches: fine sand Bsm - 17 to 23 inches: fine sand Bs - 23 to 26 inches: fine sand BC - 26 to 43 inches: fine sand

Cg - 43 to 80 inches: loamy very fine sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to ortstein

Natural drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very

low to moderately low (0.00 to 0.01 in/hr) Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Occasional

Available water storage in profile: Very low (about 1.3 inches)

421B—Canton fine sandy loam, 0 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w81l

Elevation: 0 to 1,180 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Canton, very stony, and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Canton, Very Stony

Setting

Landform: Hills, ridges, moraines

Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest, nose

slope

Down-slope shape: Linear, convex Across-slope shape: Convex

Parent material: Coarse-loamy over sandy melt-out till derived from

gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material

A - 2 to 5 inches: fine sandy loam
Bw1 - 5 to 16 inches: fine sandy loam

Bw2 - 16 to 22 inches: gravelly fine sandy loam 2C - 22 to 67 inches: gravelly loamy sand

Properties and qualities

Slope: 0 to 8 percent

Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: 19 to 39 inches to strongly contrasting

textural stratification

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat):

Moderately low to high (0.14 to 14.17 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm) Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s
Hydrologic Soil Group: B

Hydric soil rating: No

Minor Components

Scituate, very stony

Percent of map unit: 9 percent

Landform: Drumlins, hills, ground moraines

Landform position (two-dimensional): Footslope, backslope,

summit

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Montauk, very stony

Percent of map unit: 5 percent

Landform: Recessionial moraines, hills, drumlins, ground moraines Landform position (two-dimensional): Backslope, shoulder, summit

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Gloucester, very stony

Percent of map unit: 4 percent Landform: Hills, ridges, moraines

Landform position (two-dimensional): Backslope, shoulder, summit

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Swansea

Percent of map unit: 2 percent

Landform: Kettles, bogs, depressions, swamps, marshes

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 12, Sep 12, 2019

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: D Hydric soil rating: Yes

Description of Mashpee

Setting

Landform: Depressions, drainageways, terraces

Landform position (two-dimensional): Footslope, toeslope

Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Sandy and gravelly glaciofluvial deposits

Typical profile

Oe1 - 0 to 2 inches: moderately decomposed plant material Oe2 - 2 to 4 inches: moderately decomposed plant material

Oa - 4 to 5 inches: highly decomposed plant material

AE - 5 to 7 inches: loamy fine sand Eg - 7 to 11 inches: fine sand Bh1 - 11 to 13 inches: fine sand Bh2 - 13 to 17 inches: fine sand Bs - 17 to 24 inches: loamy fine sand

C1 - 24 to 39 inches: fine sand C2 - 39 to 65 inches: fine sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high to high (1.42 to 5.95 in/hr) Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Occasional

Available water storage in profile: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: A/D Hydric soil rating: Yes

Minor Components

Deerfield

Percent of map unit: 5 percent

Landform: Outwash plains, terraces, deltas

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: No

Rainberry

Percent of map unit: 3 percent Landform: Depressions, kettles

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

Squamscott

Percent of map unit: 2 percent Landform: Lake terraces, lake plains

Landform position (two-dimensional): Footslope, toeslope

Landform position (three-dimensional): Talf

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts

Survey Area Data: Version 12, Sep 12, 2019

Frequency of ponding: None

Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5s

Hydrologic Soil Group: B/D Hydric soil rating: No

Minor Components

Poquonock, very stony

Percent of map unit: 6 percent

Landform: Ground moraines, till plains, drumlins Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Mattapoisett, extremely stony

Percent of map unit: 6 percent

Landform: Depressions, drainageways

Landform position (two-dimensional): Toeslope, footslope

Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Scituate, very stony

Percent of map unit: 5 percent Landform: Ridges, drumlins

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: No

Newfields, extremely stony

Percent of map unit: 3 percent Landform: Till plains, hills, moraines

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Interfluve

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts

Survey Area Data: Version 12, Sep 12, 2019

Attachment 2
Pre-Development Hydrologic Analysis

CALCULATION SUMMARY

T 508.366.0560 F 508.366.4391 www.bealsandthomas.com Regional Office: Plymouth, MA

$I \cap R$	$M\Omega$	$/I \cap CA$	TION:
JUD	WO.	/LUUA	110N.

1833.112 Wareham, MA

CLIENT/PROJECT:

Borrego Solar Systems, Inc. 150 Tihonet Road PV+ES Project

SUBJECT/TITLE:

Pre-Development Hydrologic Calculations

OBJECTIVE OF CALCULATION:

• To determine the pre-development peak rates of runoff from the site for the 2, 10, & 100-year storm events at design points DP-1 through DP-6.

CALCULATION METHOD(S):

- Runoff curve numbers (CN), time-of-concentration (Tc), and runoff rates were calculated based on TR-55 methodology.
- Autodesk Civil 3D 2019 computer program was utilized for digitizing ground cover areas.
- Peak runoff rates were computed using HydroCAD version 10.00.
- Peak runoff rates were rounded to the nearest tenth.

ASSUMPTIONS:

- The ground cover types were determined using MassGIS aerial imagery and hydrologic soil groups based on United States Department of Agriculture, NRCS Soil Survey map information.
- Watershed boundaries have been estimated based upon contour information depicted on the Topographic Plan as well as MassGIS contours for offsite areas outside limits of topographic plan.
- Wetland systems were included in the hydrologic analysis and modeled as Woods Good.

SOURCES OF DATA/EQUATIONS:

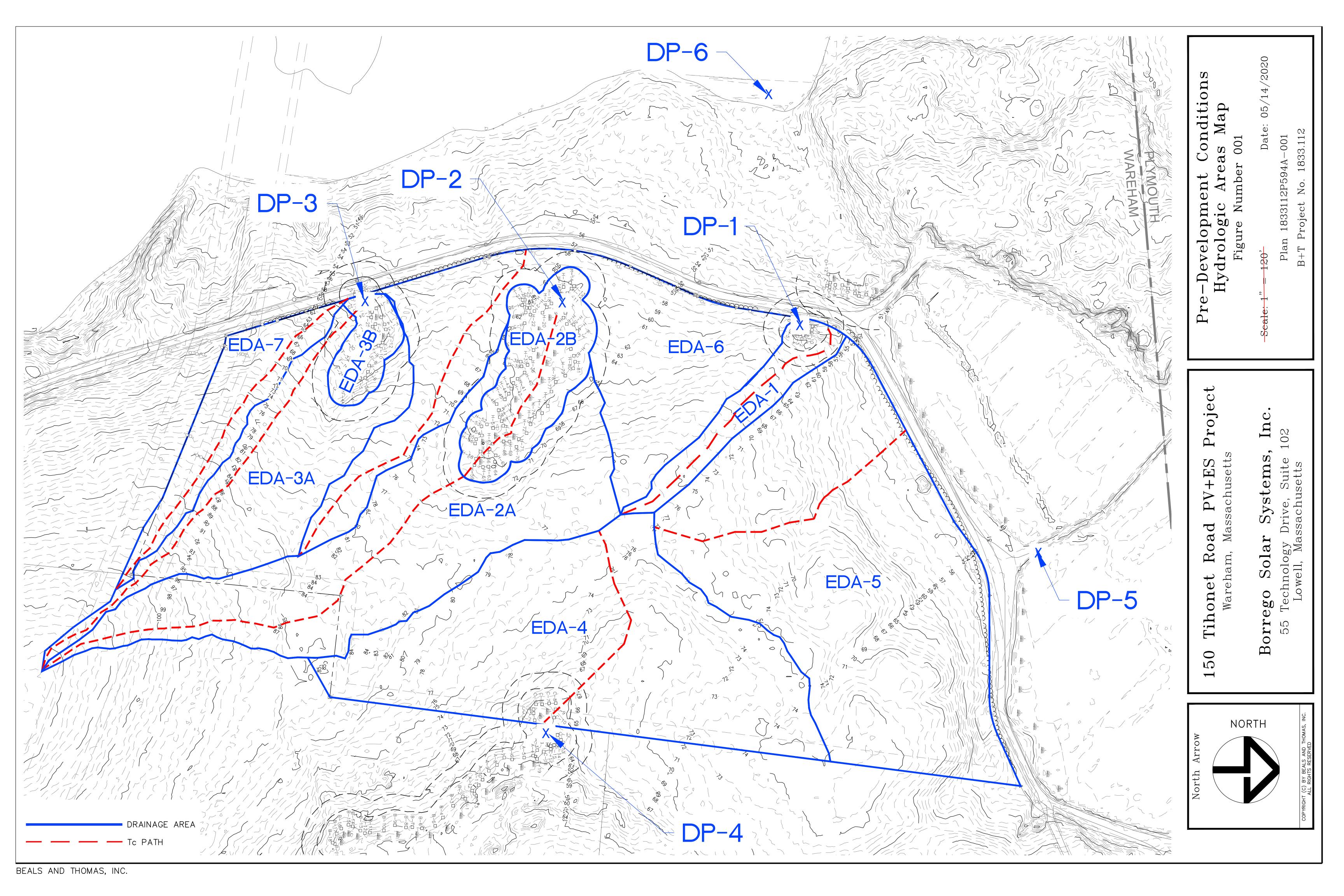
- Pre-Development Conditions Hydrologic Areas Map prepared by Beals and Thomas, Inc. File No. 1833112P594A-001.
- Existing topography from Limited Alta/ NSPS Land Title Survey of Land in Wareham, MA (1 Sheet), prepared by Northeast Survey Consultants.
- NRCS Soil Survey for Plymouth County, hydrologic soil group report, downloaded from Web Soil Survey on 3/12/2020.
- TR-55 urban Hydrology for Small Watersheds, SCS, 1986.
- Massachusetts DEP Stormwater Management Handbook, February 2008.

REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	EAE	5/21/2020	J. Murphy	06/02/2020	J. Murphy	06/02/2020
			1 2		1 2	

EAE/1833112CS004

CALCULATION SUMMARY

T 508.366.0560 F 508.366.4391 www.bealsandthomas.com Regional Office: Plymouth, MA


CONCLUSIONS:

Storm Event	DP-1 (CFS)	DP-2 (CFS)	DP-3 (CFS)	DP-4 (CFS)	DP-5 (CFS)	DP-6 (CFS)
2-Year	0.2	2.4	0.0	0.0	0.0	2.6
10-Year	0.8	4.6	0.0	0.1	0.1	5.4
100-Year	2.4	9.7	0.3	2.1	2.1	15.2

REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	EAE	5/21/2020	J. Murphy	06/02/2020	J. Murphy	06/02/2020

EAE/1833112CS004

150 Tihonet Road Solar Pre-Development Conditions Hydrology EDA-3B EDA-2B EDA\3B EDA-2A DP-2 EDA-3A DP-3 EDA-2A DP-3 DP-2 EDA-3A EDA-6 DP-1 EDA-1 DP-6 EDA-6 DP-1 EDA-1 DP-6 EDA-7 EDA-7 EDA-4 DP-4 EDA-4 DP-4 DP-5 EDA-5 EDA-5 DP-5 Link Routing Diagram for 1833112HC003 Subcat Reach Pond` Prepared by Beals and Thomas, Inc, Printed 6/4/2020 HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Prepared by Beals and Thomas, Inc HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Printed 6/4/2020 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.077	39	>75% Grass cover, Good, HSG A (EDA-2A, EDA-3A, EDA-7)
59.166	30	Woods, Good, HSG A (EDA-2A, EDA-2B, EDA-3A, EDA-3B, EDA-4, EDA-5, EDA-6,
		EDA-7)
10.323	55	Woods, Good, HSG B (EDA-1, EDA-2A, EDA-4, EDA-5, EDA-6)
6.642	77	Woods, Good, HSG D (EDA-2A, EDA-2B, EDA-6)
79.208	38	TOTAL AREA

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Printed 6/4/2020

Page 3

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=2.052 ac 0.00% Impervious Runoff Depth>2.10" Flow Length=945' Tc=36.8 min CN=55 Runoff=2.44 cfs 0.360 af
Subcatchment EDA-2A: EDA-2A	Runoff Area=12.932 ac 0.00% Impervious Runoff Depth>0.61" Flow Length=1,746' Tc=54.8 min CN=37 Runoff=2.04 cfs 0.657 af
Subcatchment EDA-2B: EDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth>3.91" Flow Length=575' Tc=36.9 min CN=73 Runoff=8.95 cfs 1.233 af
Subcatchment EDA-3A: EDA-3A	Runoff Area=7.077 ac 0.00% Impervious Runoff Depth>0.25" Flow Length=1,591' Tc=41.2 min CN=31 Runoff=0.26 cfs 0.150 af
Subcatchment EDA-3B: EDA-3B	Runoff Area=1.263 ac 0.00% Impervious Runoff Depth>0.21" Tc=6.0 min CN=30 Runoff=0.04 cfs 0.022 af
Subcatchment EDA-4: EDA-4	Runoff Area=16.492 ac 0.00% Impervious Runoff Depth>0.49" Flow Length=747' Tc=32.6 min CN=35 Runoff=2.14 cfs 0.668 af
Subcatchment EDA-5: EDA-5	Runoff Area=20.756 ac 0.00% Impervious Runoff Depth>0.42" Flow Length=948' Tc=30.7 min CN=34 Runoff=2.11 cfs 0.734 af
Subcatchment EDA-6: EDA-6	Runoff Area=11.651 ac 0.00% Impervious Runoff Depth>0.83" Flow Length=1,264' Tc=45.3 min CN=40 Runoff=3.34 cfs 0.802 af
Subcatchment EDA-7: EDA-7	Runoff Area=3.198 ac 0.00% Impervious Runoff Depth>0.49" Flow Length=1,177' Tc=32.3 min CN=35 Runoff=0.42 cfs 0.129 af
Reach DP-1: DP-1	Inflow=2.44 cfs 0.360 af Outflow=2.44 cfs 0.360 af
Reach DP-2: DP-2	Inflow=9.69 cfs 1.890 af Outflow=9.69 cfs 1.890 af
Reach DP-3: DP-3	Inflow=0.30 cfs 0.172 af Outflow=0.30 cfs 0.172 af
Reach DP-4: DP-4	Inflow=2.14 cfs 0.668 af Outflow=2.14 cfs 0.668 af
Reach DP-5: DP-5	Inflow=2.11 cfs 0.734 af Outflow=2.11 cfs 0.734 af
Reach DP-6: DP-6	Inflow=15.20 cfs 3.354 af Outflow=15.20 cfs 3.354 af

Total Runoff Area = 79.208 ac Runoff Volume = 4.755 af Average Runoff Depth = 0.72" 100.00% Pervious = 79.208 ac 0.00% Impervious = 0.000 ac

Printed 6/4/2020

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 4

Summary for Subcatchment EDA-1: EDA-1

Runoff = 2.44 cfs @ 12.56 hrs, Volume= 0.360 af, Depth> 2.10"

Area	Area (ac) CN Description							
2.	052 5	55 Woo	ds, Good,	HSG B				
2.	052	100.	00% Pervi	ous Area				
Tc	Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description			
(min)	(feet)			(cfs)	Chast Flour			
15.8	50	0.0100	0.05		Sheet Flow,			
8.3	248	0.0100	0.50		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow,			
0.5	240	0.0100	0.50		Woodland Kv= 5.0 fps			
4.2	178	0.0200	0.71		Shallow Concentrated Flow,			
	170	0.0200	0.7 1		Woodland Kv= 5.0 fps			
0.3	20	0.0500	1.12		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.7	34	0.0300	0.87		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.4	27	0.0400	1.00		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.3	55	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.3	68	0.0300	0.87		Shallow Concentrated Flow,			
0.5	00	0.0400	4.00		Woodland Kv= 5.0 fps			
0.5	28	0.0400	1.00		Shallow Concentrated Flow,			
0.2	18	0.0600	1.22		Woodland Kv= 5.0 fps Shallow Concentrated Flow,			
0.2	10	0.0000	1.22		Woodland Kv= 5.0 fps			
0.6	31	0.0300	0.87		Shallow Concentrated Flow,			
0.0	01	0.0000	0.07		Woodland Kv= 5.0 fps			
0.3	22	0.0500	1.12		Shallow Concentrated Flow,			
0.0		0.0000			Woodland Kv= 5.0 fps			
0.6	31	0.0300	0.87		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.8	51	0.0400	1.00		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.3	22	0.0500	1.12		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.5	28	0.0400	1.00		Shallow Concentrated Flow,			
2.2		0.0700	4.00		Woodland Kv= 5.0 fps			
0.2	14	0.0700	1.32		Shallow Concentrated Flow,			
0.0	20	0.0500	4.40		Woodland Kv= 5.0 fps			
0.3	20	0.0500	1.12		Shallow Concentrated Flow,			
26.0	045	Total			Woodland Kv= 5.0 fps			
36.8	945	Total						

Prepared by Beals and Thomas, Inc

Printed 6/4/2020

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment EDA-2A: EDA-2A

Runoff = 2.04 cfs @ 13.06 hrs, Volume= 0.657 af, Depth> 0.61"

Area (ac)	CN	Description
10.340	30	Woods, Good, HSG A
1.499	77	Woods, Good, HSG D
0.425	55	Woods, Good, HSG B
0.668	39	>75% Grass cover, Good, HSG A
12.932	37	Weighted Average
12.932		100.00% Pervious Area

Prepared by Beals and Thomas, Inc

Printed 6/4/2020

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 6

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	15.8	50	0.0100	0.05		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	7.1	213	0.0100	0.50		Shallow Concentrated Flow,
	4 7	004	0.0000	0.74		Woodland Kv= 5.0 fps
	4.7	201	0.0200	0.71		Shallow Concentrated Flow,
	8.0	338	0.0200	0.71		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
	0.0	330	0.0200	0.71		Woodland Kv= 5.0 fps
	3.4	175	0.0300	0.87		Shallow Concentrated Flow,
	0.1	170	0.0000	0.07		Woodland Kv= 5.0 fps
	1.7	105	0.0400	1.00		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	4.4	188	0.0200	0.71		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.5	36	0.0600	1.22		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.2	60	0.0300	0.87		Shallow Concentrated Flow,
	0.0	40	0.0000	4 44		Woodland Kv= 5.0 fps
	0.2	13	0.0800	1.41		Shallow Concentrated Flow,
	1.6	96	0.0400	1.00		Woodland Kv= 5.0 fps
	1.0	90	0.0400	1.00		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	1.3	85	0.0500	1.12		Shallow Concentrated Flow,
	1.0	00	0.0000	1.12		Woodland Kv= 5.0 fps
	0.2	15	0.0700	1.32		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.9	56	0.0100	0.50		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.4	13	0.0100	0.50		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.1	45	0.0200	0.71		Shallow Concentrated Flow,
	0.0	40	0.0000	4 44		Woodland Kv= 5.0 fps
	0.2	13	0.0800	1.41		Shallow Concentrated Flow,
	1.0	44	0.0200	0.71		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
	1.0	44	0.0200	0.7 1		Woodland Kv= 5.0 fps
-	5/1.8	1 7/6	Total			Troodiana 137 0.0 ipo

54.8 1,746 Total

Summary for Subcatchment EDA-2B: EDA-2B

Runoff = 8.95 cfs @ 12.51 hrs, Volume= 1.233 af, Depth> 3.91"

Prepared by Beals and Thomas, Inc

Printed 6/4/2020

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 7

Area	(ac) C	N Desc	cription			
0.	.354 3	0 Woo	ds, Good,	HSG A		
3.433 77 Woods, Good, HSG D						
3.	.787 7	'3 Weig	hted Aver	age		
3.	.787	100.	00% Pervi	ous Area		
T .	1	01	M. I	0	December the co	
Tc (min)	Length	Slope	Velocity	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
15.8	50	0.0100	0.05		Sheet Flow, Tc-1	
					Woods: Light underbrush n= 0.400 P2= 3.40"	
3.7	111	0.0100	0.50		Shallow Concentrated Flow, Tc-2	
					Woodland Kv= 5.0 fps	
2.1	107	0.0300	0.87		Shallow Concentrated Flow, Tc-3	
					Woodland Kv= 5.0 fps	
0.4	25	0.0400	1.00		Shallow Concentrated Flow, Tc-4	
					Woodland Kv= 5.0 fps	
14.9	282	0.0040	0.32		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
36.9	575	Total				

Summary for Subcatchment EDA-3A: EDA-3A

Runoff = 0.26 cfs @ 14.06 hrs, Volume= 0.150 af, Depth> 0.25"

 Area (ac)	CN	Description
6.509	30	Woods, Good, HSG A
 0.568	39	>75% Grass cover, Good, HSG A
7.077	31	Weighted Average
7.077		100.00% Pervious Area

Printed 6/4/2020

Page 8

Slope Velocity Capacity Description Тс Length (feet) (ft/ft) (ft/sec) (cfs) (min) 0.0200 10.6 43 0.07 Sheet Flow. Woods: Light underbrush n= 0.400 P2= 3.40" 2.1 7 0.0300 0.06 Sheet Flow. Woods: Light underbrush n= 0.400 P2= 3.40" 0.5 **Shallow Concentrated Flow.** 28 0.0300 0.87 Woodland Kv= 5.0 fps 1.3 54 0.0200 0.71 **Shallow Concentrated Flow,** Woodland Kv= 5.0 fps 0.6 33 0.0300 0.87 **Shallow Concentrated Flow,** Woodland Kv= 5.0 fps 2.1 **Shallow Concentrated Flow.** 88 0.0200 0.71 Woodland Kv= 5.0 fps 0.4 26 0.0400 1.00 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps 1.3 69 0.0300 0.87 **Shallow Concentrated Flow,** Woodland Kv= 5.0 fps 0.3 22 0.0500 1.12 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps 0.4 25 0.0400 1.00 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps 0.6 **Shallow Concentrated Flow,** 30 0.0300 0.87 Woodland Kv= 5.0 fps 0.9 0.0400 1.00 **Shallow Concentrated Flow.** 57 Woodland Kv= 5.0 fps 0.3 20 0.0500 1.12 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps **Shallow Concentrated Flow,** 1.0 43 0.0200 0.71 Woodland Kv= 5.0 fps **Shallow Concentrated Flow,** 0.4 26 0.0400 1.00 Woodland Kv= 5.0 fps 0.6 0.0300 0.87 **Shallow Concentrated Flow.** 31 Woodland Kv= 5.0 fps 0.4 26 0.0400 **Shallow Concentrated Flow,** 1.00 Woodland Kv= 5.0 fps 1.4 72 0.0300 0.87 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps 0.5 29 0.0400 1.00 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps **Shallow Concentrated Flow,** 0.3 20 0.0500 1.12 Woodland Kv= 5.0 fps 0.7 35 0.0300 0.87 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps **Shallow Concentrated Flow.** 0.9 52 0.0400 1.00 Woodland Kv= 5.0 fps 0.6 **Shallow Concentrated Flow,** 30 0.0300 0.87 Woodland Kv= 5.0 fps 0.4 23 0.0400 1.00 **Shallow Concentrated Flow.** Woodland Kv= 5.0 fps 2.0 **Shallow Concentrated Flow.** 103 0.0300 0.87 Woodland Kv= 5.0 fps 0.9 54 0.0400 1.00 **Shallow Concentrated Flow,**

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 9

Woodland	Kv= 5	.0 fps		
0.3	19	0.0500	1.12	Shallow Concentrated Flow,
0.4	24	0.0400	1.00	Woodland Kv= 5.0 fps
0.4	24	0.0400	1.00	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.2	52	0.0200	0.71	Shallow Concentrated Flow,
				Woodland Kv= 5.0 fps
1.3	84	0.0500	1.12	Shallow Concentrated Flow,
0.6	33	0.0300	0.87	Woodland Kv= 5.0 fps
0.6	33	0.0300	0.67	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.8	50	0.0400	1.00	Shallow Concentrated Flow,
				Woodland Kv= 5.0 fps
0.6	31	0.0300	0.87	Shallow Concentrated Flow,
0.0	00	0.0500	4.40	Woodland Kv= 5.0 fps
0.3	23	0.0500	1.12	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.4	71	0.0300	0.87	Shallow Concentrated Flow,
		0.0000	0.0.	Woodland Kv= 5.0 fps
0.3	23	0.0500	1.12	Shallow Concentrated Flow,
2.2			0.07	Woodland Kv= 5.0 fps
0.6	30	0.0300	0.87	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.2	18	0.0600	1.22	Shallow Concentrated Flow,
0.2	10	0.0000	1.22	Woodland Kv= 5.0 fps
0.3	21	0.0500	1.12	Shallow Concentrated Flow,
				Woodland Kv= 5.0 fps
1.3	66	0.0300	0.87	Shallow Concentrated Flow,
44.0	1 504	Total		Woodland Kv= 5.0 fps
41.2	1,591	Total		

Summary for Subcatchment EDA-3B: EDA-3B

Runoff = 0.04 cfs @ 13.77 hrs, Volume= 0.022 af, Depth> 0.21"

Area	(ac)	CN	Desc	cription		
1.	1.263 30 Woods, Good, HSG A					
1.	1.263 100.00% Pervious Area					
_			01			
Tc	Leng	th S	Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Printed 6/4/2020

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 10

Summary for Subcatchment EDA-4: EDA-4

Runoff = 2.14 cfs @ 12.76 hrs, Volume= 0.668 af, Depth> 0.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area	(ac) C	N Desc	cription		
13.411 30 Woods, Good, HS			ds, Good,	HSG A		
_	3.	081 5	55 Woo	ds, Good,	HSG B	
	16.	492 3	35 Weig	ghted Aver	age	
	16.	492	100.	00% Pervi	ous Area	
	То	Longth	Clone	Volocity	Consoity	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	15.8	50	0.0100	0.05		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	5.2	258	0.0270	0.82		Shallow Concentrated Flow, Tc-2
						Woodland Kv= 5.0 fps
	11.6	439	0.0160	0.63		Shallow Concentrated Flow, Tc-3
_						Woodland Kv= 5.0 fps
	32.6	747	Total			

Summary for Subcatchment EDA-5: EDA-5

Runoff = 2.11 cfs @ 12.76 hrs, Volume= 0.734 af, Depth> 0.42"

_	Area	(ac) C	N Desc	cription		
				ds, Good,		
_	3.193 55 Woods, Good, HSG B 20.756 34 Weighted Average 20.756 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	12.0	50	0.0200	0.07	, ,	Sheet Flow, Tc-1
	7.2	306	0.0200	0.71		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps
	6.1	342	0.0350	0.94		Shallow Concentrated Flow, Tc-3
	5.4	250	0.0240	0.77		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-4 Woodland Kv= 5.0 fps
	30.7	948	Total			

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 11

Summary for Subcatchment EDA-6: EDA-6

Runoff = 3.34 cfs @ 12.82 hrs, Volume= 0.802 af, Depth> 0.83"

Area	Area (ac) CN Description							
1.	572 5	55 Woo	ds, Good,	HSG B				
8.	369 3	30 Woo	ds, Good,	HSG A				
1.	710 7	77 Woo	ds, Good,	HSG D				
11.	651 4	0 Weig	hted Aver	age				
11.	651	100.	00% Pervi	ous Area				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
15.8	50	0.0100	0.05		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.40"			
2.0	60	0.0100	0.50		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
8.7	371	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
8.0	39	0.0300	0.87		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.4	60	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.8	39	0.0300	0.87		Shallow Concentrated Flow,			
0.4	07	0.0400	4.00		Woodland Kv= 5.0 fps			
0.4	27	0.0400	1.00		Shallow Concentrated Flow,			
2.4	102	0.0200	0.71		Woodland Kv= 5.0 fps			
2.4	102	0.0200	0.71		Shallow Concentrated Flow, Woodland Kv= 5.0 fps			
0.7	35	0.0300	0.87		Shallow Concentrated Flow,			
0.7	33	0.0300	0.07		Woodland Kv= 5.0 fps			
3.3	139	0.0200	0.71		Shallow Concentrated Flow,			
0.0	100	0.0200	0.7 1		Woodland Kv= 5.0 fps			
0.7	36	0.0300	0.87		Shallow Concentrated Flow,			
• • • • • • • • • • • • • • • • • • • •		0.000	0.0.		Woodland Kv= 5.0 fps			
1.5	63	0.0200	0.71		Shallow Concentrated Flow,			
_					Woodland Kv= 5.0 fps			
0.7	36	0.0300	0.87		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.3	54	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
3.5	104	0.0100	0.50		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.2	49	0.0200	0.71		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
45.3	1,264	Total						

Prepared by Beals and Thomas, Inc HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC Printed 6/4/2020

Page 12

Summary for Subcatchment EDA-7: EDA-7

Runoff = 0.42 cfs @ 12.75 hrs, Volume= 0.129 af, Depth> 0.49"

 Area (ac)	CN	Description		
1.357	30	Woods, Good, HSG A		
 1.841	39 >75% Grass cover, Good, HSG A			
3.198	35	Weighted Average		
3.198		100.00% Pervious Area		

Prepared by Beals and Thomas, Inc
HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Printed

Page 13

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
8.2	38	0.0300	0.08		Sheet Flow,	
0.0	40		0.05		Woods: Light underbrush n= 0.400 P2= 3.40"	
3.8	12	0.0200	0.05		Sheet Flow,	
0.2	7	0.0200	0.71		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow,	
0.2	,	0.0200	0.7 1		Woodland Kv= 5.0 fps	
0.4	23	0.0400	1.00		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
1.0	42	0.0200	0.71		Shallow Concentrated Flow,	
0.0	47	0.0000	4.00		Woodland Kv= 5.0 fps	
0.2	17	0.0600	1.22		Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
1.8	110	0.0400	1.00		Shallow Concentrated Flow,	
1.0	110	0.0100	1.00		Woodland Kv= 5.0 fps	
1.2	49	0.0200	0.71		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.7	37	0.0300	0.87		Shallow Concentrated Flow,	
0.9	55	0.0400	1.00		Woodland Kv= 5.0 fps Shallow Concentrated Flow,	
0.9	55	0.0400	1.00		Woodland Kv= 5.0 fps	
0.6 33 0.0300 0.87 Shallow Concentrated Flow,					<u>.</u>	
					Woodland Kv= 5.0 fps	
1.8	108	0.0400	1.00		Shallow Concentrated Flow,	
				Woodland Kv= 5.0 fps		
0.7	37	0.0300	0.87		Shallow Concentrated Flow,	
0.3	21	0.0500	1.12		Woodland Kv= 5.0 fps Shallow Concentrated Flow,	
0.5	۷ ۱	0.0300	1.12		Woodland Kv= 5.0 fps	
0.8	46	0.0400	1.00		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.6	33	0.0300	0.87		Shallow Concentrated Flow,	
0.0	00	0.0500	4.40		Woodland Kv= 5.0 fps	
0.3	22	0.0500	1.12		Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
0.4	25	0.0400	1.00		Shallow Concentrated Flow,	
• • •		0.0.00			Woodland Kv= 5.0 fps	
0.2	17	0.0600	1.22		Shallow Concentrated Flow,	
	•				Woodland Kv= 5.0 fps	
0.3	21	0.0500	1.12		Shallow Concentrated Flow,	
0.4	24	0.0400	1.00		Woodland Kv= 5.0 fps Shallow Concentrated Flow,	
0.4	27	0.0400	1.00		Woodland Kv= 5.0 fps	
0.3	19	0.0500	1.12		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
1.0	42	0.0200	0.71		Shallow Concentrated Flow,	
0.0	F.C.	0.0400	4.00		Woodland Kv= 5.0 fps	
0.9	56	0.0400	1.00		Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
0.8	40	0.0300	0.87		Shallow Concentrated Flow,	
3.0	.0	5.0000	3.01		Woodland Kv= 5.0 fps	
0.6	37	0.0500	1.12		Shallow Concentrated Flow,	

Prepared by Beals and Thomas, Inc

Printed 6/4/2020

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

<u>Page 14</u>

Woodland	Kv= 5	.0 fps		
0.7	37	0.0300	0.87	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.4	23	0.0400	1.00	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.2	15	0.0700	1.32	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.4	26	0.0400	1.00	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.2	62	0.0300	0.87	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.0	43	0.0200	0.71	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
32.3	1 177	Total		

Summary for Reach DP-1: DP-1

Inflow Are	a =	2.052 ac,	0.00% Impervious, Inflo	w Depth > 2.10"	for 100-Year event
Inflow	=	2.44 cfs @	12.56 hrs, Volume=	0.360 af	
Outflow	=	2.44 cfs @	12.56 hrs, Volume=	0.360 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

Inflow Area =	16.719 ac,	0.00% Impervious, Infl	ow Depth > 1.36"	for 100-Year event
Inflow =	9.69 cfs @	12.56 hrs, Volume=	1.890 af	
Outflow =	9.69 cfs @	12.56 hrs. Volume=	1.890 af. Atte	en= 0%. Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

