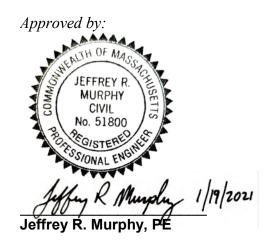
Stormwater Management Report

140 Tihonet Road PV+ES Project

140 Tihonet Road (aka 0 & 169 Tihonet Road) Wareham, Massachusetts

Prepared for:

Borrego Solar Systems, Inc. 55 Technology Drive, Suite 102 Lowell, MA 01851


Prepared by:

BEALS + THOMAS BEALS AND THOMAS, INC. 32 Court Street Plymouth, MA 02360

June 2, 2020 Revised: January 19, 2021

Calculated by: Nathaniel B. Bautz, EIT

Checked by: Jeffrey R. Murphy, PE

1833112RP001B

TABLE OF CONTENTS

1.0 II	NTRODUCTION	1
2.0 P	RE-DEVELOPMENT CONDITIONS	2
2.1	SITE CONDITIONS	2
2.2	SOIL DESCRIPTION	2
2.3	Hydrologic Analysis	2
3.0 P	POST-DEVELOPMENT CONDITIONS	3
3.1	Design Strategy	3
3.1 3.2	Design Strategy Hydrologic Analysis Methodology	3
3.1 3.2 3.3	DESIGN STRATEGY Hydrologic Analysis Methodology Compliance with MassDEP Stormwater Management Standards	
3.1 3.2 3.3 3.4	Design Strategy Hydrologic Analysis Methodology	3 3 3

LIST OF ATTACHMENTS

ATTACHMENT 1:	SOIL DATA
ATTACHMENT 2:	PRE-DEVELOPMENT HYDROLOGIC ANALYSIS
ATTACHMENT 3:	POST-DEVELOPMENT HYDROLOGIC ANALYSIS
ATTACHMENT 4:	HYDRAULIC ANALYSIS
ATTACHMENT 5:	DRAWDOWN AND GROUNDWATER RECHARGE CALCULATIONS
ATTACHMENT 6:	SITE OWNER'S MANUAL
ATTACHMENT 7:	DRAFT STORMWATER POLLUTION PREVENTION PLAN

1.0 INTRODUCTION

The proposed project includes a stormwater management system designed to mitigate potential impacts the proposed project could have on the existing watershed. Stormwater controls are proposed to control peak runoff rates, provide water quality, promote groundwater recharge and sediment removal. The proposed system has been designed to comply with:

- The 2008 Massachusetts Department of Environmental Protection (MassDEP) Stormwater Management Handbook,
- The Massachusetts Wetland Protection Act (310 CMR 10.00), and
- Town of Wareham Zoning Bylaw

The pre- and post-development hydrologic conditions were modeled using HydroCADTM version 10.00 to demonstrate that post-development stormwater runoff rates will be less than or equal to the pre-development rates. Watershed maps with soil types as well as detailed analysis of the model results are also included. The following table summarizes the peak runoff rates for the pre-and post-development conditions.

Storm Event	2 Year		10 Year		100 Year	
Storm Event	Pre	Post	Pre	Post	Pre	Post
Design Point 1	0.0	0.0	0.0	0.0	0.3	0.2
Design Point 2	0.0	0.0	0.1	0.1	1.9	1.7
Design Point 3	0.0	0.0	0.0	0.0	1.0	0.6
Design Point 4	0.0	0.0	0.0	0.0	0.5	0.1
Design Point 5	0.0	0.0	0.0	0.0	0.4	0.3

Table 1: Pre- & Post-development Peak Runoff Rate Comparison, units are in cubic feet per second (cfs).

2.0 PRE-DEVELOPMENT CONDITIONS

2.1 Site Conditions

The site is accessed by the unpaved portion of Tihonet Road behind the A.D. Makepeace Company headquarters. The site is currently undeveloped and is primarily wooded with an existing gravel cart path to the south and east. Runoff from the site drains radially outward from the existing hilltop ridge. Flows to the west go towards Tihonet Road and Tihonet Pond. Flows to the southwest are directed to an existing agricultural channel that flows southeast from Tihonet Pond into existing bogs south of the proposed array. Runoff also flows to existing bogs both on-site as well as off-site to the southeast, and easterly to an existing wetland system. North of the proposed solar array, there is an existing cleared utility transmission easement.

The site does not contain, nor is it tributary to any Critical Areas.

The site does not discharge to a surface water with a TMDL or draft TMDL.

2.2 Soil Description

The Natural Resources Conservation Service (NRCS) lists the on-site soils types as predominantly hydrologic soil class A. These soil groups include Poquonock sand, Plymouth-Carver complex, Carver loamy coarse sand, and Hinckley loamy sand, and Gloucester-Canton complex. A small area of hydrologic soil class D soils is present at the southwestern corner of the proposed project locus, which is classified as Udipsamments-wet substratum.

Poquonock sand is a well-drained soil comprised of sandy eolian or glaciofluvial deposits over coarse-loamy lodgment till. Generally, this soil is in areas with drumlins, ground moraines, and till plains and has a sand layer that extends to about 30 inches below the surface followed by a gravelly sandy loam layer which extends to about 70 inches below the surface. Plymouth-Carver complex is an excessively drained soil that is characterized by sandy gravelly glaciofluvial deposits. Carver loamy coarse sand and Hinckley loamy sand and Gloucester-Canton complex are also excessively drained sandy glaciofluvial outwash soil types. Udipsamments-wet substratum are defined as sandy human transported material over sandy and gravelly glaciofluvial deposits.

2.3 Hydrologic Analysis

Sub-catchment areas were delineated based on existing runoff patterns and topographic information. This information is shown on the *Pre-Development Conditions Hydrologic Areas Map* included in Attachment 2. Summaries of each area with respect to Curve Number and Time of Concentration calculations can be found in the model results also in Attachment 2.

3.0 POST-DEVELOPMENT CONDITIONS

3.1 Design Strategy

During the design phase of the site layout, consideration was given to conserving environmentally sensitive features and minimizing impact on the existing hydrology. To achieve this, the proposed grading endeavored to match the existing drainage patterns where feasible.

Wetlands in the vicinity of the site were excluded from the development envelope and will not be altered by the proposed project. The hydrology analysis considers these wetlands in order to maintain their existing hydrology.

The proposed solar panels are raised above the ground with the leading edge tilted to the south. Stormwater that lands on the panels will sheet down off the front edge to the pervious sandy ground below, which will be vegetated with an herbaceous seed mix.

There will be several concrete pads associated with the utility equipment that will produce a negligible amount of runoff which will flow to adjacent pervious soils. These have been accounted for in the stormwater design and analysis.

3.2 Hydrologic Analysis Methodology

The established design points used in the pre-development conditions analysis were used in the post-development analysis for direct comparison. The tributary areas and flow paths were modified to reflect post-development conditions. See Attachment 3 for the *Post-Development Conditions Hydrologic Areas Map*. Summaries of each area with respect to Curve Number and Time of Concentration calculations can be found in the model results in Attachment 3.

3.3 Compliance with MassDEP Stormwater Management Standards

The proposed stormwater management system was designed in compliance with the ten (10) MassDEP Stormwater Management Standards. The following summary provides key information related to the design approach and mitigation measures for stormwater.

STANDARD 1: No new stormwater conveyance (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

There will be no direct discharge of untreated stormwater from the site. Erosion control barriers will be installed as depicted on the plans and will remain in place throughout construction and until the site is stabilized with vegetation.

STANDARD 2: Stormwater management systems shall be designed so that postdevelopment peak discharge rates do not exceed pre-development peak discharge rates.

The proposed stormwater management system will effectively maintain the post-development peak discharge rates for the 2-, 10-, and 100-year, 24-hour storms. Refer to Section 1.0 Introduction for a summary of the peak runoff rates.

STANDARD 3: Loss of annual recharge to groundwater shall be eliminated or minimized through the use of environmentally sensitive site design, low impact development techniques, stormwater management practices and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil types. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The proposed solar panels, while covering a large footprint, will allow water to sheet flow to the ground below where it can be absorbed into the sandy on-site soils. Other minimal areas of impervious (i.e. concrete pads) as well as the proposed changes in vegetative cover have been accounted for in the design. Proposed infiltration basins and infiltration trenches will provide the required recharge based on the footprint of the impervious concrete pads. Therefore, recharge of groundwater will be maintained under the post-development condition.

STANDARD 4: Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS).

The proposed project does not include any proposed impervious surfaces requiring treatment for water quality. Therefore, the 80% TSS removal requirement does not apply.

STANDARD 5: For land uses with higher potential pollutant loads (LUHPPLs), source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

The proposed project is not associated with stormwater discharges from land uses with higher potential pollutant loads.

STANDARD 6: Stormwater discharges to critical areas must utilize certain stormwater management BMPs approved for critical areas. Critical areas are Outstanding Resource Waters, shellfish beds, swimming beaches, coldwater fisheries and recharge areas for public water supplies.

There are no stormwater discharges to critical areas associated with this project.

STANDARD 7: Redevelopment of previously developed sites must meet the Stormwater Management Standards to the maximum extent practicable. However, if it is not practicable to meet all the Standards, new (retrofitted or expanded) stormwater management systems must be designed to improve existing conditions.

The proposed project is new development, and therefore this standard does not apply.

STANDARD 8: A plan to control construction-related impacts during erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

Since the project will disturb greater than 1 acre, a DRAFT Stormwater Pollution Prevention Plan (SWPPP) has been developed and is included in Attachment 5. The SWPPP will be finalized prior to construction to comply with Section 3 of the NPDES Construction General Permit for Stormwater Discharges; therefore the requirements of Standard 8 are fulfilled.

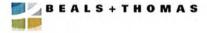
STANDARD 9: A Long-Term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

The Site Owner's Manual complies with the Long-Term Pollution Prevention Plan (Standard 4) and the Long-Term Operation and Maintenance Plan (Standard 9) requirements of the 2008 MassDEP Stormwater Management Standards. The Manual outlines source control and pollution prevention measures and maintenance requirements associated with the proposed development.

STANDARD 10: All illicit discharges to the stormwater management system are prohibited.

There will be no illicit discharges to the proposed stormwater management system associated with the proposed project. An Illicit Discharge Compliance Statement is provided on the following page.

140 Tihonet Road PV+ES Project Stormwater Management Report Wareham, Massachusetts 1833112RP001


3.5 Illicit Discharge Compliance Statement

An illicit discharge is any discharge to a stormwater management system that is not comprised entirely of stormwater, discharges from fire-fighting activities, and certain non-designated non-stormwater discharges.

To the best of my knowledge, no detectable illicit discharge exists on site. The site plans included with this report detail the storm sewers that convey stormwater on the site and demonstrate that these systems do not include the entry of an illicit discharge. A Site Owner's Manual is included, which contains the Long Term Pollution Prevention Plan that outlines measures to prevent future illicit discharges. As the Site Owner, I will ultimately be responsible for implementing the Long Term Pollution Prevention Plan.

Name wner

Signature:

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

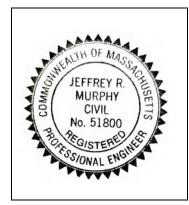
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

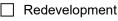

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature



leffin R Munphy 1/19/2021

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
\boxtimes	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

 \boxtimes No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

🛛 Soil Analysis provi	ded.
-----------------------	------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	🛛 Simple Dynamic
--------	------------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs have	been sized to in	filtrate the Required	Recharge Volume.
-------------	--------------------	------------------	-----------------------	------------------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - $\hfill\square$ Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program **Checklist for Stormwater Report**

Standard 4: Water Quality (continued)
The BMP is sized (and calculations provided) based on:
☐ The ½" or 1" Water Quality Volume or
The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
 The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> <i>to</i> the discharge of stormwater to the post-construction stormwater BMPs.
☐ The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
All exposure has been eliminated.
All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Standard 6: Critical Areas
The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

	Limited	Pro	ject
--	---------	-----	------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

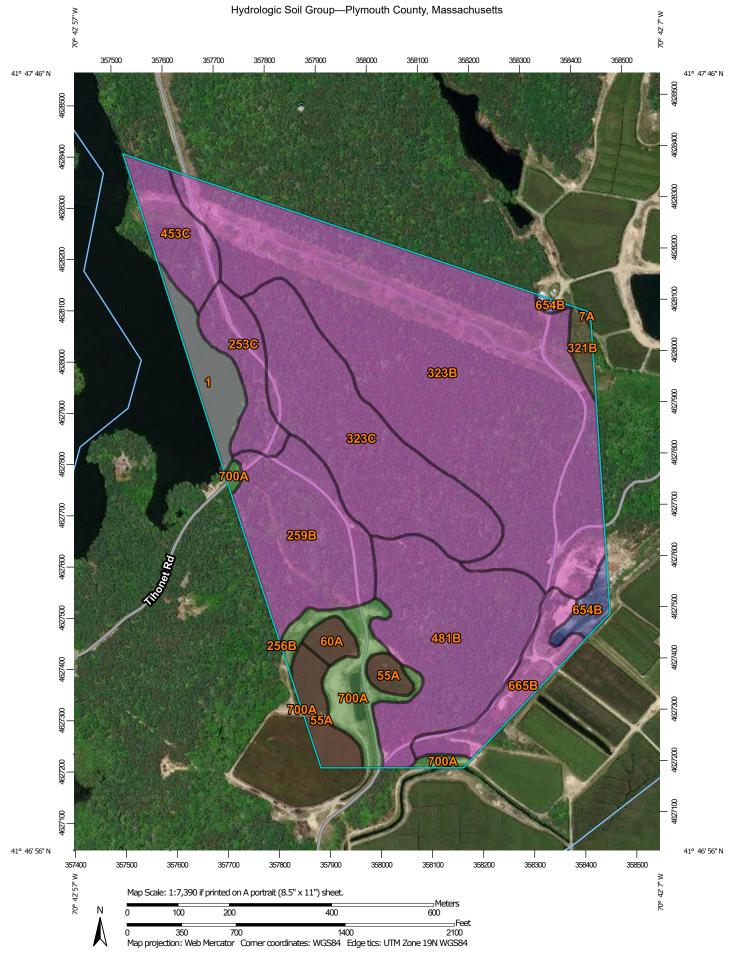
A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

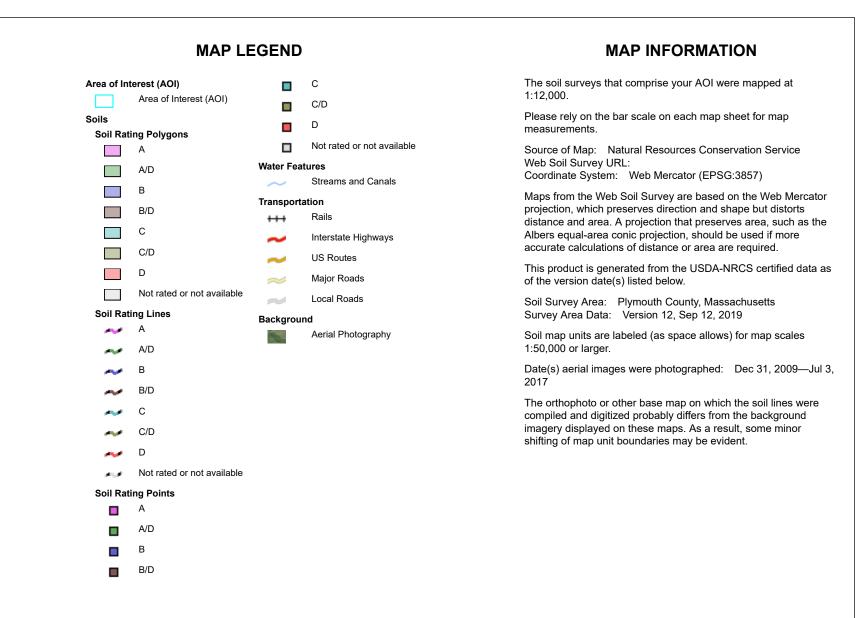
- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan


- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.


Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Attachment 1 Soil Data

Hydrologic Soil Group—Plymouth County, Massachusetts

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		5.1	2.9%
7A	Rainberry coarse sand, 0 to 3 percent slopes, sanded surface	A/D	0.1	0.0%
55A	Freetown coarse sand, 0 to 3 percent slopes, sanded surface	B/D	5.0	2.9%
60A	Swansea coarse sand, 0 to 2 percent slopes	B/D	1.6	0.9%
253C	Hinckley loamy sand, 8 to 15 percent slopes	A	6.4	3.7%
256B	Deerfield loamy fine sand, 3 to 8 percent slopes	A	0.0	0.0%
259B	Carver loamy coarse sand, 3 to 8 percent slopes	A	17.0	9.7%
321B	Birchwood sand, 3 to 8 percent slopes, very stony	B/D	1.4	0.8%
323B	Poquonock sand, 3 to 8 percent slopes, very stony	A	67.2	38.5%
323C	Poquonock sand, 8 to 15 percent slopes, very stony	A	24.3	13.9%
453C	Gloucester - Canton complex, 8 to 15 percent slopes, extremely bouldery	A	6.6	3.8%
481B	Plymouth - Carver complex, 3 to 8 percent slopes, bouldery	A	23.3	13.3%
654B	Udorthents, loamy, 0 to 8 percent slopes	В	2.3	1.3%
665B	Udipsamments, 0 to 8 percent slopes	A	6.4	3.7%
700A	Udipsamments, wet substratum, 0 to 3 percent slopes	A/D	8.1	4.7%
Totals for Area of Inter	rest		174.8	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Plymouth County, Massachusetts

253C—Hinckley loamy sand, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2svm9 Elevation: 0 to 1,480 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Hinckley and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Outwash plains, moraines, outwash deltas, eskers, outwash terraces, kames, kame terraces Landform position (two-dimensional): Shoulder, toeslope,

footslope, backslope

Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser

Down-slope shape: Convex, linear, concave

Across-slope shape: Linear, convex, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 8 inches:* loamy sand *Bw1 - 8 to 11 inches:* gravelly loamy sand *Bw2 - 11 to 16 inches:* gravelly loamy sand *BC - 16 to 19 inches:* very gravelly loamy sand *C - 19 to 65 inches:* very gravelly sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.1 inches)

USDA

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 5 percent

Landform: Moraines, outwash plains, eskers, outwash terraces, kames

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope

Landform position (three-dimensional): Side slope, crest, head slope, nose slope, riser

Down-slope shape: Convex

Across-slope shape: Convex

Hydric soil rating: No

Windsor

Percent of map unit: 5 percent

Landform: Outwash plains, outwash deltas, moraines, outwash terraces, eskers, kames, kame terraces

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope

Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser

Down-slope shape: Convex, linear, concave

- Across-slope shape: Linear, convex, concave
- Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent

Landform: Moraines, outwash deltas, outwash terraces, kame terraces, outwash plains

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Concave, linear Across-slope shape: Linear, concave Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 12, Sep 12, 2019

Plymouth County, Massachusetts

259B—Carver loamy coarse sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2y07t Elevation: 0 to 240 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Carver, loamy coarse sand, and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Carver, Loamy Coarse Sand

Setting

Landform: Outwash plains, moraines Landform position (two-dimensional): Summit, shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Sandy glaciofluvial deposits

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *Oe - 2 to 3 inches:* moderately decomposed plant material *A - 3 to 7 inches:* loamy coarse sand *E - 7 to 10 inches:* coarse sand *Bw1 - 10 to 15 inches:* coarse sand *Bw2 - 15 to 28 inches:* coarse sand *BC - 28 to 32 inches:* coarse sand *C - 32 to 67 inches:* coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 4.5 inches)

USDA

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Ecological site: Dry Outwash (F149BY005MA) Hydric soil rating: No

Minor Components

Deerfield

Percent of map unit: 10 percent Landform: Outwash plains, outwash terraces, outwash deltas, kame terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

Hinckley

Percent of map unit: 5 percent
Landform: Moraines, kames, outwash terraces, eskers, kame terraces, outwash plains, outwash deltas
Landform position (two-dimensional): Summit, toeslope, shoulder, backslope, footslope
Landform position (three-dimensional): Side slope, crest, head slope, nose slope, riser, tread
Down-slope shape: Convex
Across-slope shape: Convex

Hydric soil rating: No

Merrimac

Percent of map unit: 3 percent Landform: Outwash terraces, outwash deltas, kame terraces Landform position (three-dimensional): Tread, riser Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Mashpee

Percent of map unit: 2 percent Landform: Terraces, drainageways, depressions Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 12, Sep 12, 2019

Plymouth County, Massachusetts

323B—Poquonock sand, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: bcz7 Elevation: 0 to 400 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Poquonock, very stony, and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Poquonock, Very Stony

Setting

Landform: Drumlins, ground moraines, till plains Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy eolian deposits and/or glaciofluvial deposits over coarse-loamy lodgment till

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material *Oe - 1 to 2 inches:* moderately decomposed plant material *A - 2 to 4 inches:* sand *E - 4 to 5 inches:* sand *Bs - 5 to 7 inches:* loamy sand *Bw - 7 to 26 inches:* sand *BC - 26 to 35 inches:* loamy sand *2Cd1 - 35 to 49 inches:* gravelly sandy loam *2Cd2 - 49 to 71 inches:* gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Percent of area covered with surface fragments: 1.5 percent
Depth to restrictive feature: 20 to 39 inches to densic material
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 22 to 35 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 1.9 inches)

USDA

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Birchwood, very stony

Percent of map unit: 8 percent Landform: Drumlins, ground moraines, till plains Landform position (two-dimensional): Summit, footslope Landform position (three-dimensional): Interfluve Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Mattapoisett, extremely stony

Percent of map unit: 7 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Montauk, very stony

Percent of map unit: 3 percent Landform: Drumlins, ground moraines, till plains Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Scituate, very stony

Percent of map unit: 2 percent Landform: Ridges, drumlins Landform position (two-dimensional): Footslope, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 12, Sep 12, 2019

Plymouth County, Massachusetts

323C—Poquonock sand, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: bcz6 Elevation: 0 to 400 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Poquonock, very stony, and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Poquonock, Very Stony

Setting

Landform: Drumlins, ground moraines, till plains Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Sandy eolian deposits and/or glaciofluvial deposits over coarse-loamy lodgment till

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material *Oe - 1 to 2 inches:* moderately decomposed plant material *A - 2 to 4 inches:* sand *E - 4 to 5 inches:* sand *Bs - 5 to 7 inches:* loamy sand *Bw - 7 to 26 inches:* sand *BC - 26 to 35 inches:* loamy sand *2Cd1 - 35 to 49 inches:* gravelly sandy loam *2Cd2 - 49 to 71 inches:* gravelly sandy loam

Properties and qualities

Slope: 8 to 15 percent
Percent of area covered with surface fragments: 1.5 percent
Depth to restrictive feature: 20 to 39 inches to densic material
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 22 to 35 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 1.9 inches)

USDA

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Birchwood, very stony

Percent of map unit: 10 percent Landform: Ground moraines, till plains, drumlins Landform position (two-dimensional): Summit, footslope Landform position (three-dimensional): Interfluve Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Scituate, very stony

Percent of map unit: 5 percent Landform: Drumlins, ridges Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

Montauk, very stony

Percent of map unit: 5 percent Landform: Till plains, drumlins, ground moraines Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 12, Sep 12, 2019

Plymouth County, Massachusetts

481B—Plymouth - Carver complex, 3 to 8 percent slopes, bouldery

Map Unit Setting

National map unit symbol: bcz2 Elevation: 0 to 400 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Plymouth, bouldery, and similar soils: 45 percent
Carver, bouldery, and similar soils: 40 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Plymouth, Bouldery

Setting

Landform: Outwash plains, moraines Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve, tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly supraglacial meltout till over sandy and gravelly glaciofluvial deposits

Typical profile

Oi - 0 to 4 inches: slightly decomposed plant material *Oe - 4 to 6 inches:* moderately decomposed plant material *A - 6 to 7 inches:* loamy coarse sand *E - 7 to 11 inches:* coarse sand *Bs - 11 to 15 inches:* loamy coarse sand *Bw - 15 to 20 inches:* coarse sand *BC - 20 to 29 inches:* coarse sand *C - 29 to 64 inches:* gravelly coarse sand

Properties and qualities

Slope: 3 to 8 percent
Percent of area covered with surface fragments: 0.1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

USDA

Available water storage in profile: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Hydric soil rating: No

Description of Carver, Bouldery

Setting

Landform: Outwash plains, moraines, pitted outwash plains Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy glaciofluvial deposits

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *Oe - 2 to 3 inches:* moderately decomposed plant material *A - 3 to 7 inches:* coarse sand *E - 7 to 10 inches:* coarse sand *Bw1 - 10 to 15 inches:* coarse sand *Bw2 - 15 to 28 inches:* coarse sand *BC - 28 to 32 inches:* coarse sand *C - 32 to 67 inches:* coarse sand

Properties and qualities

Slope: 3 to 8 percent Percent of area covered with surface fragments: 0.1 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Barnstable, bouldery

Percent of map unit: 5 percent Landform: Moraines Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

JSDA

Down-slope shape: Convex *Across-slope shape:* Convex *Hydric soil rating:* No

Poquonock, bouldery

Percent of map unit: 5 percent Landform: Drumlins, ground moraines, till plains Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Merrimac

Percent of map unit: 5 percent Landform: Outwash plains, terraces, kames Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 12, Sep 12, 2019

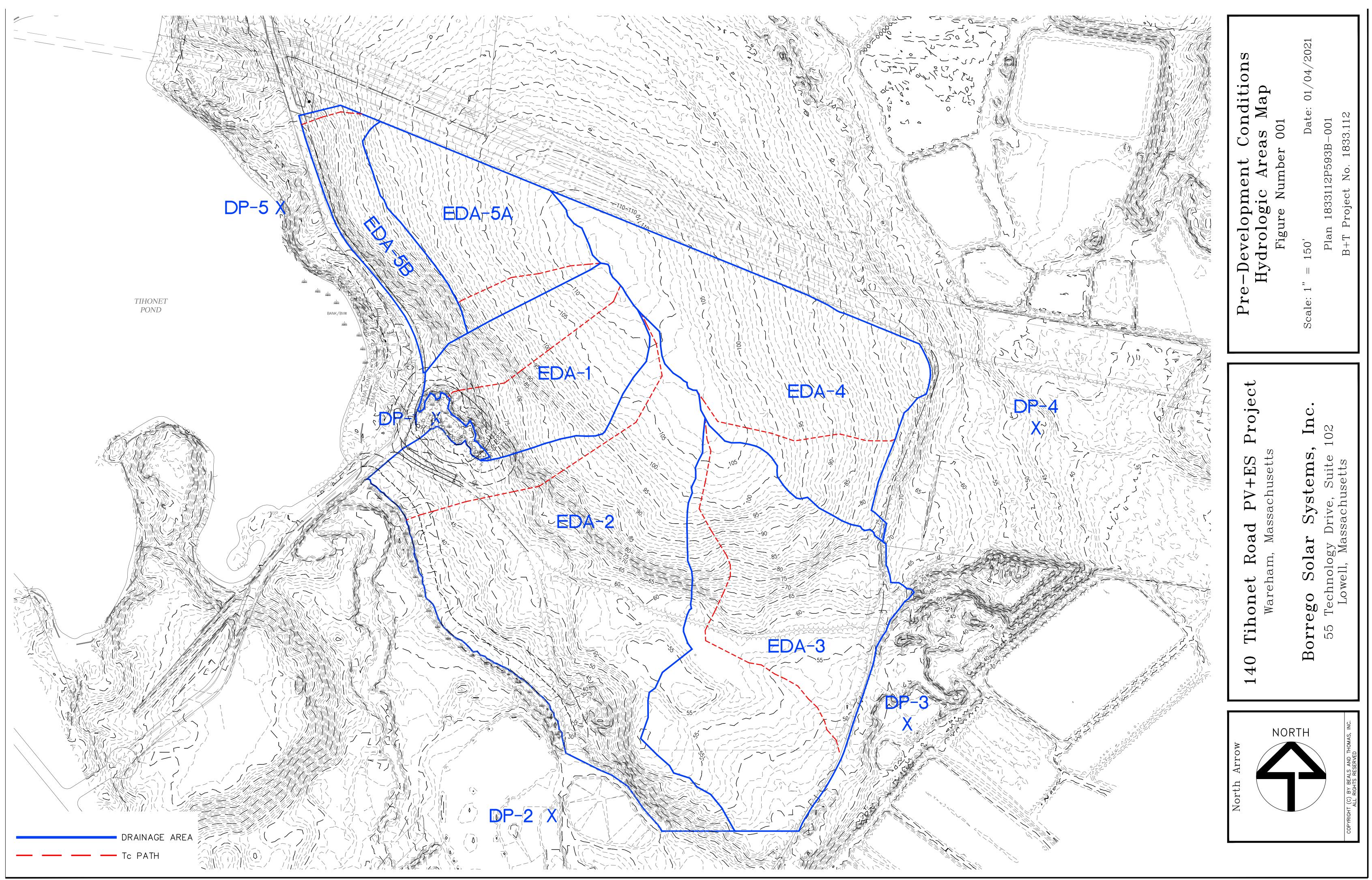
Attachment 2 Pre-Development Hydrologic Analysis

JOB NO./LOCATION:
1833.112
Wareham, MA
CLIENT/PROJECT:
Borrego Solar Systems, Inc.
140 Tihonet Road PV+ES Project
SUBJECT/TITLE:
Pre-Development Hydrologic Calculations
OBJECTIVE OF CALCULATION:
• To determine the pre-development peak rates of runoff from the site for the 2, 10, & 100-year storm events at design points DP-1 through 5.
CALCULATION METHOD(S):
• Runoff curve numbers (CN), time-of-concentration (Tc), and runoff rates were calculated based on TR-55 methodology.
 Autodesk Civil 3D 2019 computer program was utilized for digitizing ground cover areas.
• Peak runoff rates were computed using HydroCAD version 10.00.
ASSUMPTIONS:
• The ground cover types were determined using MassGIS aerial imagery and hydrologic soil groups based on United States Department of Agriculture, NRCS Soil Survey map information.
• Watershed boundaries have been estimated based upon contour information depicted on the Existing Conditions Plan as well as MassGIS contours in offsite areas outside limits of those shown on the existing
conditions plan.
Wetland systems were not included in the hydrologic analysis.
SOURCES OF DATA/EQUATIONS:
• Pre-Development Conditions Hydrologic Areas Map prepared by Beals and Thomas, Inc. File No. 1833112P593B-001.
 NRCS Soil Survey for Plymouth County, hydrologic soil group report, downloaded from Web Soil Survey on 3/12/2020.
• TR-55 urban Hydrology for Small Watersheds, SCS, 1986.
Massachusetts DEP Stormwater Management Handbook, February 2008.

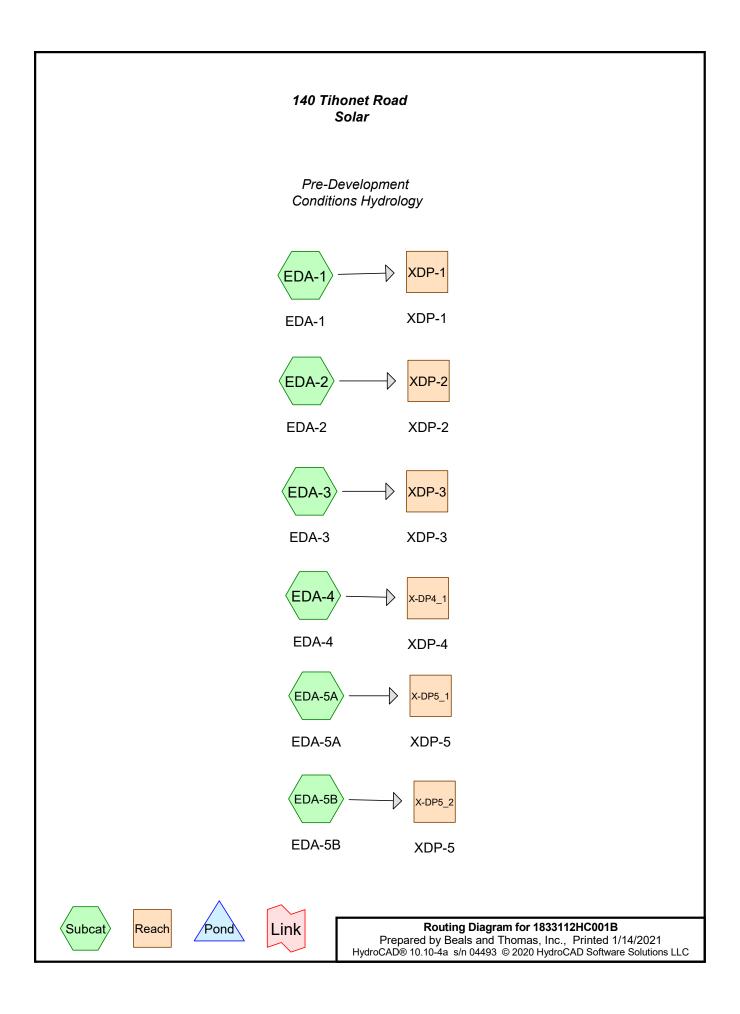
REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	N. Bautz	05/31/2020	J. Murphy	6/1/2020	J. Murphy	6/1/2020
1	N. Bautz	1/14/2021	J. Murphy	1/19/2021	J. Murphy	1/19/2021

NBB/1833112CS001B

CALCULATION SUMMARY T 508.366.0560 F 508.366.4391 www.bealsandthomas.com Regional Office: Plymouth, MA


CONCLUSIONS:

Storm Event	2-Year	10-Year	100-Year
DP-1 (cfs)	0.0	0.0	0.3
DP-2 (cfs)	0.0	0.1	1.9
DP-3 (cfs)	0.0	0.0	1.0
DP-4 (cfs)	0.0	0.0	0.5
DP-5 (cfs)	0.0	0.0	0.4


REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	N. Bautz	05/31/2020	J. Murphy	6/1/2020	J. Murphy	6/1/2020
1	N. Bautz	1/14/2021	J. Murphy	1/19/2021	J. Murphy	1/19/2021

NBB/1833112CS001B

BEALS AND THOMAS, INC.