Inflow Are	a =	8.340 ac,	0.00% Impervious,	Inflow Depth > 0.	25" for 100-Year event
Inflow	=	0.30 cfs @	14.05 hrs, Volume	= 0.172 af	
Outflow	=	0.30 cfs @	14.05 hrs, Volume	= 0.172 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

Inflow Are	ea =	16.492 ac,	0.00% Impervious,	Inflow Depth > 0.4	49" for 100-Year event
Inflow	=	2.14 cfs @	12.76 hrs, Volume	= 0.668 af	
Outflow	=	2.14 cfs @	12.76 hrs, Volume	= 0.668 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Prepared by Beals and Thomas, Inc

Printed 6/4/2020

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 15

Summary for Reach DP-5: DP-5

Inflow Area = 20.756 ac, 0.00% Impervious, Inflow Depth > 0.42" for 100-Year event

Inflow = 2.11 cfs @ 12.76 hrs, Volume= 0.734 af

Outflow = 2.11 cfs @ 12.76 hrs, Volume= 0.734 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Reach DP-6: DP-6

Inflow Area = 41.960 ac, 0.00% Impervious, Inflow Depth > 0.96" for 100-Year event

Inflow = 15.20 cfs @ 12.63 hrs, Volume= 3.354 af

Outflow = 15.20 cfs @ 12.63 hrs, Volume= 3.354 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Prepared by Beals and Thomas, Inc

HydroCAD® 10.10-3a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=2.052 ac 0.00% Impervious Runoff Depth>0.31" Flow Length=945' Tc=36.8 min CN=55 Runoff=0.20 cfs 0.053 af
Subcatchment EDA-2A: EDA-2A	Runoff Area=12.932 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=1,746' Tc=54.8 min CN=37 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-2B: EDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth>1.10" Flow Length=575' Tc=36.9 min CN=73 Runoff=2.39 cfs 0.348 af
Subcatchment EDA-3A: EDA-3A	Runoff Area=7.077 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=1,591' Tc=41.2 min CN=31 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-3B: EDA-3B	Runoff Area=1.263 ac 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-4: EDA-4	Runoff Area=16.492 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=747' Tc=32.6 min CN=35 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-5: EDA-5	Runoff Area=20.756 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=948' Tc=30.7 min CN=34 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-6: EDA-6	Runoff Area=11.651 ac 0.00% Impervious Runoff Depth>0.01" Flow Length=1,264' Tc=45.3 min CN=40 Runoff=0.02 cfs 0.009 af
Subcatchment EDA-7: EDA-7	Runoff Area=3.198 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=1,177' Tc=32.3 min CN=35 Runoff=0.00 cfs 0.000 af
Reach DP-1: DP-1	Inflow=0.20 cfs 0.053 af Outflow=0.20 cfs 0.053 af
Reach DP-2: DP-2	Inflow=2.39 cfs 0.348 af Outflow=2.39 cfs 0.348 af
Reach DP-3: DP-3	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach DP-4: DP-4	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach DP-5: DP-5	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach DP-6: DP-6	Inflow=2.56 cfs 0.409 af Outflow=2.56 cfs 0.409 af

Total Runoff Area = 79.208 ac Runoff Volume = 0.409 af Average Runoff Depth = 0.06" 100.00% Pervious = 79.208 ac 0.00% Impervious = 0.000 ac

Printed 6/4/2020

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=2.052 ac 0.00% Impervious Runoff Depth>0.82" Flow Length=945' Tc=36.8 min CN=55 Runoff=0.80 cfs 0.141 af
Subcatchment EDA-2A: EDA-2A	Runoff Area=12.932 ac 0.00% Impervious Runoff Depth>0.09" Flow Length=1,746' Tc=54.8 min CN=37 Runoff=0.15 cfs 0.094 af
Subcatchment EDA-2B: EDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth>2.03" Flow Length=575' Tc=36.9 min CN=73 Runoff=4.59 cfs 0.641 af
Subcatchment EDA-3A: EDA-3A	Runoff Area=7.077 ac 0.00% Impervious Runoff Depth>0.00" Flow Length=1,591' Tc=41.2 min CN=31 Runoff=0.01 cfs 0.001 af
Subcatchment EDA-3B: EDA-3B	Runoff Area=1.263 ac 0.00% Impervious Runoff Depth>0.00" Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-4: EDA-4	Runoff Area=16.492 ac 0.00% Impervious Runoff Depth>0.05" Flow Length=747' Tc=32.6 min CN=35 Runoff=0.10 cfs 0.066 af
Subcatchment EDA-5: EDA-5	Runoff Area=20.756 ac 0.00% Impervious Runoff Depth>0.03" Flow Length=948' Tc=30.7 min CN=34 Runoff=0.08 cfs 0.055 af
Subcatchment EDA-6: EDA-6	Runoff Area=11.651 ac 0.00% Impervious Runoff Depth>0.17" Flow Length=1,264' Tc=45.3 min CN=40 Runoff=0.28 cfs 0.163 af
Subcatchment EDA-7: EDA-7	Runoff Area=3.198 ac 0.00% Impervious Runoff Depth>0.05" Flow Length=1,177' Tc=32.3 min CN=35 Runoff=0.02 cfs 0.013 af
Reach DP-1: DP-1	Inflow=0.80 cfs 0.141 af Outflow=0.80 cfs 0.141 af
Reach DP-2: DP-2	Inflow=4.59 cfs 0.734 af Outflow=4.59 cfs 0.734 af
Reach DP-3: DP-3	Inflow=0.01 cfs 0.001 af Outflow=0.01 cfs 0.001 af
Reach DP-4: DP-4	Inflow=0.10 cfs 0.066 af Outflow=0.10 cfs 0.066 af
Reach DP-5: DP-5	Inflow=0.08 cfs 0.055 af Outflow=0.08 cfs 0.055 af
Reach DP-6: DP-6	Inflow=5.38 cfs 1.052 af Outflow=5.38 cfs 1.052 af

Total Runoff Area = 79.208 ac Runoff Volume = 1.172 af Average Runoff Depth = 0.18" 100.00% Pervious = 79.208 ac 0.00% Impervious = 0.000 ac

Printed 6/4/2020

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=2.052 ac 0.00% Impervious Runoff Depth>2.10" Flow Length=945' Tc=36.8 min CN=55 Runoff=2.44 cfs 0.360 af
Subcatchment EDA-2A: EDA-2A	Runoff Area=12.932 ac 0.00% Impervious Runoff Depth>0.61" Flow Length=1,746' Tc=54.8 min CN=37 Runoff=2.04 cfs 0.657 af
Subcatchment EDA-2B: EDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth>3.91" Flow Length=575' Tc=36.9 min CN=73 Runoff=8.95 cfs 1.233 af
Subcatchment EDA-3A: EDA-3A	Runoff Area=7.077 ac 0.00% Impervious Runoff Depth>0.25" Flow Length=1,591' Tc=41.2 min CN=31 Runoff=0.26 cfs 0.150 af
Subcatchment EDA-3B: EDA-3B	Runoff Area=1.263 ac 0.00% Impervious Runoff Depth>0.21" Tc=6.0 min CN=30 Runoff=0.04 cfs 0.022 af
Subcatchment EDA-4: EDA-4	Runoff Area=16.492 ac 0.00% Impervious Runoff Depth>0.49" Flow Length=747' Tc=32.6 min CN=35 Runoff=2.14 cfs 0.668 af
Subcatchment EDA-5: EDA-5	Runoff Area=20.756 ac 0.00% Impervious Runoff Depth>0.42" Flow Length=948' Tc=30.7 min CN=34 Runoff=2.11 cfs 0.734 af
Subcatchment EDA-6: EDA-6	Runoff Area=11.651 ac 0.00% Impervious Runoff Depth>0.83" Flow Length=1,264' Tc=45.3 min CN=40 Runoff=3.34 cfs 0.802 af
Subcatchment EDA-7: EDA-7	Runoff Area=3.198 ac 0.00% Impervious Runoff Depth>0.49" Flow Length=1,177' Tc=32.3 min CN=35 Runoff=0.42 cfs 0.129 af
Reach DP-1: DP-1	Inflow=2.44 cfs 0.360 af Outflow=2.44 cfs 0.360 af
Reach DP-2: DP-2	Inflow=9.69 cfs 1.890 af Outflow=9.69 cfs 1.890 af
Reach DP-3: DP-3	Inflow=0.30 cfs 0.172 af Outflow=0.30 cfs 0.172 af
Reach DP-4: DP-4	Inflow=2.14 cfs 0.668 af Outflow=2.14 cfs 0.668 af
Reach DP-5: DP-5	Inflow=2.11 cfs 0.734 af Outflow=2.11 cfs 0.734 af
Reach DP-6: DP-6	Inflow=15.20 cfs 3.354 af Outflow=15.20 cfs 3.354 af

Total Runoff Area = 79.208 ac Runoff Volume = 4.755 af Average Runoff Depth = 0.72" 100.00% Pervious = 79.208 ac 0.00% Impervious = 0.000 ac

Attachment 3
Post-Development Hydrologic Analysis

CALCULATION SUMMARY

T 508.366.0560 F 508.366.4391 www.bealsandthomas.com Regional Office: Plymouth, MA

JOB NO./LOCATION:

1833.112 Wareham, MA

CLIENT/PROJECT:

Borrego Solar Systems, Inc. 150 Tihonet Road PV+ES Project

SUBJECT/TITLE:

Post-Development Hydrologic Calculations

OBJECTIVE OF CALCULATION:

• To determine the post-development peak rates of runoff from the site for the 2, 10, & 100-year storm events at design points DP-1 through DP-6.

CALCULATION METHOD(S):

- Runoff curve numbers (CN), time-of-concentration (Tc), and runoff rates were calculated based on TR-55 methodology.
- Autodesk Civil 3D 2019 computer program was utilized for digitizing ground cover areas.
- Peak runoff rates were computed using HydroCAD version 10.10.
- Peak runoff rates were rounded to the nearest tenth.

ASSUMPTIONS:

- The ground cover types were determined using MassGIS aerial imagery and hydrologic soil groups based on United States Department of Agriculture, NRCS Soil Survey map information.
- Watershed boundaries have been estimated based upon contour information depicted on the Topographic Plan as well as MassGIS contours for offsite areas outside limits of topographic plan.
- Wetland systems were included in the hydrologic analysis and modeled as Woods Good.

SOURCES OF DATA/EQUATIONS:

- Post-Development Conditions Hydrologic Areas Map prepared by Beals and Thomas, Inc. File No. 1833112P594C-002.
- Design files from Borrego dated 12/14/2020: BasePlan.dwg, CivilPlan.dwg, SurfaceBase.dwg.
- Existing topography from Limited Alta/ NSPS Land Title Survey of Land in Wareham, MA (1 Sheet), prepared by Northeast Survey Consultants.
- NRCS Soil Survey for Plymouth County, hydrologic soil group report, downloaded from Web Soil Survey on 3/12/2020.
- TR-55 Urban Hydrology for Small Watersheds, SCS, 1986.
- Massachusetts DEP Stormwater Management Handbook, February 2008.

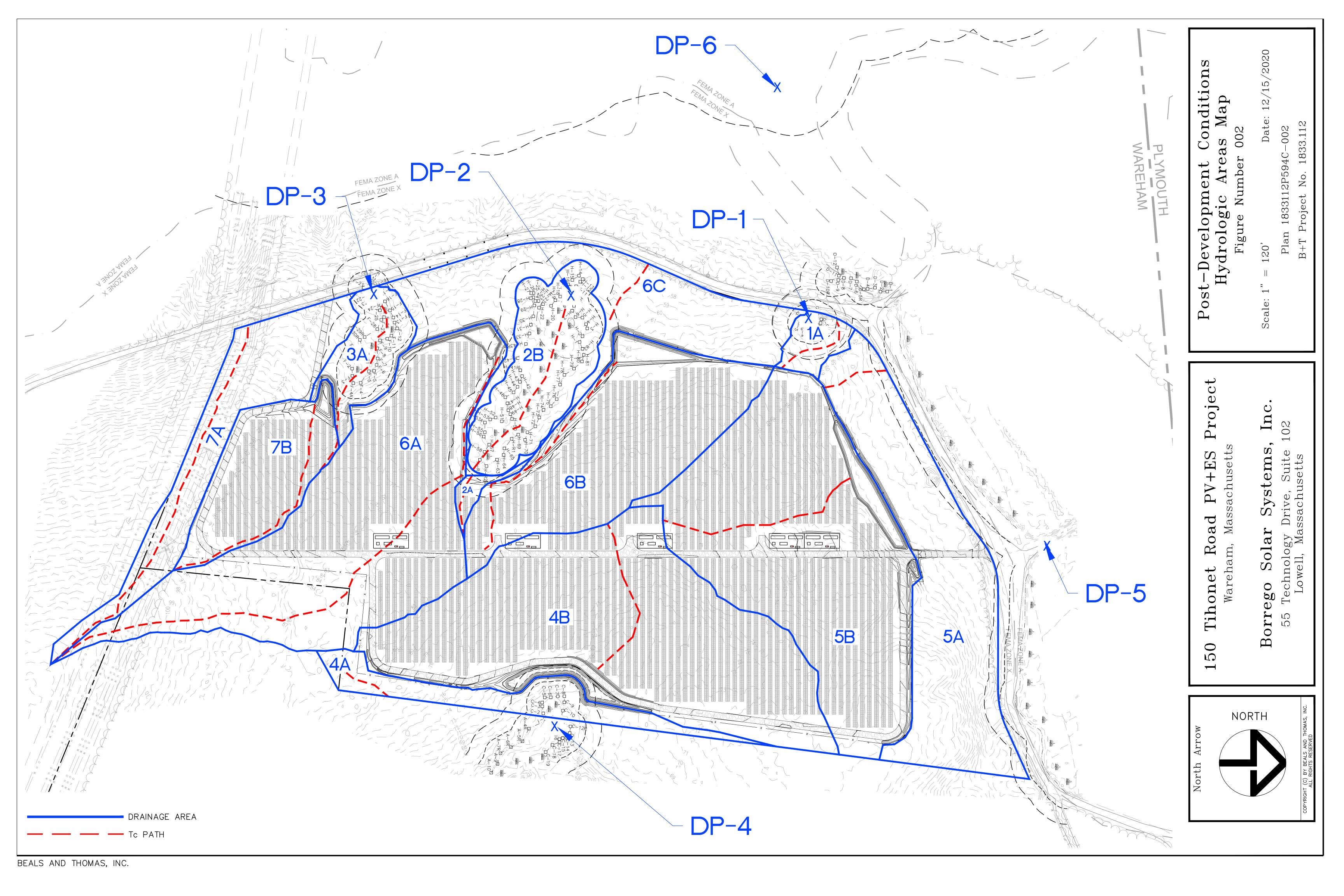
REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	EAE	5/29/2020	J. Murphy	06/02/2020	J. Murphy	06/02/2020
1	N. Bautz	10/30/2020	J. Murphy	11/03/2020	J. Murphy	11/03/2020
2	K. Pritchard	12/14/2020	J. Murphy	12/15/2020	J. Murphy	12/15/2020

KJP/jrm/1833112CS005C

BEALS + THOMAS BEALS AND THOMAS, INC. Reservoir Corporate Center 144 Turnpike Road Southborough, MA 01772-2104

CALCULATION SUMMARY

T 508.366.0560 F 508.366.4391 www.bealsandthomas.com Regional Office: Plymouth, MA


CONCLUSIONS:

Storm Event	DP-1 (CFS)	DP-2 (CFS)	DP-3 (CFS)	DP-4 (CFS)	DP-5 (CFS)	DP-6 (CFS)
2-Year	0.1	2.3	0.0	0.0	0.0	2.3
10-Year	0.5	4.4	0.0	0.0	0.0	4.6
100-Year	1.6	8.8	0.1	0.1	1.3	12.5

REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	EAE	5/29/2020	J. Murphy	06/02/2020	J. Murphy	06/02/2020
1	N. Bautz	10/30/2020	J. Murphy	11/03/2020	J. Murphy	11/03/2020
2	K. Pritchard	12/14/2020	J. Murphy	12/15/2020	J. Murphy	12/15/2020

KJP/jrm/1833112CS005C

150 Tihonet Road Solar Post-Development Conditions Hydrology PDA-2B PDA-7A PDA-3A PDA-2B PDA-7A DP-1 DP-2 DP-3 PDA-1A DP-1 DP-2 PDA-2A DP-6 PDA-7B DP-6 PDA-6C PDA-7B Infiltration Basin 1 PDA-6B 3 PDA-6B Infiltration Basin-3 Infiltration Basin 2 PDA-6A PDA-4B PDA-4A DP-4 Infiltration Basin-4 PDA-4B DP-5 PDA-5A Infiltration Basin-5 PDA-5B Subcat Routing Diagram for 1833112HC004C Reach Pond Link Prepared by Beals and Thomas, Inc., Printed 12/15/2020 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Printed 12/15/2020

Page 2

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
36.213	39	>75% Grass cover, Good, HSG A (PDA-2A, PDA-3A, PDA-4B, PDA-5A, PDA-5B,
		PDA-6A, PDA-6B, PDA-6C, PDA-7A, PDA-7B)
8.577	61	>75% Grass cover, Good, HSG B (PDA-1A, PDA-4B, PDA-5A, PDA-5B, PDA-6B)
2.167	80	>75% Grass cover, Good, HSG D (PDA-2A, PDA-6A, PDA-6B, PDA-6C)
1.323	30	Brush, Good, HSG A (PDA-2A, PDA-3A, PDA-4A, PDA-5A, PDA-6A, PDA-6C,
		PDA-7A, PDA-7B)
0.072	48	Brush, Good, HSG B (PDA-1A, PDA-4A, PDA-5A, PDA-6C)
0.294	73	Brush, Good, HSG D (PDA-2A, PDA-5A, PDA-6A, PDA-6B, PDA-6C)
0.147	98	Equipment Pad Area (PDA-4B, PDA-5B, PDA-6A, PDA-6B)
0.014	96	Gravel Surface (PDA-3A)
3.341	96	Gravel surface (PDA-4B, PDA-5A, PDA-5B, PDA-6A, PDA-7A, PDA-7B)
0.093	96	Gravel surface, (PDA-6B)
21.512	30	Woods, Good, HSG A (PDA-1A, PDA-2B, PDA-3A, PDA-4A, PDA-4B, PDA-5A,
		PDA-5B, PDA-6A, PDA-6C, PDA-7A, PDA-7B)
1.201	55	Woods, Good, HSG B (PDA-1A, PDA-4A, PDA-5A, PDA-6C)
4.258	77	Woods, Good, HSG D (PDA-2B, PDA-5A, PDA-6C)
79.212	45	TOTAL AREA

Page 3

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.05 hrs, 561 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN

	d+Trans method - Pond routing by Stor-Ind method
Subcatchment PDA-1A: PDA-1A	Runoff Area=0.741 ac 0.00% Impervious Runoff Depth=0.31" Flow Length=273' Tc=7.8 min CN=55 Runoff=0.11 cfs 0.019 af
Subcatchment PDA-2A: PDA-2A	Runoff Area=0.292 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=216' Tc=7.5 min CN=39 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-2B: PDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth=1.06" Flow Length=575' Tc=36.9 min CN=72 Runoff=2.25 cfs 0.333 af
Subcatchment PDA-3A: PDA-3A	Runoff Area=1.826 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=644' Tc=17.5 min CN=32 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-4A: PDA-4A	Runoff Area=2.203 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=198' Tc=12.7 min CN=31 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-4B: PDA-4B	Runoff Area=14.295 ac 0.30% Impervious Runoff Depth=0.13" Flow Length=540' Tc=17.1 min CN=48 Runoff=0.26 cfs 0.150 af
Subcatchment PDA-5A: PDA-5A	Runoff Area=8.218 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=216' Tc=12.0 min CN=32 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-5B: PDA-5B	Runoff Area=13.245 ac 0.48% Impervious Runoff Depth=0.15" Flow Length=177' Tc=7.4 min CN=49 Runoff=0.42 cfs 0.164 af
Subcatchment PDA-6A: PDA-6A	Runoff Area=12.935 ac 0.22% Impervious Runoff Depth=0.02" Flow Length=1,965' Tc=40.5 min CN=41 Runoff=0.03 cfs 0.020 af
Subcatchment PDA-6B: PDA-6B	Runoff Area=7.472 ac 0.15% Impervious Runoff Depth=0.31" Flow Length=818' Tc=12.1 min CN=55 Runoff=1.02 cfs 0.195 af
Subcatchment PDA-6C: PDA-6C	Runoff Area=6.152 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=222' Tc=15.8 min CN=39 Runoff=0.01 cfs 0.002 af
Subcatchment PDA-7A: PDA-7A	Runoff Area=4.421 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=1,265' Tc=25.6 min CN=37 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-7B: PDA-7B	Runoff Area=3.625 ac 0.00% Impervious Runoff Depth=0.05" Flow Length=795' Tc=15.2 min CN=44 Runoff=0.03 cfs 0.016 af
Reach DP-1: DP-1	Inflow=0.11 cfs 0.019 af Outflow=0.11 cfs 0.019 af
Reach DP-2: DP-2	Inflow=2.25 cfs 0.333 af Outflow=2.25 cfs 0.333 af
Reach DP-3: DP-3	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

Post-Development Hydrology Type III 24-hr 2-Year Rainfall=3.40"

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 4

Reach DP-4: DP-4	Inflow=0.00 cfs 0.000 af
------------------	--------------------------

Outflow=0.00 cfs 0.000 af

Printed 12/15/2020

Reach DP-5: DP-5 Inflow=0.00 cfs 0.000 af

Outflow=0.00 cfs 0.000 af

Reach DP-6: DP-6 Inflow=2.32 cfs 0.355 af

Outflow=2.32 cfs 0.355 af

Pond 1: Infiltration Basin 1 Peak Elev=68.01' Storage=18 cf Inflow=0.03 cfs 0.016 af

Discarded=0.03 cfs 0.016 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.016 af

Pond 2: Infiltration Basin 2 Peak Elev=64.00' Storage=16 cf Inflow=0.03 cfs 0.020 af

Discarded=0.03 cfs 0.020 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.020 af

Pond 3: Infiltration Basin-3 Peak Elev=62.06' Storage=651 cf Inflow=1.02 cfs 0.195 af

Discarded=0.62 cfs 0.195 af Primary=0.00 cfs 0.000 af Outflow=0.62 cfs 0.195 af

Pond 4: Infiltration Basin-4 Peak Elev=66.53' Storage=158 cf Inflow=0.26 cfs 0.150 af

Discarded=0.25 cfs 0.150 af Primary=0.00 cfs 0.000 af Outflow=0.25 cfs 0.150 af

Pond 6: Infiltration Basin-5 Peak Elev=57.01' Storage=175 cf Inflow=0.42 cfs 0.164 af

Discarded=0.33 cfs 0.164 af Primary=0.00 cfs 0.000 af Outflow=0.33 cfs 0.164 af

Total Runoff Area = 79.212 ac Runoff Volume = 0.900 af Average Runoff Depth = 0.14" 99.81% Pervious = 79.065 ac 0.19% Impervious = 0.147 ac

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment PDA-1A: PDA-1A

Runoff = 0.11 cfs @ 12.32 hrs, Volume= 0.019 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area	(ac) C	N Desc	cription			
0.001 30 Woods, Good, HSG A						
0.	.725	55 Woo	ds, Good,	HSG B		
0.	.012 4		h, Good, F			
0	.003 6	31 >75°	% Grass co	over, Good	, HSG B	
0.	.741		ghted Aver			
0.	.741	100.	00% Pervi	ous Area		
_						
Tc	Length	Slope	Velocity	Capacity	Description	
(min)_	(feet)	(ft/ft)	(ft/sec)	(cfs)		
4.1	50	0.0400	0.20		Sheet Flow,	
					Grass: Short n= 0.150 P2= 3.40"	
1.6	88	0.0340	0.92		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
1.2	73	0.0410	1.01		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.9	62	0.0480	1.10		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
7.8	273	Total				

Summary for Subcatchment PDA-2A: PDA-2A

Runoff = 0.00 cfs @ 23.46 hrs, Volume= 0.000 af, Depth= 0.00"

	Area	(ac) C	N Desc	cription		
	0.	051 3	30 Brus	h, Good, I	HSG A	
	0.	016		h, Good, I		
	0.	224		, ,	over, Good	. HSG A
	_				over, Good	,
_	0			ghted Aver		-
	_	292	,	00% Pervi		
	0.	202	100.	00701 0111	04071104	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Booshphon
_					(013)	Chaot Flour
	5.5	50	0.0200	0.15		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.40"
	2.0	166	0.0390	1.38		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	7.5	216	Total			

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment PDA-2B: PDA-2B

Runoff = 2.25 cfs @ 12.56 hrs, Volume= 0.333 af, Depth= 1.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	Area	(ac) C	N Des	cription		
	0.	391 3	30 Woo	ds, Good,	HSG A	
_	3.	396 7	77 Woo	ds, Good,	HSG D	
				ghted Aver		
	3.	787	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	15.8	50	0.0100	0.05	, ,	Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	3.7	111	0.0100	0.50		Shallow Concentrated Flow, Tc-2
	2.1	107	0.0200	0.07		Woodland Kv= 5.0 fps
	۷.۱	107	0.0300	0.87		Shallow Concentrated Flow, Tc-3 Woodland Kv= 5.0 fps
	0.4	25	0.0400	1.00		Shallow Concentrated Flow, Tc-4
	3		0.0100	1.00		Woodland Kv= 5.0 fps
	14.9	282	0.0040	0.32		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	36.9	575	Total			

Summary for Subcatchment PDA-3A: PDA-3A

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

	Area (ac)	CN	Description
	1.417	30	Woods, Good, HSG A
	0.156	30	Brush, Good, HSG A
	0.239	39	>75% Grass cover, Good, HSG A
*	0.014	96	Gravel Surface
	1.826	32	Weighted Average
	1.826		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 7

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.5	27	0.0400	0.18		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
2.9	23	0.0200	0.13		Sheet Flow,
0.4	00	0.0000	0.00		Grass: Short n= 0.150 P2= 3.40"
0.4	23	0.0200	0.99		Shallow Concentrated Flow,
0.9	64	0.0300	1.21		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
0.9	04	0.0300	1.21		Short Grass Pasture Kv= 7.0 fps
0.3	37	0.0800	1.98		Shallow Concentrated Flow,
0.0	0.	0.0000	1.00		Short Grass Pasture Kv= 7.0 fps
0.3	30	0.0700	1.85		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.3	32	0.0600	1.71		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.3	28	0.0400	1.40		Shallow Concentrated Flow,
0.5	400	0.0000	0.07		Short Grass Pasture Kv= 7.0 fps
2.5	129	0.0300	0.87		Shallow Concentrated Flow,
0.5	28	0.0400	1.00		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
0.5	20	0.0400	1.00		Woodland Kv= 5.0 fps
1.1	48	0.0200	0.71		Shallow Concentrated Flow,
		0.0200	• • • • • • • • • • • • • • • • • • • •		Woodland Kv= 5.0 fps
0.3	20	0.0500	1.12		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
5.2	155	0.0100	0.50		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
17.5	644	Total			

Summary for Subcatchment PDA-4A: PDA-4A

[45] Hint: Runoff=Zero

0.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff 0.00 cfs @

Area (ac)	CN	Description
1.719	30	Woods, Good, HSG A
0.098	55	Woods, Good, HSG B
0.356	30	Brush, Good, HSG A
0.030	48	Brush, Good, HSG B
0.000	39	>75% Grass cover, Good, HSG A
0.000	61	>75% Grass cover, Good, HSG B
2.203	31	Weighted Average
2.203		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 8

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.1	16	0.0300	0.04		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.40"
	3.4	34	0.0300	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.40"
	1.6	90	0.0170	0.91		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.6	58	0.0600	1.71		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
_	12.7	198	Total			

Summary for Subcatchment PDA-4B: PDA-4B

Runoff = 0.26 cfs @ 13.76 hrs, Volume= 0.150 af, Depth= 0.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area	(ac)	CN	Desc	cription		
	0.	499	30	Woo	ds, Good,	HSG A	
9.852 39 >75% Grass cover, Good, HSG A							, HSG A
	2.690 61 >75% Grass cover, Good, HSG B						, HSG B
*	1.211 96 Gravel surface						
*	0.	043	98	Equi	pment Pac	d Area	
	14.295 48 Weighted Average						
	14.	252		99.7	0% Pervio	us Area	
0.043 0.30% Impervious Area						ous Area	
	Tc	Lengt	h :	Slope	Velocity	Capacity	Description
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	5	0 0	.0100	0.12		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.40"
	3.7	25	8 0	.0270	1.15		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	6.2	23	2 0	.0080	0.63		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	17.1	54	0 T	otal			

Summary for Subcatchment PDA-5A: PDA-5A

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 9

	Area	(ac)	CN	Desc	cription		
	7.	383	30	Woo	ds, Good,	HSG A	
	0.	164	55	Woo	ds, Good,	HSG B	
	0.	104	77	Woo	ds, Good,	HSG D	
	0.	264	30	Brus	h, Good, F	HSG A	
	0.	019	48		h, Good, F		
	0.	006	73	Brus	h, Good, F	HSG D	
	_	150	39			over, Good,	
		009	61			over, Good,	HSG B
*	0.	119	96	Grav	<u>el surface</u>	!	
	8.218 32 Weighted Average						
	8.	218		100.0	00% Pervi	ous Area	
	Тс	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	16	o.	0100	0.09		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.40"
	6.4	34	4 0.	0440	0.09		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.40"
	2.7	166	o.	0420	1.02		Shallow Concentrated Flow,
							Woodland Kv= 5.0 fps
	12.0	216	3 To	otal			

Summary for Subcatchment PDA-5B: PDA-5B

0.42 cfs @ 12.48 hrs, Volume= 0.164 af, Depth= 0.15" Runoff

	Area	(ac) (CN Des	cription					
	0.	164	30 Woo	ods, Good,	HSG A				
	8.	8.555 39 >75% Grass cover, Good, HSG A							
	3.	489	61 >75	% Grass c	over, Good	, HSG B			
*	0.	973	96 Gra	vel surface	:				
*	0.	064	98 Equ	ipment Pac	d Area				
	13.	245	49 Wei	ghted Avei	age				
	13.181 99.52% Pervious Are								
	0.	064	0.48	% Impervi	ous Area				
	Тс	Length		Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.5	50	0.0200	0.15		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.40"			
	1.9	127	0.0260	1.13		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	7 Δ	177	Total						

Page 10

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-6A: PDA-6A

Runoff = 0.03 cfs @ 21.55 hrs, Volume= 0.020 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area (ac)		N Desc	cription		
				ds, Good,		
				h, Good, F		
				h, Good, F		
					over, Good	
					over, Good	, HSG D
*				el surface		
_				pment Pac		
				ghted Aver		
		906 029		8% Pervio % Impervi		
	U.	029	0.22	76 IIIIpervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	10.2	50	0.0300	0.08	, ,	Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	8.0	38	0.0260	0.81		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.5	257	0.0310	1.23		Shallow Concentrated Flow,
	0.0	404	0.0050	0.04		Short Grass Pasture Kv= 7.0 fps
	8.6	484	0.0350	0.94		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	6.1	202	0.0120	0.55		Shallow Concentrated Flow,
	0.1	202	0.0120	0.00		Woodland Kv= 5.0 fps
	0.9	52	0.0190	0.96		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.1	58	0.0170	0.91		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.2	140	0.0140	1.90		Shallow Concentrated Flow,
	- 4	0.45	0.0000	4.04		Unpaved Kv= 16.1 fps
	5.1	315	0.0220	1.04		Shallow Concentrated Flow,
	3.0	369	0.0190	2.07		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
	3.0	309	0.0190	2.07		Grassed Waterway Kv= 15.0 fps
_	40.5	1,965	Total			Grassea Waterway IN- 10.0 Ips
	+0.5	1,300	i Otai			

Summary for Subcatchment PDA-6B: PDA-6B

Runoff = 1.02 cfs @ 12.39 hrs, Volume= 0.195 af, Depth= 0.31"

Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 11

	Area	(ac)	CN	Desc	cription					
	0.	045	73	Brus	h, Good, F	HSG D				
	3.	466	39	>75%	% Grass co	over, Good	, HSG A			
	2.	386	61	>75%	% Grass co	over, Good	, HSG B			
	1.	471	80	>75%	>75% Grass cover, Good, HSG D					
*	0.	093	96	Grav	Gravel surface,					
*	0.	011	98	Equi	pment Pac	d Area				
	7.	472	55	Weig	ghted Aver	age				
	7.461 99.85% Pervious Area									
	0.011			0.15	0.15% Impervious Area					
	Тс	Lengt	h	Slope	Velocity	Capacity	Description			
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)				
	4.6	5	0 (0.0300	0.18		Sheet Flow,			
							Grass: Short n= 0.150 P2= 3.40"			
	2.2	17	9 (0.0360	1.33		Shallow Concentrated Flow,			
							Short Grass Pasture Kv= 7.0 fps			
	5.3	58	9 (0.0150	1.84		Shallow Concentrated Flow,			
							Grassed Waterway Kv= 15.0 fps			
	12.1	81	8	Γotal						

Summary for Subcatchment PDA-6C: PDA-6C

0.01 cfs @ 23.59 hrs, Volume= 0.002 af, Depth= 0.00" Runoff

_	Area	(ac) (ON E	Desc	ription		
	4.	594	30 V	Noo	ds, Good,	HSG A	
	0.	214	55 V	Noo	ds, Good,	HSG B	
	0.	758	77 V	Noo	ds, Good,	HSG D	
	0.	288	30 E	3rusl	h, Good, F	HSG A	
	0.	011	48 E	3rusl	h, Good, F	HSG B	
	0.	225	73 E	3rusl	h, Good, F	HSG D	
		018				over, Good,	
_	0.	044	80 >	> 75%	% Grass co	over, Good,	HSG D
	6.	152			hted Aver		
	6.	152	1	100.0	00% Pervi	ous Area	
	Тс	Length		•	Velocity	Capacity	Description
_	(min)	(feet)	(ft	:/ft)	(ft/sec)	(cfs)	
	12.0	50	0.02	200	0.07		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.40"
	3.8	172	0.02	230	0.76		Shallow Concentrated Flow,
_							Woodland Kv= 5.0 fps
	15.8	222	Tota	al			

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 12

Summary for Subcatchment PDA-7A: PDA-7A

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

	Area	(ac)	CN	Desc	ription				
	1.670 30 Woods, Good, HSG A								
	0.169 30			Brush, Good, HSG A					
	2.	439	39	>75% Grass cover, Good, HSG A					
*	0.	143	96	Grav	el surface				
	4.	421	37	Weid	hted Aver	age			
	4.	421			, 00% Pervi				
	Tc	Length	ı SI	lope	Velocity	Capacity	Description		
	(min)	(feet)		ft/ft)	(ft/sec)	(cfs)	·		
	10.2	50	0.0	300	0.08		Sheet Flow,		
							Woods: Light underbrush n= 0.400 P2= 3.40"		
	1.5	59	0.0	170	0.65		Shallow Concentrated Flow,		
							Woodland Kv= 5.0 fps		
	13.9	1,156	0.0	390	1.38		Shallow Concentrated Flow,		
		-					Short Grass Pasture Kv= 7.0 fps		
_	25.6	1,265	Tot	tal	•				

Summary for Subcatchment PDA-7B: PDA-7B

Runoff = 0.03 cfs @ 15.33 hrs, Volume= 0.016 af, Depth= 0.05"

	Area (ac)	CN	Description
	0.073	30	Woods, Good, HSG A
	0.033	30	Brush, Good, HSG A
	3.188	39	>75% Grass cover, Good, HSG A
*	0.331	96	Gravel surface
	3.625	44	Weighted Average
	3.625		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 13

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.5	50	0.0200	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
1.1	93	0.0430	1.45		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.2	33	0.0200	2.28		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
8.4	619	0.0310	1.23		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
15.2	795	Total			

Summary for Reach DP-1: DP-1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.741 ac, 0.00% Impervious, Inflow Depth = 0.31" for 2-Year event

Inflow = 0.11 cfs @ 12.32 hrs, Volume= 0.019 af

Outflow = 0.11 cfs @ 12.32 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.079 ac, 0.00% Impervious, Inflow Depth = 0.98" for 2-Year event

Inflow = 2.25 cfs @ 12.56 hrs, Volume= 0.333 af

Outflow = 2.25 cfs @ 12.56 hrs, Volume= 0.333 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.826 ac, 0.00% Impervious, Inflow Depth = 0.00" for 2-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 16.498 ac, 0.26% Impervious, Inflow Depth = 0.00" for 2-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = $0.00 \text{ cfs } \bar{@}$ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 14

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: DP-5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 21.463 ac, 0.30% Impervious, Inflow Depth = 0.00" for 2-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-6: DP-6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 41.251 ac, 0.10% Impervious, Inflow Depth = 0.10" for 2-Year event

Inflow = 2.32 cfs @ 12.55 hrs, Volume= 0.355 af

Outflow = 2.32 cfs @ 12.55 hrs, Volume= 0.355 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Pond 1: Infiltration Basin 1

Inflow Area = 3.625 ac, 0.00% Impervious, Inflow Depth = 0.05" for 2-Year event

Inflow = 0.03 cfs @ 15.33 hrs, Volume= 0.016 af

Outflow = 0.03 cfs @ 15.55 hrs, Volume= 0.016 af, Atten= 1%, Lag= 13.0 min

Discarded = 0.03 cfs @ 15.55 hrs, Volume= 0.016 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 68.01' @ 15.55 hrs Surf.Area= 1,568 sf Storage= 18 cf

Plug-Flow detention time= 11.8 min calculated for 0.016 af (100% of inflow)

Center-of-Mass det. time= 11.8 min (1,114.6 - 1,102.7)

Volume	Invert	Avail.Storage	Storage Description
#1	68.00'	13,415 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
68.00	1,559	0	0
69.00	2,328	1,944	1,944
70.00	3,224	2,776	4,720
71.00	4,283	3,754	8,473
72.00	5.600	4.942	13.415

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 15

Device	Routing	Invert	Outlet Devices
#1	Discarded	68.00'	2.410 in/hr Exfiltration over Surface area
#2	Primary	71.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.09 cfs @ 15.55 hrs HW=68.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=68.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2: Infiltration Basin 2

Inflow Area =	12.935 ac,	0.22% Impervious, Inflow D	Depth = 0.02" for 2-Year event
Inflow =	0.03 cfs @	21.55 hrs, Volume=	0.020 af
Outflow =	0.03 cfs @	21.68 hrs, Volume=	0.020 af, Atten= 0%, Lag= 8.2 min
Discarded =	0.03 cfs @	21.68 hrs, Volume=	0.020 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 64.00' @ 21.68 hrs Surf.Area= 4,964 sf Storage= 16 cf

Plug-Flow detention time= 9.0 min calculated for 0.020 af (100% of inflow) Center-of-Mass det. time= 8.9 min (1,231.5 - 1,222.6)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	64.00'	28,54	8 cf Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
64.0	00	4,958	0	0	
65.0	00	6,944	5,951	5,951	
66.0	00	10,286	8,615	14,566	
67.0	00	17,678	13,982	28,548	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	64.00'	2.410 in/hr E	xfiltration over S	Surface area
#2	Primary	66.00'		0.5' breadth Bro	pad-Crested Rectangular Weir 0.80 1.00

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.28 cfs @ 21.68 hrs HW=64.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=64.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 16

Summary for Pond 3: Infiltration Basin-3

Inflow Area = 7.472 ac, 0.15% Impervious, Inflow Depth = 0.31" for 2-Year event Inflow = 1.02 cfs @ 12.39 hrs, Volume= 0.195 af

Outflow = 0.62 cfs @ 12.66 hrs, Volume= 0.195 af, Atten= 39%, Lag= 16.2 min

Discarded = 0.62 cfs @ 12.66 hrs, Volume= 0.195 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 62.06' @ 12.66 hrs Surf.Area= 11,092 sf Storage= 651 cf

Plug-Flow detention time= 10.1 min calculated for 0.194 af (100% of inflow)

Center-of-Mass det. time= 10.2 min (959.2 - 949.1)

Volume	Inver	t Avail.Sto	orage St	orage D	escription	
#1	62.00	' 43,3	41 cf C u	ustom S	tage Data (Pr	rismatic) Listed below (Recalc)
Elevation	on S	urf.Area	Inc.St	ore	Cum.Store	
(fee	et)	(sq-ft)	(cubic-fe	et)	(cubic-feet)	
62.0	00	10,997		0	0	
63.0	00	12,606	11,8	302	11,802	
64.0	00	15,423	14,0	15	25,816	
65.0	00	19,627	17,5	525	43,341	
Device	Routing	Invert	Outlet D)evices		
#1	Discarded	62.00'	2.410 ir	/hr Exfi	Itration over	Surface area
#2	Primary	64.00'	20.0' lo	ng x 0.5	5' breadth Bro	oad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.62 cfs @ 12.66 hrs HW=62.06' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.62 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=62.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4: Infiltration Basin-4

Inflow Area = 14.295 ac, 0.30% Impervious, Inflow Depth = 0.13" for 2-Year event
Inflow = 0.26 cfs @ 13.76 hrs, Volume= 0.150 af
Outflow = 0.25 cfs @ 13.90 hrs, Volume= 0.150 af, Atten= 0%, Lag= 8.5 min
Discarded = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 66.53' @ 13.90 hrs Surf.Area= 5,548 sf Storage= 158 cf

Plug-Flow detention time= 10.4 min calculated for 0.150 af (100% of inflow) Center-of-Mass det. time= 10.4 min (1,037.6 - 1,027.3)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 17

Volume	Invert	Avail.Storage	Storage Description
#1	66.50'	35,427 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
#2	67.00'	80,433 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		445.050.5	T

115,859 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
66.50	5,477	0	0
67.00	6,706	3,046	3,046
68.00	9,279	7,993	11,038
69.00	11,959	10,619	21,657
70.00	15,580	13,770	35,427
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
67.00	1,364	(cabie-icet)	0
68.00	1,304 12,524	6,944	6,944
69.00	34,019	23,272	30,216
70.00	66,415	50,217	80,433
70.00	00,413	50,217	00,433

Device	Routing	Invert	Outlet Devices
#1	Discarded	66.50'	2.410 in/hr Exfiltration over Surface area
#2	Primary	69.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.31 cfs @ 13.90 hrs HW=66.53' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.31 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=66.50' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6: Infiltration Basin-5

Inflow Area =	13.245 ac,	0.48% Impervious, I	Inflow Depth = 0.15" for 2-Year event
Inflow =	0.42 cfs @	12.48 hrs, Volume=	0.164 af
Outflow =	0.33 cfs @	12.65 hrs, Volume=	0.164 af, Atten= 22%, Lag= 10.3 min
Discarded =	0.33 cfs @	12.65 hrs, Volume=	= 0.164 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 57.01' @ 12.65 hrs Surf.Area= 13,473 sf Storage= 175 cf

Plug-Flow detention time= 8.9 min calculated for 0.163 af (100% of inflow) Center-of-Mass det. time= 8.9 min (1,013.2 - 1,004.2)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 18

Volume	Inver	t Avai	il.Storage	Storage	Description	
#1 #2	57.00 57.00		53,030 cf 2,077 cf		•	rismatic) Listed below (Recalc) rismatic) Listed below (Recalc)
			55,107 cf	Total Av	ailable Storage	
Elevatio (fee		Surf.Area (sq-ft)		Store c-feet)	Cum.Store (cubic-feet)	
57.0		13,283		0	0	
58.0		16,082		14,683	14,683	
59.0		18,971		17,527	32,209	
60.0	10	22,670	4	20,821	53,030	
Elevatio	n S	Surf.Area		.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
57.0	0	150		0	0	
58.0	0	398		274	274	
59.0		851		625	899	
60.0	0	1,506		1,179	2,077	
Device	Routing	In	vert Outle	et Device	S	
#1 #2	Discarded Primary	_	0.00' 20.0 Hea	'long x (d (feet) 0	Additivation over State O.5' breadth Bro 0.20 0.40 0.60 and 0.80 2.92 3.	oad-Crested Rectangular Weir 0.80 1.00

Discarded OutFlow Max=0.75 cfs @ 12.65 hrs HW=57.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.75 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=57.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Post-Development Hydrology Type III 24-hr 10-Year Rainfall=4.70" Printed 12/15/2020

Page 19

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.05 hrs, 561 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PDA-1A: PDA-1A	Runoff Area=0.741 ac 0.00% Impervious Runoff Depth=0.83" Flow Length=273' Tc=7.8 min CN=55 Runoff=0.50 cfs 0.052 af
Subcatchment PDA-2A: PDA-2A	Runoff Area=0.292 ac 0.00% Impervious Runoff Depth=0.14" Flow Length=216' Tc=7.5 min CN=39 Runoff=0.01 cfs 0.003 af
Subcatchment PDA-2B: PDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth=1.97" Flow Length=575' Tc=36.9 min CN=72 Runoff=4.40 cfs 0.622 af
Subcatchment PDA-3A: PDA-3A	Runoff Area=1.826 ac 0.00% Impervious Runoff Depth=0.01" Flow Length=644' Tc=17.5 min CN=32 Runoff=0.00 cfs 0.001 af
Subcatchment PDA-4A: PDA-4A	Runoff Area=2.203 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=198' Tc=12.7 min CN=31 Runoff=0.00 cfs 0.001 af
Subcatchment PDA-4B: PDA-4B	Runoff Area=14.295 ac 0.30% Impervious Runoff Depth=0.48" Flow Length=540' Tc=17.1 min CN=48 Runoff=3.02 cfs 0.572 af
Subcatchment PDA-5A: PDA-5A	Runoff Area=8.218 ac 0.00% Impervious Runoff Depth=0.01" Flow Length=216' Tc=12.0 min CN=32 Runoff=0.01 cfs 0.006 af
Subcatchment PDA-5B: PDA-5B	Runoff Area=13.245 ac 0.48% Impervious Runoff Depth=0.53" Flow Length=177' Tc=7.4 min CN=49 Runoff=3.73 cfs 0.581 af
Subcatchment PDA-6A: PDA-6A	Runoff Area=12.935 ac 0.22% Impervious Runoff Depth=0.20" Flow Length=1,965' Tc=40.5 min CN=41 Runoff=0.40 cfs 0.221 af
Subcatchment PDA-6B: PDA-6B	Runoff Area=7.472 ac 0.15% Impervious Runoff Depth=0.83" Flow Length=818' Tc=12.1 min CN=55 Runoff=4.45 cfs 0.520 af
Subcatchment PDA-6C: PDA-6C	Runoff Area=6.152 ac 0.00% Impervious Runoff Depth=0.14" Flow Length=222' Tc=15.8 min CN=39 Runoff=0.12 cfs 0.074 af
Subcatchment PDA-7A: PDA-7A	Runoff Area=4.421 ac 0.00% Impervious Runoff Depth=0.09" Flow Length=1,265' Tc=25.6 min CN=37 Runoff=0.05 cfs 0.034 af
Subcatchment PDA-7B: PDA-7B	Runoff Area=3.625 ac 0.00% Impervious Runoff Depth=0.31" Flow Length=795' Tc=15.2 min CN=44 Runoff=0.36 cfs 0.094 af
Reach DP-1: DP-1	Inflow=0.50 cfs 0.052 af Outflow=0.50 cfs 0.052 af
Reach DP-2: DP-2	Inflow=4.40 cfs 0.625 af Outflow=4.40 cfs 0.625 af
Reach DP-3: DP-3	Inflow=0.00 cfs 0.001 af Outflow=0.00 cfs 0.001 af

Post-Development Hydrology Type III 24-hr 10-Year Rainfall=4.70"

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 20

Reach DP-4: DP-4 Inflow=0.00 cfs 0.001 af

Outflow=0.00 cfs 0.001 af

Printed 12/15/2020

Reach DP-5: DP-5 Inflow=0.01 cfs 0.006 af

Outflow=0.01 cfs 0.006 af

Reach DP-6: DP-6 Inflow=4.64 cfs 0.785 af

Outflow=4.64 cfs 0.785 af

Pond 1: Infiltration Basin 1 Peak Elev=68.52' Storage=921 cf Inflow=0.36 cfs 0.094 af

Discarded=0.11 cfs 0.094 af Primary=0.00 cfs 0.000 af Outflow=0.11 cfs 0.094 af

Pond 2: Infiltration Basin 2 Peak Elev=64.18' Storage=924 cf Inflow=0.40 cfs 0.221 af

Discarded=0.30 cfs 0.221 af Primary=0.00 cfs 0.000 af Outflow=0.30 cfs 0.221 af

Pond 3: Infiltration Basin-3 Peak Elev=62.63' Storage=7,223 cf Inflow=4.45 cfs 0.520 af

Discarded=0.67 cfs 0.520 af Primary=0.00 cfs 0.000 af Outflow=0.67 cfs 0.520 af

Peak Elev=67.36' Storage=6,845 cf Inflow=3.02 cfs 0.572 af

Discarded=0.73 cfs 0.572 af Primary=0.00 cfs 0.000 af Outflow=0.73 cfs 0.572 af

Pond 6: Infiltration Basin-5 Peak Elev=57.42' Storage=5,914 cf Inflow=3.73 cfs 0.581 af

Discarded=0.82 cfs 0.581 af Primary=0.00 cfs 0.000 af Outflow=0.82 cfs 0.581 af

Total Runoff Area = 79.212 ac Runoff Volume = 2.780 af Average Runoff Depth = 0.42" 99.81% Pervious = 79.065 ac 0.19% Impervious = 0.147 ac Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 21

Summary for Subcatchment PDA-1A: PDA-1A

Runoff = 0.50 cfs @ 12.15 hrs, Volume= 0.052 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

Area	(ac) C	N Des	cription					
0.	001 3	30 Woo	Woods, Good, HSG A					
0.	725 5	55 Woo	Woods, Good, HSG B					
0.	012 4	l8 Brus	sh, Good, F	HSG B				
0.	003 6	31 >75°	% Grass co	over, Good	, HSG B			
0.	741 5	55 Wei	ghted Aver	age				
0.	741	100.	00% Pervi	ous Area				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.0400	0.20		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.40"			
1.6	88	0.0340	0.92		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.2	73	0.0410	1.01		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.9	62	0.0480	1.10		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
7.8	273	Total						

Summary for Subcatchment PDA-2A: PDA-2A

Runoff = 0.01 cfs @ 13.78 hrs, Volume= 0.003 af, Depth= 0.14"

	Area	(ac) (N Des	cription			
0.051 30 Brush, Good, HSG A							
0.016 73 Brush, Good, HSG D							
	0.	224	39 >75	% Grass c	over, Good	, HSG A	
	0.	001	80 >75	% Grass c	over, Good	, HSG D	
	0.	292	39 Wei	ghted Aver	age		
	0.	292	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	5.5	50	0.0200	0.15		Sheet Flow,	
	2.0	166	0.0390	1.38		Grass: Short n= 0.150 P2= 3.40" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
	7.5	216	Total	·			

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 22

Summary for Subcatchment PDA-2B: PDA-2B

Runoff = 4.40 cfs @ 12.53 hrs, Volume= 0.622 af, Depth= 1.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

Area	(ac) C	N Des	cription		
				HSG A	
3.	396 7	77 Woo	ods, Good,	HSG D	
			ghted Avei		
3.	787	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
3.7	111	0.0100	0.50		Shallow Concentrated Flow, Tc-2
0.4	407	0.0000	0.07		Woodland Kv= 5.0 fps
2.1	107	0.0300	0.87		Shallow Concentrated Flow, Tc-3
0.4	25	0.0400	1.00		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-4
0.4	23	0.0400	1.00		Woodland Kv= 5.0 fps
14.9	282	0.0040	0.32		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
36.9	575	Total			

Summary for Subcatchment PDA-3A: PDA-3A

Runoff = 0.00 cfs @ 23.09 hrs, Volume= 0.001 af, Depth= 0.01"

_	Area (ac)	CN	Description
	1.417	30	Woods, Good, HSG A
	0.156	30	Brush, Good, HSG A
	0.239	39	>75% Grass cover, Good, HSG A
*	0.014	96	Gravel Surface
	1.826	32	Weighted Average
	1.826		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 23

٦ mi)	Гс n)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	.5	27	0.0400	0.18	(0.0)	Sheet Flow,
_	.0	_,	0.0100	0.10		Grass: Short n= 0.150 P2= 3.40"
2	.9	23	0.0200	0.13		Sheet Flow,
_	. •	_0	0.0200	00		Grass: Short n= 0.150 P2= 3.40"
0	.4	23	0.0200	0.99		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.9	64	0.0300	1.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	37	0.0800	1.98		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	30	0.0700	1.85		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	32	0.0600	1.71		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	28	0.0400	1.40		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
2	.5	129	0.0300	0.87		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
0	.5	28	0.0400	1.00		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
1	.1	48	0.0200	0.71		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
0	.3	20	0.0500	1.12		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
5	.2	155	0.0100	0.50		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
17	.5	644	Total			

Summary for Subcatchment PDA-4A: PDA-4A

0.00 cfs @ 24.00 hrs, Volume= 0.001 af, Depth= 0.00" Runoff

 Area (ac)	CN	Description
1.719	30	Woods, Good, HSG A
0.098	55	Woods, Good, HSG B
0.356	30	Brush, Good, HSG A
0.030	48	Brush, Good, HSG B
0.000	39	>75% Grass cover, Good, HSG A
 0.000	61	>75% Grass cover, Good, HSG B
2.203	31	Weighted Average
2.203		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 24

(Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.1	16	0.0300	0.04		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.40"
	3.4	34	0.0300	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.40"
	1.6	90	0.0170	0.91		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.6	58	0.0600	1.71		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
· <u></u>	12.7	198	Total			

Summary for Subcatchment PDA-4B: PDA-4B

Runoff = 3.02 cfs @ 12.44 hrs, Volume= 0.572 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Area	(ac)	CN	Desc	cription			
	0.	499	30	Woo	ds, Good,	HSG A		
	9.	852	39	>75%	% Grass co	over, Good	, HSG A	
2.690 61 >75% Grass cover, Good, HSG B							, HSG B	
* 1.211 96 Gravel surface								
*	0.	043	98	Equi	pment Pac	d Area		
	14.295 48 Weighted Average							
	14.252 99.70% Pervious Area							
	0.043 0.30% Ir					ous Area		
	Тс	Lengt	:h	Slope	Velocity	Capacity	Description	
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)		
	7.2	5	0 0	0.0100	0.12		Sheet Flow,	
							Grass: Short n= 0.150 P2= 3.40"	
	3.7	25	8 0	0.0270	1.15		Shallow Concentrated Flow,	
							Short Grass Pasture Kv= 7.0 fps	
	6.2	23	2 (0.0080	0.63		Shallow Concentrated Flow,	
							Short Grass Pasture Kv= 7.0 fps	
	17.1	54	0 7	Γotal				

Summary for Subcatchment PDA-5A: PDA-5A

Runoff = 0.01 cfs @ 22.94 hrs, Volume= 0.006 af, Depth= 0.01"

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 25

	Area	(ac)	CN	Desc	cription					
	7.	383	30	Woo						
	0.164 55 Woods, Good, HSG B									
	0.104 77 Woods, Good, HSG D									
	0.264 30 Brush, Good, HSG A									
	0.	019	48	Brus	h, Good, F	HSG B				
	0.	006	73		h, Good, F					
		150	39			over, Good,				
	_	009	61			over, Good,	HSG B			
*	0.	<u>119 </u>	96	Grav	<u>el surface</u>	;				
8.218 32 Weighted Average										
	8.	218		100.0	00% Pervi	ous Area				
	Тс	Lengt		Slope	Velocity	Capacity	Description			
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
	2.9	1	6 0	.0100	0.09		Sheet Flow,			
							Grass: Short n= 0.150 P2= 3.40"			
	6.4	3	4 0	.0440	0.09		Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 3.40"			
	2.7	16	6 0	.0420	1.02		Shallow Concentrated Flow,			
							Woodland Kv= 5.0 fps			
	12.0	21	6 T	otal						

Summary for Subcatchment PDA-5B: PDA-5B

3.73 cfs @ 12.18 hrs, Volume= 0.581 af, Depth= 0.53" Runoff

	Area	(ac) (CN Des	cription				
	0.164 30 Woods, Good, HSG A							
	8.555 39 >75% Grass cover, Good, HSG A							
	3.	489	61 >75	% Grass c	over, Good	, HSG B		
*	0.	973	96 Gra	vel surface	:			
*	0.	064	98 Equ	ipment Pac	d Area			
	13.	245	49 Wei	ghted Avei	age			
	13.	181	99.5	2% Pervio	us Area			
	0.	064	0.48	% Impervi	ous Area			
	Тс	Length		Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	5.5	50	0.0200	0.15		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.40"		
	1.9	127	0.0260	1.13		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	7 Δ	177	Total					

Page 26

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-6A: PDA-6A

Runoff = 0.40 cfs @ 13.31 hrs, Volume= 0.221 af, Depth= 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

A	rea	(ac) C	N Desc	cription		
				ds, Good,		
				h, Good, F		
				h, Good, I		
					over, Good	
					over, Good	, HSG D
*				el surface		
			•	pment Pac		
				ghted Aver		
		906		8% Pervio		
	U.	029	0.22	% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Boompton
	0.2	50	0.0300	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
(8.0	38	0.0260	0.81		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
3	3.5	257	0.0310	1.23		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
3	3.6	484	0.0350	0.94		Shallow Concentrated Flow,
		000	0.0400	0.55		Woodland Kv= 5.0 fps
(3.1	202	0.0120	0.55		Shallow Concentrated Flow,
,	0.9	52	0.0190	0.96		Woodland Kv= 5.0 fps
,	J. 9	32	0.0190	0.90		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	1.1	58	0.0170	0.91		Shallow Concentrated Flow,
		00	0.0170	0.01		Short Grass Pasture Kv= 7.0 fps
	1.2	140	0.0140	1.90		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
Ę	5.1	315	0.0220	1.04		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
3	3.0	369	0.0190	2.07		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
40	0.5	1,965	Total			

Summary for Subcatchment PDA-6B: PDA-6B

Runoff = 4.45 cfs @ 12.21 hrs, Volume= 0.520 af, Depth= 0.83"

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 27

	Area	(ac)	CN	Desc	cription		
	0.	045	73	Brus	h, Good, F	HSG D	
3.466 39 >75% Grass cover, Good, HSG A							, HSG A
2.386 61 >75% Grass cover, Good, HSG B							, HSG B
	1.	471	80	>75%	% Grass co	over, Good	, HSG D
*	0.	093	96	Grav	el surface	,	
*	0.	011	98	Equi	pment Pac	d Area	
	7.	472	55	Weig	ghted Aver	age	
	7.461 99.85% Pervious Area						
	0.011 0.15% Impervious Area				% Impervi	ous Area	
·							
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	4.6	5	0 (0.0300	0.18		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.40"
	2.2	17	9 (0.0360	1.33		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	5.3	58	9 (0.0150	1.84		Shallow Concentrated Flow,
							Grassed Waterway Kv= 15.0 fps
	12.1	81	8	Γotal			

Summary for Subcatchment PDA-6C: PDA-6C

0.12 cfs @ 13.91 hrs, Volume= 0.074 af, Depth= 0.14" Runoff

_	Area	(ac) (ON E	Desc	ription		
4.594 30 Woods, Good, HSG A							
	0.	214	55 V	Noo	ds, Good,	HSG B	
	0.	758	77 V	Noo	ds, Good,	HSG D	
	0.	288	30 E	3rus	h, Good, F	HSG A	
	0.	011	48 E	3rus	h, Good, F	HSG B	
	0.	225	73 E	3rus	h, Good, F	HSG D	
0.018 39 >75% Grass cover, Good, HSG A							
_	0.044 80 >75% Grass cover, Good, HSG D						HSG D
	6.	152			hted Aver		
	6.	152	1	100.0	00% Pervi	ous Area	
	Тс	Length		•	Velocity	Capacity	Description
_	(min)	(feet)	(ft	t/ft)	(ft/sec)	(cfs)	
	12.0	50	0.02	200	0.07		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.40"
	3.8	172	0.02	230	0.76		Shallow Concentrated Flow,
_							Woodland Kv= 5.0 fps
	15.8	222	Tota	al			

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 28

Summary for Subcatchment PDA-7A: PDA-7A

Runoff = 0.05 cfs @ 15.28 hrs, Volume= 0.034 af, Depth= 0.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

	Area	(ac) (CN Des	scription		
	1.	670	30 Wo	ods, Good,	HSG A	
	0.169 30 Brush, Good, HSG A					
	2.439 39 >75% Grass cover, Good				over, Good	, HSG A
*	0.	143		vel surface	•	,
_	4.	421	37 We	ighted Ave	rage	
4.421 100.00% Pervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	•		(cfs)	·
	10.2	50	0.0300	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.5	59	0.0170	0.65		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	13.9	1,156	0.0390	1.38		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	25.6	1,265	Total			

Summary for Subcatchment PDA-7B: PDA-7B

Runoff = 0.36 cfs @ 12.51 hrs, Volume= 0.094 af, Depth= 0.31"

Area (ac)	CN	Description
0.073	30	Woods, Good, HSG A
0.033	30	Brush, Good, HSG A
3.188	39	>75% Grass cover, Good, HSG A
0.331	96	Gravel surface
3.625	44	Weighted Average 100.00% Pervious Area
	0.073 0.033 3.188 0.331 3.625	0.073 30 0.033 30 3.188 39 0.331 96

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 29

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.5	50	0.0200	0.15	, ,	Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
1.1	93	0.0430	1.45		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.2	33	0.0200	2.28		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
8.4	619	0.0310	1.23		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
 15.2	795	Total			

Summary for Reach DP-1: DP-1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.741 ac, 0.00% Impervious, Inflow Depth = 0.83" for 10-Year event

Inflow = 0.50 cfs @ 12.15 hrs, Volume= 0.052 af

Outflow = 0.50 cfs @ 12.15 hrs, Volume= 0.052 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.079 ac, 0.00% Impervious, Inflow Depth = 1.84" for 10-Year event

Inflow = 4.40 cfs @ 12.53 hrs, Volume= 0.625 af

Outflow = 4.40 cfs @ 12.53 hrs, Volume= 0.625 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.826 ac, 0.00% Impervious, Inflow Depth = 0.01" for 10-Year event

Inflow = 0.00 cfs @ 23.09 hrs, Volume= 0.001 af

Outflow = 0.00 cfs @ 23.09 hrs, Volume= 0.001 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 16.498 ac, 0.26% Impervious, Inflow Depth = 0.00" for 10-Year event

Inflow = 0.00 cfs @ 24.00 hrs, Volume= 0.001 af

Outflow = 0.00 cfs @ 24.00 hrs, Volume= 0.001 af, Atten= 0%, Lag= 0.0 min

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 30

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: DP-5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 21.463 ac, 0.30% Impervious, Inflow Depth = 0.00" for 10-Year event

Inflow = 0.01 cfs @ 22.94 hrs, Volume= 0.006 af

Outflow = 0.01 cfs @ 22.94 hrs, Volume= 0.006 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-6: DP-6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 41.251 ac, 0.10% Impervious, Inflow Depth = 0.23" for 10-Year event

Inflow = 4.64 cfs @ 12.52 hrs, Volume= 0.785 af

Outflow = 4.64 cfs @ 12.52 hrs, Volume= 0.785 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Pond 1: Infiltration Basin 1

Inflow Area = 3.625 ac, 0.00% Impervious, Inflow Depth = 0.31" for 10-Year event

Inflow = 0.36 cfs @ 12.51 hrs, Volume= 0.094 af

Outflow = 0.11 cfs @ 15.82 hrs, Volume= 0.094 af, Atten= 70%, Lag= 198.4 min

Discarded = 0.11 cfs @ 15.82 hrs, Volume = 0.094 afPrimary = 0.00 cfs @ 0.00 hrs, Volume = 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 68.52' @ 15.82 hrs Surf.Area= 1,961 sf Storage= 921 cf

Plug-Flow detention time= 91.5 min calculated for 0.094 af (100% of inflow)

Center-of-Mass det. time= 91.4 min (1,068.2 - 976.8)

Volume	Invert	Avail.Storage	Storage Description
#1	68.00'	13,415 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
68.00	1,559	0	0
69.00	2,328	1,944	1,944
70.00	3,224	2,776	4,720
71.00	4,283	3,754	8,473
72.00	5.600	4.942	13.415

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 31

Device	Routing	Invert	Outlet Devices
#1	Discarded	68.00'	2.410 in/hr Exfiltration over Surface area
#2	Primary	71.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.11 cfs @ 15.82 hrs HW=68.52' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=68.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2: Infiltration Basin 2

Inflow Area =	12.935 ac, 0.22% Impervious, Inflow Depth = 0.20" for 10-Year event
Inflow =	0.40 cfs @ 13.31 hrs, Volume= 0.221 af
Outflow =	0.30 cfs @ 16.04 hrs, Volume= 0.221 af, Atten= 25%, Lag= 163.7 min
Discarded =	0.30 cfs @ 16.04 hrs, Volume= 0.221 af
Primary =	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 64.18' @ 16.04 hrs Surf.Area= 5,315 sf Storage= 924 cf

Plug-Flow detention time= 27.5 min calculated for 0.220 af (100% of inflow)

Center-of-Mass det. time= 27.5 min (1,062.5 - 1,035.0)

Volume	Invert	Avail.Sto	rage Stora	ge Description	
#1	64.00'	28,54	48 cf Custo	om Stage Data (Pr	rismatic) Listed below (Recalc)
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
64.0	00	4,958	0	0	
65.0	00	6,944	5,951	5,951	
66.0	00	10,286	8,615	14,566	
67.0	00	17,678	13,982	28,548	
Device	Routing	Invert	Outlet Devi	ices	
#1	Discarded	64.00'	2.410 in/hr	Exfiltration over	Surface area
#2	Primary	66.00'	Head (feet)	x 0.5' breadth Bro 0.20 0.40 0.60 lish) 2.80 2.92 3.	