Area Listing (selected nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
0.403	39	>75% Grass cover, Good, HSG A (EDA-5B)	
1.032	96	Gravel surface, HSG A (EDA-2, EDA-3, EDA-4)	
0.190	96	Gravel surface, HSG D (EDA-2)	
87.129	30	Woods, Good, HSG A (EDA-1, EDA-2, EDA-3, EDA-4, EDA-5A, EDA-5B)	
0.569	77	Woods, Good, HSG D (EDA-2)	
89.323	31	TOTAL AREA	

1833112HC001B	Туре
Prepared by Beals and Thomas, Inc.	
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solution:	s LLC

Time span=5.00-30.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=9.142 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=820' Tc=22.5 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-2: EDA-2	Runoff Area=27.900 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=1,436' Tc=39.1 min CN=33 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-3: EDA-3	Runoff Area=21.829 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=1,626' Tc=46.8 min CN=32 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-4: EDA-4	Runoff Area=16.948 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=845' Tc=30.3 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-5A: EDA-5A	Runoff Area=8.440 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=577' Tc=19.6 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-5B: EDA-5B	Runoff Area=5.064 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=241' Tc=8.8 min CN=31 Runoff=0.00 cfs 0.000 af
Reach X-DP4_1: XDP-4	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach X-DP5_1: XDP-5	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach X-DP5_2: XDP-5	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach XDP-1: XDP-1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach XDP-2: XDP-2	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach XDP-3: XDP-3	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

Total Runoff Area = 89.323 ac Runoff Volume = 0.000 af Average Runoff Depth = 0.00" 100.00% Pervious = 89.323 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment EDA-1: EDA-1

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	Area	(ac) C	N Des	cription		
	9.	142 3	30 Woo	ods, Good,	HSG A	
	9.	142	100.	00% Pervi	ous Area	
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	12.0	50	0.0200	0.07		Sheet Flow, Tc-1
	5.6	327	0.0380	0.97		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps
	1.6	131	0.0760	1.38		Shallow Concentrated Flow, Tc-3
	0.7	83	0.1690	2.06		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-4 Woodland Kv= 5.0 fps
	1.4	101	0.0590	1.21		Shallow Concentrated Flow, Tc-5
	0.5	66	0.2270	2.38		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-6 Woodland Kv= 5.0 fps
	0.5	34	0.0590	1.21		Shallow Concentrated Flow, Tc-7
_	0.2	28	0.2500	2.50		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-8 Woodland Kv= 5.0 fps
	00 F	000	T			

22.5 820 Total

Summary for Subcatchment EDA-2: EDA-2

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

Area (ac)	CN	Description
26.629	30	Woods, Good, HSG A
0.569	77	Woods, Good, HSG D
0.512	96	Gravel surface, HSG A
0.190	96	Gravel surface, HSG D
27.900	33	Weighted Average
27.900		100.00% Pervious Area

1833112HC001B Prepared by Beals and Thomas, Inc.

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/14/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 5

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
5.6	204	0.0150	0.61		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
4.4	206	0.0240	0.77		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
4.9	344	0.0550	1.17		Shallow Concentrated Flow, Tc-4
					Woodland Kv= 5.0 fps
1.8	203	0.1430	1.89		Shallow Concentrated Flow, Tc-5
					Woodland Kv= 5.0 fps
6.6	429	0.0470	1.08		Shallow Concentrated Flow, Tc-6
					Woodland Kv= 5.0 fps

1,436 Total 39.1

Summary for Subcatchment EDA-3: EDA-3

$1.00 \text{ cm} = 0.00 \text{ cm} \text{ (a)} = 0.00 \text{ cm} \text{ (b)} = 0.00 \text{ cm} \text{ (c)} = 0.00 \text$	Runoff	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Depth= 0.00"
--	--------	---	------------	-------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area	(ac) C	N Desc	cription		
			ods, Good,		
0.	<u>499 9</u>	<u>6 Grav</u>	el surface/	<u>, HSG A</u>	
21.	829 3	2 Weig	ghted Aver	age	
21.	829	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
6.0	308	0.0290	0.85		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
5.0	439	0.0840	1.45		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
20.0	829	0.0190	0.69		Shallow Concentrated Flow, Tc-4
					Woodland Kv= 5.0 fps
46.8	1,626	Total			

Summary for Subcatchment EDA-4: EDA-4

0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff =

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/14/2021 LLC Page 6

Prepared by Beals and Thomas, Ir	าс.
HydroCAD® 10.10-4a s/n 04493 © 202	20 HydroCAD Software Solutions LLC

Area	(ac) C	N Dese	cription		
16.	.927 3	30 Woo	ds, Good,	HSG A	
0.	.021 9	96 Grav	el surface	, HSG A	
16.	.948 3	30 Weig	ghted Aver	age	
16.	.948	100.	00% Pervi	ous Area	
_		. .		- ··	
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
5.9	208	0.0140	0.59		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
8.6	587	0.0520	1.14		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
30.3	845	Total			

Summary for Subcatchment EDA-5A: EDA-5A

Runoff	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Depth= 0.00"
--------	---	------------	-------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area	(ac) C	N Dese	cription		
8.	440 3	30 Woo	ds, Good,	HSG A	
8.440 100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.0	50	0.0200	0.07		Sheet Flow, Tc-1
7.6	527	0.0540	1.16		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps
19.6	577	Total			

Summary for Subcatchment EDA-5B: EDA-5B

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

Are	a (ac)	CN	Description
	4.661	30	Woods, Good, HSG A
	0.403	39	>75% Grass cover, Good, HSG A
	5.064	31	Weighted Average
	5.064		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/14/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 7

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.6	50	0.0900	0.13		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	2.2	191	0.0820	1.43		Shallow Concentrated Flow, Tc-2
_						Woodland Kv= 5.0 fps
	8.8	241	Total			

Summary for Reach X-DP4_1: XDP-4

Inflow Area =	16.948 ac,	0.00% Impervious, Inflow	Depth = 0.00"	for 2-Year event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach X-DP5 1: XDP-5

Inflow Are	a =	8.440 ac,	0.00% Impervious, Inflow	Depth = 0.00 "	for 2-Year event
Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach X-DP5 2: XDP-5

Inflow Area	=	5.064 ac,	0.00% Impervious,	Inflow Depth = 0.0	00" for 2-Year event
Inflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000 af	
Outflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach XDP-1: XDP-1

Inflow Area =	9.142 ac,	0.00% Impervious, Inflo	w Depth = $0.00"$	for 2-Year event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach XDP-2: XDP-2

Inflow Area	=	27.900 ac,	0.00% Impervious, In	flow Depth = 0.00"	for 2-Year event
Inflow =	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Summary for Reach XDP-3: XDP-3

Inflow Area =	21.829 ac,	0.00% Impervious, Inflow I	Depth = 0.00"	for 2-Year event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

1833112HC001B	Туре
Prepared by Beals and Thomas, Inc.	
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solution	ns LLC

Time span=5.00-30.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=9.142 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=820' Tc=22.5 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-2: EDA-2	Runoff Area=27.900 ac 0.00% Impervious Runoff Depth=0.02" Flow Length=1,436' Tc=39.1 min CN=33 Runoff=0.07 cfs 0.045 af
Subcatchment EDA-3: EDA-3	Runoff Area=21.829 ac 0.00% Impervious Runoff Depth=0.01" Flow Length=1,626' Tc=46.8 min CN=32 Runoff=0.04 cfs 0.017 af
Subcatchment EDA-4: EDA-4	Runoff Area=16.948 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=845' Tc=30.3 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-5A: EDA-5A	Runoff Area=8.440 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=577' Tc=19.6 min CN=30 Runoff=0.00 cfs 0.000 af
Subcatchment EDA-5B: EDA-5B	Runoff Area=5.064 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=241' Tc=8.8 min CN=31 Runoff=0.00 cfs 0.001 af
Reach X-DP4_1: XDP-4	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach X-DP5_1: XDP-5	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach X-DP5_2: XDP-5	Inflow=0.00 cfs 0.001 af Outflow=0.00 cfs 0.001 af
Reach XDP-1: XDP-1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach XDP-2: XDP-2	Inflow=0.07 cfs 0.045 af Outflow=0.07 cfs 0.045 af
Reach XDP-3: XDP-3	Inflow=0.04 cfs 0.017 af Outflow=0.04 cfs 0.017 af

Total Runoff Area = 89.323 ac Runoff Volume = 0.064 af Average Runoff Depth = 0.01" 100.00% Pervious = 89.323 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment EDA-1: EDA-1

Runoff = 0.00 cfs @ 24.13 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	Area	(ac) C	N Dese	cription		
	9.	142 3	30 Woo	ods, Good,	HSG A	
_	9.	142	100.	00% Pervi	ous Area	
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	12.0	50	0.0200	0.07		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	5.6	327	0.0380	0.97		Shallow Concentrated Flow, Tc-2
						Woodland Kv= 5.0 fps
	1.6	131	0.0760	1.38		Shallow Concentrated Flow, Tc-3
	0.7	83	0.1690	2.06		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-4
	1.4	101	0.0590	1.21		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-5
	0.5	66	0.2270	2.38		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-6
	0.5	34	0.0590	1.21		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-7
	0.2	28	0.2500	2.50		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-8 Woodland Kv= 5.0 fps
_	00.5		T . 4 . 1			

22.5 820 Total

Summary for Subcatchment EDA-2: EDA-2

Runoff = 0.07 cfs @ 22.09 hrs, Volume= 0.045 af, Depth= 0.02"

Area (ac)	CN	Description
26.629	30	Woods, Good, HSG A
0.569	77	Woods, Good, HSG D
0.512	96	Gravel surface, HSG A
0.190	96	Gravel surface, HSG D
27.900	33	Weighted Average
27.900		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

Type III 24-hr 10-Year Rainfall=4.70" Printed 1/14/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 11

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	(11111)	(ieel)	(1011)		(015)	
	15.8	50	0.0100	0.05		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	5.6	204	0.0150	0.61		Shallow Concentrated Flow, Tc-2
						Woodland Kv= 5.0 fps
	4.4	206	0.0240	0.77		Shallow Concentrated Flow, Tc-3
						Woodland Kv= 5.0 fps
	4.9	344	0.0550	1.17		Shallow Concentrated Flow, Tc-4
						Woodland Kv= 5.0 fps
	1.8	203	0.1430	1.89		Shallow Concentrated Flow, Tc-5
						Woodland Kv= 5.0 fps
	6.6	429	0.0470	1.08		Shallow Concentrated Flow, Tc-6
						Woodland Kv= 5.0 fps

1,436 Total 39.1

Summary for Subcatchment EDA-3: EDA-3

0.04 cfs @ 23.45 hrs, Volume= 0.017 af, Depth= 0.01" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

 Area	(ac) C	N Desc	cription		
21.	330 3	80 Woo	ds, Good,	HSG A	
 0.	<u>499 9</u>	6 Grav	el surface	, HSG A	
21.	829 3	32 Weig	ghted Aver	age	
21.	829	100.	00% Pervi	ous Area	
_		-		- ··	
Tc	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
6.0	308	0.0290	0.85		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
5.0	439	0.0840	1.45		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
20.0	829	0.0190	0.69		Shallow Concentrated Flow, Tc-4
					Woodland Kv= 5.0 fps
 46.8	1,626	Total			

Summary for Subcatchment EDA-4: EDA-4

0.00 cfs @ 24.20 hrs, Volume= 0.000 af, Depth= 0.00" Runoff =

 Type III 24-hr
 10-Year Rainfall=4.70"

 Printed
 1/14/2021

 s LLC
 Page 12

Prepared by Beals and Thon	nas, Inc.
HydroCAD® 10.10-4a s/n 04493	© 2020 HydroCAD Software Solutions LLC

Area	(ac) C	N Desc	cription		
16.	16.927 30		Woods, Good, HSG A		
0.	021 9	6 Grav	el surface	, HSG A	
16.	948 3	0 Weig	ghted Aver	age	
16.	948	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
5.9	208	0.0140	0.59		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
8.6	587	0.0520	1.14		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
30.3	845	Total			

Summary for Subcatchment EDA-5A: EDA-5A

Runoff	=	0.00 cfs @	24 11 hrs	Volume=	0.000 af, Depth= 0.0	0"
1 (GILLOTT			<u> </u>	V OTOITTIO		•

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	Area	(ac) C	N Des	cription				
8.440 30 Woods, Good, HSG A								
-	8.	440	100.	00% Pervi	ous Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
-	12.0	50	0.0200	0.07		Sheet Flow, Tc-1 Woods: Light underbrush n= 0.400 P2= 3.40"		
	7.6	527	0.0540	1.16		Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps		
	19.6	577	Total					

Summary for Subcatchment EDA-5B: EDA-5B

Runoff = 0.00 cfs @ 24.00 hrs, Volume= 0.001 af, Depth= 0.00"

Area (ac)	CN	Description
4.661	30	Woods, Good, HSG A
0.403	39	>75% Grass cover, Good, HSG A
5.064	31	Weighted Average
5.064		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

Type III 24-hr 10-Year Rainfall=4.70" Printed 1/14/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Page 13

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.6	50	0.0900	0.13		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	2.2	191	0.0820	1.43		Shallow Concentrated Flow, Tc-2
_						Woodland Kv= 5.0 fps
-	8.8	241	Total			

Summary for Reach X-DP4_1: XDP-4

Inflow Area =	16.948 ac,	0.00% Impervious, Inflow E	Depth = 0.00"	for 10-Year event
Inflow =	0.00 cfs @	24.20 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	24.20 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach X-DP5 1: XDP-5

Inflow Area =	8.440 ac,	0.00% Impervious, Inflow D	epth = 0.00"	for 10-Year event
Inflow =	0.00 cfs @	24.11 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	24.11 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach X-DP5 2: XDP-5

Inflow Area	a =	5.064 ac,	0.00% Impervious,	Inflow Depth = 0.0	00" for 10-Year event
Inflow	=	0.00 cfs @	24.00 hrs, Volume	e 0.001 af	
Outflow	=	0.00 cfs @	24.00 hrs, Volume	e= 0.001 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach XDP-1: XDP-1

Inflow Area =	9.142 ac,	0.00% Impervious,	Inflow Depth = 0.0	0" for 10-Year event
Inflow =	0.00 cfs @	24.13 hrs, Volume=	= 0.000 af	
Outflow =	0.00 cfs @	24.13 hrs, Volume=	= 0.000 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach XDP-2: XDP-2

Inflow Area =	27.900 ac,	0.00% Impervious,	Inflow Depth = 0.02"	for 10-Year event
Inflow =	0.07 cfs @	22.09 hrs, Volume=	0.045 af	
Outflow =	0.07 cfs @	22.09 hrs, Volume=	= 0.045 af, At	ten= 0%, Lag= 0.0 min

Summary for Reach XDP-3: XDP-3

Inflow Area =	21.829 ac,	0.00% Impervious, Inflow D	epth = 0.01"	for 10-Year event
Inflow =	0.04 cfs @	23.45 hrs, Volume=	0.017 af	
Outflow =	0.04 cfs @	23.45 hrs, Volume=	0.017 af, Atte	en= 0%, Lag= 0.0 min

1833112HC001B	Type III 24-hr	100-Year Rainfall=7.00"
Prepared by Beals and Thomas, Inc.		Printed 1/14/2021
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solution	ons LLC	Page 15

Time span=5.00-30.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment EDA-1: EDA-1	Runoff Area=9.142 ac 0.00% Impervious Runoff Depth=0.21" Flow Length=820' Tc=22.5 min CN=30 Runoff=0.26 cfs 0.162 af
Subcatchment EDA-2: EDA-2	Runoff Area=27.900 ac 0.00% Impervious Runoff Depth=0.37" Flow Length=1,436' Tc=39.1 min CN=33 Runoff=1.90 cfs 0.864 af
Subcatchment EDA-3: EDA-3	Runoff Area=21.829 ac 0.00% Impervious Runoff Depth=0.32" Flow Length=1,626' Tc=46.8 min CN=32 Runoff=1.03 cfs 0.573 af
Subcatchment EDA-4: EDA-4	Runoff Area=16.948 ac 0.00% Impervious Runoff Depth=0.21" Flow Length=845' Tc=30.3 min CN=30 Runoff=0.48 cfs 0.300 af
Subcatchment EDA-5A: EDA-5A	Runoff Area=8.440 ac 0.00% Impervious Runoff Depth=0.21" Flow Length=577' Tc=19.6 min CN=30 Runoff=0.24 cfs 0.149 af
Subcatchment EDA-5B: EDA-5B	Runoff Area=5.064 ac 0.00% Impervious Runoff Depth=0.26" Flow Length=241' Tc=8.8 min CN=31 Runoff=0.20 cfs 0.110 af
Reach X-DP4_1: XDP-4	Inflow=0.48 cfs 0.300 af Outflow=0.48 cfs 0.300 af
Reach X-DP5_1: XDP-5	Inflow=0.24 cfs 0.149 af Outflow=0.24 cfs 0.149 af
Reach X-DP5_2: XDP-5	Inflow=0.20 cfs 0.110 af Outflow=0.20 cfs 0.110 af
Reach XDP-1: XDP-1	Inflow=0.26 cfs 0.162 af Outflow=0.26 cfs 0.162 af
Reach XDP-2: XDP-2	Inflow=1.90 cfs 0.864 af Outflow=1.90 cfs 0.864 af
Reach XDP-3: XDP-3	Inflow=1.03 cfs 0.573 af Outflow=1.03 cfs 0.573 af

Total Runoff Area = 89.323 ac Runoff Volume = 2.158 af Average Runoff Depth = 0.29" 100.00% Pervious = 89.323 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment EDA-1: EDA-1

Runoff = 0.26 cfs @ 14.03 hrs, Volume= 0.162 af, Depth= 0.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	Area	(ac) C	N Des	cription				
	9.142 30 Woods, Good, HSG A							
	9.	142	100.	00% Pervi	ous Area			
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	12.0	50	0.0200	0.07		Sheet Flow, Tc-1		
	5.6	327	0.0380	0.97		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps		
	1.6	131	0.0760	1.38		Shallow Concentrated Flow, Tc-3		
	0.7	83	0.1690	2.06		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-4 Woodland Kv= 5.0 fps		
	1.4	101	0.0590	1.21		Shallow Concentrated Flow, Tc-5		
	0.5	66	0.2270	2.38		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-6 Woodland Kv= 5.0 fps		
	0.5	34	0.0590	1.21		Shallow Concentrated Flow, Tc-7		
_	0.2	28	0.2500	2.50		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Tc-8 Woodland Kv= 5.0 fps		
	00 F	000	T					

22.5 820 Total

Summary for Subcatchment EDA-2: EDA-2

Runoff = 1.90 cfs @ 13.00 hrs, Volume= 0.864 af, Depth= 0.37"

Area (ac)	CN	Description
26.629	30	Woods, Good, HSG A
0.569	77	Woods, Good, HSG D
0.512	96	Gravel surface, HSG A
0.190	96	Gravel surface, HSG D
27.900	33	Weighted Average
27.900		100.00% Pervious Area

Type III 24-hr 100-Year Rainfall=7.00" Printed 1/14/2021

Page 17

Prepared by Beals and Thom	nas, Inc.
HydroCAD® 10.10-4a s/n 04493	© 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
5.6	204	0.0150	0.61		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
4.4	206	0.0240	0.77		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
4.9	344	0.0550	1.17		Shallow Concentrated Flow, Tc-4
					Woodland Kv= 5.0 fps
1.8	203	0.1430	1.89		Shallow Concentrated Flow, Tc-5
					Woodland Kv= 5.0 fps
6.6	429	0.0470	1.08		Shallow Concentrated Flow, Tc-6
					Woodland Kv= 5.0 fps

39.1 1,436 Total

Summary for Subcatchment EDA-3: EDA-3

Runoff	=	1.03 cfs @	13.44 hrs,	Volume=	0.573 af,	Depth= 0.32"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Area	(ac) C	N Desc	cription		
21.	.330 3	80 Woo	ds, Good,	HSG A	
0.	.499 9	6 Grav	el surface	, HSG A	
21.	.829 3	32 Weig	ghted Aver	age	
21.	.829	100.	00% Pervi	ous Area	
-		01		0	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
6.0	308	0.0290	0.85		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
5.0	439	0.0840	1.45		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
20.0	829	0.0190	0.69		Shallow Concentrated Flow, Tc-4
					Woodland Kv= 5.0 fps
46.8	1,626	Total			

Summary for Subcatchment EDA-4: EDA-4

Runoff	=	0.48 cfs @	14.16 hrs, Volume=	0.300 af, Depth= 0.21"
--------	---	------------	--------------------	------------------------

 Type III 24-hr
 100-Year Rainfall=7.00"

 Printed
 1/14/2021

 ns LLC
 Page 18

Prepared by Beals and Thon	nas, Inc.
HydroCAD® 10.10-4a s/n 04493	© 2020 HydroCAD Software Solutions LLC

Area	(ac) C	N Desc	cription		
16.	16.927 30 Woods, Good, HSG A		HSG A		
0.	021 9	6 Grav	el surface	, HSG A	
16.	948 3	0 Weig	ghted Aver	age	
16.	948	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
5.9	208	0.0140	0.59		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
8.6	587	0.0520	1.14		Shallow Concentrated Flow, Tc-3
					Woodland Kv= 5.0 fps
30.3	845	Total			

Summary for Subcatchment EDA-5A: EDA-5A

Runoff	=	0.24 cfs @	13.98 hrs,	Volume=	0.149 af, Depth= 0.21"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	Area	(ac) C	N Dese	cription		
	8.	440 3	80 Woo	ods, Good,	HSG A	
	8.	440	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	12.0	50	0.0200	0.07		Sheet Flow, Tc-1
_	7.6	527	0.0540	1.16		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps
	19.6	577	Total			

Summary for Subcatchment EDA-5B: EDA-5B

Runoff = 0.20 cfs @ 12.55 hrs, Volume= 0.110 af, Depth= 0.26"

Are	a (ac)	CN	Description
	4.661	30	Woods, Good, HSG A
	0.403	39	>75% Grass cover, Good, HSG A
	5.064	31	Weighted Average
	5.064		100.00% Pervious Area

Type III 24-hr 100-Year Rainfall=7.00" Printed 1/14/2021

Page 19

Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.6	50	0.0900	0.13		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	2.2	191	0.0820	1.43		Shallow Concentrated Flow, Tc-2
_						Woodland Kv= 5.0 fps
	8.8	241	Total			

241 Iotal

Summary for Reach X-DP4_1: XDP-4

Inflow Area =	16.948 ac,	0.00% Impervious, Inflov	v Depth = 0.21"	for 100-Year event
Inflow =	0.48 cfs @	14.16 hrs, Volume=	0.300 af	
Outflow =	0.48 cfs @	14.16 hrs, Volume=	0.300 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach X-DP5 1: XDP-5

Inflow Area	a =	8.440 ac,	0.00% Impervious, In	flow Depth = 0.21"	for 100-Year event
Inflow	=	0.24 cfs @	13.98 hrs, Volume=	0.149 af	
Outflow	=	0.24 cfs @	13.98 hrs, Volume=	0.149 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach X-DP5 2: XDP-5

Inflow Area =	5.064 ac,	0.00% Impervious, Inflow	Depth = 0.26"	for 100-Year event
Inflow =	0.20 cfs @	12.55 hrs, Volume=	0.110 af	
Outflow =	0.20 cfs @	12.55 hrs, Volume=	0.110 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach XDP-1: XDP-1

Inflow Area =	9.142 ac,	0.00% Impervious, I	nflow Depth = 0.2	1" for 100-Year event
Inflow =	0.26 cfs @	14.03 hrs, Volume=	0.162 af	
Outflow =	0.26 cfs @	14.03 hrs, Volume=	0.162 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach XDP-2: XDP-2

Inflow Area =	27.900 ac,	0.00% Impervious,	Inflow Depth = 0.3	37" for 100-Year event
Inflow =	1.90 cfs @	13.00 hrs, Volume	= 0.864 af	
Outflow =	1.90 cfs @	13.00 hrs, Volume	= 0.864 af,	Atten= 0%, Lag= 0.0 min

Summary for Reach XDP-3: XDP-3

Inflow Area =	21.829 ac,	0.00% Impervious, Inflow I	Depth = 0.32"	for 100-Year event
Inflow =	1.03 cfs @	13.44 hrs, Volume=	0.573 af	
Outflow =	1.03 cfs @	13.44 hrs, Volume=	0.573 af, Atte	en= 0%, Lag= 0.0 min

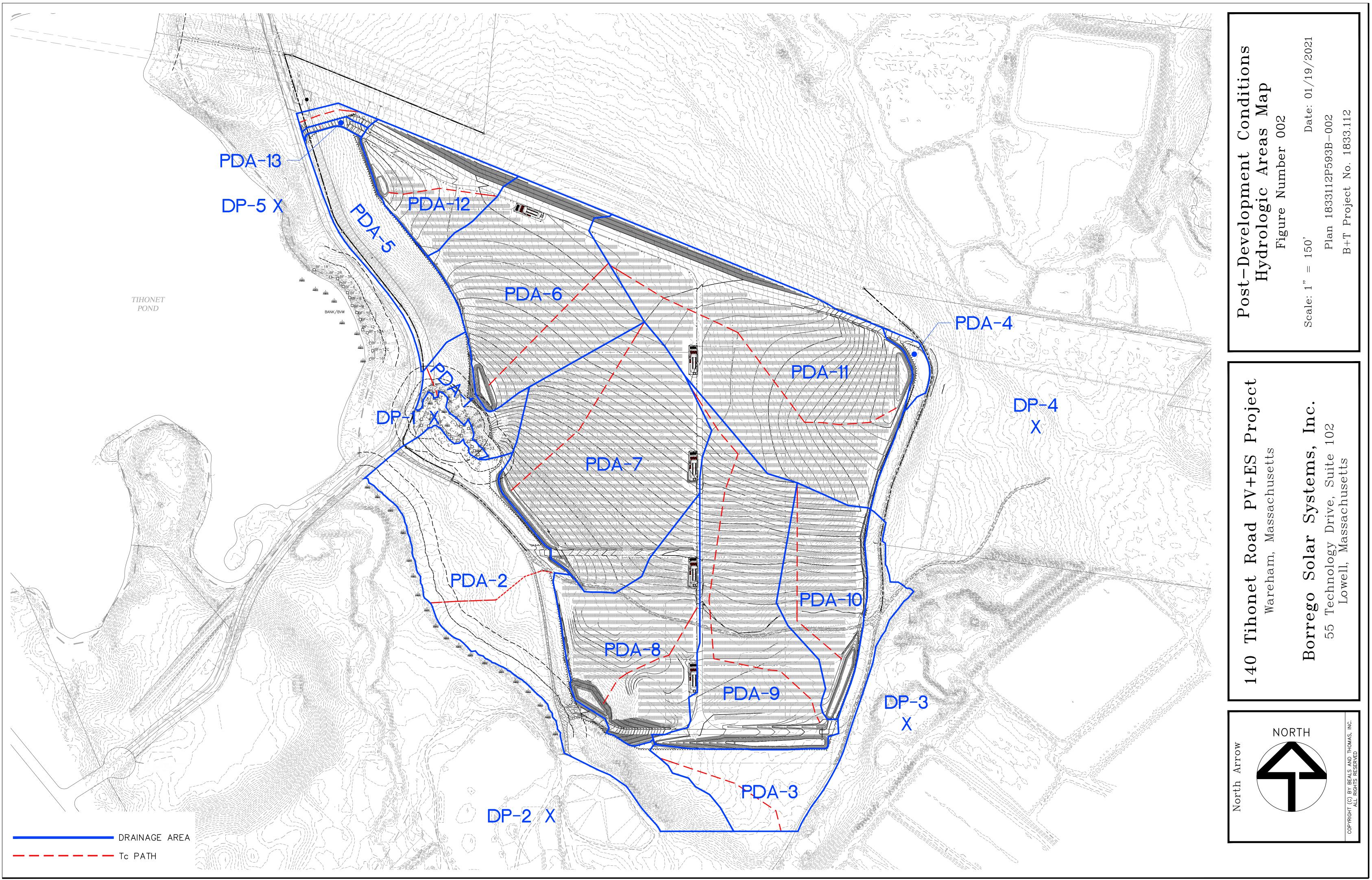
Attachment 3 Post-Development Hydrologic Analysis

JOB NO./LOCATION:
1833.112
Wareham, MA
CLIENT/PROJECT:
Borrego Solar Systems, Inc.
140 Tihonet Road PV+ES Project
SUBJECT/TITLE:
Post Development Hydrologic Calculations
OBJECTIVE OF CALCULATION:
• To determine the pre-development peak rates of runoff from the site for the 2, 10, & 100-year storm events at design points DP-1 through 5.
CALCULATION METHOD(S):
• Runoff curve numbers (CN), time-of-concentration (Tc), and runoff rates were calculated based on TR-55
methodology.
 Autodesk Civil 3D 2019 computer program was utilized for digitizing ground cover areas.
• Peak runoff rates were computed using HydroCAD version 10.00.
ASSUMPTIONS:
• The ground cover types were determined using MassGIS aerial imagery and hydrologic soil groups based on United States Department of Agriculture, NRCS Soil Survey map information.
 Watershed boundaries have been estimated based upon contour information depicted on the Existing
• Watershed boundaries have been estimated based upon contour information depicted on the Existing Conditions Plan as well as MassGIS contours in offsite areas outside limits of those shown on the existing
conditions plan.
 Wetland systems were not included in the hydrologic analysis.
SOURCES OF DATA/EQUATIONS:
• Post-Development Conditions Hydrologic Areas Map prepared by Beals and Thomas, Inc. File No. 1833112P593B-002.
 140 Tihonet Road PV+ES Project Grading and Drainage Plans, prepared by Borrego Solar Systems, Inc., plan numbers C-4.0 – C4.4.
 NRCS Soil Survey for Plymouth County, hydrologic soil group report, downloaded from Web Soil Survey
on 3/12/2020.
 TR-55 urban Hydrology for Small Watersheds, SCS, 1986.
 Massachusetts DEP Stormwater Management Handbook, February 2008
<u> </u>

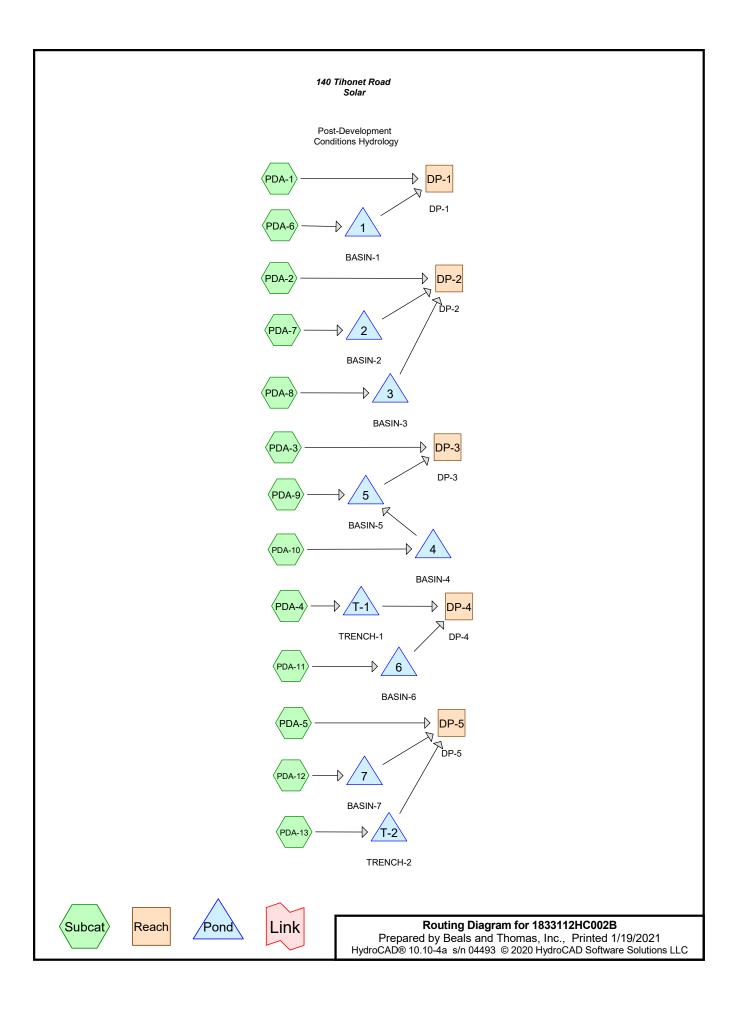
REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	N. Bautz	5/31/2020	J. Murphy	6/1/2020	J. Murphy	6/1/2020
1	N. Bautz	1/14/2021	J. Murphy	1/19/2021	J. Murphy	1/19/2021

NBB/1833112CS002B

CONCLUSIONS:


Storm Event	2-Year	10-Year	100-Year
DP-1 (cfs)	0.0	0.0	0.2
DP-2 (cfs)	0.0	0.1	1.7
DP-3 (cfs)	0.0	0.0	0.6
DP-4 (cfs)	0.0	0.0	0.1
DP-5 (cfs)	0.0	0.0	0.3

• Post-development peak runoff rates are less than or equal to pre-development rates in accordance with the Mass DEP Stormwater Handbook.


REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	N. Bautz	5/31/2020	J. Murphy	6/1/2020	J. Murphy	6/1/2020
1	N. Bautz	1/14/2021	J. Murphy	1/19/2021	J. Murphy	1/19/2021

NBB/1833112CS002B

BEALS AND THOMAS, INC.