Discarded OutFlow Max=0.30 cfs @ 16.04 hrs HW=64.18' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.30 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=64.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 32

Summary for Pond 3: Infiltration Basin-3

Inflow Area = 7.472 ac, 0.15% Impervious, Inflow Depth = 0.83" for 10-Year event

Inflow = 4.45 cfs @ 12.21 hrs, Volume= 0.520 af

Outflow = 0.67 cfs @ 14.13 hrs, Volume= 0.520 af, Atten= 85%, Lag= 114.9 min

Discarded = 0.67 cfs @ 14.13 hrs, Volume= 0.520 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 62.63' @ 14.13 hrs Surf.Area= 12,007 sf Storage= 7,223 cf

Plug-Flow detention time= 110.8 min calculated for 0.520 af (100% of inflow)

Center-of-Mass det. time= 110.7 min (1,015.2 - 904.5)

Volume	Invert	Avail.Storage	Storage	e Description		
#1	62.00'	43,341 cf	Custon	n Stage Data (Pri	smatic) Listed below (Re	calc)
Elevation (feet)	Surf.A (so		c.Store ic-feet)	Cum.Store (cubic-feet)		
62.00 63.00	,	606	0 11,802	0 11,802		
64.00 65.00	15,4 19,6	423 627	14,015 17,525	25,816 43,341		

Device	Routing	Invert	Outlet Devices
#1	Discarded	62.00'	2.410 in/hr Exfiltration over Surface area
#2	Primary	64.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.67 cfs @ 14.13 hrs HW=62.63' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.67 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=62.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4: Infiltration Basin-4

Inflow Area = 14.295 ac, 0.30% Impervious, Inflow Depth = 0.48" for 10-Year event
Inflow = 3.02 cfs @ 12.44 hrs, Volume= 0.572 af
Outflow = 0.73 cfs @ 15.00 hrs, Volume= 0.572 af, Atten= 76%, Lag= 153.4 min
Discarded = 0.73 cfs @ 15.00 hrs, Volume= 0.572 af
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 67.36' @ 15.00 hrs Surf.Area= 13,018 sf Storage= 6,845 cf

Plug-Flow detention time= 128.4 min calculated for 0.572 af (100% of inflow)

Center-of-Mass det. time= 128.3 min (1,074.5 - 946.1)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 33

Volume	Invert	Avail.Storage	Storage Description
#1	66.50'	35,427 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
#2	67.00'	80,433 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

115,859 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
66.50	5,477	0	0
67.00	6,706	3,046	3,046
68.00	9,279	7,993	11,038
69.00	11,959	10,619	21,657
70.00	15,580	13,770	35,427
Elevation	Surf.Area	Inc.Store	Cum.Store
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
			• • • • • • • • • • • • • • • • • • • •
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
(feet) 67.00	(sq-ft) 1,364	(cubic-feet)	(cubic-feet)
(feet) 67.00 68.00	(sq-ft) 1,364 12,524	(cubic-feet) 0 6,944	(cubic-feet) 0 6,944

Device	Routing	Invert	Outlet Devices
#1	Discarded	66.50'	2.410 in/hr Exfiltration over Surface area
#2	Primary	69.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.73 cfs @ 15.00 hrs HW=67.36' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.73 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=66.50' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6: Infiltration Basin-5

Inflow Area =	13.245 ac, (0.48% Impervious, Inflow De	epth = 0.53" for 10-Year event
Inflow =	3.73 cfs @	12.18 hrs, Volume=	0.581 af
Outflow =	0.82 cfs @	14.11 hrs, Volume=	0.581 af, Atten= 78%, Lag= 115.6 min
Discarded =	0.82 cfs @	14.11 hrs, Volume=	0.581 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 57.42' @ 14.11 hrs Surf.Area= 14,713 sf Storage= 5,914 cf

Plug-Flow detention time= 71.7 min calculated for 0.580 af (100% of inflow) Center-of-Mass det. time= 71.6 min (1,002.2 - 930.7)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 34

Inver	t Ava	il.Storage	Storag	e Description	
		•			rismatic) Listed below (Recalc)
57.00)'	2,077 cf	Custo	m Stage Data (Pı	rismatic) Listed below (Recalc)
		55,107 cf	Total A	Available Storage	
on S	Surf Area	Inc	: Store	Cum Store	
et)				(cubic-feet)	
00	13,283	,	0	0	
00	16,082		14,683	14,683	
00	18,971		17,527	32,209	
00	22,670		20,821	53,030	
6	£ A	l	. 04	O Ota	
et)	(sq-ft)	(cubi	c-teet)	(cubic-feet)	
00	150		0	0	
00	398		274	274	
00	851		625	899	
00	1,506		1,179	2,077	
Routing	<u> </u>	nvert Out	et Devic	es	
Discarded	J 5	7.00' 2.4 1	0 in/hr	Exfiltration over	Surface area
Primary	59	9.00' 20. 0	long o	c 0.5' breadth Bre	oad-Crested Rectangular Weir
•					
	57.00 57.00 57.00 57.00 50 50 50 50 50 50 50 50 50	57.00' 57.00' on Surf.Area et) (sq-ft) 00 13,283 00 16,082 00 18,971 00 22,670 on Surf.Area et) (sq-ft) 00 398 00 398 00 851 00 1,506 Routing In Discarded 5	57.00' 53,030 cf 57.00' 2,077 cf 55,107 cf 55,107 cf on Surf.Area Inc (sq-ft) (cubi 00 13,283 00 16,082 00 18,971 00 22,670 on Surf.Area Inc (sq-ft) (cubi 00 398 00 398 00 398 00 398 00 398 00 851 00 1,506 Routing Invert Out Discarded 57.00' 2.41 Primary 59.00' 20.0 Hea	57.00' 53,030 cf Custo 57.00' 2,077 cf Custo 55,107 cf Total A on Surf.Area Inc.Store et) (sq-ft) (cubic-feet) 00 13,283 0 00 16,082 14,683 00 18,971 17,527 00 22,670 20,821 on Surf.Area Inc.Store et) (sq-ft) (cubic-feet) 00 398 274 00 398 274 00 851 625 00 1,506 1,179 Routing Invert Outlet Devic Discarded 57.00' 2.410 in/hr Primary 59.00' 20.0' long Head (feet)	57.00' 53,030 cf Custom Stage Data (Pine Stage) 57.00' 2,077 cf Custom Stage Data (Pine Storage) 55,107 cf Total Available Storage 55,107 cf Total Available Storage 55,107 cf Total Available Storage 56,107 cf Total Available Storage 57.00 cf Cum.Store 56,107 cf Cum.Store 57.00 cf Cum.Store <

Discarded OutFlow Max=0.82 cfs @ 14.11 hrs HW=57.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.82 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=57.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Post-Development Hydrology Type III 24-hr 25-Year Rainfall=5.60" Printed 12/15/2020

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 35

Time span=0.00-28.00 hrs, dt=0.05 hrs, 561 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PDA-1A: PDA-1A	Runoff Area=0.741 ac 0.00% Impervious Runoff Depth=1.29" Flow Length=273' Tc=7.8 min CN=55 Runoff=0.88 cfs 0.080 af
Subcatchment PDA-2A: PDA-2A	Runoff Area=0.292 ac 0.00% Impervious Runoff Depth=0.34" Flow Length=216' Tc=7.5 min CN=39 Runoff=0.03 cfs 0.008 af
Subcatchment PDA-2B: PDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth=2.67" Flow Length=575' Tc=36.9 min CN=72 Runoff=6.03 cfs 0.842 af
Subcatchment PDA-3A: PDA-3A	Runoff Area=1.826 ac 0.00% Impervious Runoff Depth=0.08" Flow Length=644' Tc=17.5 min CN=32 Runoff=0.02 cfs 0.012 af
Subcatchment PDA-4A: PDA-4A	Runoff Area=2.203 ac 0.00% Impervious Runoff Depth=0.06" Flow Length=198' Tc=12.7 min CN=31 Runoff=0.01 cfs 0.010 af
Subcatchment PDA-4B: PDA-4B	Runoff Area=14.295 ac 0.30% Impervious Runoff Depth=0.83" Flow Length=540' Tc=17.1 min CN=48 Runoff=6.64 cfs 0.984 af
Subcatchment PDA-5A: PDA-5A	Runoff Area=8.218 ac 0.00% Impervious Runoff Depth=0.08" Flow Length=216' Tc=12.0 min CN=32 Runoff=0.08 cfs 0.055 af
Subcatchment PDA-5B: PDA-5B	Runoff Area=13.245 ac 0.48% Impervious Runoff Depth=0.89" Flow Length=177' Tc=7.4 min CN=49 Runoff=8.97 cfs 0.981 af
Subcatchment PDA-6A: PDA-6A	Runoff Area=12.935 ac 0.22% Impervious Runoff Depth=0.43" Flow Length=1,965' Tc=40.5 min CN=41 Runoff=1.46 cfs 0.467 af
Subcatchment PDA-6B: PDA-6B	Runoff Area=7.472 ac 0.15% Impervious Runoff Depth=1.29" Flow Length=818' Tc=12.1 min CN=55 Runoff=7.82 cfs 0.805 af
Subcatchment PDA-6C: PDA-6C	Runoff Area=6.152 ac 0.00% Impervious Runoff Depth=0.34" Flow Length=222' Tc=15.8 min CN=39 Runoff=0.60 cfs 0.173 af
Subcatchment PDA-7A: PDA-7A	Runoff Area=4.421 ac 0.00% Impervious Runoff Depth=0.25" Flow Length=1,265' Tc=25.6 min CN=37 Runoff=0.19 cfs 0.092 af
Subcatchment PDA-7B: PDA-7B	Runoff Area=3.625 ac 0.00% Impervious Runoff Depth=0.59" Flow Length=795' Tc=15.2 min CN=44 Runoff=0.99 cfs 0.179 af
Reach DP-1: DP-1	Inflow=0.88 cfs 0.080 af Outflow=0.88 cfs 0.080 af
Reach DP-2: DP-2	Inflow=6.06 cfs 0.851 af Outflow=6.06 cfs 0.851 af
Reach DP-3: DP-3	Inflow=0.02 cfs 0.012 af Outflow=0.02 cfs 0.012 af

Post-Development Hydrology Type III 24-hr 25-Year Rainfall=5.60"

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 36

Reach DP-4: DP-4 Inflow=0.01 cfs 0.010 af

Outflow=0.01 cfs 0.010 af

Printed 12/15/2020

Reach DP-5: DP-5 Inflow=0.08 cfs 0.055 af

Outflow=0.08 cfs 0.055 af

Reach DP-6: DP-6 Inflow=7.08 cfs 1.208 af

Outflow=7.08 cfs 1.208 af

Pond 1: Infiltration Basin 1 Peak Elev=69.44' Storage=3,044 cf Inflow=0.99 cfs 0.179 af

Discarded=0.15 cfs 0.174 af Primary=0.00 cfs 0.000 af Outflow=0.15 cfs 0.174 af

Peak Elev=65.12' Storage=6,830 cf Inflow=1.46 cfs 0.467 af

Discarded=0.41 cfs 0.466 af Primary=0.00 cfs 0.000 af Outflow=0.41 cfs 0.466 af

Pond 3: Infiltration Basin-3 Peak Elev=63.26' Storage=15,145 cf Inflow=7.82 cfs 0.805 af

Discarded=0.74 cfs 0.805 af Primary=0.00 cfs 0.000 af Outflow=0.74 cfs 0.805 af

Pond 4: Infiltration Basin-4 Peak Elev=67.87' Storage=15,174 cf Inflow=6.64 cfs 0.984 af

Discarded=1.11 cfs 0.984 af Primary=0.00 cfs 0.000 af Outflow=1.11 cfs 0.984 af

Pond 6: Infiltration Basin-5 Peak Elev=58.10' Storage=16,664 cf Inflow=8.97 cfs 0.981 af

Discarded=0.94 cfs 0.981 af Primary=0.00 cfs 0.000 af Outflow=0.94 cfs 0.981 af

Total Runoff Area = 79.212 ac Runoff Volume = 4.690 af Average Runoff Depth = 0.71" 99.81% Pervious = 79.065 ac 0.19% Impervious = 0.147 ac

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 37

Summary for Subcatchment PDA-1A: PDA-1A

Runoff = 0.88 cfs @ 12.13 hrs, Volume= 0.080 af, Depth= 1.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.60"

Area	(ac) C	N Des	cription				
0.	.001 3	30 Woo	ods, Good,	HSG A			
0.	725	55 Woo	Woods, Good, HSG B				
0.	.012	18 Brus	sh, Good, F	HSG B			
0.	.003 6	31 >75°	% Grass co	over, Good	, HSG B		
0.	741		ghted Aver				
0.	741	100.	00% Pervi	ous Area			
_							
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
4.1	50	0.0400	0.20		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.40"		
1.6	88	0.0340	0.92		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
1.2	73	0.0410	1.01		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.9	62	0.0480	1.10		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
7.8	273	Total					

Summary for Subcatchment PDA-2A: PDA-2A

Runoff = 0.03 cfs @ 12.41 hrs, Volume= 0.008 af, Depth= 0.34"

 Area	(ac) C	N Desc	cription		
0.	051 3	30 Brus	h, Good, I	HSG A	
0.	016	73 Brus	h, Good, I	HSG D	
0.	224	39 >759	% Grass c	over, Good	, HSG A
0.	001 8	30 >759	% Grass c	over, Good	, HSG D
0.	292 3	39 Wei	ghted Avei	age	
0.	292		00% Pervi		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.5	50	0.0200	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
2.0	166	0.0390	1.38		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
7.5	216	Total			•

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 38

Summary for Subcatchment PDA-2B: PDA-2B

Runoff = 6.03 cfs @ 12.52 hrs, Volume= 0.842 af, Depth= 2.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.60"

Area	(ac) C	N Des	cription		
			ods, Good,		
3.	396 7	77 Woo	ods, Good,	HSG D	
			ghted Avei		
3.	787	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
3.7	111	0.0100	0.50		Shallow Concentrated Flow, Tc-2
0.4	407	0.0000	0.07		Woodland Kv= 5.0 fps
2.1	107	0.0300	0.87		Shallow Concentrated Flow, Tc-3
0.4	25	0.0400	1.00		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-4
0.4	23	0.0400	1.00		Woodland Kv= 5.0 fps
14.9	282	0.0040	0.32		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
36.9	575	Total			

Summary for Subcatchment PDA-3A: PDA-3A

Runoff = 0.02 cfs @ 15.48 hrs, Volume= 0.012 af, Depth= 0.08"

_	Area (ac)	CN	Description
	1.417	30	Woods, Good, HSG A
	0.156	30	Brush, Good, HSG A
	0.239	39	>75% Grass cover, Good, HSG A
*	0.014	96	Gravel Surface
	1.826	32	Weighted Average
	1.826		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 39

(mi	Tc n)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	<u>.</u> 5	27	0.0400	0.18	(010)	Sheet Flow,
_	0		0.0400	0.10		Grass: Short n= 0.150 P2= 3.40"
2	.9	23	0.0200	0.13		Sheet Flow,
_			0.0200	0.10		Grass: Short n= 0.150 P2= 3.40"
0	.4	23	0.0200	0.99		Shallow Concentrated Flow,
·	•		0.0200	0.00		Short Grass Pasture Kv= 7.0 fps
0	.9	64	0.0300	1.21		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	37	0.0800	1.98		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	30	0.0700	1.85		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	32	0.0600	1.71		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
0	.3	28	0.0400	1.40		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
2	.5	129	0.0300	0.87		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
0	.5	28	0.0400	1.00		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
1	.1	48	0.0200	0.71		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
0	.3	20	0.0500	1.12		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
5	.2	155	0.0100	0.50		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
17	.5	644	Total			

Summary for Subcatchment PDA-4A: PDA-4A

0.01 cfs @ 15.79 hrs, Volume= 0.010 af, Depth= 0.06" Runoff

 Area (ac)	CN	Description
1.719	30	Woods, Good, HSG A
0.098	55	Woods, Good, HSG B
0.356	30	Brush, Good, HSG A
0.030	48	Brush, Good, HSG B
0.000	39	>75% Grass cover, Good, HSG A
 0.000	61	>75% Grass cover, Good, HSG B
2.203	31	Weighted Average
2.203		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 40

 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.1	16	0.0300	0.04		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.40"
3.4	34	0.0300	0.17		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
1.6	90	0.0170	0.91		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.6	58	0.0600	1.71		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
12.7	198	Total			•

Summary for Subcatchment PDA-4B: PDA-4B

Runoff = 6.64 cfs @ 12.33 hrs, Volume= 0.984 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area	(ac)	CN	Desc	cription		
	0.	499	30	Woo	ds, Good,	HSG A	
	9.	852	39	>75%	% Grass co	over, Good	, HSG A
	2.	690	61	>75%	% Grass co	over, Good	, HSG B
*	1.	211	96	Grav	el surface		
*	0.	043	98	Equi	pment Pac	d Area	
	14.	295	48	Weig	hted Aver	age	
	14.	252		99.7	0% Pervio	us Area	
	0.	043		0.30	% Impervi	ous Area	
	Тс	Lengt	:h	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	5	0 0	0.0100	0.12		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.40"
	3.7	25	8 0	0.0270	1.15		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	6.2	23	2 (0.0080	0.63		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	17.1	54	0 7	Γotal			

Summary for Subcatchment PDA-5A: PDA-5A

Runoff = 0.08 cfs @ 15.40 hrs, Volume= 0.055 af, Depth= 0.08"

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 41

	Area ((ac)	CN	Desc	cription		
	7.	383	30	Woo	ds, Good,	HSG A	
	0.	164	55	Woo	ds, Good,	HSG B	
	0.	104	77	Woo	ds, Good,	HSG D	
	0.	264	30	Brus	h, Good, F	HSG A	
	0.	019	48		h, Good, F		
	0.	006	73	Brus	h, Good, F	HSG D	
	_	150	39			over, Good,	
		009	61			over, Good,	HSG B
*	0.	119	96	Grav	<u>el surface</u>	!	
	8.	218	32	Weig	ghted Aver	age	
	8.	218		100.0	00% Pervi	ous Area	
	Тс	Lengtl		Slope	Velocity	Capacity	Description
_	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	16	6 0.	0100	0.09		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.40"
	6.4	34	4 0.	0440	0.09		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.40"
	2.7	160	6 0.	0420	1.02		Shallow Concentrated Flow,
_							Woodland Kv= 5.0 fps
	12.0	210	6 To	otal			

Summary for Subcatchment PDA-5B: PDA-5B

8.97 cfs @ 12.15 hrs, Volume= 0.981 af, Depth= 0.89" Runoff

	Area	(ac) (CN Des	cription		
	0.	164	30 Woo	ods, Good,	HSG A	
	8.	555	39 >75	% Grass c	over, Good	, HSG A
	3.	489	61 >75	% Grass c	over, Good	, HSG B
*	0.	973	96 Gra	vel surface	:	
*	0.	064	98 Equ	ipment Pac	d Area	
	13.	245	49 Wei	ghted Avei	age	
	13.	181	99.5	2% Pervio	us Area	
	0.	064	0.48	% Impervi	ous Area	
	Тс	Length		Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.5	50	0.0200	0.15		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.40"
	1.9	127	0.0260	1.13		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	7 Δ	177	Total			

Page 42

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-6A: PDA-6A

Runoff = 1.46 cfs @ 12.86 hrs, Volume= 0.467 af, Depth= 0.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.60"

Area	a (ac) C	N Desc	cription		
			ds, Good,		
			h, Good, I		
			h, Good, F		
				over, Good	
				over, Good	, HSG D
			el surface		
			pment Pac		
	2.935 4 2.906		ghted Aver 8% Pervio		
	2.906 0.029		6% Pervio % Impervi		
,	J.029	0.22	70 IIIIpei Vii	ous Alea	
To	Length	Slope	Velocity	Capacity	Description
(min)	•	(ft/ft)	(ft/sec)	(cfs)	•
10.2	50	0.0300	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.40"
9.0	38	0.0260	0.81		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
3.5	257	0.0310	1.23		Shallow Concentrated Flow,
0.6	404	0.0050	0.04		Short Grass Pasture Kv= 7.0 fps
8.6	484	0.0350	0.94		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
6.1	202	0.0120	0.55		Shallow Concentrated Flow,
0. 1	202	0.0120	0.00		Woodland Kv= 5.0 fps
0.9	52	0.0190	0.96		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.1	58	0.0170	0.91		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.2	140	0.0140	1.90		Shallow Concentrated Flow,
- 4	045	0.0000	4.04		Unpaved Kv= 16.1 fps
5.1	315	0.0220	1.04		Shallow Concentrated Flow,
3.0	369	0.0190	2.07		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
3.0	309	0.0180	2.07		Grassed Waterway Kv= 15.0 fps
40.5	1,965	Total			Classed Waterway IVV- 10.0 Ips
+0.0	1,505	rotai			

Summary for Subcatchment PDA-6B: PDA-6B

Runoff = 7.82 cfs @ 12.20 hrs, Volume= 0.805 af, Depth= 1.29"

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 43

	Area	(ac)	CN	Desc	cription		
	0.	045	73	Brus	h, Good, F	ISG D	
	3.	466	39	>75%	√ Grass co	over, Good	, HSG A
	2.	386	61	>75%	√ Grass co	over, Good	, HSG B
	1.	471	80	>75%	√ Grass co √	over, Good	, HSG D
*	0.	093	96		el surface	•	
*	0.	011	98	Equi	pment Pac	l Area	
	7.	472	55	Weig	ghted Aver	age	
		461			5% Pervio		
	0.	011		0.15	% Impervi	ous Area	
	_		_			• "	-
	Tc	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	
	4.6	50	0.0	0300	0.18		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.40"
	2.2	179	9 0.0	0360	1.33		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	5.3	589	9 0.0	0150	1.84		Shallow Concentrated Flow,
_							Grassed Waterway Kv= 15.0 fps
	12.1	818	3 To	otal			

Summary for Subcatchment PDA-6C: PDA-6C

Runoff 0.60 cfs @ 12.54 hrs, Volume= 0.173 af, Depth= 0.34"

_	Area	(ac) (ON E	Desc	ription		
	4.	594	30 V	Noo	ds, Good,	HSG A	
	0.	214	55 V	Noo	ds, Good,	HSG B	
	0.	758	77 V	Noo	ds, Good,	HSG D	
	0.	288	30 E	3rus	h, Good, F	HSG A	
	0.	011	48 E	3rus	h, Good, F	HSG B	
	0.	225	73 E	3rus	h, Good, F	HSG D	
		018				over, Good,	
_	0.	044	80 >	>75%	% Grass co	over, Good,	HSG D
	6.	152			hted Aver		
	6.	152	1	100.0	00% Pervi	ous Area	
	Тс	Length		•	Velocity	Capacity	Description
_	(min)	(feet)	(ft	t/ft)	(ft/sec)	(cfs)	
	12.0	50	0.02	200	0.07		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.40"
	3.8	172	0.02	230	0.76		Shallow Concentrated Flow,
_							Woodland Kv= 5.0 fps
	15.8	222	Tota	al			

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 44

Summary for Subcatchment PDA-7A: PDA-7A

Runoff = 0.19 cfs @ 12.82 hrs, Volume= 0.092 af, Depth= 0.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.60"

	Area	(ac) (CN D	escription		
	1.	670	30 W	oods, Good	I, HSG A	
	0.	169	30 Bi	ush, Good,	HSG A	
	2.	439	39 >7	75% Grass	cover, Good	, HSG A
*	0.	143	96 G	ravel surfac	е	
	4.	421	37 W	eighted Ave	erage	
	4.	421		00.00% Per	•	
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	·
	10.2	50	0.030	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.5	59	0.017	0 0.65		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	13.9	1,156	0.039	0 1.38		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
_	25.6	1,265	Total			

Summary for Subcatchment PDA-7B: PDA-7B

Runoff = 0.99 cfs @ 12.40 hrs, Volume= 0.179 af, Depth= 0.59"

	Area (ac)	CN	Description
	0.073	30	Woods, Good, HSG A
	0.033	30	Brush, Good, HSG A
	3.188	39	>75% Grass cover, Good, HSG A
*	0.331	96	Gravel surface
	3.625	44	Weighted Average
	3.625		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 45

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.5	50	0.0200	0.15		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
1.1	93	0.0430	1.45		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.2	33	0.0200	2.28		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
8.4	619	0.0310	1.23		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
15.2	795	Total			·

Summary for Reach DP-1: DP-1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.741 ac, 0.00% Impervious, Inflow Depth = 1.29" for 25-Year event

Inflow = 0.88 cfs @ 12.13 hrs, Volume= 0.080 af

Outflow = 0.88 cfs @ 12.13 hrs, Volume= 0.080 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.079 ac, 0.00% Impervious, Inflow Depth = 2.50" for 25-Year event

Inflow = 6.06 cfs @ 12.52 hrs, Volume= 0.851 af

Outflow = 6.06 cfs @ 12.52 hrs, Volume= 0.851 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.826 ac, 0.00% Impervious, Inflow Depth = 0.08" for 25-Year event

Inflow = 0.02 cfs @ 15.48 hrs, Volume= 0.012 af

Outflow = 0.02 cfs @ 15.48 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 16.498 ac, 0.26% Impervious, Inflow Depth = 0.01" for 25-Year event

Inflow = 0.01 cfs @ 15.79 hrs, Volume= 0.010 af

Outflow = 0.01 cfs @ 15.79 hrs, Volume= 0.010 af, Atten= 0%, Lag= 0.0 min

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 46

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: DP-5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 21.463 ac, 0.30% Impervious, Inflow Depth = 0.03" for 25-Year event

Inflow = 0.08 cfs @ 15.40 hrs, Volume= 0.055 af

Outflow = 0.08 cfs @ 15.40 hrs, Volume= 0.055 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-6: DP-6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 41.251 ac, 0.10% Impervious, Inflow Depth = 0.35" for 25-Year event

Inflow = 7.08 cfs @ 12.52 hrs, Volume= 1.208 af

Outflow = 7.08 cfs @ 12.52 hrs, Volume= 1.208 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Pond 1: Infiltration Basin 1

Inflow Area = 3.625 ac, 0.00% Impervious, Inflow Depth = 0.59" for 25-Year event

Inflow = 0.99 cfs @ 12.40 hrs, Volume= 0.179 af

Outflow = 0.15 cfs @ 16.44 hrs, Volume= 0.174 af, Atten= 85%, Lag= 242.2 min

Discarded = 0.15 cfs @ 16.44 hrs, Volume= 0.174 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 69.44' @ 16.44 hrs Surf.Area= 2,719 sf Storage= 3,044 cf

Plug-Flow detention time= 253.6 min calculated for 0.174 af (97% of inflow)

Center-of-Mass det. time= 240.5 min (1,182.5 - 942.0)

Volume	Invert	Avail.Storage	Storage Description
#1	68.00'	13,415 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
68.00	1,559	0	0
69.00	2,328	1,944	1,944
70.00	3,224	2,776	4,720
71.00	4,283	3,754	8,473
72.00	5,600	4,942	13,415

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 47

Device	Routing	Invert	Outlet Devices
#1	Discarded	68.00'	2.410 in/hr Exfiltration over Surface area
#2	Primary	71.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.15 cfs @ 16.44 hrs HW=69.44' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.15 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=68.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2: Infiltration Basin 2

Inflow Area =	12.935 ac, 0.22% Impervious, Inflow Depth = 0.43" for 25-Year event
Inflow =	1.46 cfs @ 12.86 hrs, Volume= 0.467 af
Outflow =	0.41 cfs @ 17.24 hrs, Volume= 0.466 af, Atten= 72%, Lag= 262.9 min
Discarded =	0.41 cfs @ 17.24 hrs, Volume= 0.466 af
Primary =	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 65.12' @ 17.24 hrs Surf.Area= 7,355 sf Storage= 6,830 cf

Plug-Flow detention time= 207.1 min calculated for 0.465 af (100% of inflow)

Center-of-Mass det. time= 206.5 min (1,195.0 - 988.4)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	64.00'	28,54	48 cf Custom	Stage Data (Pr	rismatic) Listed below (Recalc)
Elevatio		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
64.0	00	4,958	0	0	
65.0	00	6,944	5,951	5,951	
66.0	00	10,286	8,615	14,566	
67.0	00	17,678	13,982	28,548	
Device	Routing	Invert	Outlet Device	s	
#1	Discarded	64.00'	2.410 in/hr Ex	xfiltration over	Surface area
#2	Primary	66.00'	Head (feet) 0	0.5' breadth Bro 0.20 0.40 0.60 n) 2.80 2.92 3.	

Discarded OutFlow Max=0.41 cfs @ 17.24 hrs HW=65.12' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.41 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=64.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 48

Summary for Pond 3: Infiltration Basin-3

Inflow Area = 7.472 ac, 0.15% Impervious, Inflow Depth = 1.29" for 25-Year event

Inflow 7.82 cfs @ 12.20 hrs, Volume= 0.805 af

Outflow 0.74 cfs @ 15.25 hrs, Volume= 0.805 af, Atten= 90%, Lag= 183.3 min

Discarded = 0.74 cfs @ 15.25 hrs, Volume= 0.805 af Primary 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 63.26' @ 15.25 hrs Surf.Area= 13,332 sf Storage= 15,145 cf

Plug-Flow detention time= 234.8 min calculated for 0.805 af (100% of inflow)

Center-of-Mass det. time= 234.7 min (1,123.0 - 888.3)

Volume	Invert	Avail.Stor	rage Storage D	escription		
#1	62.00'	43,34	1 cf Custom S	tage Data (Pris	matic) Listed below	w (Recalc)
Elevation (feet)	Surf.A (so	rea _l -ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
62.00	10,9	997	0	0		
63.00	12,0	306	11,802	11,802		
64.00	15,4	423	14,015	25,816		
65.00	19,0	627	17,525	43,341		
Device R	outing	Invert	Outlet Devices			

			-
#1	Discarded	62.00'	2.410 in/hr Exfiltration over Surface area
#2	Primary	64.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.74 cfs @ 15.25 hrs HW=63.26' (Free Discharge) **T**—1=Exfiltration (Exfiltration Controls 0.74 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=62.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4: Infiltration Basin-4

Inflow Area = 14.295 ac. 0.30% Impervious, Inflow Depth = 0.83" for 25-Year event Inflow 6.64 cfs @ 12.33 hrs, Volume= 0.984 af 1.11 cfs @ 15.07 hrs, Volume= 0.984 af, Atten= 83%, Lag= 164.2 min Outflow Discarded = 1.11 cfs @ 15.07 hrs, Volume= 0.984 af Primary 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 67.87' @ 15.07 hrs Surf.Area= 19,956 sf Storage= 15,174 cf

Plug-Flow detention time= 183.2 min calculated for 0.984 af (100% of inflow)

Center-of-Mass det. time= 183.1 min (1,104.1 - 921.0)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 49

Volume	Invert	Avail.Storage	Storage Description
#1	66.50'	35,427 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
#2	67.00'	80,433 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

115,859 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
66.50	5,477	0	0
67.00	6,706	3,046	3,046
68.00	9,279	7,993	11,038
69.00	11,959	10,619	21,657
70.00	15,580	13,770	35,427
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
67.00	1,364	0	0
68.00	12,524	6,944	6,944
69.00	34,019	23,272	30,216
70.00	66,415	50,217	80,433

Device	Routing	Invert	Outlet Devices
#1	Discarded	66.50'	2.410 in/hr Exfiltration over Surface area
#2	Primary	69.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=1.11 cfs @ 15.07 hrs HW=67.87' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.11 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=66.50' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6: Infiltration Basin-5

Inflow Area =	13.245 ac,	0.48% Impervious, Inflow De	epth = 0.89"	for 25-Year event
Inflow =	8.97 cfs @	12.15 hrs, Volume=	0.981 af	
Outflow =	0.94 cfs @	15.48 hrs, Volume=	0.981 af, Atte	en= 90%, Lag= 199.9 min
Discarded =	0.94 cfs @	15.48 hrs, Volume=	0.981 af	
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 58.10' @ 15.48 hrs Surf.Area= 16,823 sf Storage= 16,664 cf

Plug-Flow detention time= 207.6 min calculated for 0.981 af (100% of inflow) Center-of-Mass det. time= 207.5 min (1,114.7 - 907.3)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 50

Volume	Inve	rt Ava	il.Storage	Storage	Description	
#1	57.0		53,030 cf		•	ismatic) Listed below (Recalc)
#2	57.0	0.	2,077 cf	Custom	n Stage Data (Pr	rismatic) Listed below (Recalc)
			55,107 cf	Total A	vailable Storage	
Elevatio	n ·	Surf.Area	In	c.Store	Cum.Store	
(fee	t)	(sq-ft)	(cub	ic-feet)	(cubic-feet)	
57.0	00	13,283		0	0	
58.0	58.00			14,683	14,683	
59.0	00	18,971		17,527	32,209	
60.0	00	22,670		20,821	53,030	
		•		•	•	
Elevatio	n	Surf.Area	In	c.Store	Cum.Store	
(fee	et)	(sq-ft)	(cub	ic-feet)	(cubic-feet)	
57.0	00	150		0	0	
58.0	00	398		274	274	
59.0	00	851		625	899	
60.0	00	1,506		1,179	2,077	
		•		•	•	
Device	Routing	Ir	nvert Out	let Device	es	
#1	Discarde	d 5	7.00' 2.4 '	10 in/hr E	xfiltration over	Surface area
#2	Primary			-		oad-Crested Rectangular Weir
	,				0.20 0.40 0.60	
					h) 2.80 2.92 3.	
				` 5	,	

Discarded OutFlow Max=0.94 cfs @ 15.48 hrs HW=58.10' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.94 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=57.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Post-Development Hydrology Type III 24-hr 100-Year Rainfall=7.00" Printed 12/15/2020

Page 51

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.05 hrs, 561 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PDA-1A: PDA-1A	Runoff Area=0.741 ac 0.00% Impervious Runoff Depth=2.12" Flow Length=273' Tc=7.8 min CN=55 Runoff=1.59 cfs 0.131 af
Subcatchment PDA-2A: PDA-2A	Runoff Area=0.292 ac 0.00% Impervious Runoff Depth=0.77" Flow Length=216' Tc=7.5 min CN=39 Runoff=0.12 cfs 0.019 af
Subcatchment PDA-2B: PDA-2B	Runoff Area=3.787 ac 0.00% Impervious Runoff Depth=3.83" Flow Length=575' Tc=36.9 min CN=72 Runoff=8.71 cfs 1.208 af
Subcatchment PDA-3A: PDA-3A	Runoff Area=1.826 ac 0.00% Impervious Runoff Depth=0.32" Flow Length=644' Tc=17.5 min CN=32 Runoff=0.11 cfs 0.048 af
Subcatchment PDA-4A: PDA-4A	Runoff Area=2.203 ac 0.00% Impervious Runoff Depth=0.26" Flow Length=198' Tc=12.7 min CN=31 Runoff=0.08 cfs 0.048 af
Subcatchment PDA-4B: PDA-4B	Runoff Area=14.295 ac 0.30% Impervious Runoff Depth=1.49" Flow Length=540' Tc=17.1 min CN=48 Runoff=14.69 cfs 1.776 af
Subcatchment PDA-5A: PDA-5A	Runoff Area=8.218 ac 0.00% Impervious Runoff Depth=0.32" Flow Length=216' Tc=12.0 min CN=32 Runoff=0.54 cfs 0.216 af
Subcatchment PDA-5B: PDA-5B	Runoff Area=13.245 ac 0.48% Impervious Runoff Depth=1.58" Flow Length=177' Tc=7.4 min CN=49 Runoff=19.54 cfs 1.742 af
Subcatchment PDA-6A: PDA-6A	Runoff Area=12.935 ac 0.22% Impervious Runoff Depth=0.92" Flow Length=1,965' Tc=40.5 min CN=41 Runoff=4.51 cfs 0.989 af
Subcatchment PDA-6B: PDA-6B	Runoff Area=7.472 ac 0.15% Impervious Runoff Depth=2.12" Flow Length=818' Tc=12.1 min CN=55 Runoff=13.95 cfs 1.322 af
Subcatchment PDA-6C: PDA-6C	Runoff Area=6.152 ac 0.00% Impervious Runoff Depth=0.77" Flow Length=222' Tc=15.8 min CN=39 Runoff=2.22 cfs 0.394 af
Subcatchment PDA-7A: PDA-7A	Runoff Area=4.421 ac 0.00% Impervious Runoff Depth=0.63" Flow Length=1,265' Tc=25.6 min CN=37 Runoff=0.99 cfs 0.231 af
Subcatchment PDA-7B: PDA-7B	Runoff Area=3.625 ac 0.00% Impervious Runoff Depth=1.15" Flow Length=795' Tc=15.2 min CN=44 Runoff=2.64 cfs 0.349 af
Reach DP-1: DP-1	Inflow=1.59 cfs 0.131 af Outflow=1.59 cfs 0.131 af
Reach DP-2: DP-2	Inflow=8.79 cfs 1.227 af Outflow=8.79 cfs 1.227 af
Reach DP-3: DP-3	Inflow=0.11 cfs 0.048 af Outflow=0.11 cfs 0.048 af

Post-Development Hydrology Type III 24-hr 100-Year Rainfall=7.00"

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 52

Reach DP-4: DP-4 Inflow=0.08 cfs 0.048 af

Outflow=0.08 cfs 0.048 af

Printed 12/15/2020

Reach DP-5: DP-5 Inflow=1.28 cfs 0.360 af

Outflow=1.28 cfs 0.360 af

Reach DP-6: DP-6 Inflow=12.45 cfs 2.293 af

Outflow=12.45 cfs 2.293 af

Pond 1: Infiltration Basin 1 Peak Elev=70.83' Storage=7,759 cf Inflow=2.64 cfs 0.349 af

Discarded=0.23 cfs 0.270 af Primary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.270 af

Pond 2: Infiltration Basin 2 Peak Elev=66.06' Storage=15,225 cf Inflow=4.51 cfs 0.989 af

Discarded=0.60 cfs 0.693 af Primary=0.89 cfs 0.157 af Outflow=1.49 cfs 0.850 af

Pond 3: Infiltration Basin-3 Peak Elev=64.06' Storage=26,699 cf Inflow=13.95 cfs 1.322 af

Discarded=0.87 cfs 1.078 af Primary=0.78 cfs 0.106 af Outflow=1.65 cfs 1.184 af

Peak Elev=68.51' Storage=32,120 cf Inflow=14.69 cfs 1.776 af

Discarded=1.90 cfs 1.718 af Primary=0.00 cfs 0.000 af Outflow=1.90 cfs 1.718 af

Pond 6: Infiltration Basin-5 Peak Elev=59.06' Storage=34,396 cf Inflow=19.54 cfs 1.742 af

Discarded=1.12 cfs 1.387 af Primary=0.93 cfs 0.144 af Outflow=2.05 cfs 1.531 af

Total Runoff Area = 79.212 ac Runoff Volume = 8.474 af Average Runoff Depth = 1.28" 99.81% Pervious = 79.065 ac 0.19% Impervious = 0.147 ac

Page 53

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-1A: PDA-1A

Runoff = 1.59 cfs @ 12.12 hrs, Volume= 0.131 af, Depth= 2.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Area	(ac) C	N Des	cription					
0.	001 3	30 Woo	Woods, Good, HSG A					
0.	725 5	55 Woo	Woods, Good, HSG B					
0.	012 4	l8 Brus	sh, Good, F	HSG B				
0.003 61 >75% Grass cover, Good, HSG B								
0.	741 5	55 Wei	ghted Aver	age				
0.	741	100.	00% Pervi	ous Area				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.0400	0.20		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.40"			
1.6	88	0.0340	0.92		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.2	73	0.0410	1.01		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.9	62	0.0480	1.10		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
7.8	273	Total						

Summary for Subcatchment PDA-2A: PDA-2A

Runoff = 0.12 cfs @ 12.20 hrs, Volume= 0.019 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area	(ac) (N Des	cription					
	0.051 30 Brush, Good, HSG A								
0.016 73 Brush, Good, HSG D									
0.224 39 >75% Grass cover, Good, HSG A									
	0.	001	80 >75	% Grass c	over, Good	, HSG D			
	0.292 39 Weighted Average								
	0.	292	100.	00% Pervi	ous Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	5.5	50	0.0200	0.15		Sheet Flow,			
	2.0	166	0.0390	1.38		Grass: Short n= 0.150 P2= 3.40" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
	7.5	216	Total	·					

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 54

Summary for Subcatchment PDA-2B: PDA-2B

Runoff = 8.71 cfs @ 12.51 hrs, Volume= 1.208 af, Depth= 3.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Area	(ac) C	N Des	cription		
			ods, Good,		
3.	396 7	77 Woo	ods, Good,	HSG D	
			ghted Avei		
3.	787	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
3.7	111	0.0100	0.50		Shallow Concentrated Flow, Tc-2
0.4	407	0.0000	0.07		Woodland Kv= 5.0 fps
2.1	107	0.0300	0.87		Shallow Concentrated Flow, Tc-3
0.4	25	0.0400	1.00		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-4
0.4	23	0.0400	1.00		Woodland Kv= 5.0 fps
14.9	282	0.0040	0.32		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
36.9	575	Total			

Summary for Subcatchment PDA-3A: PDA-3A

Runoff = 0.11 cfs @ 12.64 hrs, Volume= 0.048 af, Depth= 0.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	Area (ac)	CN	Description
	1.417	30	Woods, Good, HSG A
	0.156	30	Brush, Good, HSG A
	0.239	39	>75% Grass cover, Good, HSG A
*	0.014	96	Gravel Surface
	1.826	32	Weighted Average
	1.826		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 55

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.5	27	0.0400	0.18		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
2.9	23	0.0200	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.40"
0.4	23	0.0200	0.99		Shallow Concentrated Flow,
0.0	0.4	0.0000	4.04		Short Grass Pasture Kv= 7.0 fps
0.9	64	0.0300	1.21		Shallow Concentrated Flow,
0.3	37	0.0800	1.98		Short Grass Pasture Kv= 7.0 fps
0.3	31	0.0000	1.90		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.3	30	0.0700	1.85		Shallow Concentrated Flow,
0.0	00	0.0700	1.00		Short Grass Pasture Kv= 7.0 fps
0.3	32	0.0600	1.71		Shallow Concentrated Flow,
0.0		0.000			Short Grass Pasture Kv= 7.0 fps
0.3	28	0.0400	1.40		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
2.5	129	0.0300	0.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.5	28	0.0400	1.00		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.1	48	0.0200	0.71		Shallow Concentrated Flow,
		0.0500	4.40		Woodland Kv= 5.0 fps
0.3	20	0.0500	1.12		Shallow Concentrated Flow,
- 0	455	0.0400	0.50		Woodland Kv= 5.0 fps
5.2	155	0.0100	0.50		Shallow Concentrated Flow,
47.5	044	T-4-1			Woodland Kv= 5.0 fps
17.5	644	Total			

Summary for Subcatchment PDA-4A: PDA-4A

0.08 cfs @ 12.94 hrs, Volume= 0.048 af, Depth= 0.26" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Area (ac)	CN	Description					
1.719	30	Woods, Good, HSG A					
0.098	55	Woods, Good, HSG B					
0.356	30	Brush, Good, HSG A					
0.030	48	Brush, Good, HSG B					
0.000	39	>75% Grass cover, Good, HSG A					
0.000	61	>75% Grass cover, Good, HSG B					
2.203	31	Weighted Average					
2.203		100.00% Pervious Area					

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 56

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.1	16	0.0300	0.04		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.40"
	3.4	34	0.0300	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.40"
	1.6	90	0.0170	0.91		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.6	58	0.0600	1.71		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
_	12.7	198	Total			

Summary for Subcatchment PDA-4B: PDA-4B

Runoff = 14.69 cfs @ 12.28 hrs, Volume= 1.776 af, Depth= 1.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area	(ac)	CN	Desc	cription			
	0.	499	30	Woo	ds, Good,	HSG A		
	9.	852	39	>75%	% Grass co	over, Good	, HSG A	
	2.690 61 >75% Grass cover, Good, HSG B							
*	1.	1.211 96 Gravel surface						
*	0.	043	98	Equi	pment Pac	d Area		
	14.	295	48	Weig	ghted Aver	age		
	14.	252		99.7	0% Pervio	us Area		
	0.	043		0.30	% Impervi	ous Area		
	·							
	Tc	Lengt	h :	Slope	Velocity	Capacity	Description	
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)		
	7.2	5	0 0	.0100	0.12		Sheet Flow,	
							Grass: Short n= 0.150 P2= 3.40"	
	3.7	25	8 0	.0270	1.15		Shallow Concentrated Flow,	
							Short Grass Pasture Kv= 7.0 fps	
	6.2	23	2 0	.0080	0.63		Shallow Concentrated Flow,	
							Short Grass Pasture Kv= 7.0 fps	
	17.1	54	0 T	otal				

Summary for Subcatchment PDA-5A: PDA-5A

Runoff = 0.54 cfs @ 12.55 hrs, Volume= 0.216 af, Depth= 0.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 57

_	Area	(ac)	CN	Desc	cription		
7.383 30 Woods, Good, HSG A							
	0.	164	55	Woo	ds, Good,	HSG B	
	0.	104					
	0.	019	48	Brus	h, Good, F	HSG B	
	0.	006	73	Brus	h, Good, F	HSG D	
	_	150	39	>75%	⟨ Grass co ⟨ ⟨ Grass co ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩	over, Good,	HSG A
		009	61	>75%	√ Grass co	over, Good,	HSG B
*	0.	119	96	Grav	<u>el surface</u>	!	
	8.	218	32	Weig	ghted Aver	age	
	8.	218		100.	00% Pervi	ous Area	
	Тс	Lengt		Slope	Velocity	Capacity	Description
_	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)	
	2.9	1	6 0.	.0100	0.09		Sheet Flow,
							Grass: Short n= 0.150 P2= 3.40"
	6.4	3	4 0.	.0440	0.09		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.40"
	2.7	16	6 0.	.0420	1.02		Shallow Concentrated Flow,
_							Woodland Kv= 5.0 fps
	12.0	21	6 T	otal			

Summary for Subcatchment PDA-5B: PDA-5B

19.54 cfs @ 12.12 hrs, Volume= 1.742 af, Depth= 1.58" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area (ac) CN Description									
	0.164 30 Woods, Good, HSG A									
	8.555 39 >75% Grass cover, Good, HSG A									
	3.	489	61 >75	% Grass c	over, Good	, HSG B				
*	0.	973	96 Gra	vel surface	:					
*	0.	064	98 Equ	ipment Pac	d Area					
	13.	245	49 Wei	ghted Avei	rage					
	13.	181	99.5	52% Pervio	us Area					
	0.	064	0.48	3% Impervi	ous Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.5	50	0.0200	0.15		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.40"				
	1.9	127	0.0260	1.13		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	7 4	177	Total							

Page 58

1833112HC004C

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-6A: PDA-6A

Runoff = 4.51 cfs @ 12.73 hrs, Volume= 0.989 af, Depth= 0.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area	(ac) C	N Desc	cription		
	3.	601 3	30 Woo	ds, Good,	HSG A	
	0.	006 3	30 Brus	h, Good, I	HSG A	
	0.	002 7	73 Brus	h, Good, F	HSG D	
	8.	082 3	39 >759	% Grass co	over, Good	, HSG A
					over, Good	, HSG D
*			_	el surface		
*	0.	029 9	98 Equi	pment Pac	d Area	
				ghted Aver		
		906		8% Pervio		
	0.	029	0.22	% Impervi	ous Area	
	_					
		Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.2	50	0.0300	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	8.0	38	0.0260	0.81		Shallow Concentrated Flow,
	0.5	057	0.0040	4.00		Woodland Kv= 5.0 fps
	3.5	257	0.0310	1.23		Shallow Concentrated Flow,
	8.6	484	0.0350	0.94		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
	0.0	404	0.0330	0.94		Woodland Kv= 5.0 fps
	6.1	202	0.0120	0.55		Shallow Concentrated Flow,
	0.1	202	0.0120	0.00		Woodland Kv= 5.0 fps
	0.9	52	0.0190	0.96		Shallow Concentrated Flow,
	0.0	<u>-</u>		0.00		Short Grass Pasture Kv= 7.0 fps
	1.1	58	0.0170	0.91		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.2	140	0.0140	1.90		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	5.1	315	0.0220	1.04		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	369	0.0190	2.07		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	40.5	1,965	Total			

Summary for Subcatchment PDA-6B: PDA-6B

Runoff = 13.95 cfs @ 12.19 hrs, Volume= 1.322 af, Depth= 2.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 59

	Area	(ac)	CN	Desc	cription					
	0.	045	73	Brus	rush, Good, HSG D					
	3.	466	39	>75%	√ Grass co	over, Good	, HSG A			
	2.	386	61	>75%	√ Grass co	over, Good	, HSG B			
	1.	471	80	>75%	√ Grass co √	over, Good	, HSG D			
*	0.	093	96		el surface	•				
*	0.	011	98	Equi	pment Pac	l Area				
	7.	472	55	Weig	ghted Aver	age				
		461			5% Pervio					
	0.	011		0.15	% Impervi	ous Area				
	_		_			• "	-			
	Tc	Length		Slope	Velocity	Capacity	Description			
_	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)				
	4.6	50	0.0	0300	0.18		Sheet Flow,			
							Grass: Short n= 0.150 P2= 3.40"			
	2.2	179	9 0.0	0360	1.33		Shallow Concentrated Flow,			
							Short Grass Pasture Kv= 7.0 fps			
	5.3	589	9 0.0	0150	1.84		Shallow Concentrated Flow,			
_							Grassed Waterway Kv= 15.0 fps			
	12.1	818	3 To	otal						

Summary for Subcatchment PDA-6C: PDA-6C

Runoff 2.22 cfs @ 12.40 hrs, Volume= 0.394 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	Area	(ac) (CN D	escri	iption		
	4.	594	30 V	Vood:	s, Good,	HSG A	
	0.	214	55 W	Vood:	s, Good,	HSG B	
	0.	758	77 V	Vood:	s, Good,	HSG D	
	0.	288	30 B	rush,	, Good, F	HSG A	
	0.	011	48 B	rush,	, Good, F	HSG B	
	0.	225	73 B	rush,	, Good, F	ISG D	
	0.	018	39 >	75%	Grass co	over, Good,	HSG A
_	0.	044	> 08	75%	Grass co	over, Good,	HSG D
	6.	152	39 W	Veigh	nted Aver	age	
	6.	152	1	00.00	0% Pervi	ous Area	
	Тс	Length	Slop	pe \	Velocity	Capacity	Description
_	(min)	(feet)	(ft/	ft)	(ft/sec)	(cfs)	
	12.0	50	0.020	00	0.07		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.40"
	3.8	172	0.023	30	0.76		Shallow Concentrated Flow,
							Woodland Kv= 5.0 fps
	15.8	222	Total				

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 60

Summary for Subcatchment PDA-7A: PDA-7A

Runoff = 0.99 cfs @ 12.59 hrs, Volume= 0.231 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area	(ac) (CN Des	scription		
	1.	670	30 Wo	ods, Good,	HSG A	
	0.	169	30 Bru	sh, Good, I	HSG A	
	2.	439	39 >75	% Grass c	over, Good	, HSG A
*	0.	143		vel surface	•	,
_	4.	421	37 We	ighted Ave	rage	
	4.	421		.00% Pervi	0	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	•		(cfs)	·
	10.2	50	0.0300	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.5	59	0.0170	0.65		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	13.9	1,156	0.0390	1.38		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	25.6	1,265	Total			

Summary for Subcatchment PDA-7B: PDA-7B

Runoff = 2.64 cfs @ 12.27 hrs, Volume= 0.349 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Area (ac)	CN	Description
0.073	30	Woods, Good, HSG A
0.033	30	Brush, Good, HSG A
3.188	39	>75% Grass cover, Good, HSG A
0.331	96	Gravel surface
3.625 44 Weighted Average 3.625 100.00% Pervious Area		
	0.073 0.033 3.188 0.331 3.625	0.073 30 0.033 30 3.188 39 0.331 96 3.625 44

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 61

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.5	50	0.0200	0.15		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.40"
	1.1	93	0.0430	1.45		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.2	33	0.0200	2.28		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	8.4	619	0.0310	1.23		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	15.2	795	Total			

Summary for Reach DP-1: DP-1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.741 ac, 0.00% Impervious, Inflow Depth = 2.12" for 100-Year event

Inflow = 1.59 cfs @ 12.12 hrs, Volume= 0.131 af

Outflow = 1.59 cfs @ 12.12 hrs, Volume= 0.131 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.079 ac, 0.00% Impervious, Inflow Depth = 3.61" for 100-Year event

Inflow = 8.79 cfs @ 12.51 hrs, Volume= 1.227 af

Outflow = 8.79 cfs @ 12.51 hrs, Volume= 1.227 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.826 ac, 0.00% Impervious, Inflow Depth = 0.32" for 100-Year event

Inflow = 0.11 cfs @ 12.64 hrs, Volume = 0.048 af

Outflow = 0.11 cfs @ 12.64 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 16.498 ac, 0.26% Impervious, Inflow Depth = 0.03" for 100-Year event

Inflow = 0.08 cfs @ 12.94 hrs, Volume= 0.048 af

Outflow = 0.08 cfs @ 12.94 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.0 min

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 62

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: DP-5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 21.463 ac, 0.30% Impervious, Inflow Depth = 0.20" for 100-Year event

Inflow = 1.28 cfs @ 14.11 hrs, Volume= 0.360 af

Outflow = 1.28 cfs @ 14.11 hrs, Volume= 0.360 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Reach DP-6: DP-6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 41.251 ac, 0.10% Impervious, Inflow Depth = 0.67" for 100-Year event

Inflow = 12.45 cfs @ 12.49 hrs, Volume= 2.293 af

Outflow = 12.45 cfs @ 12.49 hrs, Volume= 2.293 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs

Summary for Pond 1: Infiltration Basin 1

Inflow Area = 3.625 ac, 0.00% Impervious, Inflow Depth = 1.15" for 100-Year event

Inflow = 2.64 cfs @ 12.27 hrs, Volume= 0.349 af

Outflow = 0.23 cfs @ 17.03 hrs, Volume= 0.270 af, Atten= 91%, Lag= 285.4 min

Discarded = 0.23 cfs @ 17.03 hrs, Volume= 0.270 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 70.83' @ 17.03 hrs Surf.Area= 4,103 sf Storage= 7,759 cf

Plug-Flow detention time= 371.6 min calculated for 0.269 af (77% of inflow)

Center-of-Mass det. time= 279.7 min (1,191.7 - 912.0)

Volume	Invert	Avail.Storage	Storage Description
#1	68.00'	13,415 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation	Surf.Area	Inc.Store	Cum.Store		
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)		
68.00	1,559	0	0		
69.00	2,328	1,944	1,944		
70.00	3,224	2,776	4,720		
71.00	4,283	3,754	8,473		
72.00	5.600	4.942	13.415		

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 63

Device	Routing	Invert	Outlet Devices
#1	Discarded	68.00'	2.410 in/hr Exfiltration over Surface area
#2	Primary	71.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.23 cfs @ 17.03 hrs HW=70.83' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.23 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=68.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2: Infiltration Basin 2

Inflow Area =	12.935 ac, 0.22% Impervious, Inflov	v Depth = 0.92" for 100-Year event
Inflow =	4.51 cfs @ 12.73 hrs, Volume=	0.989 af
Outflow =	1.49 cfs @ 14.34 hrs, Volume=	0.850 af, Atten= 67%, Lag= 96.8 min
Discarded =	0.60 cfs @ 14.34 hrs, Volume=	0.693 af
Primary =	0.89 cfs @ 14.34 hrs, Volume=	0.157 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 66.06' @ 14.34 hrs Surf.Area= 10,749 sf Storage= 15,225 cf

Plug-Flow detention time= 257.9 min calculated for 0.848 af (86% of inflow) Center-of-Mass det. time= 194.6 min (1,145.1 - 950.5)

Volume	Inve	t Avail.Sto	rage Storage	Description	
#1	64.00)' 28,54	48 cf Custon	n Stage Data (Pr	rismatic) Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
64.0	00	4,958	0	0	
65.0	00	6,944	5,951	5,951	
66.0	00	10,286	8,615	14,566	
67.0	00	17,678	13,982	28,548	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	64.00'	2.410 in/hr E	xfiltration over	Surface area
#2 Primary		66.00'		0.5' breadth Bro 0.20 0.40 0.60	pad-Crested Rectangular Weir 0.80 1.00

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.60 cfs @ 14.34 hrs HW=66.06' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.60 cfs)

Primary OutFlow Max=0.88 cfs @ 14.34 hrs HW=66.06' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.88 cfs @ 0.70 fps)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 64

Summary for Pond 3: Infiltration Basin-3

Inflow Area = 7.472 ac, 0.15% Impervious, Inflow Depth = 2.12" for 100-Year event

Inflow = 13.95 cfs @ 12.19 hrs, Volume= 1.322 af

Outflow = 1.65 cfs @ 13.82 hrs, Volume= 1.184 af, Atten= 88%, Lag= 98.1 min

Discarded = 0.87 cfs @ 13.82 hrs, Volume= 1.078 af Primary = 0.78 cfs @ 13.82 hrs, Volume= 0.106 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 64.06' @ 13.82 hrs Surf.Area= 15,662 sf Storage= 26,699 cf

Plug-Flow detention time= 322.0 min calculated for 1.182 af (89% of inflow)

Center-of-Mass det. time= 271.8 min (1,143.6 - 871.8)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	62.00'	43,34	41 cf Custon	n Stage Data (Pris	smatic) Listed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
62.0	0	10,997	0	0	
63.0	0	12,606	11,802	11,802	
64.0	0	15,423	14,015	25,816	
65.0	0	19,627	17,525	43,341	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	62.00'	2.410 in/hr E	xfiltration over S	urface area
#2	Primary	64.00'	20.0' long x	0.5' breadth Broa	ad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.87 cfs @ 13.82 hrs HW=64.06' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.87 cfs)

Primary OutFlow Max=0.76 cfs @ 13.82 hrs HW=64.06' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.76 cfs @ 0.67 fps)

Summary for Pond 4: Infiltration Basin-4

Inflow Area = 14.295 ac, 0.30% Impervious, Inflow Depth = 1.49" for 100-Year event 14.69 cfs @ 12.28 hrs, Volume= 1.776 af

Outflow = 1.90 cfs @ 14.84 hrs, Volume= 1.718 af, Atten= 87%, Lag= 153.2 min

Discarded = 1.90 cfs @ 14.84 hrs, Volume= 1.718 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 68.51' @ 14.84 hrs Surf.Area= 34,043 sf Storage= 32,120 cf

Plug-Flow detention time= 237.0 min calculated for 1.718 af (97% of inflow)

Center-of-Mass det. time= 219.6 min (1,117.4 - 897.8)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 65

Volume	Invert	Avail.Storage	Storage Description
#1	66.50'	35,427 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
#2	67.00'	80,433 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

115,859 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
66.50	5,477	0	0
67.00	6,706	3,046	3,046
68.00	9,279	7,993	11,038
69.00	11,959	10,619	21,657
70.00	15,580	13,770	35,427
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
67.00	1,364	0	0
68.00	12,524	6,944	6,944
69.00	34,019	23,272	30,216
70.00	66,415	50,217	80,433

Device	Routing	Invert	Outlet Devices
#1	Discarded	66.50'	2.410 in/hr Exfiltration over Surface area
#2	Primary	69.00'	20.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=1.90 cfs @ 14.84 hrs HW=68.51' (Free Discharge) 1=Exfiltration (Exfiltration Controls 1.90 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=66.50' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6: Infiltration Basin-5

Inflow Area =	13.245 ac, 0.48% l	mpervious, Inflow [Depth = 1.58"	for 100-Year event
Inflow =	19.54 cfs @ 12.12 h	rs, Volume=	1.742 af	
Outflow =	2.05 cfs @ 14.14 h	rs, Volume=	1.531 af, Atte	n= 90%, Lag= 120.7 min
Discarded =	1.12 cfs @ 14.14 h	rs, Volume=	1.387 af	
Primary =	0.93 cfs @ 14.14 h	rs. Volume=	0.144 af	

Routing by Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.05 hrs Peak Elev= 59.06' @ 14.14 hrs Surf.Area= 20,103 sf Storage= 34,396 cf

Plug-Flow detention time= 324.1 min calculated for 1.531 af (88% of inflow) Center-of-Mass det. time= 267.4 min (1,152.7 - 885.4)

Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 66

Volume	Inve	rt Avail.S	torage	Storage	Description	
#1	57.00)' 53 <u>,</u>	,030 cf			ismatic) Listed below (Recalc)
#2	57.00)' 2,	,077 cf	Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
		55,	107 cf	Total Ava	ailable Storage	
Elevation		Surf.Area		.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubio	c-feet)	(cubic-feet)	
57.0	00	13,283		0	0	
58.0	00	16,082	1	4,683	14,683	
59.0	00	18,971	1	7,527	32,209	
60.0	00	22,670	2	0,821	53,030	
Elevation		Surf.Area		.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubio	c-feet)	(cubic-feet)	
57.0	00	150		0	0	
58.0		398		274	274	
59.0		851		625	899	
60.0	00	1,506		1,179	2,077	
	_					
Device	Routing	Inve	rt Outle	et Devices	S	
#1	Discarded	57.00)' 2.41	0 in/hr Ex	filtration over	Surface area
#2	Primary	59.00				oad-Crested Rectangular Weir
				` ,	.20 0.40 0.60	
			Coef	f. (English) 2.80 2.92 3.	08 3.30 3.32

Discarded OutFlow Max=1.12 cfs @ 14.14 hrs HW=59.06' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.12 cfs)

Primary OutFlow Max=0.92 cfs @ 14.14 hrs HW=59.06' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.92 cfs @ 0.71 fps)

Attachment 4
Drawdown and Groundwater Recharge Calculations

Groundwater Recharge Volume Required:

Rv = F x Impervious Area, where:

Rv = Required Recharge Volume [Ac-ft]

F = Target Depth Factor associated with each Hydrologic Soil Group (HSG) [in]

Impervious Area = Total Pavement and Rooftop Area under Post-development Conditions [Ac]

			Impervious Area	Required Recharge	
_			[Acres]	Volume [Ac-ft]	_
HSG "A", use F =	0.6	in	0.117	0.117	
HSG "B", use F =	0.35	in	0.029	0.029	
HSG "C", use F =	0.25	in	0.000	0.000	
HSG "D", use F =	0.1	in	0.000	0.000	_
Total R	equire	d Rec	harge Volume (Rv) =	0.146	Ac-ft

Capture Area Adjustment: (Ref: DEP Handbook V.3 Ch.1 P.27-28)

Adjusted Required Recharge Volume = Ca x Rv	0.146 Ac-ft
Capture Area Adjustment Factor = (Total)/(Infil) = Ca =	1.00
Percent Imp. Area Draining to Infiltrative BMPs =	100.0%
Impervious Area Draining to Infiltrative BMPs (infil) =	0.146 Acres
Total Site Impervious Area (Total)=	0.146 Acres

Groundwater Recharge Volume Provided:

ВМР	Provided Recharge Volume [Ac-ft]	
Infiltration Basin 1 =	0.195	
Infiltration Basin 2 =	0.334	
Infiltration Basin 3 =	0.593	
Infiltration Basin 4 =	1.191	
Infiltration Basin 5 =	0.760	
Total Provided Recharge Volume =	3.073	Ac-ft

PROVIDED GROUNDWATER RECHARGE VOLUME IS GREATER THAN OR EQUAL TO THE REQUIRED RECHARGE VOLUME, THEREFORE PROPOSED STORMWATER MANAGEMENT DESIGN IS IN COMPLIANCE WITH STANDARD 3.