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
62.671	39	>75% Grass cover, Good, HSG A (PDA-1, PDA-10, PDA-11, PDA-12, PDA-13,
		PDA-2, PDA-3, PDA-4, PDA-5, PDA-6, PDA-7, PDA-8, PDA-9)
0.235	80	>75% Grass cover, Good, HSG D (PDA-2, PDA-8)
0.235	30	Brush, Good, HSG A (PDA-4, PDA-5)
0.128	98	Equipment Pad Area, HSG A (PDA-6, PDA-7, PDA-8)
0.766	96	Existing Gravel surface, HSG A (PDA-11, PDA-2, PDA-3)
0.190	96	Existing Gravel surface, HSG D (PDA-2)
3.389	96	Gravel surface, HSG A (PDA-11, PDA-12, PDA-13, PDA-2, PDA-3, PDA-4, PDA-5,
		PDA-6, PDA-7, PDA-8, PDA-9)
0.038	96	Gravel surface, HSG D (PDA-2)
21.375	30	Woods, Good, HSG A (PDA-1, PDA-2, PDA-3, PDA-4, PDA-5)
0.296	77	Woods, Good, HSG D (PDA-2)
89.323	40	TOTAL AREA

1833112HC002B	Туре
Prepared by Beals and Thomas, Inc.	
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solution	s LLC

Time span=5.00-30.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PDA-1:	Runoff Area=1.878 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=122' Tc=17.5 min CN=33 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-10:	Runoff Area=4.720 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=756' Tc=13.3 min CN=39 Runoff=0.00 cfs 0.002 af
Subcatchment PDA-11:	Runoff Area=15.358 ac 0.00% Impervious Runoff Depth=0.03" Flow Length=1,352' Tc=35.2 min CN=42 Runoff=0.05 cfs 0.036 af
Subcatchment PDA-12:	Runoff Area=3.707 ac 0.00% Impervious Runoff Depth=0.09" Flow Length=421' Tc=13.6 min CN=46 Runoff=0.04 cfs 0.027 af
Subcatchment PDA-13:	Runoff Area=0.185 ac 0.00% Impervious Runoff Depth=2.09" Tc=6.0 min CN=87 Runoff=0.44 cfs 0.032 af
Subcatchment PDA-2:	Runoff Area=12.678 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=449' Tc=29.8 min CN=35 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-3:	Runoff Area=5.139 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=577' Tc=43.5 min CN=35 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-4:	Runoff Area=0.439 ac 0.00% Impervious Runoff Depth=0.05" Tc=6.0 min CN=44 Runoff=0.00 cfs 0.002 af
Subcatchment PDA-5:	Runoff Area=4.880 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=241' Tc=8.8 min CN=31 Runoff=0.00 cfs 0.000 af
Subcatchment PDA-6:	Runoff Area=9.635 ac 0.33% Impervious Runoff Depth=0.02" Flow Length=657' Tc=14.5 min CN=41 Runoff=0.02 cfs 0.015 af
Subcatchment PDA-7:	Runoff Area=12.565 ac 0.25% Impervious Runoff Depth=0.02" Flow Length=835' Tc=15.2 min CN=41 Runoff=0.03 cfs 0.019 af
Subcatchment PDA-8:	Runoff Area=7.437 ac 0.86% Impervious Runoff Depth=0.05" Flow Length=540' Tc=14.7 min CN=44 Runoff=0.05 cfs 0.033 af
Subcatchment PDA-9:	Runoff Area=10.702 ac 0.00% Impervious Runoff Depth=0.04" Flow Length=1,639' Tc=36.9 min CN=43 Runoff=0.05 cfs 0.036 af
Reach DP-1: DP-1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach DP-2: DP-2	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach DP-3: DP-3	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

1833112HC002B

Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/19/2021 LLC Page 4

Reach DP-4: DP-4	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach DP-5: DP-5	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 1: BASIN-1	Peak Elev=64.01' Storage=19 cf Inflow=0.02 cfs 0.015 af Discarded=0.02 cfs 0.015 af Primary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.015 af
Pond 2: BASIN-2	Peak Elev=52.00' Storage=15 cf Inflow=0.03 cfs 0.019 af Discarded=0.03 cfs 0.019 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.019 af
Pond 3: BASIN-3	Peak Elev=32.01' Storage=52 cf Inflow=0.05 cfs 0.033 af Discarded=0.05 cfs 0.033 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.033 af
Pond 4: BASIN-4	Peak Elev=48.00' Storage=2 cf Inflow=0.00 cfs 0.002 af Discarded=0.00 cfs 0.002 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.002 af
Pond 5: BASIN-5	Peak Elev=45.00' Storage=28 cf Inflow=0.05 cfs 0.036 af Discarded=0.05 cfs 0.036 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.036 af
Pond 6: BASIN-6	Peak Elev=66.01' Storage=36 cf Inflow=0.05 cfs 0.036 af Discarded=0.05 cfs 0.036 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.036 af
Pond 7: BASIN-7	Peak Elev=76.02' Storage=30 cf Inflow=0.04 cfs 0.027 af Discarded=0.04 cfs 0.027 af Primary=0.00 cfs 0.000 af Outflow=0.04 cfs 0.027 af
Pond T-1: TRENCH-1	Peak Elev=64.00' Storage=0.000 af Inflow=0.00 cfs 0.002 af Discarded=0.00 cfs 0.002 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.002 af
Pond T-2: TRENCH-2	Peak Elev=57.16' Storage=0.011 af Inflow=0.44 cfs 0.032 af Discarded=0.06 cfs 0.032 af Primary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.032 af
Total Run	off Area = 89.323 ac Runoff Volume = 0.202 af Average Runoff Depth = 0.03" 99.86% Pervious = 89.195 ac 0.14% Impervious = 0.128 ac

Summary for Subcatchment PDA-1:

Page 5

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area	(ac) (CN Des	cription		
1	.222	30 Woo	ods, Good,	HSG A	
0	.656	39 >75	% Grass c	over, Good	, HSG A
1	.878	33 Wei	ghted Aver	rage	
1	.878	100	.00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.8	50	0.0100	0.05		Sheet Flow, Tc-1
					Woods: Light underbrush n= 0.400 P2= 3.40"
1.7	72	0.0210	0.72		Shallow Concentrated Flow, Tc-2
					Woodland Kv= 5.0 fps
17.5	122	Total			

Summary for Subcatchment PDA-10:

0.00 cfs @ 23.53 hrs, Volume= 0.002 af, Depth= 0.00" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

_	Area	(ac) C	N Dese	cription		
	4.	720 3	39 >75 ⁹	% Grass co	over, Good	, HSG A
	4.	720	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	3.8	50	0.0500	0.22		Sheet Flow, Tc-1
						Grass: Short n= 0.150 P2= 3.40"
	5.4	448	0.0390	1.38		Shallow Concentrated Flow, Tc-2
	4.4	050	0 0000	1.00		Short Grass Pasture Kv= 7.0 fps
	4.1	258	0.0230	1.06		Shallow Concentrated Flow, Tc-3 Short Grass Pasture Kv= 7.0 fps
_	40.0	750	T . 4 . 1			Short Grass Fasture INV-1.0 Ips

13.3 756 Total

Summary for Subcatchment PDA-11:

Runoff 0.05 cfs @ 17.38 hrs, Volume= 0.036 af, Depth= 0.03" =

1833112HC002B

Prepared by Beals and Thomas, Inc.

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 6

	Area	(ac) C	N Des	cription		
	14.	490 3	39 >759	% Grass co	over, Good	. HSG A
	0			el surface	,	, -
*	-				l surface, F	ISG A
					,	
	-			ghted Aver	0	
	15.	358	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	50	0.0100	0.12		Sheet Flow, Tc-1
						Grass: Short n= 0.150 P2= 3.40"
	13.5	506	0.0080	0.63		Shallow Concentrated Flow, Tc-2
						Short Grass Pasture Kv= 7.0 fps
	8.6	429	0.0140	0.83		Shallow Concentrated Flow, Tc-3
						Short Grass Pasture Kv= 7.0 fps
	5.9	367	0.0220	1.04		Shallow Concentrated Flow, Tc-4
						Short Grass Pasture Kv= 7.0 fps
	35.2	1,352	Total			

Summary for Subcatchment PDA-12:

Runoff 0.04 cfs @ 14.78 hrs, Volume= 0.027 af, Depth= 0.09" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

Are	ea (a	ic) Cl	N Desc	cription		
	3.23	37 3	9 >75%	% Grass co	over, Good,	, HSG A
	0.47	70 9	6 Grav	el surface	, HSG A	
	3.70	07 4	6 Weig	ghted Aver	age	
	3.70	07	100.	00% Pervi	ous Area	
Т	¯c L	_ength	Slope	Velocity	Capacity	Description
(mir	า)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.	.2	50	0.0100	0.12		Sheet Flow, Tc-1
						Grass: Short n= 0.150 P2= 3.40"
6.	.4	371	0.0190	0.96		Shallow Concentrated Flow, Tc-2
						Short Grass Pasture Kv= 7.0 fps
13.	.6	421	Total			

Summary for Subcatchment PDA-13:

Runoff 0.44 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 2.09" =

1833112HC002B Prepared by Beals and Thomas, Inc.

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 7

Area (ac) CN Description
0.028 39 >75% Grass cover, Good, HSG A
0.157 96 Gravel surface, HSG A 0.185 87 Weighted Average
0.185 87 Weighted Average 0.185 100.00% Pervious Area
0.100 100.00 /01 01/1003 / 100
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, Min. Tc
Summary for Subcatchment PDA-2:
Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"
Area (ac) CN Description
11.089 30 Woods, Good, HSG A
0.296 77 Woods, Good, HSG D
0.569 39 >75% Grass cover, Good, HSG A 0.068 80 >75% Grass cover, Good, HSG D
0.068 80 >75% Grass cover, Good, HSG D 0.064 96 Gravel surface, HSG A
0.038 96 Gravel surface, HSG D
* 0.364 96 Existing Gravel surface, HSG A
* 0.190 96 Existing Gravel surface, HSG D
12.67835Weighted Average12.678100.00% Pervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
15.8 50 0.0100 0.05 Sheet Flow, Tc-1
14.03990.00900.47Woods: Light underbrush n= 0.400P2= 3.40"Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps
29.8 449 Total
Cumment for Subsetshment DDA 2
Summary for Subcatchment PDA-3:
Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

1833112HC002B

0.020

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/19/2021 LLC Page 8

Prepared by Beals and Thomas, Inc. Printed							
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC							
Area (ac)	CN	Description					
4.636	30	Woods, Good, HSG A					
0.113	39	>75% Grass cover, Good, HSG A					

0.370	96	Existing Gravel surface, HSG A
5.139	35	Weighted Average
5.139		100.00% Pervious Area

Gravel surface, HSG A

96

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	20.8	50	0.0050	0.04		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	22.7	527	0.0060	0.39		Shallow Concentrated Flow, Tc-2
_						Woodland Kv= 5.0 fps
	43.5	577	Total			

Summary for Subcatchment PDA-4:

Runoff = 0.00 cfs @ 15.20 hrs, Volume=	0.002 af, Depth= 0.05"
--	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area	(ac)	CN	Desc	cription		
0.	236	30	Woo	ds, Good,	HSG A	
0.	060	30	Brus	h, Good, H	ISG A	
0.	058	39	>759	% Grass co	over, Good	, HSG A
0.	085	96	Grav	el surface	, HSG A	
0.	439	44	Weig	ghted Aver	age	
0.	439		100.	00% Pervi	ous Area	
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry, Min. Tc

Summary for Subcatchment PDA-5:

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

 Area (ac)	CN	Description
4.192	30	Woods, Good, HSG A
0.175	30	Brush, Good, HSG A
0.470	39	>75% Grass cover, Good, HSG A
 0.043	96	Gravel surface, HSG A
4.880 4.880	31	Weighted Average 100.00% Pervious Area
4.000		

183311			homas, I	nc	<i>Type III 24-hr 2-Year Rainfall=3.40"</i> Printed 1/19/2021			
					D Software Solutions LLC Page 9			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.6	50		0.13		Sheet Flow, Tc-1			
2.2	191	0.0820	1.43		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps			
8.8	241	Total						
			Sum	many for	Subcatchment PDA-6:			
			Sum	mary ior	Subcatchillent PDA-6.			
Runoff	=	0.02 cfs	s@ 21.1	9 hrs, Volu	me= 0.015 af, Depth= 0.02"			
			nod, UH=S fall=3.40"	SCS, Weigh	nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs			
Area	(ac) C	N Desc	cription					
				over, Good	, HSG A			
			vel surface pment Pa	d Area, HSG	GA			
-			ghted Ave					
	603 022		7% Pervio					
0.	032	0.33	% Impervi	ous Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.5	50	0.0200	0.15		Sheet Flow, Tc-1			
9.0	607	0.0260	1.13		Grass: Short n= 0.150 P2= 3.40" Shallow Concentrated Flow, Tc-2 Short Grass Pasture Kv= 7.0 fps			
14.5	657	Total			· · · · · · · · · · · · · · · · · · ·			
			C		Subsetshment DDA 7			
			Sum	mary for	Subcatchment PDA-7:			
Runoff	=	0.03 cfs	s@ 21.1	5 hrs, Volu	me= 0.019 af, Depth= 0.02"			
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"							
Area	(ac)C	N Desc	cription					
12.	168 3			over, Good	, HSG A			
0.	0.365 96 Gravel surface, HSG A							

0.365	96	Gravel surface, HSG A	
0.032	98	Equipment Pad Area, HSG A	
12.565	41	Weighted Average	
12.533		99.75% Pervious Area	
0.032		0.25% Impervious Area	

Type III 24-hr 2-Year Rainfall=3 40"

1833112HC002B Type III 24-hr 2-Year Rainfall=3.40" Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.5	50	0.0200	0.15		Sheet Flow, Tc-1
						Grass: Short n= 0.150 P2= 3.40"
	9.7	785	0.0370	1.35		Shallow Concentrated Flow, Tc-2
_						Short Grass Pasture Kv= 7.0 fps

Printed 1/19/2021

Page 10

15.2 835 Total

Summary for Subcatchment PDA-8:

0.05 cfs @ 15.34 hrs, Volume= 0.033 af, Depth= 0.05" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.40"

Area	(ac) C	N Des	cription					
6.	6.768 39 >75% Grass cover, Good, HSG A							
0.	.167 8	30 >75°	% Grass co	over, Good	, HSG D			
0.	.438 9	96 Grav	/el surface	, HSG A				
0.	.064 9	98 Equi	ipment Pac	d Area, HS	GA			
7.	.437 4	44 Wei	ghted Aver	age				
7.	.373		4% Pervio	•				
0.	.064	0.86	% Impervi	ous Area				
			•					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
7.2	50	0.0100	0.12		Sheet Flow, Tc-1			
					Grass: Short n= 0.150 P2= 3.40"			
2.3	164	0.0300	1.21		Shallow Concentrated Flow, Tc-2			
					Short Grass Pasture Kv= 7.0 fps			
4.0	175	0.0110	0.73		Shallow Concentrated Flow, Tc-3			
					Short Grass Pasture Kv= 7.0 fps			
1.2	151	0.0930	2.13		Shallow Concentrated Flow, Tc-4			
					Short Grass Pasture Kv= 7.0 fps			
14.7	540	Total						

Summary for Subcatchment PDA-9:

0.05 cfs @ 16.02 hrs, Volume= 0.036 af, Depth= 0.04" Runoff =

Area (ac)	CN	Description
10.016	39	>75% Grass cover, Good, HSG A
0.686	96	Gravel surface, HSG A
10.702	43	Weighted Average
10.702		100.00% Pervious Area

1833112HC002B

Prepared by Beals and Thomas, Inc.

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 11

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.2	50	0.0100	0.12		Sheet Flow, Tc-1
					Grass: Short n= 0.150 P2= 3.40"
6.5	273	0.0100	0.70		Shallow Concentrated Flow, Tc-2
					Short Grass Pasture Kv= 7.0 fps
7.1	572	0.0370	1.35		Shallow Concentrated Flow, Tc-3
					Short Grass Pasture Kv= 7.0 fps
5.7	228	0.0090	0.66		Shallow Concentrated Flow, Tc-4
					Short Grass Pasture Kv= 7.0 fps
10.4	516	0.0140	0.83		Shallow Concentrated Flow, Tc-5
					Short Grass Pasture Kv= 7.0 fps

36.9 1,639 Total

Summary for Reach DP-1: DP-1

Inflow Area =	11.513 ac,	0.28% Impervious, Inflow E	Depth = 0.00"	for 2-Year event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

Inflow Area =	32.680 ac,	0.29% Impervious, Inflo	by Depth = $0.00"$	for 2-Year event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

Inflow Area =	20.561 ac,	0.00% Impervious, Inflow E	Depth = 0.00"	for 2-Year event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

Inflow Area	a =	15.797 ac,	0.00% Impervious, Inflow	Depth = 0.00 "	for 2-Year event
Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Summary for Reach DP-5: DP-5

Inflow Area	a =	8.772 ac,	0.00% Impervious, Ir	nflow Depth = 0.00"	for 2-Year event
Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond 1: BASIN-1

Inflow Area =	9.635 ac,	0.33% Impervious, Inflow De	epth = 0.02" for 2-Year event
Inflow =	0.02 cfs @	21.19 hrs, Volume=	0.015 af
Outflow =	0.02 cfs @	21.38 hrs, Volume=	0.015 af, Atten= 0%, Lag= 11.4 min
Discarded =	0.02 cfs @	21.38 hrs, Volume=	0.015 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 64.01' @ 21.38 hrs Surf.Area= 2,239 sf Storage= 19 cf

Plug-Flow detention time= 14.7 min calculated for 0.015 af (100% of inflow) Center-of-Mass det. time= 14.8 min (1,213.3 - 1,198.5)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	64.00'	24,45	50 cf Custom	n Stage Data (Pr	i smatic) Listed below (Recalc)
Elevatio (fee 64.0 65.0 66.0 67.0	≥ <u>t)</u> DO DO DO	urf.Area (sq-ft) 2,230 3,230 4,280 5,390	Inc.Store (cubic-feet) 0 2,730 3,755 4,835	Cum.Store (cubic-feet) 0 2,730 6,485 11,320	
68.0	00	6,550	5,970	17,290	
69.0	00	7,770	7,160	24,450	
Device	Routing	Invert	Outlet Device	s	
#1 #2	Discarded Primary	64.00' 68.00'	10.0' long x Head (feet) (xfiltration over \$ 0.5' breadth Bro 0.20 0.40 0.60 h) 2.80 2.92 3.	ad-Crested Rectangular Weir 0.80 1.00
D '					

Discarded OutFlow Max=0.12 cfs @ 21.38 hrs HW=64.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=64.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2: BASIN-2

Inflow Area =	12.565 ac,	0.25% Impervious, Inflow De	epth = 0.02" for 2-Year event
Inflow =	0.03 cfs @	21.15 hrs, Volume=	0.019 af
Outflow =	0.03 cfs @	21.30 hrs, Volume=	0.019 af, Atten= 0%, Lag= 9.2 min
Discarded =	0.03 cfs @	21.30 hrs, Volume=	0.019 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.00' @ 21.30 hrs Surf.Area= 4,260 sf Storage= 15 cf

Plug-Flow detention time= 8.9 min calculated for 0.019 af (100% of inflow) Center-of-Mass det. time= 8.9 min (1,208.0 - 1,199.2)

Volume	Inver	t Avail.Sto	rage Storage	e Description	
#1	52.00	' 25,74	40 cf Custor	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee 52.0 53.0 54.0 55.0	et) 00 00 00	urf.Area (sq-ft) 4,250 6,970 9,900 13,490	Inc.Store (cubic-feet) 0 5,610 8,435 11,695	Cum.Store (cubic-feet) 0 5,610 14,045 25,740	
Device	Routing	Invert	Outlet Devic	es	
#1 #2	Discarded Primary	52.00' 54.00'	10.0' long x Head (feet)	Exfiltration over 0.5' breadth Bro 0.20 0.40 0.60 sh) 2.80 2.92 3.	oad-Crested Rectangular Weir 0.80 1.00
Discard	ed OutFlow	/ Max=0.24 cf	s @ 21.30 hrs	HW=52.00' (F	ree Discharge)

1=Exfiltration (Exfiltration Controls 0.24 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=52.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3: BASIN-3

Inflow Area =	7.437 ac,	0.86% Impervious, Inflow D	epth = 0.05" for 2-Year event
Inflow =	0.05 cfs @	15.34 hrs, Volume=	0.033 af
Outflow =	0.05 cfs @	15.63 hrs, Volume=	0.033 af, Atten= 1%, Lag= 17.5 min
Discarded =	0.05 cfs @	15.63 hrs, Volume=	0.033 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 32.01' @ 15.63 hrs Surf.Area= 3,039 sf Storage= 52 cf

Plug-Flow detention time= 17.2 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 17.0 min (1,119.3 - 1,102.3)

Prepared by Beals and Thomas, Inc. Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Volume Invert Avail.Storage Storage Description #1 32.00' 28,028 cf Custom Stage Data (Prismatic) Listed below Surf.Area Cum.Store Elevation Inc.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 32.00 3,025 0 0 3,970 3,498 33.00 3,498 34.00 4,990 4,480 7,978 35.00 6.080 5.535 13.513 36.00 7,310 6,695 20,208 37.00 8,330 7,820 28,028 Device Routing Invert **Outlet Devices** #1 Discarded 32.00' 2.410 in/hr Exfiltration over Surface area #2 Primary 36.00' 10.0' long x 5.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88 Discarded OutFlow Max=0.17 cfs @ 15.63 hrs HW=32.01' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.17 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=32.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4: BASIN-4

Inflow Area =	4.720 ac,	0.00% Impervious, Inflow De	epth = 0.00" for 2-Year event
Inflow =	0.00 cfs @	23.53 hrs, Volume=	0.002 af
Outflow =	0.00 cfs @	23.65 hrs, Volume=	0.002 af, Atten= 0%, Lag= 7.6 min
Discarded =	0.00 cfs @	23.65 hrs, Volume=	0.002 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.00' @ 23.65 hrs Surf.Area= 4,941 sf Storage= 2 cf

Plug-Flow detention time= 5.9 min calculated for 0.002 af (100% of inflow) Center-of-Mass det. time= 6.0 min (1,305.7 - 1,299.7)

Volume	Invert	Avail.Storage	Storage	Description	
#1	48.00'	13,330 cf	Custom	i Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)	Surf./ (s		c.Store c-feet)	Cum.Store (cubic-feet)	
48.00	4	,940	0	0	
49.00	6	,650	5,795	5,795	
50.00	8	,420	7,535	13,330	

1833112HC002B

Type III 24-hr 2-Year Rainfall=3.40"

Page 14

Prepared by Beals and Thomas, Inc.

Type III 24-hr 2-Year Rainfall=3.40" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 15

Device Routing Invert	Outlet Devices
#1 Discarded 48.00' #2 Primary 49.00'	10.0' long x 0.5' breadth Broad-Crested Rectangular Weir
	Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
Discarded OutFlow Max=0.28 cf 1=Exfiltration (Exfiltration Cor	s @ 23.65 hrs HW=48.00' (Free Discharge) htrols 0.28 cfs)
Primary OutFlow Max=0.00 cfs (2=Broad-Crested Rectangular	@ 5.00 hrs HW=48.00' (Free Discharge) r Weir (Controls 0.00 cfs)
	Summary for Pond 5: BASIN-5
Inflow = 0.05 cfs @ 1 Outflow = 0.05 cfs @ 1 Discarded = 0.05 cfs @ 1	00% Impervious, Inflow Depth = 0.03" for 2-Year event 6.02 hrs, Volume= 0.036 af 6.17 hrs, Volume= 0.036 af, Atten= 0%, Lag= 8.5 min 6.17 hrs, Volume= 0.036 af 5.00 hrs, Volume= 0.000 af
	Span= 5.00-30.00 hrs, dt= 0.05 hrs Surf.Area= 7,580 sf Storage= 28 cf
Plug-Flow detention time= 8.9 min Center-of-Mass det. time= 8.9 min	n calculated for 0.036 af (100% of inflow) n(1,158.7-1,149.8)
Volume Invert Avail.Sto	rage Storage Description
#1 45.00' 34,78	85 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)
45.00 7,570	0 0
46.00 10,180 47.00 12,940	8,875 8,875 11,560 20,435
48.00 15,760	14,350 34,785
Device Routing Invert	Outlet Devices
#1 Discarded 45.00'	
#2 Primary 47.00'	10.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00
	Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.42 cfs @ 16.17 hrs HW=45.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.42 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=45.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6: BASIN-6

Inflow Area =	15.358 ac,	0.00% Impervious, Inflow De	epth = 0.03" for 2-Year event
Inflow =	0.05 cfs @	17.38 hrs, Volume=	0.036 af
Outflow =	0.05 cfs @	17.54 hrs, Volume=	0.036 af, Atten= 0%, Lag= 9.5 min
Discarded =	0.05 cfs @	17.54 hrs, Volume=	0.036 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 66.01' @ 17.54 hrs Surf.Area= 3,861 sf Storage= 36 cf

Plug-Flow detention time= 11.8 min calculated for 0.036 af (100% of inflow) Center-of-Mass det. time= 11.8 min (1,191.7 - 1,179.9)

Volume	Invert	Avail.Stor	rage Storage	e Description	
#1	66.00'	49,58	30 cf Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee 66.0 67.0 68.0 69.0 70.0	t) 00 00 00	urf.Area (sq-ft) 3,840 6,120 8,170 18,320 30,100	Inc.Store (cubic-feet) 0 4,980 7,145 13,245 24,210	Cum.Store (cubic-feet) 0 4,980 12,125 25,370 49,580	
Device	Routing	Invert	Outlet Device	,	
#1 #2	Discarded Primary	66.00' 69.00'	10.0' long x Head (feet)	xfiltration over 0.5' breadth Bro 0.20 0.40 0.60 h) 2.80 2.92 3	oad-Crested Rectangular Weir 0.80 1.00
Discarde	ed OutFlow	Max=0.22 cf	s @ 17.54 hrs	HW=66.01' (F	ree Discharge)

1=Exfiltration (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=66.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 7: BASIN-7

Inflow Area =	3.707 ac,	0.00% Impervious, Inflow	Depth = 0.09" for 2-Year event
Inflow =	0.04 cfs @	14.78 hrs, Volume=	0.027 af
Outflow =	0.04 cfs @	14.97 hrs, Volume=	0.027 af, Atten= 0%, Lag= 11.7 min
Discarded =	0.04 cfs @	14.97 hrs, Volume=	0.027 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 76.02' @ 14.97 hrs Surf.Area= 1,282 sf Storage= 30 cf

Plug-Flow detention time= 11.8 min calculated for 0.027 af (100% of inflow) Center-of-Mass det. time= 11.9 min (1,069.5 - 1,057.7)

1833112	HC002B			iy	pe III 24-hr 2-Year Rainfall=3.40
		nd Thomas	,		Printed 1/19/202
HydroCAD	® 10.10-4a s	s/n 04493 ©2	2020 HydroCAD	Software Solutions LL	C Page 1
Volume	Invert	Avail Stor	age Storage	Description	
#1	76.00'				ic) Listed below (Recalc)
		,			
Elevation	Sur	f.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
76.00		1,270	0	0	
77.00		1,780	1,525	1,525	
78.00		3,170	2,475	4,000	
79.00		8,280	5,725	9,725	
80.00	1	7,040	12,660	22,385	
Device F	Routing	Invert	Outlet Devices	6	
#1 C	Discarded	76.00'	2.410 in/hr Ex	filtration over Surfac	ce area
#2 P	Primary	79.00'	10.0' long x 0	.5' breadth Broad-Cr	ested Rectangular Weir
			Head (feet) 0	.20 0.40 0.60 0.80	1.00
			Coef. (English) 2.80 2.92 3.08 3.3	30 3.32
			0 44 07 1		
Diecardod				HW=76.02' (Free Dis	scharge)
		In anon Con			
└─1=Exfili Primary O	utFlow Ma			=76.00' (Free Discha	arge)
└─1=Exfili Primary O	utFlow Ma	Rectangular	Weir (Contro	s 0.00 cfs)	
└─1=Exfili Primary O	utFlow Ma	Rectangular	Weir (Contro		
└─1=Exfili Primary O	utFlow Ma d-Crested I	Rectangular	Weir (Contro	ls 0.00 cfs) Pond T-1: TRENC	
^T —1=Exfili Primary O ^T —2=Broa	utFlow Ma d-Crested I a = 0.	Rectangular Si 439 ac, 0.0	Weir (Contro	ls 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af	H-1 05" for 2-Year event
[™] 1=Exfilt Primary O [™] 2=Broa Inflow Area Inflow Outflow	a = 0. = 0.0	Rectangular So 439 ac, 0.0 00 cfs @ 15 00 cfs @ 15	Weir (Contro ummary for 00% Impervious 0.20 hrs, Volun 0.26 hrs, Volun	s 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af,	H-1
T—1=Exfilt Primary O T—2=Broa Inflow Area Inflow Outflow Discarded	a = 0. = 0.0 = 0.0	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 15 00 cfs @ 15	Weir (Contro ummary for 00% Impervious 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun	s 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af, ne= 0.002 af	H-1 05" for 2-Year event
[™] 1=Exfilt Primary O [™] 2=Broa Inflow Area Inflow Outflow	a = 0. = 0.0 = 0.0	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 15 00 cfs @ 15	Weir (Contro ummary for 00% Impervious 0.20 hrs, Volun 0.26 hrs, Volun	s 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af, ne= 0.002 af	H-1 05" for 2-Year event
[■] 1=Exfilit Primary O [■] 2=Broa Inflow Area Inflow Outflow Discarded Primary	a = 0. = 0.0 = 0.0 = 0.0 = 0.0	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5	Weir (Contro ummary for 00% Impervious 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun	s 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.002 af	H-1 05" for 2-Year event
T = Exfilt Primary O 2=Broa Inflow Area Inflow Outflow Discarded Primary Routing by	a = 0. = 0.0 = 0.0 = 0.0 = 0.0	Rectangular 439 ac, 0.0 00 cfs @ 15 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5 ethod, Time	Weir (Contro ummary for 00% Impervious 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun Span= 5.00-30	s 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af, ne= 0.002 af	H-1 05" for 2-Year event Atten= 0%, Lag= 3.6 min
☐ 1=Exfilit Primary O ☐ 2=Broa Inflow Area Inflow Outflow Discarded Primary Routing by Peak Elev:	a = 0. = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 Stor-Ind m = 64.00' @	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5 00 cfs @ 5 00 cfs @ 5 ethod, Time 15.26 hrs	Weir (Contro ummary for 00% Impervious 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun Span= 5.00-30 urf.Area= 0.013	Is 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.05 hrs 3 ac Storage= 0.000	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min
[■] 1=Exfili Primary O [■] 2=Broa Inflow Area Inflow Outflow Discarded Primary Routing by Peak Elev Plug-Flow	a = 0. a = 0.0 a = 0.0	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 ethod, Time 15.26 hrs me= 3.6 min 15	Weir (Contro ummary for 00% Impervious 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun Span= 5.00-30 urf.Area= 0.013 calculated for (s 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.05 hrs 3 ac Storage= 0.000 0.002 af (100% of inflo	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min
[■] 1=Exfili Primary O [■] 2=Broa Inflow Area Inflow Outflow Discarded Primary Routing by Peak Elev Plug-Flow	a = 0. a = 0.0 a = 0.0	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 ethod, Time 15.26 hrs me= 3.6 min 15	Weir (Contro ummary for 00% Impervious 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun Span= 5.00-30 urf.Area= 0.013	s 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.05 hrs 3 ac Storage= 0.000 0.002 af (100% of inflo	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min
[■] 1=Exfili Primary O [■] 2=Broa Inflow Area Inflow Outflow Discarded Primary Routing by Peak Elev Plug-Flow Center-of-I	a = 0. a = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 detention tin Mass det. tin	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5<	Weir (Contro ummary for 00% Impervious 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun Span= 5.00-30 urf.Area= 0.013 calculated for ((1,097.8 - 1,09	Pond T-1: TRENC s, Inflow Depth = 0.0 ne = 0.002 af ne = 0.002 af ne = 0.002 af ne = 0.002 af ne = 0.000 af .00 hrs, dt = 0.05 hrs 3 ac Storage = 0.000 0.002 af (100% of inflo 04.2)	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min
☐ 1=Exfili Primary O ☐ 2=Broa Inflow Area Inflow Outflow Discarded Primary Routing by Peak Elev= Plug-Flow Center-of-I <u>Volume</u>	a = 0. a = 0.0 = 0.0 = 0.0 = 0.0 Stor-Ind m = 64.00' @ 1 detention tin Mass det. tin Invert	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5 00 cfs @ 5 ethod, Time 15.26 hrs 15.26 hrs S me= 3.6 min me= 3.6 min Mail.Stora Avail.Stora	Weir (Contro ummary for 00% Impervious 0.20 hrs, Volun 0.26 hrs, Volun 0.26 hrs, Volun 0.00 hrs, Volun Span= 5.00-30 urf.Area= 0.013 calculated for (1,097.8 - 1,09 ge Storage D	Is 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.05 hrs 3 ac Storage= 0.000 0.002 af (100% of inflooded action) .002 af (100% of inflooded action)	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min af
[■] 1=Exfili Primary O [■] 2=Broa Inflow Area Inflow Outflow Discarded Primary Routing by Peak Elev Plug-Flow Center-of-I	a = 0. a = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 detention tin Mass det. tin	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5 00 cfs @ 5 ethod, Time 15.26 hrs 15.26 hrs S me= 3.6 min me= 3.6 min Mail.Stora Avail.Stora	Weir (Contro ummary for 5.20 hrs, Volun 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun Span= 5.00-30 urf.Area= 0.013 calculated for ((1,097.8 - 1,09 <u>ge Storage D</u> af 3.00'W x	Pond T-1: TRENC s, Inflow Depth = 0.0 ne = 0.002 af ne = 0.002 af ne = 0.002 af ne = 0.002 af ne = 0.000 af .00 hrs, dt = 0.05 hrs 3 ac Storage = 0.000 0.002 af (100% of inflo 04.2)	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min af ow)
T→1=Exfilt Primary O →2=Broa Inflow Area Inflow Area Inflow Outflow Outflow Discarded Primary Routing by Peak Eleva Plug-Flow Center-of-I Volume #1	a = 0. $a = 0.0$ $a = 0$	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5 00 cfs @ 5 ethod, Time 15.26 hrs 15.26 hrs S me= 3.6 min me= 3.6 min Mail.Stora Avail.Stora	Weir (Contro ummary for 5.20 hrs, Volun 5.20 hrs, Volun 5.26 hrs, Volun 5.26 hrs, Volun 5.00 hrs, Volun Span= 5.00-30 urf.Area= 0.013 calculated for ((1,097.8 - 1,09 <u>ge Storage D</u> af 3.00'W x	Is 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.05 hrs 3 ac Storage= 0.000 0.002 af (100% of inflood 0.003 af 0.004 af 0.005 af 0.006 af 0.007 af 0.008 af 0.009 af 0.009 af 0.000 af 0.000 af 0.000 af 0.000 af	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min af ow)
T-1=Exfili Primary O 2=Broa Inflow Area Inflow Area Inflow Outflow Discarded Primary Routing by Peak Elev: Plug-Flow Center-of-I Volume #1 Device F	a = 0. a = 0.0 = 0.0 = 0.0 = 0.0 Stor-Ind m = 64.00' @ 1 detention tin Mass det. tin Invert	Rectangular 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 00 cfs @ 5 00 cfs @ 5 00 cfs @ 5 ethod, Time 15.26 hrs 15.26 hrs S me= 3.6 min 15 Mail.Stora 0.015	Weir (Contro ummary for 0% Impervious 0.0% Impervious 0.0% Impervious 0.20 hrs, Volun 0.26 hrs, Volun 0.26 hrs, Volun 0.00 hrs, Volun 0.26 hrs, Volun 0.00 hrs, Volun 0.00 hrs, Volun 0.013 calculated for (1,097.8 - 1,09 1,09 af 3.00'W x - 0.038 af C Outlet Devices 0.038 af C	Is 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.05 hrs 3 ac Storage= 0.000 0.002 af (100% of inflood 0.003 af 0.004 af 0.005 af 0.006 af 0.007 af 0.008 af 0.009 af 0.009 af 0.000 af 0.000 af 0.000 af 0.000 af	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min af ow)
T→1=Exfilt Primary O 2=Broa Inflow Area Inflow Area Inflow Outflow Outflow Discarded Primary Routing by Peak Elev= Plug-Flow Center-of-I Volume #1 Device F #1 D	a = 0. a = 0. a = 0.0 a = 0.0 a = 0.0 a = 0.0 b = 0.0 c Stor-Ind m a = 64.00' @ 1 detention times detention times Mass det. time Invert 64.00' Routing	Rectangular Si 439 ac, 0.0 00 cfs @ 15 00 cfs @ 5 ethod, Time 15.26 hrs S me= 3.6 min me= 3.6 min Avail.Stora 0.015 Invert 10.015	Weir (Contro ummary for 00% Impervious 00% Impervious 00% Impervious 0.20 hrs, Volun 0.26 hrs, Volun 0.26 hrs, Volun 0.00 hrs, Volun 0.26 hrs, Volun 0.00 hrs, Volun 0.00 hrs, Volun 0.013 calculated for (1,097.8 - 1,09 af 3.00'W x - 0.038 af C Outlet Devices 2.410 in/hr Ex	Is 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.005 hrs 3 ac Storage= 0.002 af (100% of inflood 0.003 af 0.004 af 0.005 af 0.006 af 0.007 af 0.008 af 0.009 af	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min af ow) smatoid
T→1=Exfilt Primary O 2=Broa Inflow Area Inflow Area Inflow Outflow Outflow Discarded Primary Routing by Peak Elev= Plug-Flow Center-of-I Volume #1 Device F #1 D	a = 0. a = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 Stor-Ind m = 64.00' @ detention tin Mass det. tin <u>Invert</u> 64.00' <u>Routing</u> Discarded	Rectangular \$439 ac, 0.0 00 cfs @ 15 00 cfs @ 15 00 cfs @ 15 00 cfs @ 5 ethod, Time 15.26 hrs S me= 3.6 min me= 3.6 min <u>Avail.Stora</u> 0.015 <u>Invert</u> 64.00'	Weir (Contro ummary for 00% Impervious 00% Impervious 00% Impervious 0.20 hrs, Volun 00% Impervious 0.20 hrs, Volun 0.26 hrs, Volun 0.26 hrs, Volun 0.00 hrs, Volun 0.00 hrs, Volun 0.013 calculated for (1,097.8 - 1,09 ge Storage D af 3.00'W x 0.038 af C 0.038 af C Qutlet Devices 3.0' long x 0.	Is 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.005 hrs 3 ac Storage= 0.002 af (100% of inflood 0.003 af 0.004 af 0.005 af 0.006 af 0.007 af 0.008 af 0.009 af	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min af ow) smatoid searea ested Rectangular Weir
T→1=Exfilt Primary O 2=Broa Inflow Area Inflow Area Inflow Outflow Outflow Discarded Primary Routing by Peak Elev= Plug-Flow Center-of-I Volume #1 Device F #1 D	a = 0. a = 0.0 = 0.0 = 0.0 = 0.0 = 0.0 Stor-Ind m = 64.00' @ detention tin Mass det. tin <u>Invert</u> 64.00' <u>Routing</u> Discarded	Rectangular \$439 ac, 0.0 00 cfs @ 15 00 cfs @ 15 00 cfs @ 15 00 cfs @ 5 ethod, Time 15.26 hrs S me= 3.6 min me= 3.6 min <u>Avail.Stora</u> 0.015 <u>Invert</u> 64.00'	Weir (Contro ummary for 00% Impervious 00% Impervious 00% Impervious 0.20 hrs, Volun 00% Impervious 0.26 hrs, Volun 0.26 hrs, Volun 0.26 hrs, Volun 0.00 hrs, Volun 0.00 hrs, Volun 0.013 calculated for (1,097.8 - 1,09 ge Storage D af 3.00'W x - 0.038 af C Outlet Devices 2.410 in/hr Ex 3.0' long x 0. Head (feet) 0	Is 0.00 cfs) Pond T-1: TRENC s, Inflow Depth = 0.0 ne= 0.002 af ne= 0.000 af .00 hrs, dt= 0.05 hrs 3 ac Storage= 0.000 0.002 af (100% of inflood 0.003 af 0.004 af 0.005 af 0.006 af 0.007 af 0.008 af 0.008 af 0.009 af 0.009 af 0.000 af 0.000 af	H-1 D5" for 2-Year event Atten= 0%, Lag= 3.6 min af ow) smatoid searea ested Rectangular Weir 1.00