JOB NO.	1833.112	COMPUTED BY: _	KJP	CHECKED BY:	JRM
JOB: 150 T	Tihonet Pond Road PV+ES	DATE:	12/15/20	DATE:	12/15/2020

wdown Timo -	Rv	– where:	Rv = Storage Volume Below Outlet [Ac-ft]
wdown Time = (K) (B	ottom Area)	– where:	K= Infiltration Rate [in/hr]
			Bottom Area= Bottom Area of Recharge System [Ac]
Infiltration Basin-1			
Rv	= 0.19	Ac-ft	
K :		in/hr	
Bottom Area		Acres	
Drawdown Time	= 27.129	Hours	< 72 Hours, Design is in compliance with the standard
Infiltration Basin-2			
Rv	= 0.334	Ac-ft	
K :	= 2.410) in/hr	
Bottom Area	= 0.114	Acres	
Drawdown Time	= 14.611	l Hours	< 72 Hours, Design is in compliance with the standard
Infiltration Basin-3		3 Ac-ft	
K :) in/hr	
Bottom Area		Acres	73 Harris Danier in its consultance with the story description
Drawdown Time	= 11.696	Hours	< 72 Hours, Design is in compliance with the standard
Infiltration Basin-4			
Rv	= 1.191	Ac-ft	
K :	2.410) in/hr	
Bottom Area	= 0.126	Acres	
Drawdown Time	= 47.165	Hours	< 72 Hours, Design is in compliance with the standard
Infiltration Basin-5			
Rv	= 0.760	Ac-ft	
K:		in/hr	
Bottom Area		Acres	

Note:

1. The infiltration BMPs have been designed to fully drain within 72 hours, therefore the proposed stormwater management design is in compliance with Standard 3 .

12.271 Hours

< 72 Hours, Design is in compliance with the standard.

Drawdown Time =

2. Infiltration Rate based on Volume 3, Chapter 1, Table 2.3.3 *Rawls Rates* from the 2008 MA DEP Stormwater Management Handbook.

JOB NO. <u>1833.112</u>	COMPUTED BY:	KJP	CHECKED BY:	JRM	
JOB: 150 Tihonet Pond Road PV+ES	DATE:	12/15/2020	DATE:	12/15/2020	

Storage (cubic-feet) 6,845 7,039 7,236 7,435 7,638 7,842 8,050 8,260

8,473

8,689

8,908 9,130 9,356 9,585 9,817 10,053 10,292 10,534 10,779 11,028 11,280 11,535 11,794 12,056 12,321 12,589 12,861 13,136 13,415

70.35

70.40

70.45

70.50

70.55

3,595

3,648

3,701

3,754

3,806

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1: Infiltration Basin 1

	Sta	age-Area-Stora	age for Pond 1	: Infiltration Ba
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)
68.00	1,559	0	70.60	3,859
68.05	1,597	79	70.65	3,912
68.10	1,636	160	70.70	3,965
68.15	1,674	243	70.75	4,018
68.20	1,713	327	70.80	4,071
68.25	1,751	414	70.85	4,124
68.30	1,790	502	70.90	4,177
68.35	1,828	593	70.95	4,230
68.40	1,867	685	71.00	4,283
68.45	1,905	779	71.05	4,349
68.50	1,944	876	71.10	4,415
68.55	1,982	974	71.15	4,481
68.60	2,020	1,074	71.20	4,546
68.65	2,059	1,176	71.25	4,612
68.70	2,097	1,280	71.30	4,678
68.75	2,136	1,386	71.35	4,744
68.80	2,174	1,493	71.40	4,810
68.85	2,213	1,603	71.45	4,876
68.90	2,251	1,715	71.50	4,942 5,007
68.95	2,290 2,328	1,828 1,944	71.55 71.60	,
69.00 69.05	2,326 2,373	2,061	71.65	5,073 5,139
69.10	2,418	2,181	71.70	5,205
69.15	2,462	2,303	71.75	5,271
69.20	2,507	2,427	71.80	5,337
69.25	2,552	2,554	71.85	5,402
69.30	2,597	2,682	71.90	5,468
69.35	2,642	2,813	71.95	5,534
69.40	2,686	2,946	72.00	5,600
69.45	2,731	3,082		,
69.50	2,776	3,220		
69.55	2,821	3,359		
69.60	2,866	3,502		
69.65	2,910	3,646		
69.70	2,955	3,793		
69.75	3,000	3,942		
69.80	3,045	4,093		
69.85	3,090	4,246		
69.90	3,134	4,402		
69.95	3,179	4,559		
70.00	3,224	4,720		
70.05 70.10	3,277 3,330	4,882 5.047		
70.10 70.15	3,330 3,383	5,047 5,215		
70.15 70.20	3,363 3,436	5,215 5,385		
70.20 70.25	3,489	5,559		
70.25	3,469 3,542	5,539 5,734		
70.30	0,542	5,734		

5,913 6,094

6,278

6,464

6,653

Recharge Volume = 8,473 cf = 0.195 ac-ft

66.55

14,352

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 2: Infiltration Basin 2

Elevation Surface Storage (feet) (sq.ft) (cubic-feet)			J	•		
64.00						
64.05			(cubic-feet)			(cubic-feet)
64.10 5,157 506 66.70 15,460 23,577 64.15 5,256 766 66.75 15,830 24,360 64.20 5,355 1,031 66.80 16,200 25,160 64.25 5,455 1,302 66.85 16,569 25,979 64.30 5,554 1,577 66.90 16,939 26,817 64.35 5,653 1,857 66.95 17,308 27,673 64.40 5,752 2,142 67.00 17,678 28,548 64.50 5,951 2,727 64.55 6,050 3,027 64.60 6,150 3,332 64.65 6,249 3,642 64.70 6,348 3,957 64.75 6,448 4,277 64.80 6,547 4,602 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.55 8,762 10,276 65.95 10,119 14,056 66.00 10,286 14,566 66.00 10,286 19,943 10,719 65.65 9,166 11,171 65.70 9,283 11,631 65.75 9,451 12,099 66.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
64.15 5.256 766 64.20 5.355 1,031 64.25 5,455 1,032 64.30 5,554 1,577 66.90 16,939 25,979 64.30 5,554 1,577 66.90 16,939 26,817 64.40 5,752 2,142 64.45 5,852 2,432 64.50 5,951 2,727 64.55 6,050 3,027 64.60 6,150 3,332 64.65 6,249 3,642 64.70 6,348 3,957 64.80 6,547 4,602 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,762 10,276 65.66 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.90 9,952 13,554 65.90 9,952 13,554 66.90 10,286 14,566 66.00 11,025 15,632 66.15 11,395 16,192 66.30 12,504 17,984 66.35 12,873 18,619 66.45 13,612 19,943						
64.20 5,355 1,031 66.80 16,200 25,160 64.25 5,455 1,302 66.85 16,569 25,979 64.30 5,554 1,577 66.90 16,939 26,817 64.40 5,752 2,142 64.45 5,852 2,432 64.50 5,951 2,727 64.55 6,050 3,027 64.60 6,150 3,332 64.65 6,249 3,642 64.70 6,348 3,957 64.75 6,448 4,277 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,666 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.50 8,615 9,841 65.55 8,782 10,276 65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,962 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 9,962 13,554 66.95 12,134 17,369 66.30 12,504 13,243 19,272 66.45 13,612 19,943						
64.25				66.75		24,360
64.30		5,355	1,031	66.80	16,200	25,160
64.35		5,455		66.85	16,569	25,979
64.40 5,752 2,142 67.00 17,678 28,548 64.45 5,852 2,432 64.50 5,951 2,727 64.55 6,050 3,027 64.60 6,150 3,332 64.65 6,249 3,642 64.70 6,348 3,957 64.75 6,448 4,277 64.80 6,547 4,602 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 66.05 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943		5,554		66.90	16,939	26,817
64.45 5,852 2,432 64.50 5,951 2,727 64.55 6,050 3,027 64.60 6,150 3,332 64.65 6,249 3,642 64.70 6,348 4,277 64.80 6,547 4,602 64.85 6,646 4,932 64.95 6,845 5,606 65.00 6,944 5,951 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.50 8,949 10,719 65.65 9,116 11,171 65.67 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943					17,308	27,673
64.50				67.00	17,678	28,548
64.55 6,050 3,027 64.60 6,150 3,332 64.65 6,249 3,642 64.70 6,348 3,957 64.75 6,448 4,277 64.80 6,547 4,602 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 65.80 9,618 12,576 66.80 10,286 14,586 66.00 10,286 14,586						
64 60 6,150 3,332 64.65 6,249 3,642 64.70 6,348 3,957 64.75 6,448 4,277 64.80 6,547 4,602 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.50 8,615 9,841 65.50 8,615 9,841 65.50 8,615 9,841 65.50 8,615 9,841 65.50 8,615 9,841 65.50 8,615 9,16 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.00 10,286 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943	64.50	5,951	2,727			
64.65 6,249 3,642 64.70 6,348 3,957 64.75 6,448 4,277 64.80 6,547 4,602 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 66.00 10,286 14,566 66.00 10,286 14,566 66.00 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
64.70			3,332			
64.75						
64.80 6,547 4,602 64.85 6,646 4,932 64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
64.85		6,448				
64.90 6,745 5,267 64.95 6,845 5,606 65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
64.95		6,646	4,932			
65.00 6,944 5,951 65.05 7,111 6,302 65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.00 10,286 14,566 66.00 10,286 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.05						
65.10 7,278 6,662 65.15 7,445 7,030 65.20 7,612 7,407 65.25 7,780 7,791 65.30 7,947 8,185 65.35 8,114 8,586 65.40 8,281 8,996 65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.15	65.05	7,111	6,302			
65.20	65.10	7,278	6,662			
65.25						
65.30						
65.35						
65.40						
65.45 8,448 9,414 65.50 8,615 9,841 65.55 8,782 10,276 65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.50						
65.55 8,782 10,276 65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.60 8,949 10,719 65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.65 9,116 11,171 65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.70 9,283 11,631 65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.75 9,451 12,099 65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.80 9,618 12,576 65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.85 9,785 13,061 65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.90 9,952 13,554 65.95 10,119 14,056 66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
65.95						
66.00 10,286 14,566 66.05 10,656 15,090 66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
66.05				Recharge Vo	olume	
66.10 11,025 15,632 66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943				= 14,566 cf		
66.15 11,395 16,192 66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943					f	
66.20 11,764 16,771 66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943		,		- 0.33 i uc 1		
66.25 12,134 17,369 66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
66.30 12,504 17,984 66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
66.35 12,873 18,619 66.40 13,243 19,272 66.45 13,612 19,943						
66.40 13,243 19,272 66.45 13,612 19,943						
66.45 13,612 19,943						

21,341

64.55

17,735

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3: Infiltration Basin-3

		· ·			
Elevation	Surface	Storage (cubic-feet)	Elevation	Surface	Storage
(feet)	(sq-ft)		(feet)	(sq-ft)	(cubic-feet)
62.00	10,997	0	64.60	17,945	35,827
62.05	11,077	552	64.65	18,156	36,729
62.10	11,158	1,108	64.70	18,366	37,642
62.15	11,238	1,668	64.75	18,576	38,566
62.20	11,319	2,232	64.80	18,786	39,500
62.25	11,399	2,800	64.85	18,996	40,444
62.30	11,480	3,372	64.90	19,207	41,399
62.35	11,560	3,948	64.95	19,417	42,365
62.40	11,641	4,528	65.00	19,627	43,341
62.45	11,721	5,112			
62.50	11,802	5,700			
62.55	11,882	6,292			
62.60	11,962	6,888			
62.65	12,043	7,488			
62.70	12,123	8,092			
62.75	12,204	8,700			
62.80	12,284	9,312			
62.85	12,365	9,929			
62.90	12,445	10,549			
62.95	12,526	11,173			
63.00	12,606	11,802			
63.05	12,747	12,435			
63.10	12,888	13,076			
63.15	13,029	13,724			
63.20	13,169	14,379			
63.25	13,310	15,041			
63.30	13,451	15,710			
63.35	13,592	16,386			
63.40	13,733	17,069			
63.45	13,874	17,759			
63.50	14,015	18,457			
63.55	14,155	19,161			
63.60	14,133	19,872			
63.65	14,437	20,590			
	14,578				
63.70 63.75	14,719	21,316			
		22,048 22,788			
63.80 63.85	14,860 15,000				
	15,000 15,141	23,534	5 1 1	. 7 1	
63.90	15,141	24,288	Recharge '	Volume	
63.95	15,282	25,048	= 25,816 c	f	
64.00	15,423	25,816	= 0.593 ac	-ft	
64.05	15,633	26,592	0.070		
64.10	15,843	27,379			
64.15	16,054 16,264	28,177			
64.20	16,264 16,474	28,985			
64.25	16,474	29,803			
64.30	16,684	30,632			
64.35	16,894	31,472			
64.40	17,105	32,322			
64.45	17,315	33,182			
64.50	17,525	34,053			

34,935

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 4: Infiltration Basin-4

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
66.50	5,477	0	69.10	49,580	56,651
66.55	5,600	277	69.15	51,381	59,175
66.60	5,723	560	69.20	53,181	61,789
66.65	5,846	849	69.25	54,982	64,493
66.70	5,969	1,145	69.30	56,783	67,287
66.75	6,092	1,446	69.35	58,584	70,171
66.80	6,214 6,337	1,754	69.40	60,385	73,145
66.85 66.90	6,337 6,460	2,068 2,387	69.45 69.50	62,186 63,987	76,210
66.95	6,583	2,714	69.55	65,787	79,364 82,608
67.00	8,070	3,046	69.60	67,588	85,943
67.05	8,757	3,466	69.65	69,389	89,367
67.10	9,443	3,921	69.70	71,190	92,882
67.15	10,130	4,411	69.75	72,991	96,486
67.20	10,817	4,934	69.80	74,792	100,181
67.25	11,503	5,492	69.85	76,592	103,965
67.30	12,190	6,085	69.90	78,393	107,840
67.35	12,877	6,711	69.95	80,194	111,805
67.40	13,563	7,372	70.00	81,995	115,859
67.45	14,250	8,068	. 0.00	01,000	,,,,,,,
67.50	14,937	8,797			
67.55	15,623	9,561			
67.60	16,310	10,360			
67.65	16,996	11,192			
67.70	17,683	12,059			
67.75	18,370	12,961			
67.80	19,056	13,896			
67.85	19,743	14,866			
67.90	20,430	15,871			
67.95	21,116	16,909			
68.00	21,803	17,982			
68.05	23,012	19,103			
68.10	24,220	20,283			
68.15	25,429	21,525			
68.20	26,638	22,826			
68.25	27,847	24,188			
68.30	29,055	25,611			
68.35	30,264	27,094			
68.40 68.45	31,473	28,637			
68.45 68.50	32,682 33,891	30,241 31,906			
68.55	35,099	33,630			
68.60	36,308	35,416			
68.65	37,517	37,261			
68.70	38,726	39,167			
68.75	39,934	41,134			
68.80	41,143	43,161			
68.85	42,352	45,248			
68.90	43,561	47,396	Recharge Vo	lume	
68.95	44,769	49,604	= 51,873 cf	101110	
69.00	45,978	51,873			
69.05	47,779	54,217	= 1.191 ac-ft		

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 6: Infiltration Basin-5

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
57.00	13,433	0	59.60	22,434	45,784
57.05	13,585	675	59.65	22,652	46,912
57.10	13,738	1,359	59.70	22,870	48,050
57.15	13,890	2,049	59.75	23,088	49,199
57.20	14,042	2,748	59.80	23,305	50,358
57.25	14,195	3,453	59.85	23,523	51,529
57.30	14,347	4,167	59.90	23,741	52,711
57.35	14,499	4,888	59.95	23,958	53,903
57.40	14,652	5,617	60.00	24,176	55,107
57.45	14,804	6,353			
57.50	14,957	7,097			
57.55	15,109	7,849			
57.60	15,261	8,608			
57.65	15,414	9,375			
57.70	15,566	10,150			
57.75	15,718	10,932			
57.80	15,871	11,721			
57.85	16,023	12,519			
57.90	16,175	13,324			
57.95	16,328	14,136			
58.00	16,480	14,957			
58.05	16,647	15,785			
58.10	16,814	16,621			
58.15	16,981	17,466			
58.20	17,148	18,319			
58.25	17,316	19,181			
58.30	17,483	20,051			
58.35	17,650	20,929			
58.40	17,817	21,816			
58.45	17,984	22,711			
58.50	18,151	23,614			
58.55	18,318	24,526			
58.60	18,485	25,446			
58.65	18,652	26,374			
58.70	18,819	27,311			
58.75	18,987	28,256			
58.80	19,154	29,210			
58.85	19,321	30,172			
58.90	19,488	31,142			
58.95	19,655	32,121	Recharge Vo	olume	
59.00	19,822	33,108	= 33,108 cf		
59.05	20,040	34,104	= 0.760 ac-f	f	
59.10	20,257	35,111	- 0.700 uc 1	·	
59.15	20,475	36,130			
59.20	20,693	37,159			
59.25	20,911	38,199			
59.30	21,128	39,250			
59.35	21,346	40,312			
59.40	21,564	41,385			
59.45	21,781	42,468			
59.50	21,999	43,563			

44,668

22,217

59.55

Attachment 5
Site Owner's Manual

Site Owner's Manual

150 Tihonet Road PV+ES Project

150 Tihonet Road (aka 0 & 169 Tihonet Road) Wareham, Massachusetts

Prepared for:

Borrego Solar Systems, Inc. 55 Technology Drive, Suite 102 Lowell, MA 01851

Prepared by:

December 15, 2020

TABLE OF CONTENTS

1.0 I	NTRODUCTION	1-1
2.0 S	ITE OWNER'S AGREEMENT	2-1
2.1	OPERATION AND MAINTENANCE COMPLIANCE STATEMENT	
2.2	STORMWATER MAINTENANCE EASEMENTS	2-1
2.3	RECORD KEEPING	2-1
2.4	Training	2-2
3.0 L	ONG-TERM POLLUTION PREVENTION PLAN	3-1
3.1	STORAGE OF MATERIALS AND WASTE	3-1
3.2	VEHICLE WASHING	3-1
3.3	ROUTINE INSPECTIONS AND MAINTENANCE OF STORMWATER BMPS	3-1
3.4	SPILL PREVENTION AND RESPONSE.	3-1
3.5	MAINTENANCE OF GRASSED AREAS	3-1
3.6	SNOW AND DEICING CHEMICAL MANAGEMENT	
4.0 L	ONG-TERM OPERATION AND MAINTENANCE PLAN	4-1
4.1	STORMWATER MANAGEMENT SYSTEM COMPONENTS	4-1
4.2		
4	2.1 Infiltration Basins	4-1
	2.2 Stormwater Outfalls	
	ESTIMATED OPERATION AND MAINTENANCE BUDGET	
4.4		

FIGURES

FIGURE 1: SITE PLAN

APPENDICES

APPENDIX A: OPERATION AND MAINTENANCE LOG APPENDIX B: LIST OF EMERGENCY CONTACTS

1.0 INTRODUCTION

The Site Owner's Manual complies with the Long-Term Pollution Prevention Plan (Standard 4) and the Long-Term Operation and Maintenance Plan (Standard 9) requirements of the 2008 Massachusetts Department of Environmental Protection (MassDEP) Stormwater Handbook. The Manual outlines source control and pollution prevention measures and maintenance requirements of stormwater best management practices (BMPs) associated with the proposed development.

2.0 SITE OWNER'S AGREEMENT

2.1 Operation and Maintenance Compliance Statement

Site Owner: Borrego Solar Systems, Inc.

55 Technology Drive, Suite 102

Lowell, MA 01851

Responsible Party: Borrego Solar Systems, Inc.

Borrego Solar Systems, Inc. or their successors shall maintain ownership of the on-site stormwater management system as well as the responsibility for operation and maintenance during the post-development stages of the project. The site has been inspected for erosion and appropriate measures have been taken to permanently stabilize any eroded areas. All aspects of stormwater best management practices (BMPs) have been inspected for damage, wear and malfunction, and appropriate steps have been taken to repair or replace the system or portions of the system so that the stormwater at the site may be managed in accordance with the Stormwater Management Standards. Future responsible parties shall be notified of their continuing legal responsibility to operate and maintain the BMPs. The operation and maintenance plan for the stormwater BMPs is being implemented.

Responsible Party Signature	Date

2.2 Stormwater Maintenance Easements

The Site Owner will have access to all stormwater practices for inspection and maintenance, including direct maintenance access by heavy equipment to structures requiring regular maintenance.

2.3 Record Keeping

The Site Owner shall maintain a rolling log in which all inspections and maintenance activities for the past three years shall be recorded. The Operation and Maintenance Log includes information pertaining to inspections, repairs, and disposal relevant to the project's stormwater management system. The Log is located in Appendix A.

The Operation and Maintenance Log shall be made available to the Conservation Commission and the DEP upon request. The Conservation Commission and the DEP shall be allowed to enter and inspect the premises to evaluate and ensure that the responsible party complies with the maintenance requirements for each BMP.

2.4 Training

Employees involved in grounds maintenance and emergency response will be educated on the general concepts of stormwater management and groundwater protection. The Site Owner's Manual will be reviewed with the maintenance staff. The staff will be trained on the proper course of action for specific events expected to be incurred during routine maintenance or emergency situations.

3.0 LONG-TERM POLLUTION PREVENTION PLAN

In compliance with Standard 4 of the 2008 DEP Stormwater Management Handbook, this section outlines source control and pollution prevention measures to be employed on-site after construction.

3.1 Storage of Materials and Waste

The site shall be kept clear of trash and debris at all times. Certain materials and waste products shall be stored inside or outside upon an impervious surface and covered, as required by local and state regulations.

3.2 Vehicle Washing

No commercial vehicle washing shall take place on-site.

3.3 Routine Inspections and Maintenance of Stormwater BMPs

See Section 4.0 Long-Term Operation and Maintenance Plan, for routine inspection and maintenance requirements for all proposed stormwater BMPs.

3.4 Spill Prevention and Response

A contingency plan shall be implemented to address the spill or release of petroleum products and hazardous materials and will include the following measures:

- 1. Equipment necessary to quickly attend to inadvertent spills or leaks shall be stored on-site in a secure but accessible location. Such equipment shall include but not be limited to the following: safety goggles, chemically resistant gloves and overshoe boots, water and chemical fire extinguishers, sand and shovels, suitable absorbent materials, storage containers and first aid equipment (i.e. Indian Valley Industries, Inc. 55-gallon Spill Containment kit or approved equivalent).
- 2. Spills or leaks shall be treated properly according to material type, volume of spillage and location of spill. Mitigation shall include preventing further spillage, containing the spilled material in the smallest practical area, removing spilled material in a safe and environmentally-friendly manner, and remediation of any damage to the environment.
- 3. For large spills, MassDEP Hazardous Waste Incident Response Group shall be notified immediately at 888-304-1133 and an emergency response contractor shall be consulted.

3.5 Maintenance of Grassed Areas

Grassed areas shall be maintained regularly by the facility operator. Vegetated and landscaped BMPs will be maintained as outlined in Section 4.0.

3.6 Snow and Deicing Chemical Management

Snow removal at the site shall comply with the following requirements:

- Plowed snow shall not be placed in wetland resource areas or associated buffer zones. The following maintenance measures shall be undertaken at all snow disposal sites:
 - o Debris shall be cleared from an area prior to using it for snow disposal.
 - Debris and accumulated sediments shall be cleared from the site and properly disposed of at the end of the snow season and no later than May 15.
- The use of deicing materials and sand shall not be used at the proposed project site to protect off-site areas.

4.0 LONG-TERM OPERATION AND MAINTENANCE PLAN

This section outlines the general maintenance activities for the stormwater best management practices (BMPs) associated with the proposed stormwater management system and identifies the long-term inspection and maintenance requirements for each BMP.

4.1 Stormwater Management System Components

The following table outlines the type and quantity of the BMPs and their general location. Please reference the site plan(s) provided in the Figures section for exact location.

BMP Type	Quantity	Location
Infiltration	5	Throughout the site
Basin	5	Throughout the site

4.2 Inspection and Maintenance Schedules

4.2.1 Infiltration Basins

Infiltration basins shall be inspected and maintained after major storm events (rainfall totals greater than 2.5 inches in 24 hours) during the first three months of operation and twice a year and when there are discharges through the outlet control structure thereafter. Additionally, all pretreatment BMPs shall be inspected in accordance with the minimal requirements specified for those practices and after all major storm events. Inspections shall include the following measures:

- During and after major storm events, the length of time standing water remains in the basin shall be recorded.
 - o If the time is greater than 72 hours, thoroughly inspect the basin for signs of clogging.
 - o A corrective action plan shall be developed by a qualified professional to restore infiltrative function. The Site Owner shall take immediate action to implement these corrective measures.
- Examine the outlet structure for evidence of clogging or outflow release velocities that are greater than the design velocity.
- Identify areas of sediment accumulation, differential settlement, cracking, and erosion within the basin.
- Inspect embankments for leakage and tree growth.
- Examine the health of the vegetation within the basin and on the embankments.

Corrective measures shall be taken immediately as warranted by the inspections. If any evidence of hydrocarbons is found during inspection, the material shall be immediately removed using absorbent pads or other suitable measures and legally disposed.

Preventative maintenance shall include the following activities:

- Mow the buffer area and basin bottom and side slopes, if vegetated.
- Remove trash, debris, and accumulated organic matter.
- Remove clippings after mowing.

4.2.2 Stormwater Outfalls

Flared end sections and associated riprap aprons, and overflow spillways shall be inspected at least once per year and after major storm events (rainfall totals greater than 2.5 inches in 24 hours) to ensure that the stability of the outlet area is maintained. The outfall area shall be kept clear of debris such as trash, branches, and sediment. Repairs shall be made immediately if riprap displacement or downstream channel scour is observed.

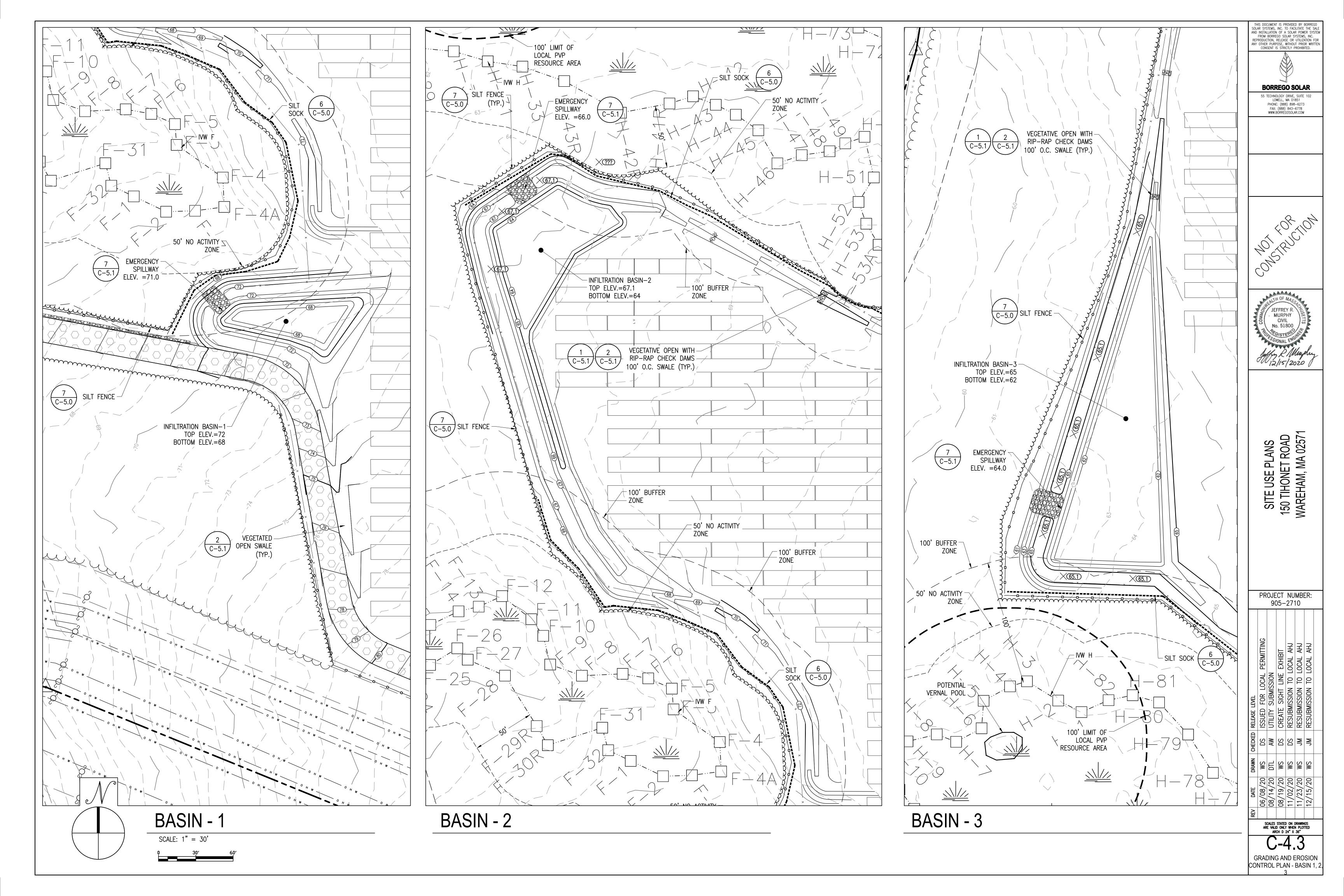
4.3 Estimated Operation and Maintenance Budget

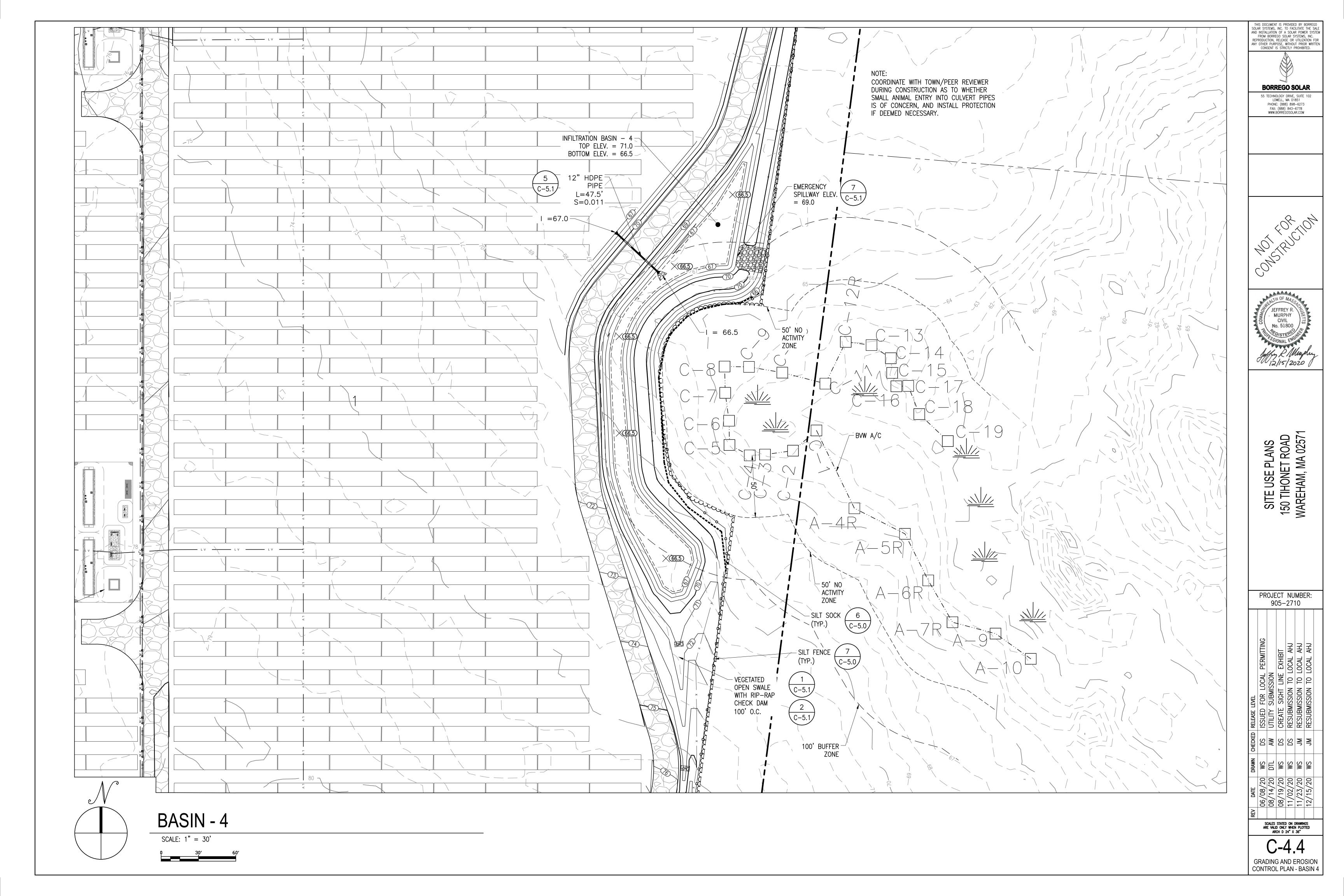
An operations and maintenance budget was prepared to approximate the annual cost of the inspections required in compliance with the DEP Stormwater Management Policy. The table below estimates the annual cost to inspect and maintain each proposed BMP, based on the requirements in Section 4.2.

BMP Type	# of BMPS	Annual O&M Cost (per BMP) ¹	Total Cost
Infiltration Basin	5	\$50-\$100	\$250-\$500
Riprap Spillway/Flared Ends	6	\$200-\$400	\$1,200-\$2,400
		Total	\$1,450 - \$2,900

4.4 Public Safety Features

The site is not open to the public. A locked vehicle gate will be located at the entrance to the gravel access driveway. In addition, a 7' chain-link-fence will surround the array. Operation and maintenance of the facility will be conducted in accordance with the safety requirements of the facility operator and applicable OSHA regulations.


¹ Annual maintenance cost is based on estimate of the cost to complete all inspection and maintenance measures outlined in Section 4.2. For BMPs that require sediment removal at regular intervals (i.e. every 5 or 10 years), the annual cost includes the annual percentage of that cost.



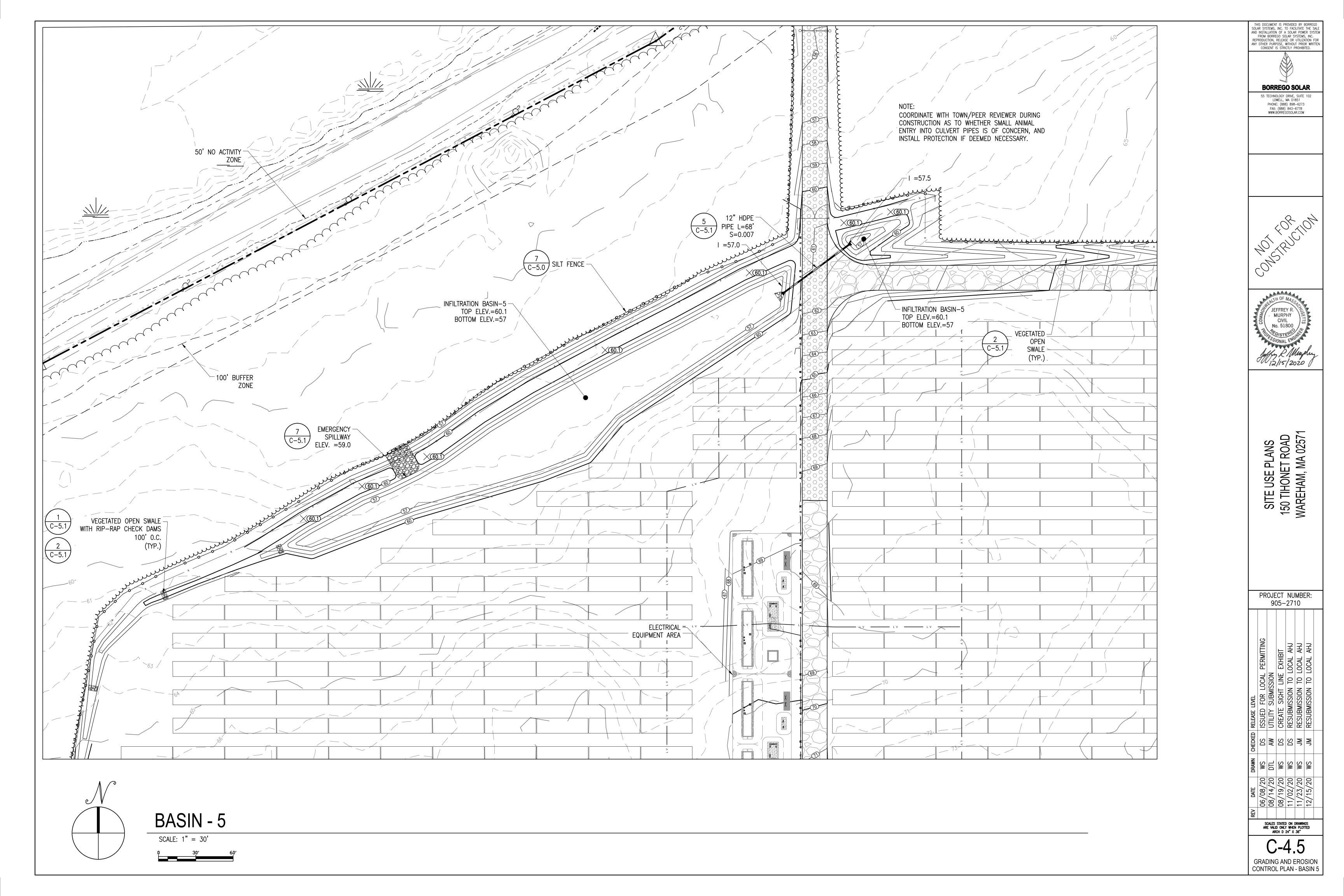

Figures

Figure 1: Site Plan

Appendices

Appendix A

Operation and Maintenance Log

OPERATION AND MAINTENANCE LOG

This template is intended to comply with the operation and maintenance log requirements of the 2008 MassDEP Stormwater Management Handbook. Copies of this log should be made for all inspections and kept on file for three years from the inspection date.

Name/Company of Inspector:		
Date/Time of Inspection:		
Weather Conditions: (Note current weather and any recent precipitation events)		

Inspection Observations	Actions Required
	Inspection Observations

Appendix B

List of Emergency Contacts

Operation and Maintenance Log Wareham, Massachusetts 1833112RP005C

<u>List of Emergency Contacts</u>

MassDEP Hazardous Waste Incident Response Group (617) 792-7653

Town of Wareham Municipal Maintenance 95 Charge Pond Road Wareham, MA 02571 (508) 295-5300

Town of Wareham Fire Department 20 Church Street Wareham, MA 02571 (508) 295-2973

Town of Wareham Police Department 2515 Cranberry Highway Wareham, MA 02571 (508) 295-1212

Attachment 6
Stormwater Pollution Prevention Plan

Draft Stormwater Pollution Prevention Plan

150 Tihonet Road PV+ES Project

150 Tihonet Road (aka 0 & 169 Tihonet Road) Wareham, Massachusetts

Borrego Solar Systems, Inc. 55 Technology Drive, Suite 102 Lowell, MA 01851

Prepared by:

BEALS + THOMAS

BEALS AND THOMAS, INC. 32 Court Street Plymouth, MA 02360

December 15, 2020

TABLE OF CONTENTS

1.0	CONTACT INFORMATION/RESPONSIBLE PARTIES	1
1.1	OPERATOR(s)/ SUBCONTRACTORS	1
1.2	STORMWATER TEAM	2
2.0	SITE EVALUATION, ASSESSMENT AND PLANNING	4
2.1	Project/Site Information	
2.2	NATURE AND SEQUENCE OF CONSTRUCTION ACTIVITY	
2.3	SOILS, SLOPES, VEGETATION, AND CURRENT DRAINAGE PATTERNS	6
2.4	CONSTRUCTION SITE ESTIMATES	
2.5	DISCHARGE INFORMATION	8
2.6	Unique Site Features and Sensitive Areas	
2.7 2.8	CONSTRUCTION SUPPORT ACTIVITIES POTENTIAL SOURCES OF POLLUTION	
2.8	SITE PLANS	
	COMPLIANCE WITH APPLICABLE FEDERAL & STATE REQUIREMENT	
3.0		
3.1	ENDANGERED SPECIES CERTIFICATION	11
3.2 3.3	HISTORIC PRESERVATION	
3.4	SAFE DRINKING WATER ACT UNDERGROUND INJECTION CONTROL REQUIREMENTS . APPLICABLE STATE OR LOCAL PROGRAMS	
4.0	EROSION AND SEDIMENT CONTROL BMPS	
4.1	NATURAL BUFFERS OR EQUIVALENT SEDIMENT CONTROLS	
4.2 4.3	PHASED CONSTRUCTION ACTIVITYSTABILIZE SOIL	
4.3 4.4	ESTABLISH PERIMETER CONTROLS AND SEDIMENT BARRIERS	
4.5	ESTABLISH STABILIZED CONSTRUCTION ENTRANCE/EXIT	
4.6	DEWATERING PRACTICES	
5.0	GOOD HOUSEKEEPING BMPS	
5.1	MATERIAL HANDLING AND WASTE MANAGEMENT	
5.2	ESTABLISH PROPER BUILDING MATERIAL STAGING AREAS	
5.3	DESIGNATE WASHOUT AREAS	
5.4	ESTABLISH PROPER EQUIPMENT/VEHICLE FUELING AND MAINTENANCE PRACTICES.	24
5.5	ALLOWABLE NON-STORMWATER DISCHARGES AND CONTROL EQUIPMENT / VEHICLE	
	SHING	
5.6	SPILL PREVENTION AND CONTROL PLAN	
5.7	FERTILIZER DISCHARGE RESTRICTIONSALLOWABLE NON-STORMWATER DISCHARGE MANAGEMENT	
5.8		
6.0	FINAL STABILIZATION	
6.1	PERMANENT SEEDING	28

Stormwater Pollution Prevention Plan (SWPPP) Wareham, Massachusetts 1833112RP006B

7.0	INSPECTIO	ONS AND MAINTENANCE	29
7.1 7.2 7.3	REDUCTIO	NS	30
8.0	RECORDK	EEPING AND TRAINING	31
8.1 8.2 8.3	Log of Ch	EEPING	31
9.0	CERTIFICA	ATION AND NOTIFICATION	33
9.1 9.2 9.3 9.4	NOTICE OF OWNER CE	E, PLAN REVIEW, AND MAKING PLANS AVAILABLE PERMIT COVERAGE ERTIFICATION CERTIFICATION	33 34
LIST	OF APPEND	<u>ICES</u>	
APPE	NDIX A: NDIX B: NDIX C:	GENERAL LOCATION MAP SITE PLANS CONSTRUCTION GENERAL PERMIT	
	NDIX D:	NOI AND ACKNOWLEDGEMENT LETTER FROM EPA	
APPE	NDIX E:	INSPECTION REPORTS	
APPE	NDIX F:	CORRECTIVE ACTION LOG	
	NDIX G:	SWPPP AMENDMENT LOG	
	NDIX H:	SUBCONTRACTOR CERTIFICATIONS/ AGREEMENTS	
	NDIX-I:	GRADING AND STABILIZATION ACTIVITIES LOG	
	NDIX J:	TRAINING LÓG	
	NDIX K:	DELEGATION OF AUTHORITY	
APPE	NDIX L:	ENDANGERED SPECIES DOCUMENTATION	

HISTORIC PRESERVATION DOCUMENTATION

APPENDIX M:

1.0 CONTACT INFORMATION/RESPONSIBLE PARTIES

1.1 OPERATOR(S)/ SUBCONTRACTORS

()				*
Operator(s)	T			
Company:	Borrego Solar Systems,	, Inc.		
Name:				
Address:			•	
City:		State:	ZIP Code:	
Telephone:		Email:		*
Company:	TBD			
Name:				
Address:				
City:		State:	ZIP Code:	
Telephone:		Email:		
Subcontrac	tor(s)			
Company:	TBD			
Name:				
Address:				
City:		State:	ZIP Code:	
Telephone:		Email:		
Area of Con	trol:	Site Work (Contractor	
24-Hour Em	ergency Contact			
Company:	TBD			
Name:				
Telephone:				

1.2 STORMWATER TEAM

SWPPP Preparer

•••••				
Company:	Beals and Thomas, Inc.			
Name:	Nathaniel Bautz, EIT			
Address:	144 Turnpike Road			
City:	Southborough	State:	MA ZIP Code:	01772
Telephone:	508-366-0560	Email:		

Personnel Responsible for Installation & Maintenance of Stormwater BMPs

DIVIES			
Company:	TBD		
Name:			
Address:			
City:		State:	ZIP Code:
Telephone:		Email:	•

Inspection Personnel

Company:	TBD			
Name:				
Address:				
City:		State:	ZIP Code:	
Telephone:		Email:		

Personnel Responsible for Taking Corrective Actions

Company:	TBD				
Name:					
Address:					
City:		St	ate:	ZIP Code:	
Telephone:		Eı	mail:		

2.0 SITE EVALUATION, ASSESSMENT AND PLANNING

2.1 PROJECT/SITE INFORMATION

Project/Site Name: 150 Tihone		t Road P	V+ES P	roject			
Project Stre	eet/Location:	150 Tihone	t Road				
City:	City: Wareham			MA	ZIP Code:	02571	
County or S	Similar Subdivi	sion:	Plymou	th			
Latitude: 41°47'05" N Longitude: 70°43'09"W						V	
☐ US ☐ EP ☐ GF	Method for Determining Latitude/Longitude: ☐ USGS Topographic Map (specify scale:) ☐ EPA Website ☐ GPS ☐ Other (please specify): Google Earth						
Horizontal Reference Datum: ☐ NAD 27 ☐ WGS 84 ☑ NAD 83 ☐ Unknown Is the project located on Indian country lands, or located on a property of religious of							
	ificance to an I		y lands,	or rocati	☐ Yes	No ⊠ No	
If yes, provide the name of the Indian tribe associated with the area of Indian country (including the name of Indian reservation if applicable), or if not in Indian country, provide the name of the Indian tribe associated with the property:							
Is this project considered a federal facility? ☐ Yes ☐ No							
	Are you applying for permit coverage as a "federal operator" as defined in Appendix A of the 2017 CGP?						
NPDES project or permit tracking number: TBD							

		Is this project in response to a public emergency? Yes No
		If yes, document the cause of the public emergency (e.g., natural disaster, extreme flooding conditions), information substantiating its occurrence (e.g., state disaster declaration), and a description of the construction necessary to reestablish effective public services:
2.2	NATU	IRE AND SEQUENCE OF CONSTRUCTION ACTIVITY
	2.2.1	Function of the Construction Activity
		Function of the construction activity:
	2.2.2	Single-Family Residential Multi-Family Residential Institutional Utility Building Demolition Will there be demolition of any structure built or renovated before January 1, 1980? Commercial Industrial Highway or Road Construction Other (please specify): Renew. Energy Wespecification Industrial Highway or Road Construction Wespecification Yes No
		If yes, do any of the structures being demolished have at least 10,000 square feet of floor space?
	2.2.3	Agricultural Land
		Was the pre-development land use used for agriculture? ☐ Yes ☐ No
	2.2.4	Estimated Project Dates
		Estimated Project Start Date: TBD Estimated Project Completion Date: TBD

2.1.1 Emergency-Related Projects

Estimated Timelines	1			
Estimated Timeline of	Construction Activity and BMP Descriptions			
Activity	·			
TBD	 Stake Limit of Construction. Workers shall be informed that no construction activity is to occur beyond this limit at any time. Install sediment controls as shown on the plans. An adequate stockpile of erosion control materials shall be on site at all times for emergency or routine replacement and shall include materials to repair silt fences, compost mulch tubes, or any other devices planned for use during construction. Construct stabilized construction exits. Construct staging and materials storage area. Install temporary sanitary facilities and dumpsters. 			
TBD	Site grading			
	 Begin overall site grading. Establish topsoil stockpile. Install silt fences around stockpile. Build stormwater basins and complete overall site grading. Disturbed areas where construction will cease for more than 14 days shall be stabilized with erosion controls. 			
TBD	Infrastructure (utilities, solar panels, etc.)			
	 Construct temporary concrete washout area. Install utilities, solar panels. 			
TBD	Final stabilization and landscaping			
	1. Finalize grading activities.			
	2. Remove all temporary erosion control BMPs and			
	stabilize any areas disturbed by their removal with erosion controls.			
	3. Monitor stabilized areas until final stabilization is reached.			

2.3 SOILS, SLOPES, VEGETATION, AND CURRENT DRAINAGE PATTERNS

Soil type(s): The Natural Resources Conservation Service (NRCS) lists the on-site soils types as predominantly hydrologic soil classes A, B and D. The soil groups include Carver coarse sand, Poquonock sand, Birchwood sand, Massasoit-complex, Canton fine sandy loam, Windsor loamy sand, and Udipsamments.

Carver sands are excessively drained soils formed in layers of coarse and very coarse sand that contain less than twenty percent rock fragments, most of which are fine gravel. Carver soils are level to steep soils on pitted and dissected outwash plains and moraines.

Poquonock sand is a very deep, well-drained soil formed in sandy eolian or glacifluvial material over loamy or sandy lodgement till on uplands. They are moderately deep to a densic contact and very deep bedrock.

Birchwood soils are very deep, moderately well drained soil formed in sandy eolian deposits underlain by loamy dense glacial till. Birchwood soils are on the lower side slopes and toe slopes and on gently sloping areas of ground moraines and drumlins.

Canton fine sandy loam are gently sloping to sloping, well drained soils are on side slopes of glacial upland hills and ridges. Boulders and stones cover 10 to 35 percent of the surface.

Windsor sands are gently sloping, excessively drained soil is on terraces, outwash plains, kames, and eskers. Areas are irregular in shape and range from 2 to 100 acres.

Slopes: 1-30%

Drainage Patterns: Runoff from the site drains to the south, east, and west.

Vegetation: The existing site is comprised of woodland area.

2.4 CONSTRUCTION SITE ESTIMATES

Total construction site area to be disturbed: 54 acres

Maximum area to be disturbed at one time: 54 acres

Percentage impervious area before construction: <1%

Runoff curve number before construction: 38

Percentage impervious area after construction: <1%

Runoff coefficient after construction: 45

2.5 DISCHARGE INFORMATION

2.5.1	Description of Receiving Storm Sewer Systems
	Does your project/site discharge stormwater into a Municipal Separate Storm Sewer System (MS4)?
2.5.2	Receiving Waters
	Runoff from the site drains to Tihonet Pond to the west, and to existing wetlands and potential vernal pools to the west which eventually flow to Tihonet Pond. Runoff flows east to an off-site wetland system. Runoff from the northern portion of the site drains to stream on the north side of the property.
2.5.3	Impaired Waters/ TMDLs
	Has the surface water been listed as "impaired?" ☐ Yes ☐ No
	If yes, list the pollutant(s) causing the impairment: N/A
	Describe the method(s) used to determine whether or not your project site discharges to an impaired water:
	Has a TMDL been completed? ☐ Yes ☐ No
	If yes, list the title of the TMDL document: N/A
Ť	List the pollutant(s) for which there is a TMDL: N/A
2.5.4	Tier 2, 2.5, or 3 Waters
	Is this surface water designated as a Tier 2, 2.5 or 3 water? ⊠ Yes ☐ No
	If yes specify which Tier the surface water is designated as: Tier 2

2.6 UNIQUE SITE FEATURES AND SENSITIVE AREAS

The site contain wetlands and a potential vernal pools; these features will not be impacted by the project. The hydrology of these areas is maintained by the proposed stormwater design. Additionally, they will be protected by sediment control barriers as needed to avoid potential sedimentation.

2.7 CONSTRUCTION SUPPORT ACTIVITIES

Construction support activities are not required for the project.

2.8 POTENTIAL SOURCES OF POLLUTION

2.8.1 Potential Sources of Sediment

- Grading and site excavation operations
- Vehicle tracking
- Soil stripping and stockpiling

2.8.2 Potential Sources of Non-Sediment Pollutants

- Combined Staging Area small fueling activities, minor equipment maintenance, sanitary facilities, and hazardous waste storage.
- Materials Storage Area general building materials, solvents, adhesives, paints, aggregates, trash, and so on.
- Construction Activity concrete pouring, and array construction
- Concrete Washout Area

Material/	Physical Description	Stormwater Pollutants	Location ^[1]
Chemical			
[2]Fertilizer	Liquid or solid grains	Nitrogen, phosphorous	Newly seeded areas
Cleaning solvents	Colorless, blue, or yellow-green liquid	Perchloroethylene, methylene chloride, trichloroethylene, petroleum distillates	No equipment cleaning allowed in project limits
Curing compounds	Creamy white liquid	Naphtha	Concrete Equipment Pads
Hydraulic oil/fluids	Brown oily petroleum hydrocarbon	Mineral oil	Leaks or broken hoses from equipment
Gasoline	Colorless, pale brown or pink petroleum hydrocarbon	Benzene, ethyl benzene, toluene, xylene, MTBE	Contractor staging area
Diesel Fuel	Clear, blue-green to yellow liquid	Petroleum distillate, oil & grease, naphthalene, xylenes	Contractor staging area
Kerosene	Pale yellow liquid petroleum hydrocarbon	Coal oil, petroleum distillates	Contractor staging area
Antifreeze/ coolant	Clear green/yellow liquid	Ethylene glycol, propylene glycol, heavy metals (copper, lead, zinc)	Leaks or broken hoses from equipment
Sanitary toilets	Various colored liquid	Bacteria, parasites, and viruses	Staging area

^[1] Area where material/chemical is used on-site.

^[2] Use of fertilizers containing nitrogen and/or phosphorus in ratios greater than recommended by the manufacture must be documented.

2.9 SITE PLANS

The Existing Conditions Plan shows the undeveloped site and its current features. The Site Plans show the developed site.

These Site	Plans include:
	☐ Delineation of construction phasing, if applicable
	Areas of soil disturbance and areas that will not be disturbed
	Direction(s) of stormwater flow and approximate slopes before and after major grading activities
	Natural features to be preserved
	☑ Locations of major structural and non-structural BMPs identified in the SWPPP
	Location(s) of sediment, soil or other construction materials will be stockpiled
	Locations of stabilization measures
	Locations of off-site material, waste, borrow, or equipment storage areas
	□ Location of all waters of the U.S., including wetlands on or near the site. Indicate if water bodies are listed as impaired, or are identified as Tier 2, 2.5 or 3 waters.
	⊠ Boundary lines of any natural buffers,
	□ Locations of stormwater discharges and/or locations where authorized non- stormwater will be discharged to surface water(s)
	□ Locations of storm drain inlets and stormwater control measures on the site and in the immediate vicinity of the site
	Locations of all pollutant-generating activities
	Locations where polymers, flocculants, or other treatment chemicals will be used and stored
	Areas of federally listed critical habitat for endangered or threatened species
See	Appendix B: Site Plans

3.0 COMPLIANCE WITH APPLICABLE FEDERAL & STATE REQUIREMENTS

3.1 ENDANGERED SPECIES CERTIFICATION

Are endangered	l or threatened	species and	critical	habitats	on or	near t	he project	area
Yes	⊠No	_						

Describe how this determination was made:

The U.S. Fish & Wildlife Service listed the Northern Long-eared Bat (*Myotis septentrionalis*) as a Threatened species under the Endangered Species Act (ESA, 50 CFR 17.11) on April 2, 2015 and mapped the full state of Massachusetts as habitat. The Northern Long-Eared Bat is also listed as Endangered under the Massachusetts Endangered Species Act (MESA, M.G.L. c. 131 A).

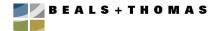
Projects that result in tree removal activities shall comply with the 4(d) rule under the ESA, which states: "Incidental take resulting from tree removal is prohibited if: 1) Occurs within 0.25 mile radius of known northern long-eared bat hibernacula or 2) cuts or destroys known occupied maternity roost trees, or any other trees within a 150-foot radius from the known maternity tree during the pup season (June 1 through July 31)."

The NHESP Northern Long-eared Bat Locations in Massachusetts map, last updated June 6, 2019 was reviewed. It was determined that the Project does not occur within 0.25 miles of a known winter hibernacula or within a 150-foot radius of a known maternity roost tree. Therefore, no further review of potential impacts to Northern Long-eared Bat is required pursuant to the MESA.

PLACEHOLDER LANGUAGE PENDING SITE SPECIFIC REVIEW: A project review package was submitted to USFWS on DATE, addressing Northern Long-Eared Bat (NLEB) and Plymouth Red-Belly Turtle. In summary:

A habitat assessment for Northern Long-Eared Bat was performed on DATE by GZA GeoEnvironmental, Inc. (GZA) and concluded that the project site does not provide important habitat for NLEB, and hibernacula or maternity roosting tree habitat are not known within ½ mile of the site. The assessment also indicates that the closest location of documented overwintering for this species is located ># miles from the site, and further, that summer forage habitat is not present within the proposed work area.

GZA also performed a Plymouth Red-Belly Turtle assessment of the site, dated DATE. The assessment found that the project site does not occur within mapped Critical Habitat for the turtle, and a general habitat assessment and limited site survey found that the project site has low to moderate potential to support this species and no individual turtles were


found. Accordingly, a "may affect, but is unlikely to adversely affect" concurrence letter was issued by USFWS on April 10, 2019.

If yes, describe the species and/or critical habitat:

If yes, describe or refer to documentation that determines the likelihood of an impact on the identified species and/or habitat and the steps taken to address that impact.

3.2 HISTORIC PRESERVATION

Ston 1			
Step 1 Will stormwater controls that require subsurf	ace earth disturbance	be installed on	the site?
		X Yes	□No
Step 2			
If you answered yes in Step 1, have prior s	surveys or evaluation	is conducted or	n the site
already determined that historic properties do		or disturbances	at the site
have precluded the existence of historic prop	erties?		
		Yes	No
Ston 3			
Step 3 If you answered no in Step 2, has it been d	etermined that the in	nstallation of si	ubsurface
earth-disturbing stormwater controls will have			
		Yes	No
PLACEHOLDER LANGUAGE PENDING			e sites are
not present. See Appendix M: Historic Prese	rvation Documentation	on.	
Step 4			
If you answered no in Step 3, did the State	Historic Preservation	Officer (SHPC	O), Tribal
Historic Preservation Office (THPO), or ot			11 /
respond within 15 calendar days to indicat			turbances
caused by the installation of stormwater cont	rols affect historic pr	operties? Yes	No
		1 es	
If no, no further documentation is required. It	yes, describe the nat	ure of their resp	onse and
include documentation in the Appendix:		•	
			11
Written indication that adverse effects	1 1	trom the insta	Ilation of
stormwater controls can be mitigated by agree	ed upon actions.		

	No agreement has been reached regarding measures to mitigate effects to historic properties from the installation of stormwater controls.
	Other:
3.3	SAFE DRINKING WATER ACT UNDERGROUND INJECTION CONTROL REQUIREMENTS
	Do you plan to install any of the following controls?
	Infiltration trenches (if stormwater is directed to any bored, drilled, driven shaft or dug hole that is deeper than its widest surface dimension, or has a subsurface fluid distribution system)
	Commercially manufactured pre-cast or pre-built proprietary subsurface detention vaults, chambers, or other devices designed to capture and infiltrate stormwater flow
	Drywells, seepage pits, or improved sinkholes (if stormwater is directed to any bored, drilled, driven shaft or dug hole that is deeper than its widest surface dimension, or has a subsurface fluid distribution system)
	If yes, attach documentation of contact between you and the applicable state agency or EPA Regional Office responsible for implementing the requirements for underground injection wells in the Safe Drinking Water Act and EPA's implementing regulations at 40 CFR Parts 144-147.
3.4	APPLICABLE STATE OR LOCAL PROGRAMS
	This SWPPP complies with the requirements of Standard 8 of the Massachusetts Department of Environmental Protection Stormwater Handbook, which states:
	A plan to control construction-related impacts, including erosion, sedimentation, and other

pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plans) shall be developed and

implemented.

4.0 EROSION AND SEDIMENT CONTROL BMPS

This SWPPP contains a listing of the erosion and sediment control best management practices (BMPs) that will be implemented to control pollutants in stormwater discharges. The BMPs are categorized under one of the areas of BMP activity as described below:

- Natural Buffers or Equivalent Sediment Controls
- Phased construction activity
- Control stormwater flowing onto and through the project
- Stabilize soils
- Protect slopes
- Protect storm drain inlets
- Establish perimeter controls and sediment barriers
- Retain sediment on-site and control dewatering practices
- Establish stabilized construction exits

4.1 NATURAL BUFFERS OR EQUIVALENT SEDIMENT CONTROLS

Are there any surface waters lo	ocated within 50	feet of your	construction of	disturbances that
receive stormwater discharges	from the site?		Yes	⊠ No

4.2 PHASED CONSTRUCTION ACTIVITY

Phased construction is not proposed. To minimize erosion during grading activities, grading and site work shall be conducted after snowmelt and during periods of predicted dry weather. The areas of the site that will remain vegetated after construction shall be stabilized with hydromulch or seeding immediately after grading activities are completed. All other areas of the construction site shall be stabilized if site work is not planned for more than 14 days. Disturbed areas shall be stabilized immediately after construction but no later than 14 days after construction ceases. Areas graded shall be stabilized with hydromulch immediately after construction but no later than 14 days after construction ceases.

4.3 STABILIZE SOIL

4.3.1 Temporary Stabilization

Description:	Initiation of temporary vegetative cover shall occur immediately where construction will cease for more than 7 days. Temporary vegetative cover shall be established using hydroseeding for areas of exposed soil (including stockpiles).
Installation Schedule:	Temporary stabilization measures shall be initiated immediately where construction activities will temporarily cease for more than 14 days. Stabilization will be completed as soon as practicable, but no later than 7 calendar days after stabilization has been initiated.
Maintenance and	Stabilized areas shall be inspected weekly and after storm
Inspection:	events until a dense cover of vegetation has become
	established. If failure is noticed at the seeded area, the area
	shall be reseeded, fertilized, and mulched immediately.

4.3.2 Hydromulching

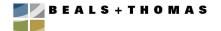
Description:	Hydromulching shall provide immediate protection to
	exposed soils during short periods of disturbance.
	Hydromulch shall also be applied in areas that have been
	seeded for temporary or permanent stabilization.
Installation Schedule:	Hydromulch shall be applied to soil exposed temporarily
	for >14 days during construction.
Maintenance and	Hydromulched areas shall be inspected weekly and after
Inspection:	storm events to check for movement of mulch or erosion.
	If washout, breakage, or erosion occurs, the surface shall
	be repaired, and new hydromulch shall be applied to the
	damaged area.

4.3.3 Permanent Stabilization

Description:	Initiation of permanent stabilization measures shall occur
	immediately after the final design grades are achieved and
	earth moving activities cease. Vegetative cover shall be
	established on exposed soils. Permanent stabilization shall
	be completed in accordance with the procedures outlined
	in Section 6.0 Final Stabilization.
Installation Schedule:	Portions of the site where construction activities have
	permanently ceased shall be stabilized as soon as possible,
	but no later than 7 calendar days after stabilization has
	been initiated.
Maintenance and	All seeded areas shall be inspected weekly during
Inspection:	construction activities and after storm events until a dense
	cover of vegetation has been established. If failure is
	noticed at the seeded area, the area shall be reseeded in
	accordance with the plans. Care shall be taken to avoid
	compacting newly placed topsoil. After construction is
	completed at the site, permanently stabilized areas shall be
	monitored until final stabilization is reached.

4.3.4 Dust Control

Description:	Dust from the site shall be controlled by using a mobile pressure-type distributor truck to apply water to disturbed areas. The mobile unit shall apply water at a maximum rate of 300 gallons per acre and minimized as necessary to prevent runoff and ponding.
Installation Schedule:	Dust control shall be implemented as needed once site grading has been initiated and during windy conditions (forecasted or actual wind conditions of 20 mph or greater) while site grading is occurring. Spraying of water shall be performed no more than three times a day during the months of May–September and once per day during the months of October–April or whenever the dryness of the soil warrants it.
Maintenance and Inspection:	At least one mobile unit shall be available at all times to distribute water to control dust on the site. Each mobile unit shall be equipped with a positive shutoff valve to prevent over watering of the disturbed area.



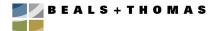
4.4 ESTABLISH PERIMETER CONTROLS AND SEDIMENT BARRIERS

4.4.1 Sediment Control Barrier

Permanent	▼ Temporary
Description:	A sediment control barrier, consisting of silt fence and
	compost mulch tube shall be installed along the down-
	gradient side of the proposed project to decrease the
	velocity of sheet flows and intercept and detain small
	amounts of sediment from disturbed areas.
Installation Schedule:	Sediment Control Barrier shall be installed prior to
	clearing and grubbing.
Maintenance and	Sediment Control Barrier shall be inspected weekly,
Inspection:	following storms, and daily during rainy periods.
	Damaged fencing or tubes shall be replaced. Concentrated
	flows shall be intercepted and rerouted. Sediment
	accumulations shall be removed when reaching a depth of
	6-inches, or one-half of the above ground height of the
	barrier, whichever is less. Deteriorated sediment control
	material shall be replaced. Used mulch tubes and fencing
	shall be properly disposed of.