Type III 24-hr 2-Year Rainfall=3.40"

Discarded OutFlow Max=0.03 cfs @ 15.26 hrs HW=64.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=64.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond T-2: TRENCH-2

Inflow Area =	0.185 ac,	0.00% Impervious, Inflow De	epth = 2.09" for 2-Year event
Inflow =	0.44 cfs @	12.09 hrs, Volume=	0.032 af
Outflow =	0.06 cfs @	11.70 hrs, Volume=	0.032 af, Atten= 87%, Lag= 0.0 min
Discarded =	0.06 cfs @	11.70 hrs, Volume=	0.032 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 57.16' @ 12.72 hrs Surf.Area= 0.023 ac Storage= 0.011 af

Plug-Flow detention time= 62.6 min calculated for 0.032 af (100% of inflow) Center-of-Mass det. time= 62.5 min (878.8 - 816.3)

Volume	Invert	Avail.Storage	Storage Description
#1	56.00'	0.037 af	4.00'W x 254.00'L x 4.00'H Prismatoid 0.093 af Overall x 40.0% Voids
Device	Routing	Invert O	utlet Devices
#1	Discarded		410 in/hr Exfiltration over Surface area
#2	Primary		0' long x 0.5' breadth Broad-Crested Rectangular Weir
			ead (feet) 0.20 0.40 0.60 0.80 1.00
		C	oef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.06 cfs @ 11.70 hrs HW=56.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=56.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

1833112HC002B	Туре
Prepared by Beals and Thomas, Inc.	
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Soluti	ons LLC

Time span=5.00-30.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PDA-1:	Runoff Area=1.878 ac 0.00% Impervious Runoff Depth=0.02" Flow Length=122' Tc=17.5 min CN=33 Runoff=0.00 cfs 0.003 af
Subcatchment PDA-10:	Runoff Area=4.720 ac 0.00% Impervious Runoff Depth=0.14" Flow Length=756' Tc=13.3 min CN=39 Runoff=0.09 cfs 0.056 af
Subcatchment PDA-11:	Runoff Area=15.358 ac 0.00% Impervious Runoff Depth=0.24" Flow Length=1,352' Tc=35.2 min CN=42 Runoff=0.66 cfs 0.305 af
Subcatchment PDA-12:	Runoff Area=3.707 ac 0.00% Impervious Runoff Depth=0.39" Flow Length=421' Tc=13.6 min CN=46 Runoff=0.58 cfs 0.121 af
Subcatchment PDA-13:	Runoff Area=0.185 ac 0.00% Impervious Runoff Depth=3.29" Tc=6.0 min CN=87 Runoff=0.69 cfs 0.051 af
Subcatchment PDA-2:	Runoff Area=12.678 ac 0.00% Impervious Runoff Depth=0.05" Flow Length=449' Tc=29.8 min CN=35 Runoff=0.08 cfs 0.052 af
Subcatchment PDA-3:	Runoff Area=5.139 ac 0.00% Impervious Runoff Depth=0.05" Flow Length=577' Tc=43.5 min CN=35 Runoff=0.03 cfs 0.021 af
Subcatchment PDA-4:	Runoff Area=0.439 ac 0.00% Impervious Runoff Depth=0.31" Tc=6.0 min CN=44 Runoff=0.05 cfs 0.011 af
Subcatchment PDA-5:	Runoff Area=4.880 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=241' Tc=8.8 min CN=31 Runoff=0.00 cfs 0.001 af
Subcatchment PDA-6:	Runoff Area=9.635 ac 0.33% Impervious Runoff Depth=0.20" Flow Length=657' Tc=14.5 min CN=41 Runoff=0.37 cfs 0.164 af
Subcatchment PDA-7:	Runoff Area=12.565 ac 0.25% Impervious Runoff Depth=0.20" Flow Length=835' Tc=15.2 min CN=41 Runoff=0.47 cfs 0.214 af
Subcatchment PDA-8:	Runoff Area=7.437 ac 0.86% Impervious Runoff Depth=0.31" Flow Length=540' Tc=14.7 min CN=44 Runoff=0.75 cfs 0.193 af
Subcatchment PDA-9:	Runoff Area=10.702 ac 0.00% Impervious Runoff Depth=0.27" Flow Length=1,639' Tc=36.9 min CN=43 Runoff=0.61 cfs 0.245 af
Reach DP-1: DP-1	Inflow=0.00 cfs 0.003 af Outflow=0.00 cfs 0.003 af
Reach DP-2: DP-2	Inflow=0.08 cfs 0.052 af Outflow=0.08 cfs 0.052 af
Reach DP-3: DP-3	Inflow=0.03 cfs 0.021 af Outflow=0.03 cfs 0.021 af

Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=4.70"

 Printed
 1/19/2021

 s LLC
 Page 20

Reach DP-4: DP-4	Inflow=0.00 cfs 0.000 af
	Outflow=0.00 cfs 0.000 af
Reach DP-5: DP-5	Inflow=0.00 cfs_0.001 af Outflow=0.00 cfs_0.001 af
Pond 1: BASIN-1	Peak Elev=64.67' Storage=1,719 cf Inflow=0.37 cfs 0.164 af
Fond I. BASIN-I	Discarded=0.16 cfs 0.164 af Primary=0.00 cfs 0.000 af Outflow=0.16 cfs 0.164 af
Pond 2: BASIN-2	Peak Elev=52.26' Storage=1,204 cf Inflow=0.47 cfs 0.214 af
	Discarded=0.28 cfs 0.214 af Primary=0.00 cfs 0.000 af Outflow=0.28 cfs 0.214 af
Pond 3: BASIN-3	Peak Elev=32.63' Storage=2,188 cf Inflow=0.75 cfs 0.193 af
	Discarded=0.20 cfs 0.193 af Primary=0.00 cfs 0.000 af Outflow=0.20 cfs 0.193 af
Pond 4: BASIN-4	Peak Elev=48.01' Storage=33 cf Inflow=0.09 cfs 0.056 af Discarded=0.09 cfs 0.056 af Primary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.056 af
Dand 5: DACIN 5	
Pond 5: BASIN-5	Peak Elev=45.08' Storage=593 cf Inflow=0.61 cfs 0.245 af Discarded=0.43 cfs 0.245 af Primary=0.00 cfs 0.000 af Outflow=0.43 cfs 0.245 af
Pond 6: BASIN-6	Peak Elev=66.71' Storage=3,294 cf Inflow=0.66 cfs 0.305 af
	Discarded=0.30 cfs 0.305 af Primary=0.00 cfs 0.000 af Outflow=0.30 cfs 0.305 af
Pond 7: BASIN-7	Peak Elev=77.16' Storage=1,837 cf Inflow=0.58 cfs 0.121 af
	Discarded=0.11 cfs 0.121 af Primary=0.00 cfs 0.000 af Outflow=0.11 cfs 0.121 af
Pond T-1: TRENCH-1	Peak Elev=64.10' Storage=0.000 af Inflow=0.05 cfs 0.011 af Discarded=0.03 cfs 0.011 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.011 af
Pond T-2: TRENCH-2	Peak Elev=58.17' Storage=0.020 af Inflow=0.69 cfs 0.051 af Discarded=0.06 cfs 0.051 af Primary=0.00 cfs 0.000 af Outflow=0.06 cfs 0.051 af
Total Run	off Area = 89.323 ac Runoff Volume = 1.440 af Average Runoff Depth = 0.19"
	99.86% Pervious = 89.195 ac 0.14% Impervious = 0.128 ac

Summary for Subcatchment PDA-1:

Runoff = 0.00 cfs @ 21.70 hrs, Volume= 0.003 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	Area	(ac) C	N Des	cription		
	1.	222 3	30 Woo	ds, Good,	HSG A	
_	0.	656 3	39 >75°	% Grass co	over, Good	, HSG A
	1.	878 3	33 Wei	ghted Aver	age	
	1.	878	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	15.8	50	0.0100	0.05		Sheet Flow, Tc-1
_	1.7	72	0.0210	0.72		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps
	17.5	122	Total			

Summary for Subcatchment PDA-10:

Runoff = 0.09 cfs @ 13.88 hrs, Volume= 0.056 af, Depth= 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

_	Area	(ac) C	N Dese	cription		
	4.	720 3	39 >75 ⁹	% Grass co	over, Good	, HSG A
	4.720 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	3.8	50	0.0500	0.22		Sheet Flow, Tc-1
						Grass: Short n= 0.150 P2= 3.40"
	5.4	448	0.0390	1.38		Shallow Concentrated Flow, Tc-2
	4.4	050	0 0000	1.00		Short Grass Pasture Kv= 7.0 fps
	4.1	258	0.0230	1.06		Shallow Concentrated Flow, Tc-3 Short Grass Pasture Kv= 7.0 fps
_	40.0	750	T . 4 . 1			Short Grass Fasture INV-1.0 Ips

13.3 756 Total

Summary for Subcatchment PDA-11:

Runoff = 0.66 cfs @ 12.95 hrs, Volume= 0.305 af, Depth= 0.24"

 Type III 24-hr
 10-Year Rainfall=4.70"

 Printed
 1/19/2021

 s LLC
 Page 22

Prepared by Beals and Thomas, Inc.
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

	Area	(ac) C	N Desc	cription		
	14.	490 3	39 >759	% Grass co	over, Good	, HSG A
	0.	836 9	96 Grav	el surface	, HSG A	
*	0.	032 9	96 Exis	ting Grave	l surface, ⊦	ISG A
_	15.	358 4	2 Weig	ghted Aver	age	
	15.	358	100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.2	50	0.0100	0.12		Sheet Flow, Tc-1
						Grass: Short n= 0.150 P2= 3.40"
	13.5	506	0.0080	0.63		Shallow Concentrated Flow, Tc-2
						Short Grass Pasture Kv= 7.0 fps
	8.6	429	0.0140	0.83		Shallow Concentrated Flow, Tc-3
						Short Grass Pasture Kv= 7.0 fps
	5.9	367	0.0220	1.04		Shallow Concentrated Flow, Tc-4
						Short Grass Pasture Kv= 7.0 fps
	35.2	1,352	Total			

Summary for Subcatchment PDA-12:

Runoff = 0.58 cfs @ 12.44 hrs, Volume= 0.121 af, Depth= 0.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

Area	(ac) C	N Des	cription			
3	.237	39 >75	% Grass co	over, Good	, HSG A	_
0	.470	96 Grav	vel surface	, HSG A		_
3	.707	46 Wei	ghted Aver	age		
3	.707	100.	00% Pervi	ous Area		
Tc	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		_
7.2	50	0.0100	0.12		Sheet Flow, Tc-1	
					Grass: Short n= 0.150 P2= 3.40"	
6.4	371	0.0190	0.96		Shallow Concentrated Flow, Tc-2	
					Short Grass Pasture Kv= 7.0 fps	
13.6	421	Total				

Summary for Subcatchment PDA-13:

Runoff = 0.69 cfs @ 12.09 hrs, Volume= 0.051 af, Depth= 3.29"

1833112HC002B Prepared by Beals and Thomas, Inc.

Type III 24-hr 10-Year Rainfall=4.70" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 23

Area (ac) CN Description
0.028 39 >75% Grass cover, Good, HSG A
0.157 96 Gravel surface, HSG A
0.185 87 Weighted Average 0.185 100.00% Pervious Area
0.185 100.00% Pervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, Min. Tc
Summary for Subcatchment PDA-2:
Runoff = 0.08 cfs @ 16.01 hrs, Volume= 0.052 af, Depth= 0.05"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year Rainfall=4.70"
Area (ac) CN Description
11.089 30 Woods, Good, HSG A
0.296 77 Woods, Good, HSG D
0.569 39 >75% Grass cover, Good, HSG A
0.068 80 >75% Grass cover, Good, HSG D 0.064 96 Gravel surface, HSG A
0.004 96 Gravel surface, HSG D
* 0.364 96 Existing Gravel surface, HSG A
* 0.190 96 Existing Gravel surface, HSG D
12.678 35 Weighted Average
12.678 100.00% Pervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
15.8 50 0.0100 0.05 Sheet Flow, Tc-1
Woods: Light underbrush n= 0.400 P2= 3.40"
14.0 399 0.0090 0.47 Shallow Concentrated Flow, Tc-2
Woodland Kv= 5.0 fps 29.8 449 Total
Summary for Subcatchment PDA-3:
Runoff = 0.03 cfs @ 16.29 hrs, Volume= 0.021 af, Depth= 0.05"
\mathbf{C}

Prepared by Beals and Thomas, Inc.

Type III 24-hr 10-Year Rainfall=4.70" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 24

Area	(ac)	N Desc	cription			
	. /		ods, Good,	HSG A		
0	.113 3	39 >759	% Grass c	over, Good	, HSG A	
-			/el surface	,	100.4	
				l surface, l	ISG A	
	.139 3 .139		ghted Aver 00% Pervi			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
20.8	50	0.0050	0.04	(0.0)	Sheet Flow, Tc-1	
22.7	527	0.0060	0.39		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps	
43.5	577	Total				
			0		Cube established DDA 4	
	Summary for Subcatchment PDA-4:					
Runoff = 0.05 cfs @ 12.37 hrs, Volume= 0.011 af, Depth= 0.31"						
Runoff	=	0 05 cfs	s@ 123	7 hrs Volu	ume= 0.011 af Depth= 0.31"	
Runoff	=	0.05 cfs	s @ 12.3	7 hrs, Volu	ume= 0.011 af, Depth= 0.31"	
Runoff b	y SCS TI	R-20 metł	U	SCS, Weigh	ume= 0.011 af, Depth= 0.31" nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Runoff b	y SCS TF 24-hr 10-	R-20 meth ·Year Rai	nod, UH=S	SCS, Weigh		
Runoff b Type III : <u>Area</u> 0.	y SCS TF 24-hr 10- (ac) <u>C</u> .236 3	R-20 meth -Year Rai <u>N Desc</u> 30 Woo	nod, UH=S nfall=4.70' cription ods, Good,	SCS, Weigh		
Runoff b Type III : <u>Area</u> 0. 0.	y SCS TF 24-hr 10- (<u>ac) C</u> .236 3 .060 3	R-20 metł -Year Rai <u>N Desc</u> 30 Woc 30 Brus	nod, UH=S nfall=4.70' cription ods, Good, sh, Good, H	SCS, Weigh HSG A HSG A	nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Runoff b Type III : <u>Area</u> 0 0 0	y SCS TF 24-hr 10- (ac) <u>C</u> 236 3 .060 3 .058 3	R-20 meth -Year Rai <u>N Desc</u> 30 Woo 30 Brus 39 >759	nod, UH=S nfall=4.70' ods, Good, sh, Good, H % Grass co	SCS, Weigh HSG A HSG A over, Good	nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Runoff b Type III : <u>Area</u> 0 0 0 0	y SCS TF 24-hr 10- (ac) C .236 3 .060 3 .058 3 .085 9	R-20 meth Year Rai <u>N Desc</u> 30 Woo 30 Brus 39 >759 36 Grav	nod, UH=S nfall=4.70' ods, Good, H % Grass co /el surface	SCS, Weigh HSG A HSG A over, Good a, HSG A	nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Type III : <u>Area</u> 0 0 0 0 0	y SCS TF 24-hr 10- (ac) C .236 3 .060 3 .058 3 .085 9	R-20 meth Year Rai <u>N Desc</u> 30 Woo 30 Brus 39 >759 <u>96 Grav</u> 14 Weig	nod, UH=S nfall=4.70' ods, Good, sh, Good, H % Grass co	SCS, Weigh HSG A HSG A over, Good e, HSG A rage	nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Runoff b Type III Area 0 0 0 0 0 0 0 0 0	y SCS TF 24-hr 10- 236 3 .060 3 .058 3 .085 9 .439 4 .439 Length	R-20 meth Year Rai <u>N Desc</u> 30 Woo 30 Brus 39 >759 <u>36 Grav</u> 14 Weig 100.	nod, UH=S nfall=4.70' ods, Good, H % Grass co <u>vel surface</u> ghted Aven 00% Pervi	SCS, Weigh HSG A HSG A over, Good h HSG A rage ious Area Capacity	nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Runoff b Type III : <u>Area</u> 0 0 0 0 0 0	y SCS TF 24-hr 10- 236 3 .060 3 .058 3 .085 9 .439 4	R-20 meth -Year Rai <u>N Desc</u> 30 Woo 30 Brus 39 >759 <u>96 Grav</u> 14 Weig 100.	nod, UH=S nfall=4.70' ods, Good, ods, Good, H % Grass co <u>/el surface</u> ghted Aven 00% Pervi	SCS, Weigh HSG A HSG A over, Good e, HSG A rage ious Area	nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Runoff b Type III : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	y SCS TF 24-hr 10- 236 3 .060 3 .058 3 .085 9 .439 4 .439 Length	R-20 meth Year Rai <u>N Desc</u> 30 Woo 30 Brus 39 >759 <u>36 Grav</u> 14 Weig 100.	nod, UH=S nfall=4.70' ods, Good, H % Grass co <u>vel surface</u> ghted Aven 00% Pervi Velocity (ft/sec)	SCS, Weigh HSG A HSG A over, Good hASG A rage ious Area Capacity (cfs)	hted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs , HSG A Description Direct Entry, Min. Tc	
Runoff b Type III : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	y SCS TF 24-hr 10- 236 3 .060 3 .058 3 .085 9 .439 4 .439 Length	R-20 meth Year Rai <u>N Desc</u> 30 Woo 30 Brus 39 >759 <u>36 Grav</u> 14 Weig 100. Slope (ft/ft)	nod, UH=S nfall=4.70' ods, Good, bds, Good, H % Grass co <u>/el surface</u> ghted Aver 00% Pervi Velocity (ft/sec) Sum	SCS, Weigh HSG A HSG A over, Good hASG A rage ious Area Capacity (cfs)	hted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs HSG A Description Direct Entry, Min. Tc Subcatchment PDA-5:	

Area (ac)	CN	Description
4.192	30	Woods, Good, HSG A
0.175	30	Brush, Good, HSG A
0.470	39	>75% Grass cover, Good, HSG A
0.043	96	Gravel surface, HSG A
4.880 4.880	31	Weighted Average 100.00% Pervious Area

Prepare		als and T	homas, I		Type III 24-hr 10-Year Rainfall=4.70" Printed 1/19/2021	
<u>HydroCAD® 10.10-4a s/n 04493 © 2020 HydroC/</u>						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.6	50		0.13		Sheet Flow, Tc-1	
2.2	191	0.0820	1.43		Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2 Woodland Kv= 5.0 fps	
8.8	241	Total				
			Sum	mary for	Subcatchment PDA-6:	
Runoff	=	0.37 cfs	s@ 12.6	0 hrs, Volu	ume= 0.164 af, Depth= 0.20"	
			nod, UH=S nfall=4.70		nted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Area	(ac) C	N Dese	cription			
9.	.378 3	39 >759	% Grass c	over, Good	, HSG A	
			/el surface pment Pa	e, HSG A d Area, HS	GA	
9.	.635 4	11 Weig	ghted Ave	rage	<u> </u>	
	.603 .032		7% Pervio % Impervi			
0.	.052	0.00				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.5	50	0.0200	0.15	(010)	Sheet Flow, Tc-1	
9.0	607	0.0260	1.13		Grass: Short n= 0.150 P2= 3.40"	
9.0	007	0.0200	1.13		Shallow Concentrated Flow, Tc-2 Short Grass Pasture Kv= 7.0 fps	
14.5	657	Total				
	Summary for Subcatchment PDA-7:					
Runoff	=	0.47 cfs	s@ 12.6	1 hrs, Volu	ume= 0.214 af, Depth= 0.20"	
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"					
Area	Area (ac) CN Description					
12.	.168 3	39 >759	% Grass c	over, Good	, HSG A	
	0.365 96 Gravel surface, HSG A 0.032 98 Equipment Pad Area, HSG A					

0.03298Equipment Pad Area, HSG A12.56541Weighted Average12.53399.75% Pervious Area0.0320.25% Impervious Area

1833112HC002B Type III 24-hr 10-Year Rainfall=4.70" Printed 1/19/2021 Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Slope Velocity Capacity Description Tc Length (feet) (ft/ft) (min) (ft/sec) (cfs) 0.0200 Sheet Flow, Tc-1 5.5 50 0.15 Grass: Short n= 0.150 P2= 3.40" Shallow Concentrated Flow, Tc-2 9.7 785 0.0370 1.35 Short Grass Pasture Kv= 7.0 fps Total 15.2 835 **Summary for Subcatchment PDA-8:** 0.75 cfs @ 12.50 hrs, Volume= 0.193 af, Depth= 0.31" Runoff =

Page 26

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.70"

Area	(ac) (CN Des	cription		
6.	.768	39 >75	% Grass co	over, Good	, HSG A
0.	.167	80 >75	% Grass co	over, Good	, HSG D
0.	.438	96 Gra	vel surface	, HSG A	
0.	.064	98 Equ	ipment Pac	d Area, HS	G A
7.	437	44 Wei	ghted Aver	age	
7.	.373	99.1	4% Pervio	us Area	
0.	.064	0.86	3% Impervi	ous Area	
			-		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.2	50	0.0100	0.12		Sheet Flow, Tc-1
					Grass: Short n= 0.150 P2= 3.40"
2.3	164	0.0300	1.21		Shallow Concentrated Flow, Tc-2
					Short Grass Pasture Kv= 7.0 fps
4.0	175	0.0110	0.73		Shallow Concentrated Flow, Tc-3
					Short Grass Pasture Kv= 7.0 fps
1.2	151	0.0930	2.13		Shallow Concentrated Flow, Tc-4
					Short Grass Pasture Kv= 7.0 fps
14.7	540	Total			

Summary for Subcatchment PDA-9:

0.61 cfs @ 12.90 hrs, Volume= 0.245 af, Depth= 0.27" Runoff =

Area (ac)	CN	Description
10.016	39	>75% Grass cover, Good, HSG A
0.686	96	Gravel surface, HSG A
10.702	43	Weighted Average
10.702		100.00% Pervious Area

Prepared by Beals and Thomas, Inc.

 Type III 24-hr
 10-Year Rainfall=4.70"

 Printed
 1/19/2021

 s LLC
 Page 27

Trepared by Deals and Themas, me.								
HydroCAD® 10.10-4a_s/n 04493_© 2020 HydroCAD Software Solutions LLC								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.2	50	0.0100	0.12		Sheet Flow, Tc-1			
					Grass: Short n= 0.150 P2= 3.40"			
6.5	273	0.0100	0.70		Shallow Concentrated Flow, Tc-2			
					Short Grass Pasture Kv= 7.0 fps			
7.1	572	0.0370	1.35		Shallow Concentrated Flow, Tc-3			

1.1	512 0.0510	1.55	Shallow Concentrated Flow, TC-5
			Short Grass Pasture Kv= 7.0 fps
5.7	228 0.0090	0.66	Shallow Concentrated Flow, Tc-4
			Short Grass Pasture Kv= 7.0 fps
10.4	516 0.0140	0.83	Shallow Concentrated Flow, Tc-5
			Short Grass Pasture Ky= 7.0 fps

36.9 1,639 Total

Summary for Reach DP-1: DP-1

Inflow Area =	11.513 ac,	0.28% Impervious, Inflow D	epth = 0.00"	for 10-Year event
Inflow =	0.00 cfs @	21.70 hrs, Volume=	0.003 af	
Outflow =	0.00 cfs @	21.70 hrs, Volume=	0.003 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

Inflow Area =	32.680 ac,	0.29% Impervious, Inflow	/ Depth = 0.02"	for 10-Year event
Inflow =	0.08 cfs @	16.01 hrs, Volume=	0.052 af	
Outflow =	0.08 cfs @	16.01 hrs, Volume=	0.052 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

Inflow Area =	20.561 ac,	0.00% Impervious, Inflow I	Depth = 0.01"	for 10-Year event
Inflow =	0.03 cfs @	16.29 hrs, Volume=	0.021 af	
Outflow =	0.03 cfs @	16.29 hrs, Volume=	0.021 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

Inflow Area	a =	15.797 ac,	0.00% Impervious,	Inflow Depth = 0.0	0" for 10-Year event
Inflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000 af	
Outflow	=	0.00 cfs @	5.00 hrs, Volume	= 0.000 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: DP-5

Inflow Area	a =	8.772 ac,	0.00% Impervious,	Inflow Depth = 0.0	0" for 10-Year event
Inflow	=	0.00 cfs @	24.00 hrs, Volume	= 0.001 af	
Outflow	=	0.00 cfs @	24.00 hrs, Volume	= 0.001 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond 1: BASIN-1

Inflow Area =	9.635 ac,	0.33% Impervious, Inflow D	epth = 0.20" for 10-Year event
Inflow =	0.37 cfs @	12.60 hrs, Volume=	0.164 af
Outflow =	0.16 cfs @	17.24 hrs, Volume=	0.164 af, Atten= 56%, Lag= 278.3 min
Discarded =	0.16 cfs @	17.24 hrs, Volume=	0.164 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 64.67' @ 17.24 hrs Surf.Area= 2,900 sf Storage= 1,719 cf

Plug-Flow detention time= 128.3 min calculated for 0.164 af (100% of inflow) Center-of-Mass det. time= 128.1 min (1,139.0 - 1,010.9)

Volume	Invert	: Avail.Sto	rage Storage	e Description	
#1	64.00	24,4	50 cf Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee 64.0 65.0 66.0	et) 00 00	urf.Area (sq-ft) 2,230 3,230 4,280	Inc.Store (cubic-feet) 0 2,730 3,755	Cum.Store (cubic-feet) 0 2,730 6,485	
67.0 68.0	00 00	5,390 6,550	4,835 5,970	11,320 17,290	
69.0 Device	Routing	7,770 Invert	7,160 Outlet Device	24,450 es	
#1 #2	Discarded Primary	64.00' 68.00'	2.410 in/hr E 10.0' long x Head (feet)	xfiltration over	oad-Crested Rectangular Weir 0.80 1.00
D 's s s s s		M. 0.40	0 47 04 1		

Discarded OutFlow Max=0.16 cfs @ 17.24 hrs HW=64.67' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=64.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 2: BASIN-2

Inflow Area =	12.565 ac,	0.25% Impervious, Inflow D	epth = 0.20" for 10-Year event
Inflow =	0.47 cfs @	12.61 hrs, Volume=	0.214 af
Outflow =	0.28 cfs @	15.83 hrs, Volume=	0.214 af, Atten= 42%, Lag= 193.0 min
Discarded =	0.28 cfs @	15.83 hrs, Volume=	0.214 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.26' @ 15.83 hrs Surf.Area= 4,961 sf Storage= 1,204 cf

Plug-Flow detention time= 41.2 min calculated for 0.214 af (100% of inflow) Center-of-Mass det. time= 41.2 min (1,052.7 - 1,011.5)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	52.00	D' 25,74	40 cf Custor	n Stage Data (Prisr	natic) Listed below (Recalc)
Elevatio (fee	et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
52.0	00	4,250	0	0	
53.0	00	6,970	5,610	5,610	
54.0	00	9,900	8,435	14,045	
55.0	00	13,490	11,695	25,740	
Device	Routing	Invert	Outlet Devic	es	
#1	Discardeo	52.00'	2.410 in/hr E	Exfiltration over Su	face area
#2	Primary	54.00'	10.0' long x Head (feet)		-Crested Rectangular Weir 30 1.00
Discard	Discarded OutFlow Max=0.28 cfs @ 15.83 hrs HW=52.26' (Free Discharge)				

1=Exfiltration (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=52.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3: BASIN-3

Inflow Area =	7.437 ac,	0.86% Impervious, Inflow D	epth = 0.31" for 10-Year event
Inflow =	0.75 cfs @	12.50 hrs, Volume=	0.193 af
Outflow =	0.20 cfs @	16.14 hrs, Volume=	0.193 af, Atten= 73%, Lag= 218.4 min
Discarded =	0.20 cfs @	16.14 hrs, Volume=	0.193 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 32.63' @ 16.14 hrs Surf.Area= 3,616 sf Storage= 2,188 cf

Plug-Flow detention time= 124.2 min calculated for 0.193 af (100% of inflow) Center-of-Mass det. time= 124.0 min (1,100.4 - 976.4)

Prepared by Beals and Thomas, Inc. Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 30 Volume Invert Avail.Storage Storage Description #1 32.00' 28,028 cf Custom Stage Data (Prismatic) Listed below Surf.Area Cum.Store Elevation Inc.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 32.00 3,025 0 0 3,970 3,498 33.00 3,498 34.00 4,990 4,480 7,978 35.00 6.080 5.535 13.513 36.00 7,310 6,695 20,208 37.00 8,330 7,820 28,028 Device Routing Invert **Outlet Devices** #1 Discarded 32.00' 2.410 in/hr Exfiltration over Surface area #2 Primary 36.00' 10.0' long x 5.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88 Discarded OutFlow Max=0.20 cfs @ 16.14 hrs HW=32.63' (Free Discharge) -1=Exfiltration (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=32.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4: BASIN-4

Inflow Area =	4.720 ac,	0.00% Impervious, Inflow De	epth = 0.14" for 10-Year event
Inflow =	0.09 cfs @	13.88 hrs, Volume=	0.056 af
Outflow =	0.09 cfs @	13.98 hrs, Volume=	0.056 af, Atten= 0%, Lag= 6.0 min
Discarded =	0.09 cfs @	13.98 hrs, Volume=	0.056 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.01' @ 13.98 hrs Surf.Area= 4,951 sf Storage= 33 cf

Plug-Flow detention time= 5.9 min calculated for 0.056 af (100% of inflow) Center-of-Mass det. time= 6.0 min (1,046.9 - 1,040.9)

Volume	Invert	Avail.Storage	Storage	Description	
#1	48.00'	13,330 cf	Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)	Surf.A (s		c.Store c-feet)	Cum.Store (cubic-feet)	
48.00	4,	,940	0	0	
49.00	6,	,650	5,795	5,795	
50.00	8,	,420	7,535	13,330	

1833112HC002B

Type III 24-hr 10-Year Rainfall=4.70"

Prepared by Beals and Thomas, Inc.

Type III 24-hr 10-Year Rainfall=4.70" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 31

Davias	Douting	Invort	Outlet Devises
Device #1	Routing Discarded	Invert 48.00'	
#1 #2	Primary	48.00	
π2	Thinary	43.00	Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
			s @ 13.98 hrs HW=48.01' (Free Discharge) htrols 0.28 cfs)
			@ 5.00 hrs HW=48.00' (Free Discharge) r Weir (Controls 0.00 cfs)
			Summary for Pond 5: BASIN-5
			-
Inflow A			00% Impervious, Inflow Depth = 0.19" for 10-Year event
Inflow			2.90 hrs, Volume= 0.245 af
Outflow Discarde			4.03 hrs, Volume= 0.245 af, Atten= 29%, Lag= 68.0 min 4.03 hrs, Volume= 0.245 af
Primary			5.00 hrs, Volume= 0.245 al
i maiy	- (5.00 ms, volume= 0.000 al
			Span= 5.00-30.00 hrs, dt= 0.05 hrs Surf.Area= 7,772 sf Storage= 593 cf
			in calculated for 0.244 af (100% of inflow)
Center-o	of-iviass det.	time= 13.1 m	in(1,020.3 - 1,007.3)
Volume	Invert	Avail.Sto	rage Storage Description
#1	45.00		B5 cf Custom Stage Data (Prismatic) Listed below (Recalc)
		,	
Elevatio		urf.Area	Inc.Store Cum.Store
(fee	/	(sq-ft)	(cubic-feet) (cubic-feet)
45.0		7,570	0 0
46.0		10,180	8,875 8,875
47.(48.(12,940 15,760	11,560 20,435 14,350 34,785
40.0		10,700	14,000 04,700
Device	Routing	Invert	Outlet Devices
#1	Discarded		
#2	Primary	47.00'	10.0' long x 0.5' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coof (English) 2.00 2.02 2.00 2.20 2.22

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.43 cfs @ 14.03 hrs HW=45.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.43 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=45.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6: BASIN-6

Inflow Area =	15.358 ac,	0.00% Impervious, Inflow D	epth = 0.24" for 10-Year event
Inflow =	0.66 cfs @	12.95 hrs, Volume=	0.305 af
Outflow =	0.30 cfs @	17.20 hrs, Volume=	0.305 af, Atten= 54%, Lag= 254.7 min
Discarded =	0.30 cfs @	17.20 hrs, Volume=	0.305 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 66.71' @ 17.20 hrs Surf.Area= 5,456 sf Storage= 3,294 cf

Plug-Flow detention time= 130.6 min calculated for 0.305 af (100% of inflow) Center-of-Mass det. time= 130.5 min (1,147.7 - 1,017.2)

Volume	Inver	t Avail.Sto	rage Storage	e Description	
#1	66.00)' 49,58	30 cf Custom	n Stage Data (Prismatic) Listed below (Recalc)	
			1 01		
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
66.0	00	3,840	0	0	
67.0	00	6,120	4,980	4,980	
68.0	00	8,170	7,145	12,125	
69.0	00	18,320	13,245	25,370	
70.0	00	30,100	24,210	49,580	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	66.00'	2.410 in/hr E	Exfiltration over Surface area	
#2	Primary	69.00'	10.0' long x	0.5' breadth Broad-Crested Rectangular Weir	
	5		•	0.20 0.40 0.60 0.80 1.00	
			Coef. (Englis	sh) 2.80 2.92 3.08 3.30 3.32	
	Discarded OutFlow Max=0.30 cfs @ 17.20 hrs HW=66.71' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.30 cfs)				

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=66.00' (Free Discharge)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 7: BASIN-7

Inflow Area =	3.707 ac,	0.00% Impervious, Inflow D	epth = 0.39" for 10-Year event
Inflow =	0.58 cfs @	12.44 hrs, Volume=	0.121 af
Outflow =	0.11 cfs @	16.36 hrs, Volume=	0.121 af, Atten= 81%, Lag= 235.1 min
Discarded =	0.11 cfs @	16.36 hrs, Volume=	0.121 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 77.16' @ 16.36 hrs Surf.Area= 2,009 sf Storage= 1,837 cf

Plug-Flow detention time= 213.0 min calculated for 0.121 af (100% of inflow) Center-of-Mass det. time= 213.0 min (1,170.6 - 957.6)

Printed 1/19/2021 Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 33 Volume Invert Avail.Storage Storage Description #1 76.00' 22,385 cf Custom Stage Data (Prismatic) Listed below (Recalc) Cum.Store Elevation Surf.Area Inc.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 76.00 1,270 0 0 77.00 1,780 1,525 1,525 78.00 3,170 2,475 4,000 79.00 8.280 5.725 9.725 80.00 17,040 12,660 22,385 Device Routing Invert **Outlet Devices** 2.410 in/hr Exfiltration over Surface area #1 Discarded 76.00' #2 79.00' 10.0' long x 0.5' breadth Broad-Crested Rectangular Weir Primary Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32 **Discarded OutFlow** Max=0.11 cfs @ 16.36 hrs HW=77.16' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs) **Primary OutFlow** Max=0.00 cfs @ 5.00 hrs HW=76.00' (Free Discharge) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) Summary for Pond T-1: TRENCH-1 Inflow Area = 0.00% Impervious, Inflow Depth = 0.31" for 10-Year event 0.439 ac, Inflow 0.05 cfs @ 12.37 hrs, Volume= 0.011 af Outflow 0.03 cfs @ 12.30 hrs, Volume= 0.011 af, Atten= 38%, Lag= 0.0 min = Discarded = 0.03 cfs @ 12.30 hrs, Volume= 0.011 af 5.00 hrs. Volume= Primarv 0.000 af = 0.00 cfs @ Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs. dt= 0.05 hrs Peak Elev= 64.10' @ 12.58 hrs Surf.Area= 0.013 ac Storage= 0.000 af Plug-Flow detention time= 4.6 min calculated for 0.011 af (100% of inflow) Center-of-Mass det. time= 4.6 min (972.9 - 968.3) Volume Invert Avail.Storage Storage Description #1 64.00' 0.015 af 3.00'W x 185.00'L x 3.00'H Prismatoid 0.038 af Overall x 40.0% Voids Device Routing Invert **Outlet Devices** Discarded #1 64.00' 2.410 in/hr Exfiltration over Surface area #2 Primarv 66.99' 3.0' long x 0.5' breadth Broad-Crested Rectangular Weir

Type III 24-hr 10-Year Rainfall=4.70"

1833112HC002B

Head (feet) 0.20 0.40 0.60 0.80 1.00

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.03 cfs @ 12.30 hrs HW=64.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=64.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond T-2: TRENCH-2

Inflow Area =	0.185 ac,	0.00% Impervious, Inflow D	epth = 3.29" for 10-Year event
Inflow =	0.69 cfs @	12.09 hrs, Volume=	0.051 af
Outflow =	0.06 cfs @	11.50 hrs, Volume=	0.051 af, Atten= 92%, Lag= 0.0 min
Discarded =	0.06 cfs @	11.50 hrs, Volume=	0.051 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 58.17' @ 13.16 hrs Surf.Area= 0.023 ac Storage= 0.020 af

Plug-Flow detention time= 129.8 min calculated for 0.051 af (100% of inflow) Center-of-Mass det. time= 129.7 min (933.2 - 803.5)

Volume	Invert	Avail.Storage	Storage Description
#1	56.00'	0.037 af	4.00'W x 254.00'L x 4.00'H Prismatoid 0.093 af Overall x 40.0% Voids
Device	Routing	Invert O	utlet Devices
#1	Discarded	56.00' 2.	410 in/hr Exfiltration over Surface area
#2	Primary		0' long x 0.5' breadth Broad-Crested Rectangular Weir
			ead (feet) 0.20 0.40 0.60 0.80 1.00
		C	oef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.06 cfs @ 11.50 hrs HW=56.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=56.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

1833112HC002B	Type III 2-
Prepared by Beals and Thomas, Inc.	
HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software So	olutions LLC

Time span=5.00-30.00 hrs, dt=0.05 hrs, 501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment PDA-1:	Runoff Area=1.878 ac 0.00% Impervious Runoff Depth=0.37" Flow Length=122' Tc=17.5 min CN=33 Runoff=0.17 cfs 0.058 af
Subcatchment PDA-10:	Runoff Area=4.720 ac 0.00% Impervious Runoff Depth=0.77" Flow Length=756' Tc=13.3 min CN=39 Runoff=1.75 cfs 0.302 af
Subcatchment PDA-11:	Runoff Area=15.358 ac 0.00% Impervious Runoff Depth=1.00" Flow Length=1,352' Tc=35.2 min CN=42 Runoff=6.52 cfs 1.274 af
Subcatchment PDA-12:	Runoff Area=3.707 ac 0.00% Impervious Runoff Depth=1.32" Flow Length=421' Tc=13.6 min CN=46 Runoff=3.44 cfs 0.408 af
Subcatchment PDA-13:	Runoff Area=0.185 ac 0.00% Impervious Runoff Depth>5.47" Tc=6.0 min CN=87 Runoff=1.12 cfs 0.084 af
Subcatchment PDA-2:	Runoff Area=12.678 ac 0.00% Impervious Runoff Depth=0.49" Flow Length=449' Tc=29.8 min CN=35 Runoff=1.71 cfs 0.522 af
Subcatchment PDA-3:	Runoff Area=5.139 ac 0.00% Impervious Runoff Depth=0.49" Flow Length=577' Tc=43.5 min CN=35 Runoff=0.59 cfs 0.212 af
Subcatchment PDA-4:	Runoff Area=0.439 ac 0.00% Impervious Runoff Depth=1.15" Tc=6.0 min CN=44 Runoff=0.42 cfs 0.042 af
Subcatchment PDA-5:	Runoff Area=4.880 ac 0.00% Impervious Runoff Depth=0.26" Flow Length=241' Tc=8.8 min CN=31 Runoff=0.19 cfs 0.106 af
Subcatchment PDA-6:	Runoff Area=9.635 ac 0.33% Impervious Runoff Depth=0.92" Flow Length=657' Tc=14.5 min CN=41 Runoff=4.79 cfs 0.737 af
Subcatchment PDA-7:	Runoff Area=12.565 ac 0.25% Impervious Runoff Depth=0.92" Flow Length=835' Tc=15.2 min CN=41 Runoff=6.18 cfs 0.961 af
Subcatchment PDA-8:	Runoff Area=7.437 ac 0.86% Impervious Runoff Depth=1.15" Flow Length=540' Tc=14.7 min CN=44 Runoff=5.47 cfs 0.716 af
Subcatchment PDA-9:	Runoff Area=10.702 ac 0.00% Impervious Runoff Depth=1.07" Flow Length=1,639' Tc=36.9 min CN=43 Runoff=5.00 cfs 0.958 af
Reach DP-1: DP-1	Inflow=0.22 cfs 0.079 af Outflow=0.22 cfs 0.079 af
Reach DP-2: DP-2	Inflow=1.74 cfs 0.684 af Outflow=1.74 cfs 0.684 af
Reach DP-3: DP-3	Inflow=0.59 cfs 0.212 af Outflow=0.59 cfs 0.212 af

Page 36

Reach DP-4: DP-4	Inflow=0.06 Outflow=0.06	cfs 0.005 af cfs 0.005 af
Reach DP-5: DP-5	Inflow=0.30 Outflow=0.30	cfs 0.110 af cfs 0.110 af
Pond 1: BASIN-1	Peak Elev=68.03' Storage=17,458 cf Inflow=4.79 Discarded=0.37 cfs 0.498 af Primary=0.16 cfs 0.021 af Outflow=0.53	
Pond 2: BASIN-2	Peak Elev=54.10' Storage=15,008 cf Inflow=6.18 Discarded=0.57 cfs 0.736 af Primary=0.83 cfs 0.162 af Outflow=1.40	
Pond 3: BASIN-3	Peak Elev=35.60' Storage=17,559 cf Inflow=5.47 Discarded=0.38 cfs 0.516 af Primary=0.00 cfs 0.000 af Outflow=0.38	
Pond 4: BASIN-4	Peak Elev=48.70' Storage=3,867 cf Inflow=1.75 Discarded=0.34 cfs 0.302 af Primary=0.00 cfs 0.000 af Outflow=0.34	
Pond 5: BASIN-5	Peak Elev=46.89' Storage=19,044 cf Inflow=5.00 Discarded=0.71 cfs 0.917 af Primary=0.00 cfs 0.000 af Outflow=0.71	
Pond 6: BASIN-6	Peak Elev=69.00' Storage=25,461 cf Inflow=6.52 Discarded=1.03 cfs 1.105 af Primary=0.03 cfs 0.001 af Outflow=1.05	
Pond 7: BASIN-7	Peak Elev=78.75' Storage=7,818 cf Inflow=3.44 Discarded=0.39 cfs 0.377 af Primary=0.00 cfs 0.000 af Outflow=0.39	
Pond T-1: TRENCH-1	Peak Elev=67.02' Storage=0.015 af Inflow=0.42 Discarded=0.03 cfs 0.038 af Primary=0.06 cfs 0.004 af Outflow=0.09	
Pond T-2: TRENCH-2	Peak Elev=60.04' Storage=0.037 af Inflow=1.12 Discarded=0.06 cfs 0.081 af Primary=0.12 cfs 0.003 af Outflow=0.17	
Total Rune	off Area = 89.323 ac Runoff Volume = 6.380 af Average Runoff D 99.86% Pervious = 89.195 ac 0.14% Imperviou	

Summary for Subcatchment PDA-1:

Runoff = 0.17 cfs @ 12.59 hrs, Volume= 0.058 af, Depth= 0.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	Area	(ac) C	N Des	cription		
	1.	222 3		ods, Good,		
	0.	656 3	39 >75°	% Grass co	over, Good	, HSG A
	1.	878 🗧	33 Wei	ghted Aver	age	
	1.	878	100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.8	50	0.0100	0.05		Sheet Flow, Tc-1
						Woods: Light underbrush n= 0.400 P2= 3.40"
	1.7	72	0.0210	0.72		Shallow Concentrated Flow, Tc-2
						Woodland Kv= 5.0 fps
	17.5	122	Total			

Summary for Subcatchment PDA-10:

Runoff = 1.75 cfs @ 12.36 hrs, Volume= 0.302 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

	Area	(ac) C	N Des	cription				
	4.720 39 >75% Grass cover, Good, HSG A							
4.720 100.00% Pervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	3.8	50	0.0500	0.22		Sheet Flow, Tc-1		
	5 4	440	0 0000	4.00		Grass: Short n= 0.150 P2= 3.40"		
	5.4	448	0.0390	1.38		Shallow Concentrated Flow, Tc-2 Short Grass Pasture Kv= 7.0 fps		
	4.1	258	0.0230	1.06		Shallow Concentrated Flow, Tc-3		
						Short Grass Pasture Kv= 7.0 fps		
	40.0		— · ·					

13.3 756 Total

Summary for Subcatchment PDA-11:

Runoff = 6.52 cfs @ 12.64 hrs, Volume= 1.274 af, Depth= 1.00"

Prepared by Beals and Thomas, Inc.

 Type III 24-hr
 100-Year Rainfall=7.00"

 Printed
 1/19/2021

 ns LLC
 _______Page 38

		,		4493 © 202		D Software Solutions LLC	Page 3
		<i>(</i>) –					-
_	Area	(ac) (CN Des	cription			
	14.	490	39 >75°	% Grass co	over, Good	, HSG A	
	0.	836	96 Grav	/el surface	, HSG A		
*	0.	032	96 Exis	ting Grave	l surface, ⊦	ISG A	
	15.	358 -	42 Wei	ghted Aver	ade		
		358		00% Pervi	•		
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	,	
_	7.2	50	0.0100	0.12		Sheet Flow, Tc-1	
						Grass: Short n= 0.150 P2= 3.40"	
	13.5	506	0.0080	0.63		Shallow Concentrated Flow, Tc-2	
				0.00		Short Grass Pasture Kv= 7.0 fps	
	8.6	429	0.0140	0.83		Shallow Concentrated Flow, Tc-3	
	0.0		0.0110	0.00		Short Grass Pasture Kv= 7.0 fps	
	5.9	367	0.0220	1.04		Shallow Concentrated Flow, Tc-4	
	0.0	001	0.0220	1.04		Short Grass Pasture Kv= 7.0 fps	
-	25.0	1 252	Total				
	35.2	1,352	Total				

Summary for Subcatchment PDA-12:

Runoff = 3.44 cfs @ 12.23 hrs, Volume= 0.408 af, Depth= 1.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

_	Area	(ac) (N Des	cription			
	3.	237	39 >75	% Grass co	over, Good	, HSG A	
_	0.	470	96 Grav	vel surface	, HSG A		
	3.	707	46 Wei	ghted Aver	age		
	3.	707	100.	00% Pervi	ous Area		
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	7.2	50	0.0100	0.12		Sheet Flow, Tc-1	
						Grass: Short n= 0.150 P2= 3.40"	
	6.4	371	0.0190	0.96		Shallow Concentrated Flow, Tc-2	
						Short Grass Pasture Kv= 7.0 fps	
	13.6	421	Total				

Summary for Subcatchment PDA-13:

Runoff = 1.12 cfs @ 12.09 hrs, Volume= 0.084 af, Depth> 5.47"

 Type III 24-hr
 100-Year Rainfall=7.00"

 Printed
 1/19/2021

 ns LLC
 Page 39

Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Area (ac) CN Description
0.028 39 >75% Grass cover, Good, HSG A 0.157 96 Gravel surface, HSG A
0.185 87 Weighted Average
0.185 100.00% Pervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc
Summary for Subcatchment PDA-2:
Runoff = 1.71 cfs @ 12.71 hrs, Volume= 0.522 af, Depth= 0.49"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"
Area (ac) CN Description
11.089 30 Woods, Good, HSG A
0.296 77 Woods, Good, HSG D 0.569 39 >75% Grass cover, Good, HSG A
0.068 80 >75% Grass cover, Good, HSG D
0.064 96 Gravel surface, HSG A
0.038 96 Gravel surface, HSG D
 * 0.364 96 Existing Gravel surface, HSG A * 0.190 96 Existing Gravel surface, HSG D
12.678 35 Weighted Average
12.678 100.00% Pervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
15.8 50 0.0100 0.05 Sheet Flow, Tc-1
14.03990.00900.47Woods: Light underbrushn= 0.400P2= 3.40"Shallow Concentrated Flow, Tc-2 WoodlandKv= 5.0 fps
29.8 449 Total
Summary for Subcatchment PDA-3:
Runoff = 0.59 cfs @ 12.94 hrs, Volume= 0.212 af, Depth= 0.49"

Prepared by Beals and Thomas, Inc.

Type III 24-hr 100-Year Rainfall=7.00" Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 40

	<u>yc +0</u>
Area (ac) CN Description	
4.636 30 Woods, Good, HSG A	
0.113 39 >75% Grass cover, Good, HSG A	
0.020 96 Gravel surface, HSG A	
* 0.370 96 Existing Gravel surface, HSG A	
5.139 35 Weighted Average	
5.139 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
20.8 50 0.0050 0.04 Sheet Flow, Tc-1	
Woods: Light underbrush n= 0.400 P2= 3.40"	
22.7 527 0.0060 0.39 Shallow Concentrated Flow, Tc-2	
Woodland Kv= 5.0 fps	
43.5 577 Total	
Summary for Subcatchment PDA-4:	
Runoff = 0.42 cfs @ 12.12 hrs, Volume= 0.042 af, Depth= 1.15"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs	
Type III 24-hr 100-Year Rainfall=7.00"	
Area (ac) CN Description	
0.236 30 Woods, Good, HSG A	
0.060 30 Brush, Good, HSG A	
0.058 39 >75% Grass cover, Good, HSG A	
0.085 96 Gravel surface, HSG A	
0.439 44 Weighted Average	
0.439 100.00% Pervious Area	

Tc (min)	Length (feet)	•	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, Min. Tc

Summary for Subcatchment PDA-5:

Runoff 0.19 cfs @ 12.55 hrs, Volume= 0.106 af, Depth= 0.26" =

Area (ac)	CN	Description
4.192	30	Woods, Good, HSG A
0.175	30	Brush, Good, HSG A
0.470	39	>75% Grass cover, Good, HSG A
0.043	96	Gravel surface, HSG A
4.880 4.880	31	Weighted Average 100.00% Pervious Area

Prepare		als and T	⁻ homas, I 1493 © 202		<i>Type III 24-hr 100-Year Rainfall=7.00"</i> Printed 1/19/2021 <u>D Software Solutions LLC</u> Page 41			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.6	50 191	0.0900	0.13		Sheet Flow, Tc-1 Woods: Light underbrush n= 0.400 P2= 3.40" Shallow Concentrated Flow, Tc-2			
8.8	241	Total			Woodland Kv= 5.0 fps			
0.0	271	rotar	Sum	mary for	Subcatchment PDA-6:			
Runoff Runoff b	·							
			ainfall=7.0					
<u>Area</u>			cription	over, Good				
0.	225 9	96 Grav	el surface	,				
9. 9.		41 Weię 99.6	ghted Aver 7% Pervio % Impervi	rage lus Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.5 9.0	50 607	0.0200	0.15 1.13		Sheet Flow, Tc-1 Grass: Short n= 0.150 P2= 3.40" Shallow Concentrated Flow, Tc-2			
			1.10		Short Grass Pasture Kv= 7.0 fps			
14.5	657	Total	-	_				
			Sum	mary for	Subcatchment PDA-7:			
Runoff	=	6.18 cfs	s@ 12.3	2 hrs, Volu	me= 0.961 af, Depth= 0.92"			
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"								
Area			cription					
0.	12.168 39 >75% Grass cover, Good, HSG A 0.365 96 Gravel surface, HSG A 0.032 98 Equipment Pad Area, HSC A							

0.36596Gravel surface, HSG A0.03298Equipment Pad Area, HSG A12.56541Weighted Average12.53399.75% Pervious Area0.0320.25% Impervious Area

1833112HC002B Prepared by Beals and Thomas, Inc.

HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.5	50	0.0200	0.15		Sheet Flow, Tc-1
						Grass: Short n= 0.150 P2= 3.40"
	9.7	785	0.0370	1.35		Shallow Concentrated Flow, Tc-2
_						Short Grass Pasture Kv= 7.0 fps
	15.2	835	Total			

Type III 24-hr 100-Year Rainfall=7.00"

Printed 1/19/2021

Page 42

Summary for Subcatchment PDA-8:

Runoff = 5.47 cfs @ 12.27 hrs, Volume= 0.716 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.00"

Area	(ac) (CN Des	cription				
6	6.768 39 >75% Grass cover, Good, HSG A						
0				over, Good			
			vel surface	,	, -		
				Area, HS	GA		
			ghted Aver	,	-		
	.373		4% Pervio				
	.064		3% Impervi				
Ū	.004	0.00		0007400			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)		(ft/sec)	(cfs)	•		
7.2	50	0.0100	0.12	× 4	Sheet Flow, Tc-1		
					Grass: Short n= 0.150 P2= 3.40"		
2.3	164	0.0300	1.21		Shallow Concentrated Flow, Tc-2		
					Short Grass Pasture Kv= 7.0 fps		
4.0	175	0.0110	0.73		Shallow Concentrated Flow, Tc-3		
			00		Short Grass Pasture Kv= 7.0 fps		
1.2	151	0.0930	2.13		Shallow Concentrated Flow, Tc-4		
					Short Grass Pasture Kv= 7.0 fps		
14.7	540	Total					

Summary for Subcatchment PDA-9:

Runoff = 5.00 cfs @ 12.65 hrs, Volume= 0.958 af, Depth= 1.07"

 Area (ac)	CN	Description			
10.016	39	>75% Grass cover, Good, HSG A			
 0.686	96	Gravel surface, HSG A			
10.702	43	Weighted Average			
10.702		100.00% Pervious Area			

 Type III 24-hr
 100-Year Rainfall=7.00"

 Printed
 1/19/2021

 ns LLC
 Page 43

Prepared by Beals and Thomas, Inc. HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
 7.2	50	0.0100	0.12		Sheet Flow, Tc-1
					Grass: Short n= 0.150 P2= 3.40"
6.5	273	0.0100	0.70		Shallow Concentrated Flow, Tc-2
					Short Grass Pasture Kv= 7.0 fps
7.1	572	0.0370	1.35		Shallow Concentrated Flow, Tc-3
					Short Grass Pasture Kv= 7.0 fps
5.7	228	0.0090	0.66		Shallow Concentrated Flow, Tc-4
					Short Grass Pasture Kv= 7.0 fps
10.4	516	0.0140	0.83		Shallow Concentrated Flow, Tc-5
					Short Grass Pasture Kv= 7.0 fps

36.9 1,639 Total

Summary for Reach DP-1: DP-1

Inflow Area =	11.513 ac,	0.28% Impervious, Inflow [Depth = 0.08"	for 100-Year event
Inflow =	0.22 cfs @	16.96 hrs, Volume=	0.079 af	
Outflow =	0.22 cfs @	16.96 hrs, Volume=	0.079 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-2: DP-2

Inflow Area =	32.680 ac,	0.29% Impervious, Ir	flow Depth = 0.25 "	for 100-Year event
Inflow =	1.74 cfs @	13.95 hrs, Volume=	0.684 af	
Outflow =	1.74 cfs @	13.95 hrs, Volume=	0.684 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-3: DP-3

Inflow Area =	20.561 ac,	0.00% Impervious, Inflow E	Depth = 0.12"	for 100-Year event
Inflow =	0.59 cfs @	12.94 hrs, Volume=	0.212 af	
Outflow =	0.59 cfs @	12.94 hrs, Volume=	0.212 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-4: DP-4

Inflow Area =	15.797 ac,	0.00% Impervious, Inflow E	Depth = 0.00"	for 100-Year event
Inflow =	0.06 cfs @	13.45 hrs, Volume=	0.005 af	
Outflow =	0.06 cfs @	13.45 hrs, Volume=	0.005 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Reach DP-5: DP-5

Inflow Area	=	8.772 ac,	0.00% Impervious,	Inflow Depth = (0.15" for 100-Year event
Inflow =	=	0.30 cfs @	12.80 hrs, Volume	e= 0.110 a	f
Outflow =	=	0.30 cfs @	12.80 hrs, Volume	e= 0.110 a	f, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond 1: BASIN-1

Inflow Area =	9.635 ac,	0.33% Impervious, Inflow D	epth = 0.92" for 100-Year event
Inflow =	4.79 cfs @	12.31 hrs, Volume=	0.737 af
Outflow =	0.53 cfs @	16.98 hrs, Volume=	0.519 af, Atten= 89%, Lag= 280.3 min
Discarded =	0.37 cfs @	16.98 hrs, Volume=	0.498 af
Primary =	0.16 cfs @	16.98 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 68.03' @ 16.98 hrs Surf.Area= 6,581 sf Storage= 17,458 cf

Plug-Flow detention time= 438.6 min calculated for 0.519 af (70% of inflow) Center-of-Mass det. time= 326.2 min (1,252.6 - 926.4)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	64.00'	24,45	50 cf Custom	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee	et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
64.0		2,230	0	0	
65.0	00	3,230	2,730	2,730	
66.0	00	4,280	3,755	6,485	
67.0	00	5,390	4,835	11,320	
68.0	00	6,550	5,970	17,290	
69.0	00	7,770	7,160	24,450	
Device	Routing	Invert	Outlet Device	es	
#1	Discarded	64.00'	2.410 in/hr E	xfiltration over	Surface area
#2	Primary	68.00'	10.0' long x	0.5' breadth Bro	oad-Crested Rectangular Weir
			Head (feet)	0.20 0.40 0.60	0.80 1.00
			Coef. (Englis	h) 2.80 2.92 3.	08 3.30 3.32

Discarded OutFlow Max=0.37 cfs @ 16.98 hrs HW=68.03' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.37 cfs)

Primary OutFlow Max=0.11 cfs @ 16.98 hrs HW=68.03' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.11 cfs @ 0.45 fps)

Summary for Pond 2: BASIN-2

Inflow Area =	12.565 ac,	0.25% Impervious, Inflow De	epth = 0.92" for 100-Year event
Inflow =	6.18 cfs @	12.32 hrs, Volume=	0.961 af
Outflow =	1.40 cfs @	14.03 hrs, Volume=	0.899 af, Atten= 77%, Lag= 102.2 min
Discarded =	0.57 cfs @	14.03 hrs, Volume=	0.736 af
Primary =	0.83 cfs @	14.03 hrs, Volume=	0.162 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.10' @ 14.03 hrs Surf.Area= 10,243 sf Storage= 15,008 cf

Plug-Flow detention time= 276.0 min calculated for 0.899 af (93% of inflow) Center-of-Mass det. time= 244.2 min (1,171.3 - 927.1)

Volume	Inver	t Avail.Sto	rage Storage	e Description		
#1	52.00)' 25,74	40 cf Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
52.0	00	4,250	0	0		
53.0	00	6,970	5,610	5,610		
54.0	00	9,900	8,435	14,045		
55.0	00	13,490	11,695	25,740		
Device	Routing	Invert	Outlet Device	es		
#1	Discarded	52.00'	2.410 in/hr E	xfiltration over	Surface area	
#2	Primary	54.00'	10.0' long x	0.5' breadth Bro	oad-Crested Rectangular Weir	
	2		Head (feet)	0.20 0.40 0.60	0.80 1.00	
			Coef. (Englis	h) 2.80 2.92 3.	08 3.30 3.32	
Discard	Discarded OutFlow Max=0.57 cfs @ 14.03 hrs HW=54.10' (Free Discharge)					

1=Exfiltration (Exfiltration Controls 0.57 cfs)

Primary OutFlow Max=0.83 cfs @ 14.03 hrs HW=54.10' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.83 cfs @ 0.87 fps)

Summary for Pond 3: BASIN-3

Inflow Area =	7.437 ac, 0.86% Imper	vious, Inflow Depth =	1.15" for 100-Year event
Inflow =	5.47 cfs @ 12.27 hrs, V	/olume= 0.716	af
Outflow =	0.38 cfs @ 17.93 hrs, V	/olume= 0.516	af, Atten= 93%, Lag= 340.0 min
Discarded =	0.38 cfs @ 17.93 hrs, V	/olume= 0.516	af
Primary =	0.00 cfs @ 5.00 hrs, V	/olume= 0.000	af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 35.60' @ 17.93 hrs Surf.Area= 6,823 sf Storage= 17,559 cf

Plug-Flow detention time= 450.3 min calculated for 0.516 af (72% of inflow) Center-of-Mass det. time= 343.6 min (1,255.1 - 911.6)

1833112HC002B Type III 24-hr 100-Year Rainfall=7.00" Prepared by Beals and Thomas, Inc. Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 46 Volume Invert Avail.Storage Storage Description #1 32.00' 28,028 cf Custom Stage Data (Prismatic) Listed below Cum.Store Elevation Surf.Area Inc.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 32.00 3,025 0 0 3,970 3,498 33.00 3,498 34.00 4,990 4,480 7,978 35.00 6.080 5.535 13.513 36.00 7,310 6,695 20,208 37.00 8,330 7,820 28,028 Device Routing Invert **Outlet Devices** #1 Discarded 32.00' 2.410 in/hr Exfiltration over Surface area #2 Primary 36.00' 10.0' long x 5.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88 Discarded OutFlow Max=0.38 cfs @ 17.93 hrs HW=35.60' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.38 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=32.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 4: BASIN-4

Inflow Area =	4.720 ac,	0.00% Impervious, Inflow D	Depth = 0.77" for 100-Year event
Inflow =	1.75 cfs @	12.36 hrs, Volume=	0.302 af
Outflow =	0.34 cfs @	15.36 hrs, Volume=	0.302 af, Atten= 80%, Lag= 180.2 min
Discarded =	0.34 cfs @	15.36 hrs, Volume=	0.302 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.70' @ 15.36 hrs Surf.Area= 6,134 sf Storage= 3,867 cf

Plug-Flow detention time= 125.2 min calculated for 0.302 af (100% of inflow) Center-of-Mass det. time= 125.0 min (1,062.5 - 937.5)

Volume	Invert	Avail.Storage	Storage	Description	
#1	48.00'	13,330 cf	Custom	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevation (feet)	Surf.A (sc		.Store c-feet)	Cum.Store (cubic-feet)	
48.00	4,9	940	0	0	
49.00	6,	650	5,795	5,795	
50.00	8,4	420	7,535	13,330	

 Type III 24-hr
 100-Year Rainfall=7.00"

 Printed
 1/19/2021

 ns LLC
 Page 47

Prepared by Beals and Thom	nas, Inc.
HydroCAD® 10.10-4a s/n 04493	© 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	48.00'	2.410 in/hr Exfiltration over Surface area
#2	Primary	49.00'	10.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.34 cfs @ 15.36 hrs HW=48.70' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.34 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=48.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 5: BASIN-5

Inflow Area =	15.422 ac,	0.00% Impervious, Inflow D	epth = 0.75" for 100-Year event
Inflow =	5.00 cfs @	12.65 hrs, Volume=	0.958 af
Outflow =	0.71 cfs @	16.92 hrs, Volume=	0.917 af, Atten= 86%, Lag= 256.0 min
Discarded =	0.71 cfs @	16.92 hrs, Volume=	0.917 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.89' @ 16.92 hrs Surf.Area= 12,640 sf Storage= 19,044 cf

Plug-Flow detention time= 328.4 min calculated for 0.915 af (96% of inflow) Center-of-Mass det. time= 306.8 min (1,243.6 - 936.8)

Volume	Invert	Avail.Sto	rage Stora	ge Description	
#1	45.00'	34,78	85 cf Custo	om Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet 45.00 46.00 47.00 48.00	t) 0 0 0	urf.Area (sq-ft) 7,570 10,180 12,940 15,760	Inc.Store (cubic-feet) 0 8,875 11,560 14,350	Cum.Store (cubic-feet) 0 8,875 20,435 34,785	
Device	Routing	Invert	Outlet Devi	ces	
	Discarded Primary	45.00' 47.00'	10.0' long Head (feet)	Exfiltration over \$ x 0.5' breadth Bro 0.20 0.40 0.60 lish) 2.80 2.92 3.	oad-Crested Rectangular Weir 0.80 1.00

Discarded OutFlow Max=0.71 cfs @ 16.92 hrs HW=46.89' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.71 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=45.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 6: BASIN-6

Inflow Area =	15.358 ac,	0.00% Impervious, Inflow D	epth = 1.00" for 100-Year event
Inflow =	6.52 cfs @	12.64 hrs, Volume=	1.274 af
Outflow =	1.05 cfs @	16.48 hrs, Volume=	1.106 af, Atten= 84%, Lag= 230.6 min
Discarded =	1.03 cfs @	16.48 hrs, Volume=	1.105 af
Primary =	0.03 cfs @	16.48 hrs, Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 69.00' @ 16.48 hrs Surf.Area= 18,378 sf Storage= 25,461 cf

Plug-Flow detention time= 328.6 min calculated for 1.104 af (87% of inflow) Center-of-Mass det. time= 269.0 min (1,209.3 - 940.2)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	66.00	49,58	B0 cf Custom	n Stage Data (Prisr	natic) Listed below (Recalc)
Elevatio (fee 66.0 67.0 68.0	t) 00 00	urf.Area (sq-ft) 3,840 6,120 8,170	Inc.Store (cubic-feet) 0 4,980 7,145	Cum.Store (cubic-feet) 0 4,980	
69.0	•	18,320	13,245	12,125 25,370	
70.0	•	30,100	24,210	49,580	
Device	Routing	Invert	Outlet Device	es	
#1 #2	Discarded Primary	66.00' 69.00'	10.0' long x Head (feet)	xfiltration over Su 0.5' breadth Broad 0.20 0.40 0.60 0.8 h) 2.80 2.92 3.08	I-Crested Rectangular Weir 30 1.00
Discarde	ed OutFlow	Max=1.03 cf	s @ 16.48 hrs	HW=69.00' (Free	e Discharge)

1=Exfiltration (Exfiltration Controls 1.03 cfs)

Primary OutFlow Max=0.01 cfs @ 16.48 hrs HW=69.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.01 cfs @ 0.20 fps)

Summary for Pond 7: BASIN-7

Inflow Area =	3.707 ac,	0.00% Impervious, Inflow D	epth = 1.32" for 100-Year event
Inflow =	3.44 cfs @	12.23 hrs, Volume=	0.408 af
Outflow =	0.39 cfs @	15.38 hrs, Volume=	0.377 af, Atten= 89%, Lag= 188.7 min
Discarded =	0.39 cfs @	15.38 hrs, Volume=	0.377 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 78.75' @ 15.38 hrs Surf.Area= 7,005 sf Storage= 7,818 cf

Plug-Flow detention time= 291.5 min calculated for 0.377 af (92% of inflow) Center-of-Mass det. time= 254.9 min (1,157.0 - 902.1)