4.5 ESTABLISH STABILIZED CONSTRUCTION ENTRANCE/EXIT

Permanent	Temporary
Description:	Temporary gravel or crushed stone construction
	entrance/exit or other means shall be used to minimize off-
	site movement of soil with vehicles. Construction access
	points shall be maintained to minimize tracking of soil onto
	public roads. If the rock entrance is not working to keep
	streets clean, then install wheel wash, sweep streets, or
	wash streets if wash water can be collected.
Installation Schedule:	Stabilized construction entrance shall be installed prior to
	earthmoving activities.
Maintenance and	Stabilized construction entrances shall be inspected daily.
Inspection:	Gravel or crushed stone shall be added if the pad is no
	longer in accordance with the specifications. If the rock
	entrance is not working to keep public streets clean, then
	install wheel wash, sweep streets, or wash streets if wash
	water can be collected. When sediment has been tracked
	off of the site onto public roads, it shall be removed by the
	end of the same working day, or by the end of the next
	working day if track-out occurs on a non-work day.
	Remove sediment by sweeping, shoveling or vacuuming
	public roadways were sediment has been tracked-out.


4.6 DEWATERING PRACTICES

Description:	All groundwater or stormwater discharged from
	excavations, trenches, or other similar points shall be
	treated by sediment basins, sediment traps, sediment socks,
	dewatering tanks, tube settlers or filtration systems
	specifically designed to remove sediment from the
	excavations. All dewatering practices shall conform to the
	following:
	ione wing.
	• Visible floating solids or foam shall not be discharged;
	• An oil-water separator or suitable filtration device
	(such as a cartridge filter) that is designed to remove
	oil, grease, or other products if dewatering water is
	found to contain these materials shall be used;
	• To the extent feasible, utilize vegetated, upland areas
	of the site to infiltrate dewatering water before
	discharge. In no case will surface waters be considered
	part of the treatment area;
L	•

	• Velocity dissipaters shall be installed at all points where dewatering activities are discharged to the surface.
	• With backwash water, either haul it away for disposal
	or return it to the beginning of the treatment process; and
	• Replace and clean the filter media used in dewatering
	devices when the pressure differential equals or
	exceeds the manufacturer's specifications.
Installation Schedule:	Install settling or filtration methods prior to commencing
	dewatering. Engineer is required to approve settling of
	filtration method design prior to installation.
Maintenance and	Settling of filtration controls shall be inspected weekly and
Inspection:	following storms. Sediment shall be removed when it
	reaches a depth of one foot, or half the design capacity
	whichever is less.

5.0 GOOD HOUSEKEEPING BMPS

This SWPPP contains a listing of the good housekeeping best management practices (BMPs) that shall be implemented to control pollutants in stormwater discharges during construction-related work. The BMPs are categorized below:

- Material Handling and Waste Management
- Establish Proper Building Material Staging Areas
- Designate Washout Areas
- Establish Proper Equipment/Vehicle Fueling and Maintenance Practices
- Allowable Non-Stormwater Discharges and Control Equipment/Vehicle Washing
- Spill Prevention and Control Plan

5.1 MATERIAL HANDLING AND WASTE MANAGEMENT

Several management procedures and practices are proposed to prevent and/or reduce the discharge of pollutants to stormwater from solid or liquid wastes that will be generated at the site. These measures are grouped into the following categories: (1) solid or construction waste disposal, (2) recycling, (3) sanitary and septic waste, and (4) hazardous materials.

5.1.1 Solid or Construction Waste Disposal

Description:	All waste materials shall be collected and disposed of into metal
	trash dumpsters or enclosed trash containers in the materials storage
	area. Dumpsters shall have a secure watertight lid, be placed away
	from stormwater conveyances and drains, and meet all federal, state,
	and municipal regulations. Only trash and construction debris from
	the site shall be deposited in the dumpster. No construction materials
	shall be buried on-site unless authorized by a program for
	recycling/beneficial use. All personnel shall be instructed regarding
	the correct disposal of trash and construction debris. Notices that
	state these practices shall be posted in the office trailer and the
	individual who manages day-to-day site operations shall be
	responsible for seeing that these practices are followed.
Installation	Trash dumpsters shall be installed once the materials storage area
Schedule:	has been established.
Maintenance	The dumpsters shall be inspected weekly and immediately after
and	storm events. The dumpsters shall be emptied weekly and taken to
Inspection:	an approved landfill or recycling facility. If trash and construction
	debris are exceeding the dumpsters' capacity, the dumpsters shall be
	emptied more frequently. Waste container lids shall be closed when
	not in use and at the end of the business day. For waste containers
	that do not have lids, provide cover or a similarly effective means to
	minimize the discharge of pollutants.

5.1.2 Recycling

Description: Wood pallets, cardboard boxes, and other recyclable construction scraps shall be disposed of in a designated dumpster for recycling. The dumpster shall have a secure watertight lid, be placed awards from stormwater conveyances and drains and meet all local are state solid-waste management regulations. Only solid recyclable construction scraps from the site shall be deposited in the dumpster All personnel shall be instructed regarding the correct procedure for disposal of recyclable construction scraps. Notices that state the procedures shall be posted in the office trailer, and the individual
who manages day-to-day site operations shall be responsible for seeing that these procedures are followed.
Installation Designated recycling dumpsters shall be installed when building
Schedule: materials arrive on-site.
Maintenance The recycling dumpster shall be inspected weekly and immediate
and after storm events. The recycling dumpster shall be emptied week.
Inspection: and taken to an approved recycling center. If recyclab
construction wastes are exceeding the dumpsters' capacity, the
dumpsters shall be emptied more frequently.

5.1.3 Sanitary and Septic Waste

Description:	Temporary sanitary facilities (portable toilets) shall be provided at
	the site throughout the construction phase. The portable toilets shall
	be located in the staging area, away from concentrated flow paths
	and traffic flow.
Installation	The portable toilets shall be brought to the site once the staging area
Schedule:	has been established.
Maintenance	All sanitary waste shall be collected from the portable facilities on
and	a regular basis. The portable toilets shall be inspected weekly for
Inspection:	evidence of leaking holding tanks. Toilets with leaking holding
	tanks shall be removed from the site and replaced with new portable
	toilets.

5.1.4 Hazardous Materials and Waste

Description:	All hazardous waste materials such as oil filters, petroleum products, paint, and equipment maintenance fluids shall be stored in structurally sound and sealed shipping containers, within the hazardous materials storage area. Hazardous waste materials shall be stored in appropriate and clearly marked containers and segregated from other non-waste materials. Secondary containment shall be provided for all waste materials in the hazardous materials storage area and shall consist of commercially available spill pallets. Additionally, all hazardous waste materials shall be disposed of in accordance with federal, state, and municipal regulations. Hazardous waste materials shall not be disposed of into the on-site dumpsters. All personnel shall be instructed regarding proper procedures for hazardous waste disposal. Notices that state these procedures shall be posted in the office trailer and the
	individual who manages day-to-day site operations shall be
	responsible for seeing that these procedures are followed.
Installation	Shipping containers used to store hazardous waste materials shall
Schedule:	be installed once such materials arrive on-site.
Maintenance	The hazardous waste material storage areas shall be inspected
and	weekly and after storm events. The storage areas shall be kept
Inspection:	clean, well-organized, and equipped with ample cleanup supplies
	as appropriate for the materials being stored. Material safety data
	sheets, material inventory, and emergency contact numbers shall be
	maintained in the office trailer.

5.2 ESTABLISH PROPER BUILDING MATERIAL STAGING AREAS

Description: Construction equipment and maintenance materials shall be stored at the combined staging area and materials storage areas. A watertight shipping container shall be used to store hand tools, small parts, and other construction materials. Nonhazardous building materials such as packaging material (wood, plastic, and glass), and construction scrap material (steel, metal scraps, and pipe cuttings) shall be stored in a separate covered storage facility adjacent to the shipping container.

All hazardous-waste materials such as oil filters, petroleum products, paint, and equipment maintenance fluids shall be stored in structurally sound and sealed containers under cover within the storage area.

Very large items, shall be stored in the open in the materials storage area. Such materials shall be elevated on blocks to minimize contact with runoff.

Installation	The materials storage area shall be installed after grading and before any
Schedule:	infrastructure is constructed at the site.
Maintenance	The storage area shall be inspected weekly and after storm events. The
and	storage area shall be kept clean, well-organized, and equipped with ample
Inspection:	cleanup supplies as appropriate for the materials being stored. Perimeter
	controls, containment structures, covers, and liners shall be repaired or
	replaced as needed to maintain proper function.

5.3 DESIGNATE WASHOUT AREAS

5.3.1 Concrete Washout

Description:	A designated temporary, above-grade concrete washout area shall be constructed. The temporary concrete washout area shall be
	* *
	constructed with a recommended minimum length and minimum
	width of 10 feet, but with sufficient quantity and volume to contain
	all liquid and concrete waste generated by washout operations. The
	washout area shall be lined with plastic sheeting at least 10 mils
	thick and free of any holes or tears. Signs shall be posted marking
	the location of the washout area to ensure that concrete equipment
	operators use the proper facility.
	Concrete pours shall not be conducted during or before an
	anticipated storm event. Concrete mixer trucks and chutes shall be
	washed in the designated area or concrete wastes shall be properly
	disposed of off-site. When the temporary washout area is no longer
	needed for the construction project, the hardened concrete and
	materials used to construct the area shall be removed and disposed
	of according to the maintenance section below, and the area shall
	be stabilized.
Installation	The washout area shall be constructed before concrete pours occur
Schedule:	at the site.
Maintenance	The washout areas shall be inspected daily to ensure that all
and	concrete washing is being discharged into the washout area, no
Inspection:	leaks or tears are present, and to identify when concrete wastes need
map of the in	to be removed. The washout areas shall be cleaned out once the area
	is filled to 75 percent of the holding capacity. Once 75% of the
	area's holding capacity has been reached, the concrete wastes shall
	be allowed to harden; the concrete shall be broken up, removed,
	and taken to an approved landfill for disposal or recycled on-site or
	off-site in accordance with applicable laws. The plastic sheeting
	shall be replaced if tears occur during removal of concrete wastes
	from the washout area.

Design Specifications:

- 1. Temporary concrete washout type Above Grade shall be constructed as detailed above.
- 2. The washout shall be a minimum of 50 feet from storm drain inlets.
- 3. Plastic lining shall be free of holes, tears, or other defects that compromise the impermeability of the material.

5.4 ESTABLISH PROPER EQUIPMENT/VEHICLE FUELING AND MAINTENANCE PRACTICES

Description:	Several types of vehicles and equipment will likely be used on-site
	throughout the project, including graders, scrapers, excavators, loaders,
	rollers, trucks and trailers, backhoes, and forklifts. All major
	equipment/vehicle fueling and maintenance shall be performed outside of
	wetland resource areas and associated buffer zones. When vehicle fueling
	must occur on-site, the fueling activity shall occur in the staging area. Only
	minor equipment maintenance shall occur on-site. All equipment fluids
	generated from maintenance activities shall be disposed of into designated
	drums stored on spill pallets in accordance with the Material Handling and
	Waste Management Section 5.1. Absorbent, spill-cleanup materials and
	spill kits shall be available at the combined staging and materials storage
	area. Drip pans shall be placed under all equipment receiving maintenance
	and vehicles and equipment parked overnight.
Installation	BMPs implemented for equipment and vehicle maintenance and fueling
Schedule:	activities shall begin at the start of the project.
Maintenance	Inspect equipment/vehicle storage areas weekly and after storm events.
and	Vehicles and equipment shall be inspected on each day of use. Leaks shall
Inspection:	be repaired immediately, using dry cleanup measures where possible and
	eliminating the source of the discharge. Problem vehicle(s) or equipment
	shall be removed from the project site. Keep ample supply of spill-cleanup
	materials on-site and immediately clean up spills and dispose of materials
	properly. Do not clean surfaces by hosing-down the area.

5.5 ALLOWABLE NON-STORMWATER DISCHARGES AND CONTROL EQUIPMENT / VEHICLE WASHING

Description:	All equipment and vehicle washing shall be performed off-site, except as		
	required for wheel washes and concrete washout areas.		
Installation	N/A		
Schedule:			
Maintenance	N/A		
and			
Inspection:			

5.6 SPILL PREVENTION AND CONTROL PLAN

Description:	i.	Employee Training: All employees shall be trained as detailed in
Description.	1.	
		the Inspection and Maintenance Section 8.0 of this report.
	ii.	Vehicle Maintenance: Vehicles and equipment shall be maintained
		off-site, except for minor maintenance as needed. All vehicles and
		equipment including subcontractor vehicles shall be checked for
		leaking oil and fluids. Vehicles leaking fluids shall not be allowed on-site.
	iii.	Hazardous Material Storage: Hazardous materials shall be stored in
	111.	accordance with this report and applicable regulations.
	iv.	Spill Kits: Spill kits shall be kept within the materials storage area.
		Spills: All spills shall be cleaned up immediately upon discovery.
		Spent absorbent materials and rags shall be hauled off-site
		immediately after the spill is cleaned up for disposal at an approved
		landfill. Spills shall be reported to the National Response Center at
		1-800-424-8802 and MassDEP at 888-304-1133 as applicable in
		accordance with state and federal requirements.
		<u> </u>
	V.	Material safety data sheets: A material inventory and emergency
		contact information shall be maintained at the on-site project trailer.
Installation	The s	pill prevention and control procedures shall be implemented once
Schedule:	constr	uction begins on-site.
Maintenance	All p	ersonnel shall be instructed on the correct procedures for spill
and	prever	ntion and control. Notices that state these practices shall be posted in
Inspection:	the of	fice trailer, and the individual who manages day-to-day site operations
_	shall b	be responsible for seeing that these procedures are followed.

5.7 FERTILIZER DISCHARGE RESTRICTIONS

Description:	Discharges from fertilizers containing nitrogen and phosphorus shall be minimized. Fertilizers shall be applied at rates and amounts consistent with the manufacture's specification, and shall at no time exceed local, state, or
	federal specifications. See project landscape specifications for acceptable fertilizers that can be used for the project.
Installation	Fertilizers shall be applied at an appropriate time of year, timed to
Schedule:	coincide as closely as possible to the period of maximum vegetation
	uptake and growth. Avoid applying fertilizers before heavy rains. Do not
	apply fertilizers to frozen ground or stormwater conveyance channels
	flowing with water.
Maintenance	N/A
and	
Inspection:	

5.8 ALLOWABLE NON-STORMWATER DISCHARGE MANAGEMENT

Any changes in construction activities that produce other allowable non-stormwater discharges shall be identified, and the SWPPP shall be amended and the appropriate erosion and sediment control shall be implemented.

The following is a list of allowable non-stormwater discharges:

- Water Used to Control Dust
- Uncontaminated Excavation Dewatering
- Firefighting
- Non-Detergent Laden Vehicle Wash Water

Except for water used to control dust and irrigation water, the above discharges shall not be routed to areas of exposed soil.

6.0 FINAL STABILIZATION

In compliance with the Construction General Permit, soil stabilization measures must be implemented immediately whenever earth-disturbing activities are temporarily or permanently ceased on any portion of the site. Earth-disturbing activities are temporarily ceased when clearing, grading, and excavation within any area of a site that will not include a permanent structure will not resume for a period of 7 or more calendar days, but such activities will resume in the future.

In the context of this provision, "immediately" means as soon as practicable, but no later than the end of the next work day, following the day when the earth-disturbing activities have temporarily or permanently ceased. The following activities constitute the initiation of stabilization:

- Preparing the soil for vegetative or non-vegetative stabilization;
- Applying mulch or other non-vegetative product to the exposed area;
- Seeding or planting the exposed area;
- Starting any of the activities in listed above on a portion of the area to be stabilized, but not on the entire area; and
- Finalizing arrangements to have stabilization product fully installed in compliance with the applicable deadline for completing stabilization.

As soon as practicable, but no later than 7 calendar days after the initiation of soil stabilization measures the following activities are required to be completed:

- For vegetative stabilization, all activities necessary to initially seed or plant the area to be stabilized; and/or
- For non-vegetative stabilization, the installation or application of all such non-vegetative measures.

The following sections detail the management practices proposed to achieve final stabilization of the site.

6.1 PERMANENT SEEDING

Description:	Permanent seeding shall be applied immediately after the final design					
	grades are achieved on portions of the site but no later than 7 days after					
	construction activities have permanently ceased. After the entire site is					
	stabilized, any sediment that has accumulated shall be removed and					
	hauled off-site for disposal at an approved landfill. Construction debris,					
	trash and temporary BMPs (including sedimentation controls, material					
	storage areas, sanitary toilets, and inlet protection) shall also be removed					
	and any areas disturbed during removal shall be seeded immediately.					
	Seeding shall be performed in accordance to the Site Plans and Landscape					
	Specifications for the project.					
Installation	Seeding shall occur at portions of the site where construction activities					
Schedule:	have permanently ceased shall be stabilized, as soon as possible but no					
	later than 7 days after construction ceases.					
Maintenance	All seeded areas shall be inspected weekly during construction activities					
and	for failure and after storm events until a dense cover of vegetation has					
Inspection:	been established. If failure is noticed at the seeded area, the area shall be					
	reseeded in accordance with the plans. After construction is completed at					
	the site, permanently stabilized areas shall be monitored until final					
	stabilization is achieved.					

7.0 INSPECTIONS AND MAINTENANCE

7.1 INSPECTIONS

7.1.1 Inspection Schedule and Procedures

Inspections of the site will be performed once every 7 days and within 24 hours of the end of a storm event of 0.25-inch) or greater unless otherwise specified. The inspections will verify that all BMPs required are implemented, maintained, and effectively minimizing erosion and preventing stormwater contamination from construction materials.

To determine if a storm event of 0.25 inches or greater has occurred on the site, either a properly maintained rain gauge will be kept on the site or the storm event information will be obtained from a weather station that is representative of the location. If an inspection is conducted because of rainfall measuring 0.25 inches or greater, the applicable rain gauge or weather station readings that triggered the inspection will be noted in the inspection report.

Inspections shall include all areas of the site disturbed by construction activity and areas used for storage of materials that are exposed to precipitation. Inspectors shall look for evidence of, or the potential for, pollutants entering the storm water conveyance system. Sedimentation and erosion control measures identified in the SWPPP shall be observed to ensure proper operation. Discharge locations shall be inspected to ascertain whether sediment and erosion control measures are effective in preventing significant impacts to waters of the United States, where accessible. Where discharge locations are inaccessible, nearby downstream location shall be inspected to the extent that such inspections are practicable. Locations where vehicles enter or exit the site shall be inspected for evidence of off-site sediment tracking.

For detailed inspection procedures, see Sections 4 and 5.

All inspections shall be coordinated with a representative from Owner Company. An Owner Company representative shall accompany the Inspector, when possible, during inspections.

Inspection reports are required to be completed within 24-hours of an inspection. If corrective actions are identified by the Inspector during the inspection, he/she shall notify and submit a copy of the inspection report to the Operator(s). For corrective actions identified, the Site Owner/Site Operator shall be responsible for initiating the corrective action within 24 hours of the report and completing maintenance as soon as possible or before the next storm event. For any corrective actions requiring

a SWPPP amendment or change to a stormwater conveyance or control design, the Site Owner/Site Operator shall notify Owner, as soon as possible, before initiating the corrective action.

The business days for the project construction are 7:00 am to 5:00 pm, Monday through Friday.

For a copy of the inspection report template, see Appendix E.

7.2 REDUCTIONS IN INSPECTION FREQUENCY

Once an area is stabilized, inspections may be reduced to twice per month for the first month, no more than 14 calendar days apart, then once per month. If construction resumes at the stabilized area the inspection frequency shall increase as outlined in Section 7.1.

If earth-disturbing activities are suspended due to frozen conditions inspections can be temporarily suspended until a thaw occurs.

7.3 CORRECTIVE ACTION LOG

The corrective action log describes repairs, replacements, and maintenance of BMPs undertaken as a result of the inspections and maintenance procedures. Additionally, remedies of permit violations and clean and proper disposal of spills, releases other deposits should be recorded.

If it is determined the stormwater controls have not been installed as required, or that they are not functioning adequately corrective action is required within 7 calendar days.

The operator will document the completion of the corrective action within 24 hours.

See Appendix F – Corrective Action Log.

8.0 RECORDKEEPING AND TRAINING

8.1 RECORDKEEPING

A copy of the SWPPP, along with all inspection reports and corrective action logs are required to be stored at an accessible location at the site or other location easily accessible during normal business hours, and shall be made available upon request of the EPA, or state or local agency approving stormwater management plans.

The following records shall be kept at the project site and shall be available for inspectors to review. These records shall be retained for a minimum period of at least 3 years after the permit is terminated.

Date(s) when major grading activities occur:

See Appendix I – Grading and Stabilization Activities Log

Date(s) when construction activities temporarily or permanently cease on a portion of the site:

See Appendix I – Grading and Stabilization Activities Log

Date(s) when an area is either temporarily or permanently stabilized:

See Appendix I – Grading and Stabilization Activities Log

8.2 LOG OF CHANGES TO THE SWPPP

The log of changes to the SWPPP is maintained in Appendix G and includes additions of new BMPs, replacement of failed BMPs, significant changes in the activities or their timing on the project, changes in personnel, changes in inspection and maintenance procedures and updates to site plans.

8.3 TRAINING

Prior to the commencement of earth-disturbing activities or pollutant-generating activities, whichever occurs first, training on the pollution prevention measures outlined in this SWPPP shall be provided to staff and subcontractors.

8.3.1 Individual(s) Responsible for Training

Company/Organization: TBD

Name: TBD

8.3.2 Description of Training Conducted

Informal training shall be conducted for all staff, including subcontractors, on the site. The training shall be conducted primarily via tailgate sessions and shall focus on avoiding damage to stormwater BMPs and preventing illicit discharges. The tailgate sessions shall be conducted biweekly and shall address the following topics: Erosion Control BMPs, Sediment Control BMPs, Non-Stormwater BMPs, Waste Management and Materials Storage BMPs, and Emergency Procedures specific to the construction site. (See Appendix J – Training Log)

Formal training shall be provided to all staff and subcontractors with specific stormwater responsibilities, such as installing and maintaining BMPs. The formal training shall cover all design and construction specifications for installing the BMPs and proper procedures for maintaining each BMP. Training shall also cover inspection schedules and procedures for personnel whose job duties are related to inspections. Formal training shall occur before any BMPs are installed on the site. (See Appendix J – Training Log)

9.0 CERTIFICATION AND NOTIFICATION

9.1 SIGNATURE, PLAN REVIEW, AND MAKING PLANS AVAILABLE

A copy of the SWPPP (including a copy of the Construction General Permit, NOI, and acknowledgement letter from EPA) shall be retained at the construction site (or other location easily accessible during normal business hours to EPA, a state, tribal or local agency approving sediment and erosion plans, grading plans, or storm water management plans; local government officials; the operator of a municipal separate storm sewer receiving discharges from the site; and representatives of the U.S. Fish and Wildlife Service or the National Marine Fisheries Service) from the date of commencement of construction activities to the date of final stabilization. A copy of the SWPPP shall be available at a central location on-site for the use of all those identified as having responsibilities under the SWPPP. If an on-site location is unavailable to store the SWPPP when no personnel are present, notice of the plan's location shall be posted near the main entrance at the construction site.

9.2 NOTICE OF PERMIT COVERAGE

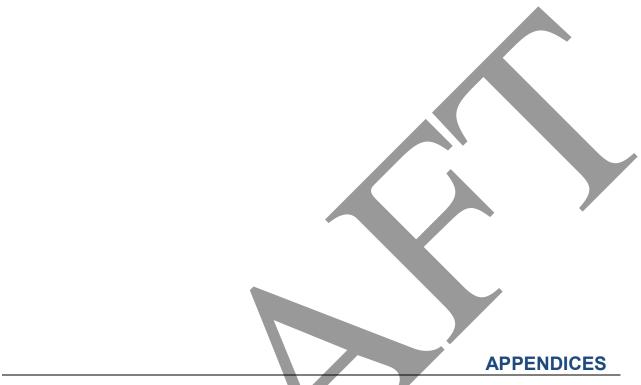
A sign must be posted at a safe, publicly accessible location in close proximity to the construction site detailing the permit coverage. The notice must be located so that it is visible from the public road that is nearest to the active part of the construction site, and it must use a font large enough to be readily viewed from a public right-of-way. At a minimum, the notice must include:

- The NPDES Permit Tracking Number,
- A contact name and phone number for obtaining additional construction site information,
- The Uniform Resource Locator (URL) for the SWPPP (if available), or the following statement: "If you would like to obtain a copy of the Stormwater Pollution Prevention Plan (SWPPP) for this site, contact the EPA Regional 1 Office at (617) 918-1038,
- The following statement "If you observe indicators of stormwater pollutants in the discharge or in the receiving waterbody, contact the EPA through the following website; https://www.epa.gov/enforcement/report-environmental-violations."

9.3 OWNER CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Title:	
Signature:	Date:	



9.4 OPERATOR CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Title:	
Signature:	Date:	

Construction General Permit

https://www.epa.gov/sites/production/files/2017-02/documents/2017 cgp final permit 508.pdf

Appendix D NOI and Acknowledgement Letter from EPA

Appendix E

Inspection Reports

Inspections under this SWPPP shall be conducted in accordance with each installed BMPs recommended maintenance requirements. This inspection frequency may be reduced to at least once every month if: a) the entire site is temporarily stabilized, b) runoff is unlikely due to winter conditions (e.g. site is covered with snow, ice, or the ground is frozen), or c) construction is occurring during seasonal arid periods in arid areas and semi-arid areas. If an inspection report is filed according to this modified schedule it shall be noted at the end of the report under the "NOTES" section.

The following pages should be copied and completed for each inspection. All inspection forms should be compiled in a binder to prove compliance with this SWPPP.

Stormwater Pollution Prevention Plan: Inspection Checklist

	General Inf	ormation			
Project Name					
NPDES Tracking No.		Location			
Date of Inspection		Start/End Time			
Inspector's Name(s)					
Inspector's Title(s)					
Inspector's Contact Information					
Inspector's Qualifications					
Describe present phase of construction					
Type of Inspection: ☐ Regular ☐ Pre-store	rm event	storm event	Post-storm event		
Weather Information					
Has there been a storm event since the last inspection? □Yes □No If yes, provide: Storm Start Date & Time: Storm Duration (hrs): Approx. Amount of Precipitation (in):					
Weather at time of this inspection? ☐ Clear ☐ Cloudy ☐ Rain ☐ Sleet ☐ Fog ☐ Snowing ☐ High Winds ☐ Other: Temperature:					
Have any discharges occurred since the last inspection? □Yes □No If yes, describe:					
Are there any discharges at the time of inspection? □Yes □No If yes, describe:					

Site-specific BMPs

- Number the structural and non-structural BMPs identified in your SWPPP on your site map and list them below (add as many BMPs as necessary). Carry a copy of the numbered site map with you during your inspections. This list will ensure that you are inspecting all required BMPs at your site.
- Describe corrective actions initiated, date completed, and note the person that completed the work in the Corrective Action Log.

ВМР	BMP Installed?	BMP Maintenance Required?	Corrective Action Needed and Notes
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
•	□Yes □No	□Yes □No	

Overall Site Issues

Below are some general site issues that should be assessed during inspections. Customize this list as needed for conditions at your site.

BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes
Are all slopes and disturbed areas not actively being worked properly stabilized?	□Yes □No	□Yes □No	
Are natural resource areas (e.g., streams, wetlands, mature trees, etc.) protected with barriers or similar BMPs?	□Yes □No	□Yes □No	
Are perimeter controls and sediment barriers adequately installed (keyed into substrate) and maintained?	□Yes □No	□Yes □No	
Are discharge points and receiving waters free of any sediment deposits?	□Yes □No	□Yes □No	
Are storm drain inlets properly protected?	□Yes □No	□Yes □No	
Is the construction exit preventing sediment from being tracked into the street?	□Yes □No	□Yes □No	
Is trash/litter from work areas collected and placed in covered dumpsters?	□Yes □No	□Yes □No	
Are washout facilities (e.g., paint, stucco, concrete) available, clearly marked, and maintained?	□Yes □No	□Yes □No	
Are vehicle and equipment fueling, cleaning, and maintenance areas free of spills, leaks, or any other deleterious material?	□Yes □No	□Yes □No	

BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes		
Are materials that are potential stormwater contaminants stored inside or under cover?	□Yes □No	□Yes □No			
Are non-stormwater discharges (e.g., wash water, dewatering) properly controlled?	□Yes □No	□Yes □No			
(Other)	□Yes □No	□Yes □No			
	Non-C	ompliance			
CERTIFICATION STATEMENT I certify under penalty of law that this document and all attachments were prepared under my direction or upervision in accordance with a system designed to assure that qualified personnel properly gathered and valuated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing diolations." Print name and title:					
Signature:	ignature:				
Data					

Corrective Action Log

Corrective Action Log

Use this form to note the date and activity for accurate record keeping (make additional copies as necessary). Examples include the restaking or reinforcement of the erosion control barrier, site watering to prevent dust erosion, street sweeping, equipment and machinery repair, etc.

Date	Activity Description	Additional Action Items
		The state of the s
		4

Appendix G

SWPPP Amendment Log

The SWPPP, including the site plans, shall be amended whenever there is a change in design, construction, operation, or maintenance at the construction site that has or could have a significant effect on the discharge of pollutants to the waters of the United States that has not been previously addressed in the SWPPP.

The SWPPP shall be amended if during inspections or investigations by site staff, or by local, state, tribal or federal officials, it is determined that the SWPPP is ineffective in eliminating or significantly minimizing pollutants in storm water discharges from the construction site.

Based on the results of an inspection, the SWPPP shall be modified as necessary to include additional or modified BMPs designed to correct problems identified. Revisions to the SWPPP shall be completed within seven (7) calendar days following the inspection. Implementation of these additional or modified BMPs shall be accomplished as described in Subpart 3.6B of the Construction General Permit (located in Appendix C).

SWPPP Amendment Log

Amendment	Description of the Amendment	Date of	Amendment
No.		Amendment	Prepared by
			(Name(s) and Title)

Appendix H Subcontractor Certifications/Agreements

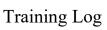
Sample Subcontractor Certifications/Agreements

SUBCONTRACTOR CERTIFICATION STORMWATER POLLUTION PREVENTION PLAN

Project Number:		
Project Title:		
Operator(s):		
As a subcontractor, you are required to comply with the for any work that you perform on-site. Any person or grobe subject to substantial penalties or loss of contract. Yo working on this project of the requirements of the SWI review at the office trailer.	oup who violates any condition u are encouraged to advise ea	on of the SWPPP may ch of your employees
Each subcontractor engaged in activities at the construidentified and sign the following certification statement:		stormwater must be
I certify under the penalty of law that I have read a SWPPP for the above designated project and agree to		
This certification is hereby signed in reference to the about	ove named project:	
Company:Address:		
Telephone Number:	_	
Type of construction service to be provided:		
Signature:	_	
Title: Date:	_	
Dutc.	_	

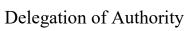
Grading and Stabilization Activities Log

Site Plans in Appendix B should be annotated to indicate areas where final stabilization has been accomplished and no further construction-phase permit requirements apply.


The following records are to be kept by each Site Operator throughout the construction period and maintained in the SWPPP. Insert additional documentation for record keeping as necessary.

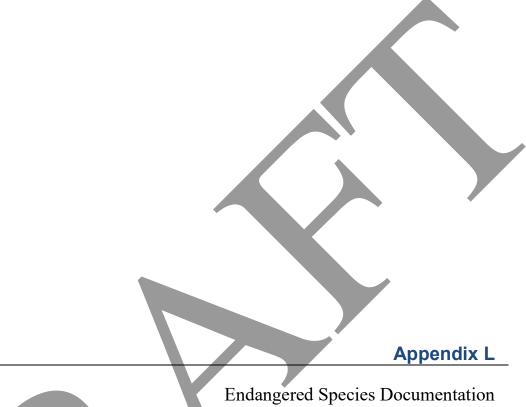

Grading and Stabilization Activities Log

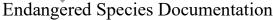
Date Location on Property Description	_



Training Log

Date	Training Topic	Attendee	Signature of Training Coordinator
		_	
L			




Sample Delegation of Authority Form

Delegation of Authority

I, (name), hereby designate the person or specifically described position
below to be a duly authorized representative for the purpose of overseeing compliance with environmenta
requirements, including the Construction General Permit, at the
construction site. The designee is authorized to sign any
reports, stormwater pollution prevention plans and all other documents required by the permit.
(name of person or position)
(company) (address)
(city, state, zip)
(phone)
(phone)
By signing this authorization, I confirm that I meet the requirements to make such a designation as set forth in Appendix I of EPA's Construction General Permit (CGP), and that the designee above meets the definition of a "duly authorized representative" as set forth in Appendix I. I certify under penalty of law that this document and all attachments were prepared under my direction of supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
Name:
Company:
Title:
Signature:
Date:

Appendix M Historic Preservation Documentation