1833112HC002B Type III 24-hr 100-Year Rainfall=7.00" Prepared by Beals and Thomas, Inc. Printed 1/19/2021 HydroCAD® 10.10-4a s/n 04493 © 2020 HydroCAD Software Solutions LLC Page 49 Volume Invert Avail.Storage Storage Description #1 76.00' 22,385 cf Custom Stage Data (Prismatic) Listed below (Recalc) Surf.Area Inc.Store Cum.Store Elevation (feet) (sq-ft) (cubic-feet) (cubic-feet) 76.00 1,270 0 0 77.00 1,780 1,525 1,525 78.00 3,170 2,475 4,000 9.725 79.00 8.280 5.725 80.00 17,040 12,660 22,385 Device Routing **Outlet Devices** Invert Discarded 2.410 in/hr Exfiltration over Surface area #1 76.00' #2 79.00' 10.0' long x 0.5' breadth Broad-Crested Rectangular Weir Primary Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32 **Discarded OutFlow** Max=0.39 cfs @ 15.38 hrs HW=78.75' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.39 cfs) Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=76.00' (Free Discharge) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) Summary for Pond T-1: TRENCH-1

Inflow Area = 0.439 ac,	0.00% Impervious, Inflov	v Depth = 1.15" for 100-Year event
Inflow = 0.42 cfs @	12.12 hrs, Volume=	0.042 af
Outflow = 0.09 cfs @	0 13.45 hrs, Volume=	0.042 af, Atten= 79%, Lag= 80.0 min
Discarded = 0.03 cfs @	0 12.00 hrs, Volume=	0.038 af
Primary = 0.06 cfs @	0 13.45 hrs, Volume=	0.004 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 67.02' @ 13.45 hrs Surf.Area= 0.013 ac Storage= 0.015 af

Plug-Flow detention time= 232.4 min calculated for 0.042 af (100% of inflow) Center-of-Mass det. time= 232.4 min (1,135.8 - 903.5)

Volume	Invert	Avail.Storage	Storage Description
#1	64.00'	0.015 af	3.00'W x 185.00'L x 3.00'H Prismatoid 0.038 af Overall x 40.0% Voids
Device	Routing	Invert O	utlet Devices
#1 #2	Discarded Primary	66.99' 3. (He	410 in/hr Exfiltration over Surface area 0' long x 0.5' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 pef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.03 cfs @ 12.00 hrs HW=64.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.05 cfs @ 13.45 hrs HW=67.02' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.52 fps)

Summary for Pond T-2: TRENCH-2

Inflow Area =	0.185 ac,	0.00% Impervious, Inflow De	epth > 5.47" for 100-Year event
Inflow =	1.12 cfs @	12.09 hrs, Volume=	0.084 af
Outflow =	0.17 cfs @	12.80 hrs, Volume=	0.084 af, Atten= 84%, Lag= 42.6 min
Discarded =	0.06 cfs @	10.75 hrs, Volume=	0.081 af
Primary =	0.12 cfs @	12.80 hrs, Volume=	0.003 af

Routing by Stor-Ind method, Time Span= 5.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 60.04' @ 12.80 hrs Surf.Area= 0.023 ac Storage= 0.037 af

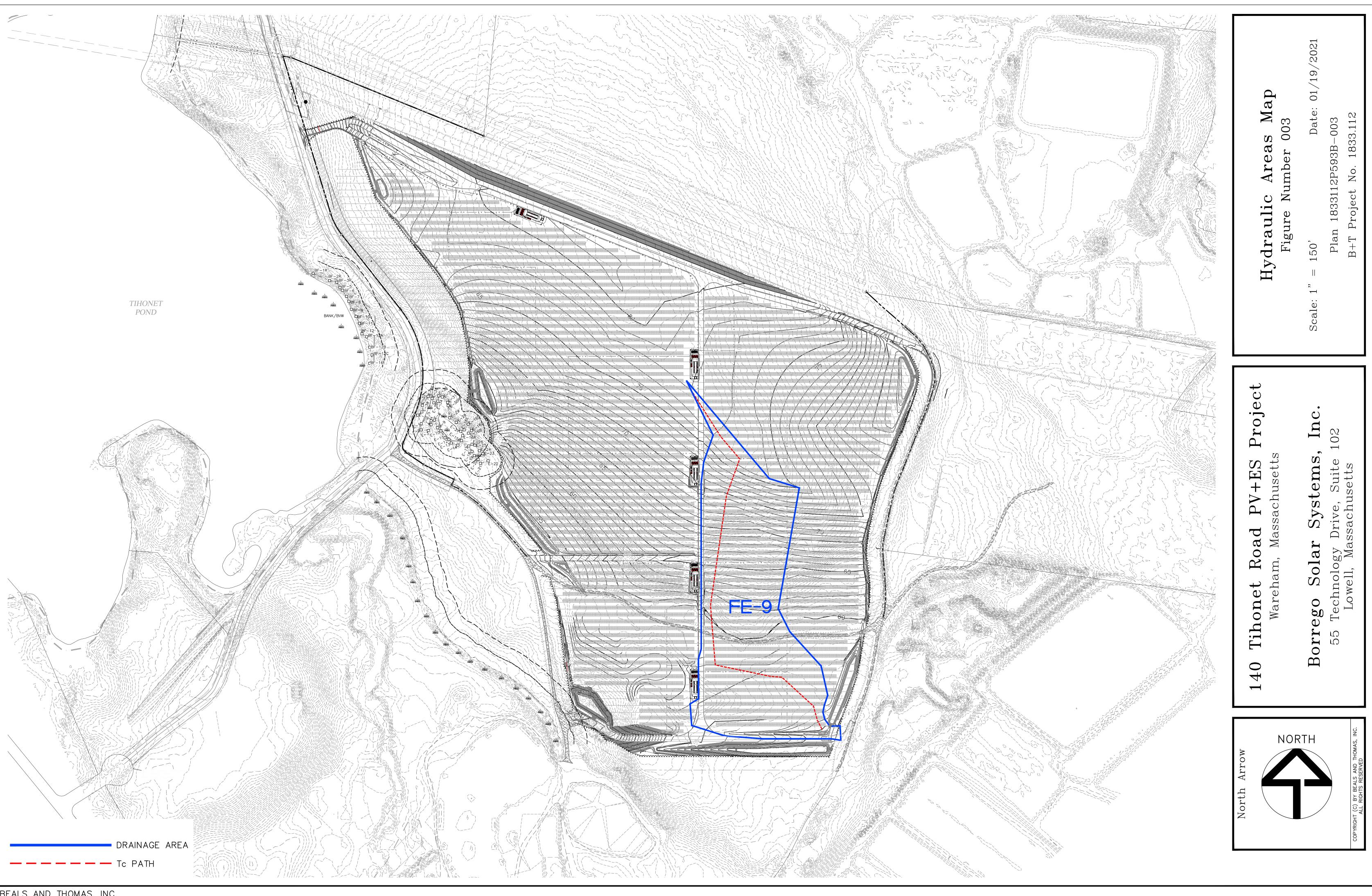
Plug-Flow detention time= 249.4 min calculated for 0.084 af (100% of inflow) Center-of-Mass det. time= 249.1 min (1,038.9 - 789.8)

Volume	Invert	Avail.Storage	Storage Description
#1	56.00'	0.037 af	4.00'W x 254.00'L x 4.00'H Prismatoid 0.093 af Overall x 40.0% Voids
Device	Routing	Invert Ou	itlet Devices
#1 #2	Discarded Primary	59.99' 4.0 He	H10 in/hr Exfiltration over Surface area D' long x 0.5' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 bef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.06 cfs @ 10.75 hrs HW=56.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.11 cfs @ 12.80 hrs HW=60.04' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.11 cfs @ 0.60 fps)

Attachment 4 Hydraulic Analysis



IOD NO / IOC ATION.
JOB NO./LOCATION:
1833.112 Weinham MA
Wareham, MA
CLIENT/PROJECT:
Borrego Solar Systems, Inc.
140 Tihonet Road PV+ES Project
J. J.
SUBJECT/TITLE:
Hydraulic Calculations
OBJECTIVE OF CALCULATION:
• To size culvert pipes to adequately convey flows from the proposed project and to meet the design standards
of the Massachusetts DEP Stormwater Handbook for inlet capacity, pipe flow, and scour.
CALCULATION METHOD(S):
• Culverts are designed using the Rational Formula, based on a 50-year storm event for the Town of Barnstable
(see attached IDF curve).
ASSUMPTIONS:
• Runoff coefficient C=0.3 for pervious areas and C=0.9 for impervious areas.
 Manning's n=0.012 for HDPE pipe.
 The times of concentration for contributing subcatchments are approximately 40 minutes for flows to FE-9.
 The minimum full-flow (scour) velocity is 2 feet per second.
 The maximum full-flow (scour) velocity is 2 feet per second.
• The maximum run-now (scour) velocity is to reciper second.
SOURCES OF DATA/EQUATIONS:
• 140 Tihonet Road PV+ES Project Grading and Drainage Plans, prepared by Borrego Solar Systems, Inc.,
plan numbers $C-4.0 - C4.4$.
• Rational Method (Q=CiA) was used to calculate peak runoff rates tributary to FE-9.
• Manning's Equation was used to determine pipe capacities.
• 50-year storm intensity obtained from the Intensity/Duration rainfall curve for Plymouth, MA in S.C.S
Technical Report No. 40.
Massachusetts DEP Stormwater Management Handbook, February 2008.
CONCLUSIONS:

- The proposed culvert pipes will adequately convey the 50-year storm event runoff rates.
- The proposed stormwater management design has been reviewed for compliance with the stormwater management standards described in the Massachusetts DEP Stormwater Management Handbook.

REV	CALC. BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE
0	N. Bautz	05/31/2020	J. Murphy	06/01/2020	J. Murphy	06/01/2020
1	N. Bautz	1/14/2021	J. Murphy	1/19/2021	J. Murphy	1/19/2021

NBB/1833112CS003B

BEALS AND THOMAS, INC.

Using the Rational Method:

Q = CIA

Where:

Q = flow (cfs)

C = Runoff Coefficient (0.9 for impervious areas)

I = Rainfall Intensity, 50-year storm (in/hr) (from Barnstable IDF curve, see attache A = Contributing Area (acres)

Assumptions: - Coefficient of runoff for Gravel Surfaces = 0.9

- Coefficient of runoff for Pervious Surfaces = 0.3

Inlet	Contributing Area (Acres)	Weighted Average Rational Coefficients	Rainfall Intensity for Barnstable (in/hr)	Contributing Flow (cfs)
FE-9	9.592	0.30	3.00	8.63

JOB NO.	1833.112	COMPUTED BY	NBB
FILE 140	ihonet Road PV+ES Project		1/14/2021
		CHECKED BY	JRM
		DATE	1/19/2021

Using the Manning Equation to Verify Pipe Capacities Versus Pipe Flows:

$$Q = \frac{1.49}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$$

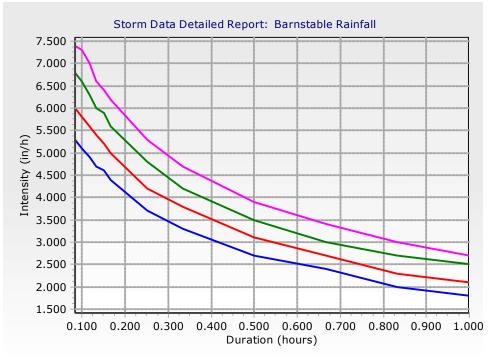
Where:

Q = flow (cfs) n = Manning's roughness coefficient A = Cross Sectional Area (sf) R = Hydraulic Radius (ft) S = Pipe Slope

Assumptions: n = 0.012 for HDPE pipe Pipe velocity shall be between 2.0 ft/sec and 10 ft/sec

Pipe Connection	Contributing Flow-50 Year Storm(cfs)	Proposed Pipe Size and Material	Proposed Pipe Slope (rise/run)	Full-Flow Capacity of Pipe from Manning Equation (cfs)	Adequate	Full Flow Velocity (ft/sec)
FE-9 to FE-10	8.63	15" HDPE	0.024	10.87	ОК	8.9

JOB NO.	1833.112	COMPUTED BY	NBB	CHECKED BY	JRM
FILE	140 Tihonet Road PV+ES Project	DATE	1/14/2021	DATE 1/1	9/2021


Element Details					
ID		30	Notes		
Label	E	Barnstable Rainfall			
Duration (hours)	10 Year (in/h)	25 Year (in/h)	50 Year (in/h)	100 Year (in/h)	
0.083	5.300	6.000	6.800	7.400	
0.100	5.100	5.800	6.600	7.300	
0.117	4.900	5.600	6.300	7.000	
0.133	4.700	5.400	6.000	6.600	
0.150	4.600	5.200	5.900	6.400	
0.167	4.400	5.000	5.600	6.200	
0.250	3.700	4.200	4.800	5.300	
0.333	3.300	3.800	4.200	4.700	
0.500	2.700	3.100	3.500	3.900	
0.667	2.400	2.700	3.000	3.400	
0.833	2.000	2.300	2.700	3.000	
1.000	1.800	2.100	2.500	2.700	

Storm Data Detailed Report: Barnstable Rainfall

Library Status Summary

	Synchronization Details
ID	30
Label	Barnstable Rainfall
Modified Date	3/11/2020 4:13:38 PM
Library Source	G:\Corp-Data\Qags\StormCAD\8 XM\Rainfall .xml
Library Modified Date	10/16/2008 3:19:18 PM
Synchronization Status	Synchronize to Library
Engineering Reference Guid	686ed606-a18a-4e03-9cab- f4a1ec6f02ac

Untitled1.stsw 3/11/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 2

Storm Data Detailed Report: Barnstable Rainfall

Untitled1.stsw 3/11/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley StormCAD CONNECT Edition [10.01.01.04] Page 2 of 2 Attachment 5 Drawdown and Groundwater Recharge Calculations

wdown Time =	Rv		where:	Rv = Storage Volume Below Outlet [Ac-ft]
wdown nine – — ((K) (Bottom Area)		where:	K= Infiltration Rate [in/hr]
				Bottom Area= Bottom Area of Recharge System [Ac]
Infiltration Basin-1				
	Rv =	0.397 Ac	-ft	
	K =	2.410 in/	′hr	
Botto	m Area =	0.051 Ac	res	
Drawdow	n Time =	38.760 Ho	ours	< 72 Hours, Design is in compliance with the standard.
Infiltration Basin-2				
	Rv =	0.322 Ac	-ft	
	K =	2.410 in/		
Botto	m Area =	0.098 Ac		
Drawdow	n Time =	16.360 Ho	ours	< 72 Hours, Design is in compliance with the standard.
	Rv = K =	0.464 Ac 2.410 in/		
Botto				
Drawdow	m Area =	0.069 Ac	res	
	m Area = r n Time =	0.069 Ac 33.484 Ho		< 72 Hours, Design is in compliance with the standard.
Infiltration Basin-4				< 72 Hours, Design is in compliance with the standard.
			ours	< 72 Hours, Design is in compliance with the standard.
	n Time =	33.484 Ho	-ft	< 72 Hours, Design is in compliance with the standard.
Infiltration Basin-4	r <mark>n Time =</mark> Rv =	33.484 Ho 0.133 Ac	-ft /hr	< 72 Hours, Design is in compliance with the standard.
Infiltration Basin-4	n Time = Rv = K = m Area =	33.484 Ho 0.133 Ac 2.410 in/	-ft /hr res	< 72 Hours, Design is in compliance with the standard. < 72 Hours, Design is in compliance with the standard.
Infiltration Basin-4 Botto	n Time = Rv = K = m Area =	33.484 Ho 0.133 Ac 2.410 in/ 0.113 Ac	-ft /hr res	
Infiltration Basin-4 Botto Drawdow	n Time = Rv = K = m Area =	33.484 Ho 0.133 Ac 2.410 in/ 0.113 Ac	-ft /hr res purs	
Infiltration Basin-4 Botto Drawdow	n Time = Rv = K = m Area = n Time =	33.484 Ho 0.133 Ac 2.410 in/ 0.113 Ac 5.861 Ho	-ft /hr res burs -ft	
Infiltration Basin-4 Botto Drawdow Infiltration Basin-5	rn Time = Rv = K = m Area = rn Time =	33.484 Ho 0.133 Ac 2.410 in/ 0.113 Ac 5.861 Ho 0.470 Ac	-ft /hr res purs -ft /hr	

Infiltration Basin-6

Rv =	0.582 Ac-ft	
К =	2.410 in/hr	
Bottom Area =	0.088 Acres	
Drawdown Time =	32.931 Hours	< 72 Hours, Design is in compliance with the standard
Infiltration Basin-7		
Rv =	0.223 Ac-ft	
К =	2.410 in/hr	
Bottom Area =	0.029 Acres	
Drawdown Time =	38.289 Hours	< 72 Hours, Design is in compliance with the standard
Infiltration Trench-1		
Infiltration Trench-1 Rv = K =	0.015 Ac-ft 2.410 in/hr	
	0.015 Ac-ft 2.410 in/hr 0.013 Acres	
Rv = K =	2.410 in/hr	< 72 Hours, Design is in compliance with the standar
Rv = K = Bottom Area =	2.410 in/hr 0.013 Acres	< 72 Hours, Design is in compliance with the standar
Rv = K = Bottom Area = Drawdown Time =	2.410 in/hr 0.013 Acres	< 72 Hours, Design is in compliance with the standar
Rv = K = Bottom Area = Drawdown Time = Infiltration Trench-2	2.410 in/hr 0.013 Acres 5.745 Hours	< 72 Hours, Design is in compliance with the standar
Rv = K = Bottom Area = Drawdown Time = Infiltration Trench-2 Rv =	2.410 in/hr 0.013 Acres 5.745 Hours 0.037 Ac-ft	< 72 Hours, Design is in compliance with the standar

Note:

1. The infiltration BMPs have been designed to fully drain within 72 hours, therefore the proposed stormwater management design is in compliance with Standard 3.

2. Infiltration Rate based on Volume 3, Chapter 1, Table 2.3.3 *Rawls Rates* from the 2008 MA DEP Stormwater Management Handbook.

JOB NO. 1833.112	COMPUTED BY:	NBB	CHECKED BY:	JRM
JOB: 140 Tihonet Road PV+ES Project	DATE:	1/14/2021	DATE:	1/19/2021

Stage-Area-Storage for Pond 1: BASIN-1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(acres)	(acre-feet)	(feet)	(acres)	(acre-feet)
64.00	0.051	0.000	66.60	0.114	0.212
64.05	0.052	0.003	66.65	0.115	0.218
64.10	0.053	0.005	66.70	0.116	0.224
64.15	0.055	0.008	66.75	0.117	0.230
64.20	0.056	0.011	66.80	0.119	0.236
64.25	0.057	0.014	66.85	0.120	0.242
64.30	0.058	0.016	66.90	0.121	0.248
64.35	0.059	0.019	66.95	0.122	0.254
64.40	0.060	0.022	67.00	0.124	0.260
64.45	0.062	0.025	67.05	0.125	0.266
64.50	0.063	0.028	67.10	0.126	0.272
64.55	0.064	0.032	67.15	0.128	0.279
64.60	0.065	0.035	67.20	0.129	0.285
64.65	0.066	0.038	67.25	0.130	0.292
64.70	0.067	0.041	67.30	0.132	0.298
64.75	0.068	0.045	67.35	0.133	0.305
64.80	0.070	0.048	67.40	0.134	0.311
64.85	0.071	0.052	67.45	0.136	0.318
64.90	0.072	0.055	67.50	0.137	0.325
64.95	0.073	0.059	67.55	0.138	0.332
65.00	0.074	0.063	67.60	0.140	0.339
65.05	0.075	0.066	67.65	0.141	0.346
65.10	0.077	0.070	67.70	0.142	0.353
65.15	0.078	0.074	67.75	0.144	0.360
65.20	0.079	0.078	67.80	0.145	0.367
65.25	0.080	0.082	67.85	0.146	0.375
65.30	0.081	0.086	67.90	0.148	0.382
65.35	0.083	0.090	67.95	0.149	0.389
65.40	0.084	0.094	<mark>68.00</mark>	0.150	0.397
65.45	0.085	0.098	68.05	0.152	0.404
65.50	0.086	0.103	68.10	0.153	0.412
65.55	0.087	0.107	68.15	0.155	0.420
65.60	0.089	0.112	68.20	0.156	0.428
65.65	0.090	0.116	68.25	0.157	0.435
65.70	0.091	0.120	68.30	0.159	0.443
65.75	0.092	0.125	68.35	0.160	0.451
65.80	0.093	0.130	68.40	0.162	0.459
65.85	0.095	0.134	68.45	0.163	0.467
65.90	0.096	0.139	68.50	0.164	0.476
65.95	0.097	0.144	68.55	0.166	0.484
66.00	0.098	0.149	68.60	0.167	0.492
66.05	0.100	0.154	68.65	0.169	0.501
66.10	0.101	0.159	68.70	0.170	0.509
66.15	0.102	0.164	68.75	0.171	0.518
66.20	0.103	0.169	68.80	0.173	0.526
66.25	0.105	0.174	68.85	0.174	0.535
66.30	0.106	0.179	68.90	0.176	0.544
66.35	0.107	0.185	68.95	0.177	0.552
66.40 66.45	0.108	0.190	69.00	0.178	0.561
66.45 66.50	0.110	0.196			
66.50 66.55	0.111 0.112	0.201 0.207			
00.00	0.112	0.207			
			I		

Stage-Area-Storage for Pond 2: BASIN-2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(acres)	(acre-feet)	(feet)	(acres)	(acre-feet)
52.00	0.098	0.000	54.60	0.277	0.474
52.05	0.101	0.005	54.65	0.281	0.488
52.10	0.104	0.010	54.70	0.285	0.502
52.15	0.107	0.015	54.75	0.289	0.516
52.20	0.110	0.021	54.80	0.293	0.531
52.25	0.113	0.026	54.85	0.297	0.545
52.30	0.116	0.032	54.90	0.301	0.560
52.35	0.119	0.038	54.95	0.306	0.576
52.40	0.123	0.044	55.00	0.310	0.591
52.45	0.126	0.050			
52.50	0.129	0.057			
52.55	0.132	0.063			
52.60	0.135	0.070			
52.65	0.138	0.077			
52.70	0.141	0.084			
52.75	0.144	0.091			
52.80 52.85	0.148	0.098			
	0.151	0.105			
52.90 52.95	0.154 0.157	0.113 0.121			
53.00	0.157	0.121			
53.05	0.163	0.129			
53.10	0.167	0.137			
53.15	0.170	0.143			
53.20	0.170	0.162			
53.25	0.173	0.171			
53.30	0.180	0.171			
53.35	0.184	0.189			
53.40	0.187	0.198			
53.45	0.190	0.208			
53.50	0.194	0.217			
53.55	0.197	0.227			
53.60	0.200	0.237			
53.65	0.204	0.247			
53.70	0.207	0.257			
53.75	0.210	0.268			
53.80	0.214	0.278			
53.85	0.217	0.289			
53.90	0.221	0.300			
53.95	0.224	0.311			
54.00	0.227	0.322			
54.05	0.231	0.334			
54.10	0.236	0.346			
54.15	0.240	0.357			
54.20	0.244	0.370			
54.25	0.248	0.382			
54.30	0.252	0.394			
54.35	0.256	0.407			
54.40	0.260	0.420			
54.45	0.264	0.433			
54.50	0.268	0.446			
54.55	0.273	0.460			
		I			

Stage-Area-Storage for Pond 3: BASIN-3

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Elevation	Surface	Storage	Elevation	Surface	Storage
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
34.150.1180.20236.750.1850.59934.200.1200.20936.800.1870.60834.250.1210.21536.850.1880.61634.300.1220.22136.900.1890.62534.350.1230.22836.950.1900.63434.400.1250.23437.000.1910.64334.450.1260.2400.2470.2470.247						
34.200.1200.20936.800.1870.60834.250.1210.21536.850.1880.61634.300.1220.22136.900.1890.62534.350.1230.22836.950.1900.63434.400.1250.23437.00 0.1910.643 34.450.1260.24034.500.1270.247						
34.25 0.121 0.215 36.85 0.188 0.616 34.30 0.122 0.221 36.90 0.189 0.625 34.35 0.123 0.228 36.95 0.190 0.634 34.40 0.125 0.234 37.00 0.191 0.643 34.45 0.126 0.240 34.50 0.127 0.247						
34.30 0.122 0.221 36.90 0.189 0.625 34.35 0.123 0.228 36.95 0.190 0.634 34.40 0.125 0.234 37.00 0.191 0.643 34.45 0.126 0.240 37.00 0.191 0.643						
34.35 0.123 0.228 36.95 0.190 0.634 34.40 0.125 0.234 37.00 0.191 0.643 34.45 0.126 0.240 37.00 0.191 0.643 34.50 0.127 0.247 0.247 0.191 0.643						
34.40 0.125 0.234 37.00 0.191 0.643 34.45 0.126 0.240 37.00 0.191 0.643 34.50 0.127 0.247 0.247 0.191 0.643						
34.45 0.126 0.240 34.50 0.127 0.247						
34.50 0.127 0.247				37.00	0.191	0.643
34.55 0.128 0.253						
I	34.55	0.128	0.253			
				l		

Stage-Area-Storage for Pond 4: BASIN-4

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(acres)	(acre-feet)	(feet)	(acres)	(acre-feet)
48.00	0.113	0.000	49.04	0.154	0.139
48.02	0.114	0.002	49.06	0.155	0.142
48.04	0.115	0.005	49.08	0.156	0.145
48.06	0.116	0.007	49.10	0.157	0.149
48.08	0.117	0.009	49.12	0.158	0.152
48.10	0.117	0.012	49.14	0.158	0.155
48.12	0.118	0.014	49.16	0.159	0.158
48.14	0.119	0.016	49.18	0.160	0.161
48.16	0.120	0.019	49.20	0.161	0.164
48.18	0.120	0.021	49.22	0.162	0.168
48.20	0.121	0.023	49.24	0.162	0.171
48.22	0.122	0.026	49.26	0.163	0.174
48.24	0.123	0.028	49.28	0.164	0.177
48.26	0.124	0.031	49.30	0.165	0.181
48.28	0.124	0.033	49.32	0.166	0.184
48.30	0.125	0.036	49.34	0.166	0.187
48.32	0.126	0.038	49.36	0.167	0.191
48.34	0.127	0.041	49.38	0.168	0.194
48.36	0.128	0.043	49.40	0.169	0.197
48.38	0.128	0.046	49.42	0.170	0.201
48.40	0.129	0.049	49.44	0.171	0.204
48.42	0.130	0.051	49.46	0.171	0.208
48.44	0.131	0.054	49.48	0.172	0.211
48.46	0.131	0.056	49.50	0.173	0.214
48.48	0.132	0.059	49.52	0.174	0.218
48.50	0.133	0.062	49.54	0.175	0.221
48.52	0.134	0.064	49.56	0.175	0.225
48.54	0.135	0.067	49.58	0.176	0.228
48.56	0.135	0.070	49.60	0.177	0.232
48.58	0.136	0.072	49.62	0.178	0.235
48.60	0.137	0.075	49.64	0.179	0.239
48.62	0.138	0.078	49.66	0.179	0.243
48.64	0.139	0.081	49.68	0.180	0.246
48.66	0.139	0.083	49.70	0.181	0.250
48.68	0.140	0.086	49.72	0.182	0.253
48.70	0.141	0.089	49.74	0.183	0.257
48.72	0.142	0.092	49.76	0.184	0.261
48.74	0.142	0.095	49.78	0.184	0.264
48.76	0.143	0.098	49.80	0.185	0.268
48.78	0.144	0.100	49.82	0.186	0.272
48.80	0.145	0.103	49.84	0.187	0.276
48.82	0.146	0.106	49.86	0.188	0.279
48.84	0.146	0.109	49.88	0.188	0.283
48.86	0.147	0.112	49.90	0.189	0.287
48.88	0.148	0.115	49.92	0.190	0.291
48.90	0.149	0.118	49.94	0.191	0.294
48.92	0.150	0.121	49.96	0.192	0.298
48.94	0.150	0.124	49.98	0.192	0.302
48.96	0.151	0.127	50.00	0.193	0.306
48.98	0.152	0.130			
49.00	0.153	0.133			
49.02	0.153	0.136			
			I		

Elevation

(feet)

0.727 0.745 0.763 0.781 0.799

Elevation Surface Storage Surface Storage (acre-feet) (acre-feet) (acres) (feet) (acres) 0.174 0.000 47.60 0.336 0.659 0.676 0.693 0.710

(leet)	(acres)	(acre-reet)		(acres) (c
45.00	0.174	0.000	47.60	0.336	
45.05	0.177	0.009	47.65	0.339	
45.10	0.180	0.018	47.70	0.342	
45.15	0.183	0.027	47.75	0.346	
45.20	0.186	0.036	47.80	0.349	
45.25	0.189	0.045	47.85	0.352	
45.30	0.192	0.055	47.90	0.355	
45.35	0.195	0.064	47.95	0.359	
45.40	0.198	0.074	48.00	0.362	
45.45	0.201	0.084			
45.50	0.204	0.094			
45.55	0.207	0.105			
45.60	0.210	0.115			
45.65	0.213	0.126			
45.70	0.215	0.120			
45.75	0.219	0.147			
45.80	0.222	0.158			
45.85	0.225	0.169			
45.90	0.228	0.181			
45.95	0.231	0.192			
46.00	0.234	0.204			
46.05	0.237	0.216			
46.10	0.240	0.227			
46.15	0.240	0.240			
46.20	0.245	0.240			
46.25	0.250	0.264			
46.30	0.253	0.277			
46.35	0.256	0.289			
46.40	0.259	0.302			
46.45	0.262	0.315			
46.50	0.265	0.329			
46.55	0.269	0.342			
46.60	0.272	0.355			
46.65	0.275	0.369			
46.70	0.278	0.383			
46.75	0.281	0.397			
46.80	0.284	0.411			
46.85	0.288	0.425			
46.90	0.200	0.420			
46.95	0.294	0.454			
47.00	0.297	0.469			
47.05	0.300	0.484			
47.10	0.304	0.499			
47.15	0.307	0.514			
47.20	0.310	0.530			
47.25	0.313	0.545			
47.30	0.316	0.561			
47.35	0.320	0.577			
47.40	0.323	0.593			
47.45	0.326	0.609			
47.50	0.320	0.626			
47.55	0.333	0.642			

Stage-Area-Storage for Pond 5: BASIN-5

Stage-Area-Storage for Pond 6: BASIN-6

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(acres)	(acre-feet)	(feet)	(acres)	(acre-feet)
66.00	0.088	0.000	68.60	0.327	0.433
66.05	0.091	0.004	68.65	0.339	0.449
66.10	0.093	0.009	68.70	0.351	0.467
66.15	0.096	0.014	68.75	0.362	0.485
66.20	0.099	0.019	68.80	0.374	0.503
66.25	0.101	0.024	68.85	0.386	0.522
66.30	0.104	0.029	68.90	0.397	0.542
66.35	0.104	0.023	68.95	0.409	0.562
66.40	0.100	0.039	69.00	0.403 0.421	0.502
66.45	0.112	0.035	69.05	0.434	0.604
66.50	0.112	0.040	69.10	0.448	0.626
66.55	0.117	0.056	69.15	0.461	0.649
66.60	0.120	0.062	69.20	0.475	0.672
66.65	0.122	0.068	69.25	0.488	0.696
66.70	0.125	0.075	69.30	0.502	0.721
66.75	0.127	0.081	69.35	0.515	0.746
66.80	0.130	0.087	69.40	0.529	0.772
66.85	0.133	0.094	69.45	0.542	0.799
66.90	0.135	0.101	69.50	0.556	0.827
66.95	0.138	0.107	69.55	0.569	0.855
67.00	0.140	0.114	69.60	0.583	0.883
67.05	0.143	0.121	69.65	0.596	0.913
67.10	0.145	0.129	69.70	0.610	0.943
67.15	0.148	0.136	69.75	0.623	0.974
67.20	0.150	0.143	69.80	0.637	1.005
67.25	0.152	0.151	69.85	0.650	1.038
67.30	0.155	0.159	69.90	0.664	1.070
67.35	0.157	0.166	69.95	0.677	1.104
67.40	0.159	0.174	70.00	0.691	1.138
67.45	0.162	0.182			
67.50	0.164	0.190			
67.55	0.166	0.199			
67.60	0.169	0.207			
67.65	0.171	0.216			
67.70	0.173	0.224			
67.75	0.176	0.233			
67.80	0.178	0.242			
67.85	0.180	0.251			
67.90	0.183	0.260			
67.95	0.185	0.269			
68.00	0.188	0.278			
68.05	0.199	0.288			
68.10	0.211	0.298			
68.15	0.223	0.309			
68.20	0.234	0.321			
68.25	0.246	0.333			
68.30	0.257	0.345			
68.35	0.269	0.358			
68.40	0.281	0.372			
68.45	0.292	0.386			
68.50	0.304	0.401			
68.55	0.316	0.417			

Stage-Area-Storage for Pond 7: BASIN-7

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(acres)	(acre-feet)	(feet)	(acres)	(acre-feet)
76.00	0.029	0.000	78.60	0.143	0.157
76.05	0.030	0.001	78.65	0.149	0.164
76.10	0.030	0.003	78.70	0.155	0.172
76.15	0.031	0.005	78.75	0.161	0.179
76.20	0.031	0.006	78.80	0.167	0.188
76.25	0.032	0.008	78.85	0.172	0.196
76.30	0.033	0.009	78.90	0.178	0.205
76.35	0.033	0.011	78.95	0.184	0.214
76.40	0.034	0.013	79.00	0.190	0.223
76.45	0.034	0.014	79.05	0.200	0.233
76.50 76.55	0.035	0.016	79.10	0.210	0.243
76.55	0.036	0.018 0.020	79.15 79.20	0.220	0.254 0.265
76.60 76.65	0.036 0.037	0.020	79.20	0.230 0.240	0.205
76.70	0.037	0.021	79.23	0.240	0.277
76.75	0.038	0.025	79.35	0.260	0.209
76.80	0.039	0.023	79.40	0.271	0.302
76.85	0.039	0.027	79.45	0.281	0.329
76.90	0.040	0.020	79.50	0.291	0.343
76.95	0.040	0.033	79.55	0.301	0.358
77.00	0.041	0.035	79.60	0.311	0.374
77.05	0.042	0.037	79.65	0.321	0.389
77.10	0.044	0.039	79.70	0.331	0.406
77.15	0.046	0.041	79.75	0.341	0.422
77.20	0.047	0.044	79.80	0.351	0.440
77.25	0.049	0.046	79.85	0.361	0.457
77.30	0.050	0.049	79.90	0.371	0.476
77.35	0.052	0.051	79.95	0.381	0.495
77.40	0.054	0.054	80.00	0.391	0.514
77.45	0.055	0.057			
77.50	0.057	0.059			
77.55	0.058	0.062			
77.60	0.060	0.065			
77.65	0.062	0.068			
77.70	0.063	0.071			
77.75	0.065	0.075			
77.80	0.066	0.078			
77.85	0.068	0.081			
77.90 77.95	0.070	0.085			
78.00	0.071 0.073	0.088 0.092			
78.05	0.079	0.092			
78.10	0.085	0.000			
78.15	0.090	0.100			
78.20	0.096	0.109			
78.25	0.102	0.114			
78.30	0.102	0.119			
78.35	0.114	0.124			
78.40	0.120	0.130			
78.45	0.126	0.136			
78.50	0.131	0.143			
78.55	0.137	0.150			

Elevation Surface Storage Elevation Surface Storage (acre-feet) (feet) (acre-feet) (feet) (acres) (acres) 64.00 0.000 66.60 0.013 0.013 0.013 64.05 0.013 0.000 66.65 0.013 0.014 64.10 0.001 66.70 0.013 0.014 0.013 64.15 0.013 0.001 66.75 0.013 0.014 64.20 0.013 0.001 66.80 0.013 0.014 64.25 0.013 0.001 66.85 0.015 0.013 64.30 0.013 0.002 66.90 0.013 0.015 64.35 0.013 0.002 66.95 0.015 0.013 64.40 0.013 0.002 67.00 0.013 0.015 64.45 0.013 0.002 64.50 0.013 0.003 0.013 64.55 0.003 0.013 0.003 64.60 0.013 0.003 64.65 0.013 0.004 64.70 64.75 0.013 0.004 64.80 0.013 0.004 64.85 0.013 0.004 64.90 0.013 0.005 64.95 0.013 0.005 0.005 65.00 0.013 65.05 0.013 0.005 0.006 65.10 0.013 65.15 0.006 0.013 65.20 0.013 0.006 65.25 0.013 0.006 65.30 0.013 0.007 65.35 0.013 0.007 65.40 0.013 0.007 65.45 0.013 0.007 65.50 0.013 0.008 0.013 65.55 0.008 65.60 0.013 0.008 0.013 0.008 65.65 65.70 0.013 0.009 0.013 0.009 65.75 0.013 0.009 65.80 65.85 0.013 0.009 0.013 0.010 65.90 65.95 0.013 0.010 0.010 66.00 0.013 0.013 0.010 66.05 66.10 0.013 0.011 66.15 0.013 0.011 66.20 0.013 0.011 66.25 0.013 0.011 66.30 0.013 0.012 66.35 0.013 0.012 66.40 0.013 0.012 66.45 0.013 0.012 66.50 0.013 0.013 66.55 0.013 0.013

Stage-Area-Storage for Pond T-1: TRENCH-1

Stage-Area-Storage for Pond T-2: TRENCH-2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(acres)	(acre-feet)	(feet)	(acres)	(acre-feet)
56.00	0.023	0.000	58.60	0.023	0.024
56.05	0.023	0.000	58.65	0.023	0.025
56.10	0.023	0.001	58.70	0.023	0.025
56.15	0.023	0.001	58.75	0.023	0.026
56.20	0.023	0.002	58.80	0.023	0.026
56.25	0.023	0.002	58.85	0.023	0.027
56.30	0.023	0.002	58.90	0.023	0.027
56.35	0.023	0.003	58.95	0.023	0.027
56.40	0.023	0.003	59.00	0.023	0.028
56.45	0.023	0.004	59.05	0.023	0.028
56.50	0.023	0.004	59.10	0.023	0.020
56.55	0.023	0.005	59.15	0.023	0.029
56.60	0.023	0.005	59.20	0.023	0.029
56.65	0.023	0.006	59.25	0.023	0.030
56.70	0.023	0.007	59.30	0.023	0.030
56.75		0.007	59.35		0.031
	0.023 0.023	0.007	59.35	0.023 0.023	0.031
56.80 56.85	0.023	0.007	59.40	0.023	0.032
56.90	0.023	0.008	59.50	0.023	0.033
56.95	0.023	0.009	59.55	0.023	0.033
57.00	0.023	0.009	59.60	0.023	0.034
57.05	0.023	0.010	59.65	0.023	0.034
57.10	0.023	0.010	59.70 59.75	0.023	0.035 0.035
57.15	0.023	0.011 0.011		0.023	
57.20	0.023		59.80	0.023	0.035
57.25 57.30	0.023	0.012	59.85	0.023	0.036
57.35	0.023	0.012	59.90	0.023	0.036
	0.023	0.013	59.95	0.023	0.037
57.40	0.023	0.013	60.00	0.023	0.037
57.45	0.023	0.014			
57.50	0.023	0.014			
57.55	0.023	0.014			
57.60	0.023	0.015			
57.65	0.023	0.015			
57.70	0.023	0.016			
57.75	0.023	0.016			
57.80	0.023	0.017			
57.85	0.023	0.017			
57.90	0.023	0.018			
57.95	0.023	0.018			
58.00	0.023	0.019			
58.05	0.023	0.019			
58.10	0.023	0.020			
58.15	0.023	0.020			
58.20	0.023	0.021			
58.25	0.023	0.021			
58.30	0.023	0.021			
58.35	0.023	0.022			
58.40	0.023	0.022			
58.45	0.023	0.023			
58.50	0.023	0.023			
58.55	0.023	0.024			
			l		

Groundwater Recharge Volume Required:

Rv = F x Impervious Area, where:

Rv = Required Recharge Volume [Ac-ft]

F = Target Depth Factor associated with each Hydrologic Soil Group (HSG) [in]

Impervious Area = Total Impervious Area under Post-development Conditions [Ac]

(equipment pads)

			Impervious Area	Required Recharge	
_			[Acres]	Volume [Ac-ft]	_
HSG "A", use F =	0.6	in	0.159	0.008	
HSG "B", use F =	0.35	in	0.000	0.000	
HSG "C", use F =	0.25	in	0.000	0.000	
HSG "D", use F =	0.1	in	0.000	0.000	
Total F	Require	d Rec	harge Volume (Rv) =	0.008	Ac-ft

Capture Area Adjustment: (Ref: DEP Handbook V.3 Ch.1 P.27-28)

Total Site Impervious Area (Total)=	0.159 Acres
Impervious Area Draining to Infiltrative BMPs (infil) =	0.159 Acres
Percent Imp. Area Draining to Infiltrative BMPs =	100.0%
Capture Area Adjustment Factor = (Total)/(Infil) = Ca =	1.00
Adjusted Required Recharge Volume = Ca x Rv	0.008 Ac-ft

Groundwater Recharge Volume Provided :

ВМР	Provided Recharge Volume [Ac-ft] (Below Lowest Basin Outlet)	
Infiltration Basin 1 =	0.397	_
Infiltration Basin 2 =	0.322	
Infiltration Basin 3 =	0.464	
Infiltration Basin 4 =	0.133	
Infiltration Basin 5 =	0.470	
Infiltration Basin 6 =	0.582	
Infiltration Basin 7=	0.223	
Infiltration Trench 1 =	0.015	
Infiltration Trench 2 =	0.037	_
Total Provided Recharge Volume =	2.643	Ac-ft

PROVIDED GROUNDWATER RECHARGE VOLUME IS GREATER THAN OR EQUAL TO THE REQUIRED RECHARGE VOLUME, THEREFORE PROPOSED STORMWATER MANAGEMENT DESIGN IS IN COMPLIANCE WITH STANDARD 3.

JOB NO. 1833.112	COMPUTED BY:	NBB	CHECKED BY:	JRM
JOB: 140 Tihonet Road PV+ES Project	DATE:	01/14/21	DATE:	1/19/2021

Attachment 6 Site Owner's Manual

Site Owner's Manual

140 Tihonet Road PV+ES Project

140 Tihonet Road (aka 0 & 169 Tihonet Road) Wareham, Massachusetts

Prepared for:

Borrego Solar Systems, Inc. 55 Technology Drive, Suite 102 Lowell, MA 01851

Prepared by:

BEALS + THOMAS BEALS AND THOMAS, INC. 32 Court Street Plymouth, MA 02360

June 2, 2020

Revised: January 19, 2021

1833112RP002B

TABLE OF CONTENTS

1.0 II	NTRODUCTION	
2.0 S	ITE OWNER'S AGREEMENT	
2.1	OPERATION AND MAINTENANCE COMPLIANCE STATEMENT	
2.2	STORMWATER MAINTENANCE EASEMENTS	
2.3	RECORD KEEPING	
2.4	TRAINING	
3.0 L	ONG-TERM POLLUTION PREVENTION PLAN	
3.1	STORAGE OF MATERIALS AND WASTE	
3.2	VEHICLE WASHING	
3.3	ROUTINE INSPECTIONS AND MAINTENANCE OF STORMWATER BMPS	
3.4	SPILL PREVENTION AND RESPONSE	
3.5	MAINTENANCE OF GRASSED AREAS	
3.6	SNOW AND DEICING CHEMICAL MANAGEMENT	
4.0 L	ONG-TERM OPERATION AND MAINTENANCE PLAN	4-1
4.1	STORMWATER MANAGEMENT SYSTEM COMPONENTS	
4.2	INSPECTION AND MAINTENANCE SCHEDULES	
4.	.2.1 Infiltration Basins	
4.	.2.2 Infiltration Trenches	
4.	.2.3 Stormwater Outfalls	
4.3	ESTIMATED OPERATION AND MAINTENANCE BUDGET	
4.4	PUBLIC SAFETY FEATURES	

FIGURES

FIGURE 1: SITE PLAN

APPENDICES

APPENDIX A: OPERATION AND MAINTENANCE LOG APPENDIX B: LIST OF EMERGENCY CONTACTS

1.0 INTRODUCTION

The Site Owner's Manual complies with the Long-Term Pollution Prevention Plan (Standard 4) and the Long-Term Operation and Maintenance Plan (Standard 9) requirements of the 2008 Massachusetts Department of Environmental Protection (MassDEP) Stormwater Handbook. The Manual outlines source control and pollution prevention measures and maintenance requirements of stormwater best management practices (BMPs) associated with the proposed development.

2.0 SITE OWNER'S AGREEMENT

2.1 Operation and Maintenance Compliance Statement

Site Owner:	Borrego Solar Systems, Inc.
	55 Technology Drive, Suite 102
	Lowell, MA 01851

Responsible Party: Borrego Solar Systems, Inc.

Borrego Solar Systems, Inc. or their successors shall maintain ownership of the on-site stormwater management system as well as the responsibility for operation and maintenance during the post-development stages of the project. The site has been inspected for erosion and appropriate measures have been taken to permanently stabilize any eroded areas. All aspects of stormwater best management practices (BMPs) have been inspected for damage, wear and malfunction, and appropriate steps have been taken to repair or replace the system or portions of the system so that the stormwater at the site may be managed in accordance with the Stormwater Management Standards. Future responsible parties shall be notified of their continuing legal responsibility to operate and maintain the BMPs. The operation and maintenance plan for the stormwater BMPs is being implemented.

Responsible Party Signature

Date

2.2 Stormwater Maintenance Easements

The Site Owner will have access to all stormwater practices for inspection and maintenance, including direct maintenance access by heavy equipment to structures requiring regular maintenance.

2.3 Record Keeping

The Site Owner shall maintain a rolling log in which all inspections and maintenance activities for the past three years shall be recorded. The Operation and Maintenance Log includes information pertaining to inspections, repairs, and disposal relevant to the project's stormwater management system. The Log is located in Appendix A.

The Operation and Maintenance Log shall be made available to the Conservation Commission and the DEP upon request. The Conservation Commission and the DEP shall be allowed to enter and inspect the premises to evaluate and ensure that the responsible party complies with the maintenance requirements for each BMP.

2.4 Training

Employees involved in grounds maintenance and emergency response will be educated on the general concepts of stormwater management and groundwater protection. The Site Owner's Manual will be reviewed with the maintenance staff. The staff will be trained on the proper course of action for specific events expected to be incurred during routine maintenance or emergency situations.

3.0 LONG-TERM POLLUTION PREVENTION PLAN

In compliance with Standard 4 of the 2008 DEP Stormwater Management Handbook, this section outlines source control and pollution prevention measures to be employed on-site after construction.

3.1 Storage of Materials and Waste

The site shall be kept clear of trash and debris at all times. Certain materials and waste products shall be stored inside or outside upon an impervious surface and covered, as required by local and state regulations.

3.2 Vehicle Washing

No commercial vehicle washing shall take place on-site.

3.3 Routine Inspections and Maintenance of Stormwater BMPs

See Section 4.0 Long-Term Operation and Maintenance Plan, for routine inspection and maintenance requirements for all proposed stormwater BMPs.

3.4 Spill Prevention and Response

A contingency plan shall be implemented to address the spill or release of petroleum products and hazardous materials and will include the following measures:

- 1. Equipment necessary to quickly attend to inadvertent spills or leaks shall be stored on-site in a secure but accessible location. Such equipment shall include but not be limited to the following: safety goggles, chemically resistant gloves and overshoe boots, water and chemical fire extinguishers, sand and shovels, suitable absorbent materials, storage containers and first aid equipment (i.e. Indian Valley Industries, Inc. 55-gallon Spill Containment kit or approved equivalent).
- 2. Spills or leaks shall be treated properly according to material type, volume of spillage and location of spill. Mitigation shall include preventing further spillage, containing the spilled material in the smallest practical area, removing spilled material in a safe and environmentally-friendly manner, and remediation of any damage to the environment.
- 3. For large spills, MassDEP Hazardous Waste Incident Response Group shall be notified immediately at 888-304-1133 and an emergency response contractor shall be consulted.

3.5 Maintenance of Grassed Areas

Grassed areas shall be maintained regularly by the facility operator. Vegetated and landscaped BMPs will be maintained as outlined in Section 4.0.

3.6 Snow and Deicing Chemical Management

Snow removal at the site shall comply with the following requirements:

- Plowed snow shall not be placed in wetland resource areas or associated buffer zones. The following maintenance measures shall be undertaken at all snow disposal sites:
 - Debris shall be cleared from an area prior to using it for snow disposal.
 - Debris and accumulated sediments shall be cleared from the site and properly disposed of at the end of the snow season and no later than May 15.
- The use of deicing materials and shall not be used at the proposed project site to protect off-site areas.

4.0 LONG-TERM OPERATION AND MAINTENANCE PLAN

This section outlines the general maintenance activities for the stormwater best management practices (BMPs) associated with the proposed stormwater management system and identifies the long-term inspection and maintenance requirements for each BMP.

4.1 Stormwater Management System Components

The following table outlines the type and quantity of the BMPs and their general location. Please reference the site plan(s) provided in the Figures section for exact location.

BMP Type	Quantity	Location
Infiltration Basin	7	Throughout the site
Infiltration Trench	2	Northwest entrance, northeast access

4.2 Inspection and Maintenance Schedules

4.2.1 Infiltration Basins

Infiltration basins shall be inspected and maintained after major storm events (rainfall totals greater than 2.5 inches in 24 hours) during the first three months of operation and twice a year and when there are discharges through the outlet control structure thereafter. Additionally, all pretreatment BMPs shall be inspected in accordance with the minimal requirements specified for those practices and after all major storm events. Inspections shall include the following measures:

- During and after major storm events, the length of time standing water remains in the basin shall be recorded.
 - If the time is greater than 72 hours, thoroughly inspect the basin for signs of clogging.
 - A corrective action plan shall be developed by a qualified professional to restore infiltrative function. The Site Owner shall take immediate action to implement these corrective measures.
- Examine the outlet structure for evidence of clogging or outflow release velocities that are greater than the design velocity.
- Identify areas of sediment accumulation, differential settlement, cracking, and erosion within the basin.
- Inspect embankments for leakage and tree growth.
- Examine the health of the vegetation within the basin and on the embankments.

Corrective measures shall be taken immediately as warranted by the inspections. If any evidence of hydrocarbons is found during inspection, the

material shall be immediately removed using absorbent pads or other suitable measures and legally disposed.

Preventative maintenance shall include the following activities:

- Mow the buffer area and basin bottom and side slopes, if vegetated.
- Remove trash, debris, and accumulated organic matter.
- Remove clippings after mowing.

4.2.2 Infiltration Trenches

Inspections and preventative maintenance shall be performed at all infiltration trenches after major storm events (rainfall totals greater than 2.5 inches in 24 hours) during the first three months of operation and twice a year thereafter. Additionally, all pretreatment BMPs shall be inspected in accordance with the minimal requirements specified for those practices and after major storm events. Inspections and maintenance activities shall include the following measures:

- Inlet and outlet pipes shall be inspected every 6 months and after major storm events for evidence of clogging.
- Accumulated sediment, trash, debris, leaves, and clippings from mowing shall be removed every 6 months and after major storm events.
- Tree seedlings shall be removed before they become firmly established.
- The vegetated trench surface shall be mowed on a seasonal basis to maintain a vegetation height of no more than 4 inches.
- The trench shall be inspected 24 hours or several days after a rain event to look for ponded water. If there is ponded water at the surface of the trench, the following measures shall be employed to address surficial clogging:
 - Remove and replace topsoil or first layer of stone aggregate and the filter fabric.
- If there is ponded water inside the trench, the following measures shall be employed to address trench failure:
 - All accumulated sediments must be stripped from the bottom of the trench.
 - The bottom of the trench must be scarified and tilled to induce infiltration, and all of the stone aggregate and filter fabric or media shall be removed and replaced.

4.2.3 Stormwater Outfalls

Flared end sections and associated riprap aprons, and overflow spillways shall be inspected at least once per year and after major storm events (rainfall totals greater than 2.5 inches in 24 hours) to ensure that the stability of the outlet area is maintained. The outfall area shall be kept clear of debris such as trash, branches, and sediment. Repairs shall be made immediately if riprap displacement or downstream channel scour is observed.

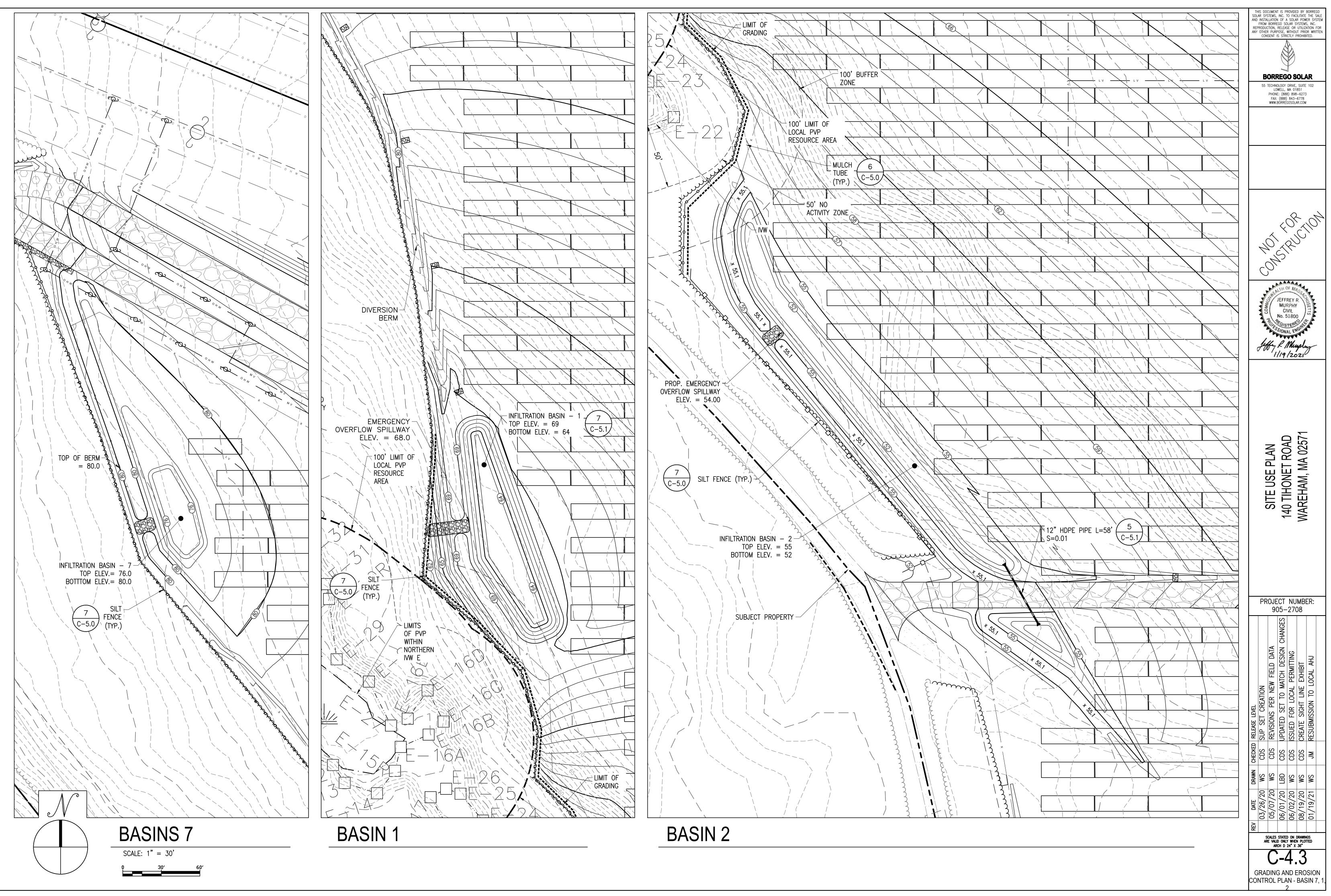
4.3 Estimated Operation and Maintenance Budget

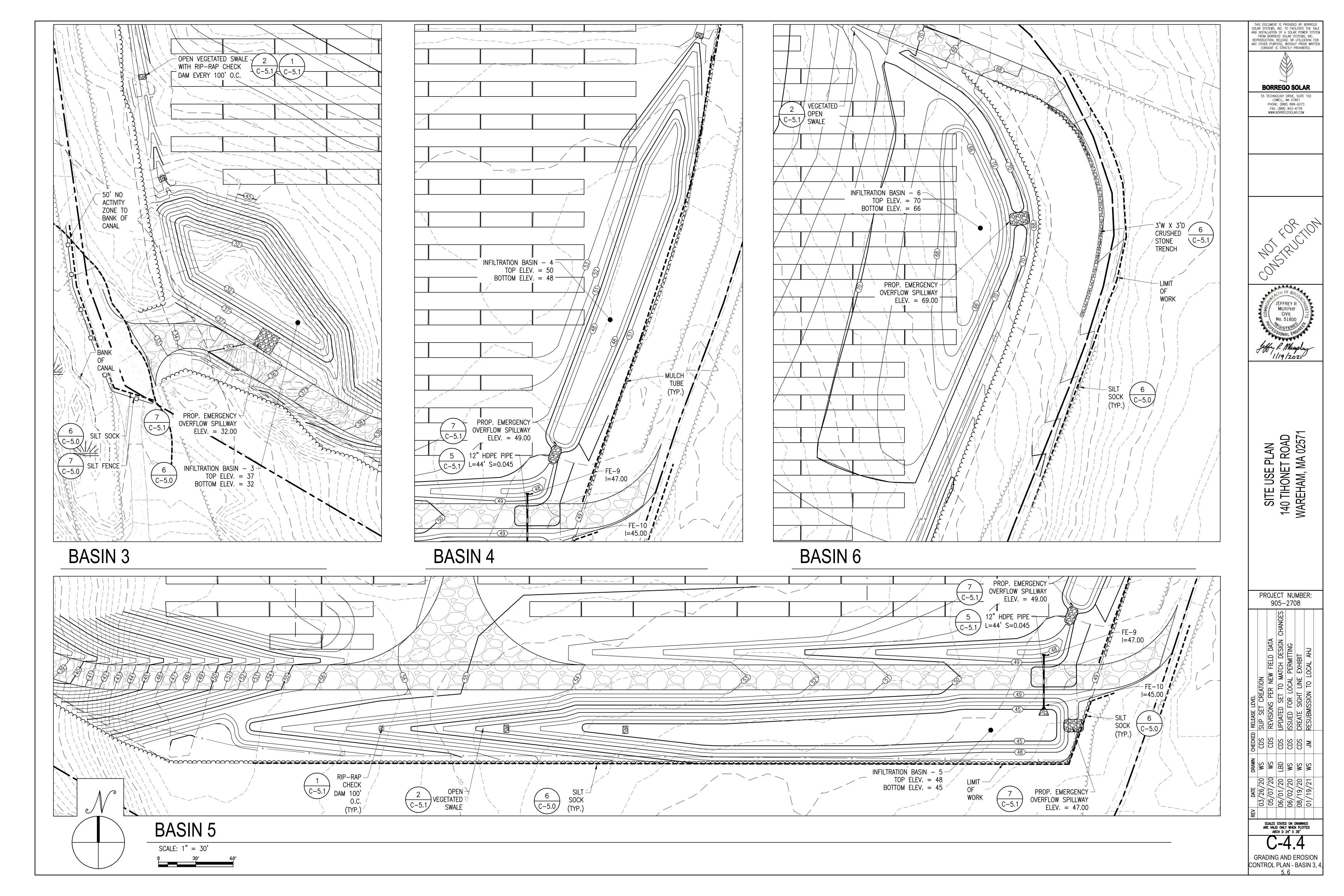
An operations and maintenance budget was prepared to approximate the annual cost of the inspections required in compliance with the DEP Stormwater Management Policy. The table below estimates the annual cost to inspect and maintain each proposed BMP, based on the requirements in Section 4.2.

ВМР Туре	# of BMPS	Annual O&M Cost (per BMP) ¹	Total Cost
Infiltration Basin	7	\$50-\$100	\$350-\$700
Infiltration Trench	2	\$50-\$100	\$350-\$700
Riprap Spillway/Flared Ends	7	\$200-\$400	\$1400-\$2800
		Total	\$2100-\$4200

4.4 Public Safety Features

The site is not open to the public. A locked vehicle gate will be located at the entrance to the gravel access driveway. In addition, a 7' chain-link-fence will surround the array. Operation and maintenance of the facility will be conducted in accordance with the safety requirements of the facility operator and applicable OSHA regulations.


¹ Annual maintenance cost is based on estimate of the cost to complete all inspection and maintenance measures outlined in Section 4.2. For BMPs that require sediment removal at regular intervals (i.e. every 5 or 10 years), the annual cost includes the annual percentage of that cost.



Figures

Figure 1: Site Plan

Appendices

Appendix A

Operation and Maintenance Log

OPERATION AND MAINTENANCE LOG

This template is intended to comply with the operation and maintenance log requirements of the 2008 MassDEP Stormwater Management Handbook. Copies of this log should be made for all inspections and kept on file for three years from the inspection date.

Name/Company of Inspector:

Date/Time of Inspection:

Weather Conditions:

(Note current weather and

any recent precipitation events)

Stormwater BMP	Inspection Observations	Actions Required

Appendix B

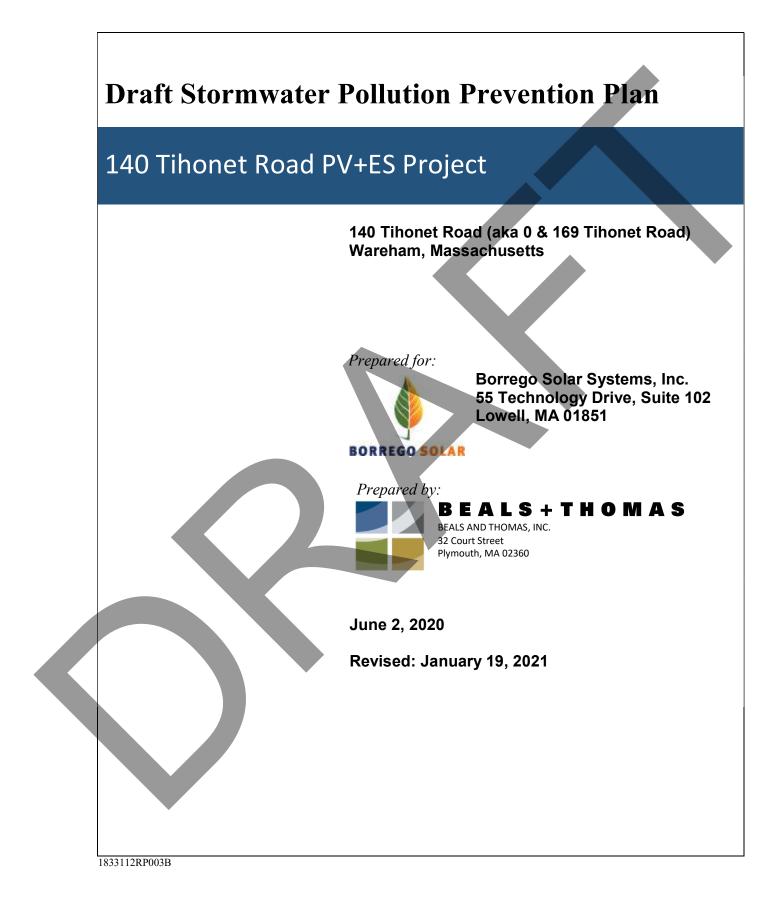
List of Emergency Contacts

1833112RP002B

List of Emergency Contacts

MassDEP Hazardous Waste Incident Response Group (617) 792-7653

Town of Wareham Municipal Maintenance 95 Charge Pond Road Wareham, MA 02571 (508) 295-5300


Town of Wareham Fire Department 20 Church Street Wareham, MA 02571 (508) 295-2973

Town of Wareham Police Department 2515 Cranberry Highway Wareham, MA 02571 (508) 295-1212

Attachment 7 Draft Stormwater Pollution Prevention Plan

TABLE OF CONTENTS

1.0	CONTACT INFORMATION/RESPONSIBLE PARTIES
1.1	OPERATOR(S)/ SUBCONTRACTORS
1.2	STORMWATER TEAM
2.0	SITE EVALUATION, ASSESSMENT AND PLANNING4
2.1	PROJECT/SITE INFORMATION
2.2	NATURE AND SEQUENCE OF CONSTRUCTION ACTIVITY
2.3	SOILS, SLOPES, VEGETATION, AND CURRENT DRAINAGE PATTERNS
2.4	CONSTRUCTION SITE ESTIMATES
2.5	DISCHARGE INFORMATION
2.6	UNIQUE SITE FEATURES AND SENSITIVE AREAS
2.7	CONSTRUCTION SUPPORT ACTIVITIES
2.8	POTENTIAL SOURCES OF POLLUTION
2.9	SITE PLANS
3.0	COMPLIANCE WITH APPLICABLE FEDERAL & STATE REQUIREMENTS 11
3.1	ENDANGERED SPECIES CERTIFICATION
3.2	HISTORIC PRESERVATION
3.3	SAFE DRINKING WATER ACT UNDERGROUND INJECTION CONTROL REQUIREMENTS 12
3.4	APPLICABLE STATE OR LOCAL PROGRAMS
4.0	EROSION AND SEDIMENT CONTROL BMPS14
4.1	NATURAL BUFFERS OR EQUIVALENT SEDIMENT CONTROLS
4.2	PHASED CONSTRUCTION ACTIVITY
4.3	STABILIZE SOIL
4.4	ESTABLISH PERIMETER CONTROLS AND SEDIMENT BARRIERS
4.5	ESTABLISH STABILIZED CONSTRUCTION ENTRANCE/EXIT
4.6	DEWATERING PRACTICES
5.0	GOOD HOUSEKEEPING BMPS19
5.1	MATERIAL HANDLING AND WASTE MANAGEMENT
5.2	ESTABLISH PROPER BUILDING MATERIAL STAGING AREAS
5.3	DESIGNATE WASHOUT AREAS
5.4	ESTABLISH PROPER EQUIPMENT/VEHICLE FUELING AND MAINTENANCE PRACTICES 23
5.5	ALLOWABLE NON-STORMWATER DISCHARGES AND CONTROL EQUIPMENT / VEHICLE
	SHING
5.6	SPILL PREVENTION AND CONTROL PLAN
5.7	FERTILIZER DISCHARGE RESTRICTIONS
5.8	ALLOWABLE NON-STORMWATER DISCHARGE MANAGEMENT
6.0	FINAL STABILIZATION26
6.1	Permanent Seeding

INSPECTIONS AND MAINTENANCE	
INSPECTIONS	
REDUCTIONS IN INSPECTION FREQUENCY	
CORRECTIVE ACTION LOG	
RECORDKEEPING AND TRAINING	
Recordkeeping	
LOG OF CHANGES TO THE SWPPP	
TRAINING	
CERTIFICATION AND NOTIFICATION	32
SIGNATURE, PLAN REVIEW, AND MAKING PLANS AVAILABLE	
OWNER CERTIFICATION	
OPERATOR CERTIFICATION	
	INSPECTIONS AND MAINTENANCE INSPECTIONS IN INSPECTION FREQUENCY CORRECTIVE ACTION LOG RECORDKEEPING AND TRAINING RECORDKEEPING. LOG OF CHANGES TO THE SWPPP TRAINING. CERTIFICATION AND NOTIFICATION SIGNATURE, PLAN REVIEW, AND MAKING PLANS AVAILABLE. NOTICE OF PERMIT COVERAGE. OWNER CERTIFICATION OPERATOR CERTIFICATION

LIST OF APPENDICES

APPENDIX A:	GENERAL LOCATION MAP
APPENDIX B:	SITE PLANS
APPENDIX C:	CONSTRUCTION GENERAL PERMIT
APPENDIX D:	NOI AND ACKNOWLEDGEMENT LETTER FROM EPA
APPENDIX E:	INSPECTION REPORTS
APPENDIX F:	CORRECTIVE ACTION LOG
APPENDIX G:	SWPPP AMENDMENT LOG
APPENDIX H:	SUBCONTRACTOR CERTIFICATIONS/ AGREEMENTS
APPENDIX I:	GRADING AND STABILIZATION ACTIVITIES LOG
APPENDIX J:	TRAINING LOG
APPENDIX K:	DELEGATION OF AUTHORITY
APPENDIX L:	ENDANGARD SPECIES DOCUMENTATION
APPENDIX M:	HISTORIC PRESERVATION DOCUMENTATION

Operator(s)		
Company:	Borrego Solar Sys	tems, Inc.	
Name:			
Address:			
City:		State:	ZIP Code:
Telephone:		Email:	
Company:	TBD		
Name:			
Address:			
City:		State:	ZIP Code:
Telephone:		Email:	
Subcontra Company: Name:	ctor(s) TBD		
Address:			
City:		State:	ZIP Code:
Telephone:		Email:	I
	ntrol:	Site Work	

Company:	TBD
Name:	
Telephone:	

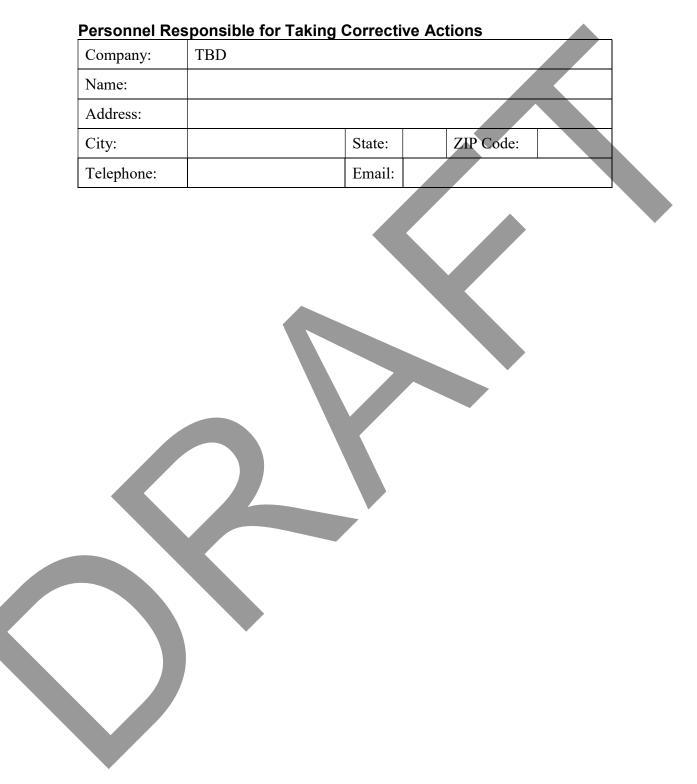
140 Tihonet Road PV+ES Project

Stormwater Pollution Prevention Plan (SWPPP) Wareham, Massachusetts 1833112RP003B

1.2 STORMWATER TEAM

SWPPP Preparer

00011110	parci					
Company:	Beals and Thomas, Inc.					
Name:	Nathaniel Bautz, EIT					
Address:	144 Turnpike Road					
City:	Southborough	State:	MA	ZIP Code:	01772	
Telephone:	508-366-0560	Email:				


Personnel Responsible for Installation & Maintenance of Stormwater BMPs

Company:	TBD		
Name:			
Address:			
City:		State:	ZIP Code:
Telephone:		Email:	
Telephone:		Email:	

Inspection Personnel

Company:	TBD		
Name:			
Address:			
City:		State:	ZIP Code:
Telephone:		Email:	

2.0 SITE EVALUATION, ASSESSMENT AND PLANNING

2.1 PROJECT/SITE INFORMATION

Project/Site	e Name:	et Road P	V+ES P	Project			
Project Stre	Project Street/Location: 140 Tihonet Road (aka 0 & 169 Tihonet Road)						
City:	Wareham		State:	MA	ZIP Code:	02571	
County or S	County or Similar Subdivision: Plymouth						
Latitude:	Latitude: 41°47'23" N		Longitu	ıde:	70°42'29"W	V	
Method for Determining Latitude/Longitude:							
	USGS Topographic Map (specify scale:						
EPA Website							
GPS							
☑ Other (please specify): <u>Google Earth</u>							

Horizontal Reference Datum:	
🗌 NAD 27	□ WGS 84
🖾 NAD 83	Unknown

Is the project located on Indian country lands, or located on a property of religious of cultural significance to an Indian tribe? \Box Yes \boxtimes No

If yes, provide the name of the Indian tribe associated with the area of Indian country (including the name of Indian reservation if applicable), or if not in Indian country, provide the name of the Indian tribe associated with the property:

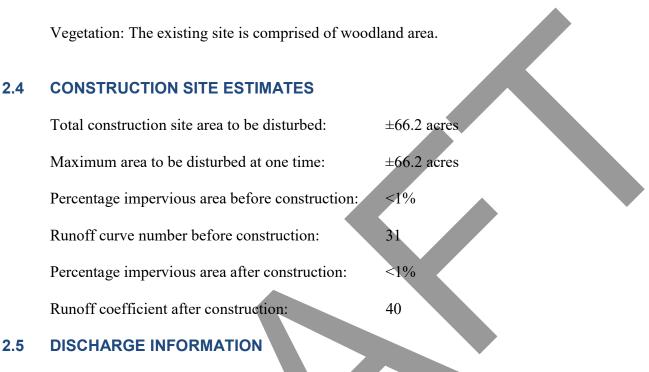
 Is this project considered a federal facility?
 □ Yes
 ⊠ No

 Are you applying for permit coverage as a "federal operator" as defined in Appendix A of the 2017 CGP?
 □ Yes
 ⊠ No

 NPDES project or permit tracking number: TBD

140 Tihonet Road PV+ES Project Stormwater Pollution Prevention Plan (SWPPP) Wareham, Massachusetts 1833112RP003B 2.1.1 Emergency-Related Projects No No Is this project in response to a public emergency? \Box Yes If yes, document the cause of the public emergency (e.g., natural disaster, extreme flooding conditions), information substantiating its occurrence (e.g., state disaster *declaration*), and a description of the construction necessary to reestablish effective public services: NATURE AND SEQUENCE OF CONSTRUCTION ACTIVITY 2.2 2.2.1 Function of the Construction Activity Function of the construction activity: Commercial Single-Family Residential Multi-Family Residential Industrial Institutional Highway or Road Construction Utility Other (please specify): Renew. Energy 2.2.2 Building Demolition Will there be demolition of any structure built or renovated before January 1, 1980? ☐ Yes 🖂 No If yes, do any of the structures being demolished have at least 10,000 square feet of floor space? ☐ Yes 🖂 No 2.2.3 Agricultural Land Was the pre-development land use used for agriculture? \Box Yes \boxtimes No 2.2.4 Estimated Project Dates Estimated Project Start Date: TBD Estimated Project Completion Date: TBD

Estimated Timeline of Activity	Construction Activity and BMP Descriptions
TBD	 Before any site grading activities begin 1. Stake Limit of Construction. Workers shall be informed that no construction activity is to occur beyond this limit at any time. 2. Install sediment controls as shown on the plans. An adequate stockpile of erosion control materials shall be on site at all times for emergency or routine replacement and shall include materials to repair silt fences, compost mulch tubes, or any other devices planned for use during construction. 3. Construct stabilized construction exits. 4. Construct staging and materials storage area. 5. Install temporary sanitary facilities and dumpsters.
TBD	 Site grading Begin overall site grading. Establish topsoil stockpile. Install silt fences around stockpile. Build stormwater basins and complete overall site grading. Disturbed areas where construction will cease for more than 14 days shall be stabilized with erosion controls.
TBD	 <i>Infrastructure (utilities, solar panels, etc.)</i> 1. Construct temporary concrete washout area. 2. Install utilities, solar panels.
TBD	 Final stabilization and landscaping Finalize grading activities. Remove all temporary erosion control BMPs and stabilize any areas disturbed by their removal with erosion controls. Monitor stabilized areas until final stabilization is reached.


2.3 SOILS, SLOPES, VEGETATION, AND CURRENT DRAINAGE PATTERNS

Soil type(s): The Natural Resources Conservation Service (NRCS) lists the on-site soils types as predominantly hydrologic soil class A. These soil groups include Poquonock sand, Plymouth-Carver complex, Carver loamy coarse sand, and Hinckley loamy sand, and Gloucester-Canton complex. A small area of hydrologic soil class D soils is present at the southwestern corner of the proposed project locus, which is classified as Udipsamments-wet substratum.

Slopes: 1-30%

Drainage Patterns: Runoff from the site drains to the south, east, and west.

2.5.1 Description of Receiving Storm Sewer Systems

Does your project/site discharge stormwater into a Municipal Separate Storm Sewer System (MS4)?

2.5.2 Receiving Waters

Runoff from the site drains to Tihonet Pond to the west, and to existing cranberry bogs to the south which eventually flow to Parker Mills Pond. Runoff also flows east to an off-site wetland that drains to off-site cranberry bogs that drain to Harlow Brook.

2.5.3 Impaired Waters/ TMDLs

Has the surface water been listed as "impaired?" Yes

🔀 No

If yes, list the pollutant(s) causing the impairment: N/A

Describe the method(s) used to determine whether or not your project site discharges to an impaired water:

Has a TMDL been completed?

Yes	🔀 No
-----	------

If yes, list the title of the TMDL document: N/A

List the pollutant(s) for which there is a TMDL: N/A

2.5.4 Tier 2, 2.5, or 3 Waters

Is this surface water designated as a Tier 2, 2.5 or 3 water? Yes No

If yes specify which Tier the surface water is designated as: Tier 2 Tier 2.5

Tier 3

2.6 UNIQUE SITE FEATURES AND SENSITIVE AREAS

The site contain wetlands and a potential vernal pool, these features will not be impacted by the project. The hydrology of these areas is maintained by the proposed stormwater design. Additionally, they will be protected by sediment control barriers as needed to avoid potential sedimentation.

2.7 CONSTRUCTION SUPPORT ACTIVITIES

Construction support activities are not required for the project.

2.8 POTENTIAL SOURCES OF POLLUTION

2.8.1 Potential Sources of Sediment

- Grading and site excavation operations
- Vehicle tracking
- Soil stripping and stockpiling

2.8.2 Potential Sources of Non-Sediment Pollutants

- Combined Staging Area small fueling activities, minor equipment maintenance, sanitary facilities, and hazardous waste storage.
- Materials Storage Area general building materials, solvents, adhesives, paints, aggregates, trash, and so on.
- Construction Activity concrete pouring, and array construction
- Concrete Washout Area

140 Tihonet Road PV+ES Project

Stormwater Pollution Prevention Plan (SWPPP) Wareham, Massachusetts 1833112RP003B

Material/ Chemical	Physical Description	Stormwater Pollutants	Location ^[1]
^[2] Fertilizer	Liquid or solid grains	Nitrogen, phosphorous	Newly seeded areas
Cleaning solvents	Colorless, blue, or yellow-green liquid	Perchloroethylene, methylene chloride, trichloroethylene, petroleum distillates	No equipment cleaning allowed in project limits
Curing compounds	Creamy white liquid	Naphtha	Concrete Equipment Pads
Hydraulic oil/fluids	Brown oily petroleum hydrocarbon	Mineral oil	Leaks or broken hoses from equipment
Gasoline	Colorless, pale brown or pink petroleum hydrocarbon	Benzene, ethyl benzene, toluene, xylene, MTBE	Contractor staging area
Diesel Fuel	Clear, blue-green to yellow liquid	Petroleum distillate, oil & grease, naphthalene, xylenes	Contractor staging area
Kerosene	Pale yellow liquid petroleum hydrocarbon	Coal oil, petroleum distillates	Contractor staging area
Antifreeze/ coolant	Clear green/yellow liquid	Ethylene glycol, propylene glycol, heavy metals (copper, lead, zinc)	Leaks or broken hoses from equipment
Sanitary toilets	Various colored liquid	Bacteria, parasites, and viruses	Staging area

[1] Area where material/chemical is used on-site.

[2] Use of fertilizers containing nitrogen and/or phosphorus in ratios greater than recommended by the manufacture must be documented.

140 Tihonet Road PV+ES Project

Stormwater Pollution Prevention Plan (SWPPP) Wareham, Massachusetts 1833112RP003B

2.9 SITE PLANS

The Existing Conditions Plan shows the undeveloped site and its current features. The Site Plans show the developed site.

These Site Plans include:

- Delineation of construction phasing, if applicable
- Areas of soil disturbance and areas that will not be disturbed
- Direction(s) of stormwater flow and approximate slopes before and after major grading activities
- Natural features to be preserved
- Locations of major structural and non-structural BMPs identified in the SWPPP
- Location(s) of sediment, soil or other construction materials will be stockpiled
- Locations of stabilization measures
- Locations of off-site material, waste, borrow, or equipment storage areas
- Location of all waters of the U.S., including wetlands on or near the site. Indicate if water bodies are listed as impaired, or are identified as Tier 2, 2.5 or 3 waters.
- \boxtimes Boundary lines of any natural buffers,
- Locations of stormwater discharges and/ or locations where authorized nonstormwater will be discharged to surface water(s)
- Locations of storm drain inlets and stormwater control measures on the site and in the immediate vicinity of the site
- Locations of all pollutant-generating activities
- Locations where polymers, flocculants, or other treatment chemicals will be used and stored
 - Areas of federally listed critical habitat for endangered or threatened species

See Appendix B: Site Plans

3.0 <u>COMPLIANCE WITH APPLICABLE FEDERAL & STATE REQUIREMENTS</u>

3.1 ENDANGERED SPECIES CERTIFICATION

Are endangered or threatened species and critical habitats on or near the project area?

Describe how this determination was made:

PLACEHOLDER LANGUAGE PENDING SITE SPECIFIC REVIEW: A project review package was submitted to USFWS on DATE, addressing Northern Long-Eared Bat (NLEB) and Plymouth Red-Belly Turtle. In summary:

A habitat assessment for Northern Long-Eared Bat was performed on DATE by GZA GeoEnvironmental, Inc. (GZA) and concluded that the project site does not provide important habitat for NLEB, and hibernacula or maternity roosting tree habitat are not known within ¹/₄ mile of the site. The assessment also indicates that the closest location of documented overwintering for this species is located ># miles from the site, and further, that summer forage habitat is not present within the proposed work area.

GZA also performed a Plymouth Red-Belly Turtle assessment of the site, dated DATE. The assessment found that the project site does not occur within mapped Critical Habitat for the turtle, and a general habitat assessment and limited site survey found that the project site has low to moderate potential to support this species and no individual turtles were found. Accordingly, a "may affect, but is unlikely to adversely affect" concurrence letter was issued by USFWS on April 10, 2019.

If yes, describe the species and/or critical habitat:

If yes, describe or refer to documentation that determines the likelihood of an impact on the identified species and/or habitat and the steps taken to address that impact.

3.2 HISTORIC PRESERVATION

Step 1

Will stormwater controls that require subsurface earth disturbance be installed on the site?

\bigtriangledown Yes \square No	С
-------------------------------------	---

Step 2

If you answered yes in Step 1, have prior surveys or evaluations conducted on the site already determined that historic properties do not exist, or that prior disturbances at the site have precluded the existence of historic properties?

Yes	No
-----	----

140 Tihonet Road PV+ES Project
Stormwater Pollution Prevention Plan (SWPPP)
Wareham, Massachusetts
1833112RP003B
Step 3
If you answered no in Step 2, has it been determined that the installation of subsurface
earth-disturbing stormwater controls will have no effect on historic properties?
Yes No
PLACEHOLDER LANGUAGE PENDING SITE SPECIFIC REVIEW: Historic sites are
not present. See Appendix M: Historic Preservation Documentation.
Stop 4
Step 4
If you answered no in Step 3, did the State Historic Preservation Officer (SHPO), Tribal
Historic Preservation Office (THPO), or other tribal representative (whichever applies)
respond within 15 calendar days to indicate whether the subsurface earth disturbances
caused by the installation of stormwater controls affect historic properties?
Yes No
If no, no further documentation is required. If yes, describe the nature of their response and
include documentation in the Appendix:

Written indication that adverse effects to historic properties from the installation of stormwater controls can be mitigated by agreed upon actions.

No agreement has been reached regarding measures to mitigate effects to historic properties from the installation of stormwater controls.

Other:

3.3 SAFE DRINKING WATER ACT UNDERGROUND INJECTION CONTROL REQUIREMENTS

Do you plan to install any of the following controls?

Infiltration trenches (if stormwater is directed to any bored, drilled, driven shaft or dug hole that is deeper than its widest surface dimension, or has a subsurface fluid distribution system)

Commercially manufactured pre-cast or pre-built proprietary subsurface detention vaults, chambers, or other devices designed to capture and infiltrate stormwater flow

Drywells, seepage pits, or improved sinkholes (if stormwater is directed to any bored, drilled, driven shaft or dug hole that is deeper than its widest surface dimension, or has a subsurface fluid distribution system)

If yes, attach documentation of contact between you and the applicable state agency or EPA Regional Office responsible for implementing the requirements for underground injection wells in the Safe Drinking Water Act and EPA's implementing regulations at 40 CFR Parts 144-147.

3.4 APPLICABLE STATE OR LOCAL PROGRAMS

This SWPPP complies with the requirements of Standard 8 of the Massachusetts Department of Environmental Protection Stormwater Handbook, which states:

A plan to control construction-related impacts, including erosion, sedimentation, and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plans) shall be developed and implemented.

4.0 EROSION AND SEDIMENT CONTROL BMPS

This SWPPP contains a listing of the erosion and sediment control best management practices (BMPs) that will be implemented to control pollutants in stormwater discharges. The BMPs are categorized under one of the areas of BMP activity as described below:

- Natural Buffers or Equivalent Sediment Controls
- Phased construction activity
- Control stormwater flowing onto and through the project
- Stabilize soils
- Protect slopes
- Protect storm drain inlets
- Establish perimeter controls and sediment barriers
- Retain sediment on-site and control dewatering practices
- Establish stabilized construction exits

4.1 NATURAL BUFFERS OR EQUIVALENT SEDIMENT CONTROLS

Are there any surface waters located within 50 feet of your construction disturbances that receive stormwater discharges from the site? \Box Yes \boxtimes No

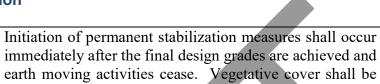
4.2 PHASED CONSTRUCTION ACTIVITY

Phased construction is not proposed. To minimize erosion during grading activities, grading and site work shall be conducted after snowmelt and during periods of predicted dry weather. The areas of the site that will remain vegetated after construction shall be stabilized with hydromulch or seeding immediately after grading activities are completed. All other areas of the construction site shall be stabilized if site work is not planned for more than 14 days. Disturbed areas shall be stabilized immediately after construction but no later than 14 days after construction ceases. Areas graded shall be stabilized with hydromulch immediately after construction but no later than 14 days after construction ceases.

4.3 **STABILIZE SOIL**

4.3.1 Temporary Stabilization

Description:	Initiation of temporary vegetative cover shall occur immediately where construction will cease for more than 7 days. Temporary vegetative cover shall be established using hydroseeding for areas of exposed soil (including
	stockpiles).
Installation Schedule:	Temporary stabilization measures shall be initiated immediately where construction activities will temporarily cease for more than 14 days. Stabilization will be completed as soon as practicable, but no later than 7 calendar days after stabilization has been initiated.
Maintenance and	Stabilized areas shall be inspected weekly and after storm
Inspection:	events until a dense cover of vegetation has become established. If failure is noticed at the seeded area, the area
	shall be reseeded, fertilized, and mulched immediately.
Hydromulching	


4.3.2 Hydromulching

Description:	Hydromulching shall provide immediate protection to
	exposed soils during short periods of disturbance.
	Hydromulch shall also be applied in areas that have been
	seeded for temporary or permanent stabilization.
Installation Schedule:	Hydromulch shall be applied to soil exposed temporarily
	for >14 days during construction.
Maintenance and	Hydromulched areas shall be inspected weekly and after
Inspection:	storm events to check for movement of mulch or erosion.
	If washout, breakage, or erosion occurs, the surface shall
	be repaired, and new hydromulch shall be applied to the
	damaged area.

4.3.3 Permanent Stabilization

Description:

	earth moving activities cease. Vegetative cover shall be established on exposed soils. Permanent stabilization shall be completed in accordance with the procedures outlined in Section 6.0 Final Stabilization.
Installation Schedule:	Portions of the site where construction activities have permanently ceased shall be stabilized as soon as possible, but no later than 7 calendar days after stabilization has been initiated.
Maintenance and Inspection:	All seeded areas shall be inspected weekly during construction activities and after storm events until a dense cover of vegetation has been established. If failure is noticed at the seeded area, the area shall be reseeded in accordance with the plans. Care shall be taken to avoid compacting newly placed topsoil. After construction is completed at the site, permanently stabilized areas shall be monitored until final stabilization is reached.

4.3.4 Dust Control

Description:	Dust from the site shall be controlled by using a mobile
	pressure-type distributor truck to apply water to disturbed
	areas. The mobile unit shall apply water at a maximum rate
	of 300 gallons per acre and minimized as necessary to
	prevent runoff and ponding.
Installation Schedule:	Dust control shall be implemented as needed once site
	grading has been initiated and during windy conditions
	(forecasted or actual wind conditions of 20 mph or greater)
	while site grading is occurring. Spraying of water shall be
	performed no more than three times a day during the
	months of May–September and once per day during the
	months of October–April or whenever the dryness of the soil warrants it.
Maintenance and	At least one mobile unit shall be available at all times to
Inspection:	distribute water to control dust on the site. Each mobile
	unit shall be equipped with a positive shutoff valve to
7	prevent over watering of the disturbed area.

4.4 ESTABLISH PERIMETER CONTROLS AND SEDIMENT BARRIERS

4.4.1 Sediment Control Barrier

Permanent	Temporary
Description:	A sediment control barrier, consisting of silt fence and
	compost mulch tube shall be installed along the down-
	gradient side of the proposed project to decrease the
	velocity of sheet flows and intercept and detain small
	amounts of sediment from disturbed areas.
Installation Schedule:	Sediment Control Barrier shall be installed prior to
	clearing and grubbing.
Maintenance and	Sediment Control Barrier shall be inspected weekly,
Inspection:	following storms, and daily during rainy periods.
	Damaged fencing or tubes shall be replaced. Concentrated
	flows shall be intercepted and rerouted. Sediment
	accumulations shall be removed when reaching a depth of
	6-inches, or one-half of the above ground height of the
	barrier, whichever is less. Deteriorated sediment control
	material shall be replaced. Used mulch tubes and fencing
	shall be properly disposed of.

4.5 ESTABLISH STABILIZED CONSTRUCTION ENTRANCE/EXIT

Permanent	Temporary
Description:	Temporary gravel or crushed stone construction
	entrance/exit or other means shall be used to minimize off-
	site movement of soil with vehicles. Construction access
	points shall be maintained to minimize tracking of soil onto
	public roads. If the rock entrance is not working to keep
	streets clean, then install wheel wash, sweep streets, or
	wash streets if wash water can be collected.
Installation Schedule:	Stabilized construction entrance shall be installed prior to
	earthmoving activities.
Maintenance and	Stabilized construction entrances shall be inspected daily.
Inspection:	Gravel or crushed stone shall be added if the pad is no
	longer in accordance with the specifications. If the rock
	entrance is not working to keep public streets clean, then
	install wheel wash, sweep streets, or wash streets if wash
	water can be collected. When sediment has been tracked
	off of the site onto public roads, it shall be removed by the
	end of the same working day, or by the end of the next
	working day if track-out occurs on a non-work day.
	Remove sediment by sweeping, shoveling or vacuuming
	public roadways were sediment has been tracked-out.

4.6 DEWATERING PRACTICES

Description:	All groundwater or stormwater discharged from excavations, trenches, or other similar points shall be treated by sediment basins, sediment traps, sediment socks, dewatering tanks, tube settlers or filtration systems specifically designed to remove sediment from the excavations. All dewatering practices shall conform to the following:
	 Visible floating solids or foam shall not be discharged; An oil-water separator or suitable filtration device (such as a cartridge filter) that is designed to remove oil, grease, or other products if dewatering water is found to contain these materials shall be used; To the extent feasible, utilize vegetated, upland areas of the site to infiltrate dewatering water before discharge. In no case will surface waters be considered part of the treatment area; Velocity dissipaters shall be installed at all points where dewatering activities are discharged to the surface. With backwash water, either haul it away for disposal or return it to the beginning of the treatment process; and Replace and clean the filter media used in dewatering devices when the pressure differential equals or exceeds the manufacturer's specifications.
Installation Schedule:	Install settling or filtration methods prior to commencing dewatering. Engineer is required to approve settling of filtration method design prior to installation.
Maintenance and Inspection:	Settling of filtration controls shall be inspected weekly and following storms. Sediment shall be removed when it reaches a depth of one foot, or half the design capacity whichever is less.

140 Tihonet Road PV+ES Project

Stormwater Pollution Prevention Plan (SWPPP) Wareham, Massachusetts 1833112RP003B

5.0 GOOD HOUSEKEEPING BMPS

This SWPPP contains a listing of the good housekeeping best management practices (BMPs) that shall be implemented to control pollutants in stormwater discharges during construction-related work. The BMPs are categorized below:

- Material Handling and Waste Management
- Establish Proper Building Material Staging Areas
- Designate Washout Areas
- Establish Proper Equipment/Vehicle Fueling and Maintenance Practices
- Allowable Non-Stormwater Discharges and Control Equipment/Vehicle Washing
- Spill Prevention and Control Plan

5.1 MATERIAL HANDLING AND WASTE MANAGEMENT

Several management procedures and practices are proposed to prevent and/or reduce the discharge of pollutants to stormwater from solid or liquid wastes that will be generated at the site. These measures are grouped into the following categories: (1) solid or construction waste disposal, (2) recycling, (3) sanitary and septic waste, and (4) hazardous materials.

5.1.1 Solid or Construction Waste Disposal

Description:	All waste materials shall be collected and disposed of into metal
	trash dumpsters or enclosed trash containers in the materials storage
	area. Dumpsters shall have a secure watertight lid, be placed away
	from stormwater conveyances and drains, and meet all federal, state,
	and municipal regulations. Only trash and construction debris from
	the site shall be deposited in the dumpster. No construction materials
	shall be buried on-site unless authorized by a program for
	recycling/beneficial use. All personnel shall be instructed regarding
	the correct disposal of trash and construction debris. Notices that
	state these practices shall be posted in the office trailer and the
	individual who manages day-to-day site operations shall be
	responsible for seeing that these practices are followed.
Installation	Trash dumpsters shall be installed once the materials storage area
Schedule:	has been established.
Maintenance	The dumpsters shall be inspected weekly and immediately after
and	storm events. The dumpsters shall be emptied weekly and taken to
Inspection:	an approved landfill or recycling facility. If trash and construction
	debris are exceeding the dumpsters' capacity, the dumpsters shall be
	emptied more frequently. Waste container lids shall be closed when
	not in use and at the end of the business day. For waste containers
	that do not have lids, provide cover or a similarly effective means to
	minimize the discharge of pollutants.

5.1.2 Recycling

Description:	Wood pallets, cardboard boxes, and other recyclable construction scraps shall be disposed of in a designated dumpster for recycling. The dumpster shall have a secure watertight lid, be placed away from stormwater conveyances and drains and meet all local and state solid-waste management regulations. Only solid recyclable construction scraps from the site shall be deposited in the dumpster. All personnel shall be instructed regarding the correct procedure for disposal of recyclable construction scraps. Notices that state these procedures shall be posted in the office trailer, and the individual who manages day-to-day site operations shall be responsible for seeing that these procedures are followed.
Installation	Designated recycling dumpsters shall be installed when building
Schedule:	materials arrive on-site.
Maintenance	The recycling dumpster shall be inspected weekly and immediately
and	after storm events. The recycling dumpster shall be emptied weekly
Inspection:	and taken to an approved recycling center. If recyclable
±	construction wastes are exceeding the dumpsters' capacity, the
	dumpsters shall be emptied more frequently.

5.1.3 Sanitary and Septic Waste

Description:	Temporary sanitary facilities (portable toilets) shall be provided at
	the site throughout the construction phase. The portable toilets shall
	be located in the staging area, away from concentrated flow paths
	and traffic flow.
Installation	The portable toilets shall be brought to the site once the staging area
Schedule:	has been established.
Maintenance	All sanitary waste shall be collected from the portable facilities on
and	a regular basis. The portable toilets shall be inspected weekly for
Inspection:	evidence of leaking holding tanks. Toilets with leaking holding
	tanks shall be removed from the site and replaced with new portable
	toilets.

5.1.4 Hazardous Materials and Waste

Description:	All hazardous waste materials such as oil filters, petroleum
	products, paint, and equipment maintenance fluids shall be stored
	in structurally sound and sealed shipping containers, within the
	hazardous materials storage area. Hazardous waste materials shall
	be stored in appropriate and clearly marked containers and
	segregated from other non-waste materials. Secondary containment
	shall be provided for all waste materials in the hazardous materials
	storage area and shall consist of commercially available spill
	pallets. Additionally, all hazardous waste materials shall be
	disposed of in accordance with federal, state, and municipal
	regulations. Hazardous waste materials shall not be disposed of into
	the on-site dumpsters. All personnel shall be instructed regarding
	proper procedures for hazardous waste disposal. Notices that state
	these procedures shall be posted in the office trailer and the
	individual who manages day-to-day site operations shall be
	responsible for seeing that these procedures are followed.
Installation	Shipping containers used to store hazardous waste materials shall
Schedule:	be installed once such materials arrive on-site.
Maintenance	The hazardous waste material storage areas shall be inspected
and	weekly and after storm events. The storage areas shall be kept
Inspection:	clean, well-organized, and equipped with ample cleanup supplies
	as appropriate for the materials being stored. Material safety data
	sheets, material inventory, and emergency contact numbers shall be
	maintained in the office trailer.

5.2 ESTABLISH PROPER BUILDING MATERIAL STAGING AREAS

Description: Construction equipment and maintenance materials shall be stored at the combined staging area and materials storage areas. A watertight shipping container shall be used to store hand tools, small parts, and other construction materials. Nonhazardous building materials such as packaging material (wood, plastic, and glass), and construction scrap material (steel, metal scraps, and pipe cuttings) shall be stored in a separate covered storage facility adjacent to the shipping container.

All hazardous-waste materials such as oil filters, petroleum products, paint, and equipment maintenance fluids shall be stored in structurally sound and sealed containers under cover within the storage area.

Very large items, shall be stored in the open in the materials storage area. Such materials shall be elevated on blocks to minimize contact with runoff.

Installation	The materials storage area shall be installed after grading and before any
Schedule:	infrastructure is constructed at the site.
Maintenance	The storage area shall be inspected weekly and after storm events. The
and	storage area shall be kept clean, well-organized, and equipped with ample
Inspection:	cleanup supplies as appropriate for the materials being stored. Perimeter
	controls, containment structures, covers, and liners shall be repaired or
	replaced as needed to maintain proper function.

5.3 DESIGNATE WASHOUT AREAS

5.3.1 Concrete Washout

_		
	Description:	A designated temporary, above-grade concrete washout area shall be constructed. The temporary concrete washout area shall be constructed with a recommended minimum length and minimum width of 10 feet, but with sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations. The washout area shall be lined with plastic sheeting at least 10 mils thick and free of any holes or tears. Signs shall be posted marking the location of the washout area to ensure that concrete equipment operators use the proper facility.
		Concrete pours shall not be conducted during or before an anticipated storm event. Concrete mixer trucks and chutes shall be washed in the designated area or concrete wastes shall be properly disposed of off-site. When the temporary washout area is no longer needed for the construction project, the hardened concrete and materials used to construct the area shall be removed and disposed of according to the maintenance section below, and the area shall be stabilized.
	Installation Schedule:	The washout area shall be constructed before concrete pours occur at the site.
	Maintenance and Inspection:	The washout areas shall be inspected daily to ensure that all concrete washing is being discharged into the washout area, no leaks or tears are present, and to identify when concrete wastes need to be removed. The washout areas shall be cleaned out once the area is filled to 75 percent of the holding capacity. Once 75% of the area's holding capacity has been reached, the concrete wastes shall be allowed to harden; the concrete shall be broken up, removed, and taken to an approved landfill for disposal or recycled on-site or off-site in accordance with applicable laws. The plastic sheeting shall be replaced if tears occur during removal of concrete wastes from the washout area.

Design Specifications:

- 1. Temporary concrete washout type Above Grade shall be constructed as detailed above.
- 2. The washout shall be a minimum of 50 feet from storm drain inlets.
- 3. Plastic lining shall be free of holes, tears, or other defects that compromise the impermeability of the material.

5.4 ESTABLISH PROPER EQUIPMENT/VEHICLE FUELING AND MAINTENANCE PRACTICES

Description:	Several types of vehicles and equipment will likely be used on-site
	throughout the project, including graders, scrapers, excavators, loaders,
	rollers, trucks and trailers, backhoes, and forklifts. All major
	equipment/vehicle fueling and maintenance shall be performed outside of
	wetland resource areas and associated buffer zones. When vehicle fueling
	must occur on-site, the fueling activity shall occur in the staging area. Only
	minor equipment maintenance shall occur on-site. All equipment fluids
	generated from maintenance activities shall be disposed of into designated
	drums stored on spill pallets in accordance with the Material Handling and
	Waste Management Section 5.1. Absorbent, spill-cleanup materials and
	spill kits shall be available at the combined staging and materials storage
	area. Drip pans shall be placed under all equipment receiving maintenance
	and vehicles and equipment parked overnight.
Installation	BMPs implemented for equipment and vehicle maintenance and fueling
Schedule:	activities shall begin at the start of the project.
Maintenance	Inspect equipment/vehicle storage areas weekly and after storm events.
and	Vehicles and equipment shall be inspected on each day of use. Leaks shall
Inspection:	be repaired immediately, using dry cleanup measures where possible and
	eliminating the source of the discharge. Problem vehicle(s) or equipment
	shall be removed from the project site. Keep ample supply of spill-cleanup
	materials on-site and immediately clean up spills and dispose of materials
	properly. Do not clean surfaces by hosing-down the area.

5.5 ALLOWABLE NON-STORMWATER DISCHARGES AND CONTROL EQUIPMENT / VEHICLE WASHING

Description:	All equipment and vehicle washing shall be performed off-site, except as
	required for wheel washes and concrete washout areas.
Installation	N/A
Schedule:	
Maintenance	N/A
and	
Inspection:	

5.6 SPILL PREVENTION AND CONTROL PLAN

Description:	i.	Employee Training: All employees shall be trained as detailed in
		the Inspection and Maintenance Section 8.0 of this report.
	ii.	Vehicle Maintenance: Vehicles and equipment shall be maintained
		off-site, except for minor maintenance as needed. All vehicles and
		equipment including subcontractor vehicles shall be checked for
		leaking oil and fluids. Vehicles leaking fluids shall not be allowed
		on-site.
	iii.	Hazardous Material Storage: Hazardous materials shall be stored in
		accordance with this report and applicable regulations.
	iv.	Spill Kits: Spill kits shall be kept within the materials storage area.
		Spills: All spills shall be cleaned up immediately upon discovery.
		Spent absorbent materials and rags shall be hauled off-site
		immediately after the spill is cleaned up for disposal at an approved
		landfill. Spills shall be reported to the National Response Center at
		1-800-424-8802 and MassDEP at 888-304-1133 as applicable in
		accordance with state and federal requirements.
	٧.	Material safety data sheets: A material inventory and emergency
		contact information shall be maintained at the on-site project trailer.
Installation	The s	pill prevention and control procedures shall be implemented once
Schedule:	constr	ruction begins on-site.
Maintenance	All p	ersonnel shall be instructed on the correct procedures for spill
and		ntion and control. Notices that state these practices shall be posted in
Inspection:	the of	fice trailer, and the individual who manages day-to-day site operations
	shall ł	be responsible for seeing that these procedures are followed.

5.7 FERTILIZER DISCHARGE RESTRICTIONS

-		
	Description:	Discharges from fertilizers containing nitrogen and phosphorus shall be
		minimized. Fertilizers shall be applied at rates and amounts consistent with
		the manufacture's specification, and shall at no time exceed local, state, or
		federal specifications. See project landscape specifications for acceptable
		fertilizers that can be used for the project.
	Installation	Fertilizers shall be applied at an appropriate time of year, timed to
	Schedule:	coincide as closely as possible to the period of maximum vegetation
		uptake and growth. Avoid applying fertilizers before heavy rains. Do not
		apply fertilizers to frozen ground or stormwater conveyance channels
		flowing with water.
ſ	Maintenance	N/A
	and	
	Inspection:	
	Ŧ	

5.8 ALLOWABLE NON-STORMWATER DISCHARGE MANAGEMENT

Any changes in construction activities that produce other allowable non-stormwater discharges shall be identified, and the SWPPP shall be amended and the appropriate erosion and sediment control shall be implemented.

The following is a list of allowable non-stormwater discharges:

- Water Used to Control Dust
- Uncontaminated Excavation Dewatering
- Firefighting
- Non-Detergent Laden Vehicle Wash Water

Except for water used to control dust and irrigation water, the above discharges shall not be routed to areas of exposed soil.

6.0 FINAL STABILIZATION

In compliance with the Construction General Permit, soil stabilization measures must be implemented immediately whenever earth-disturbing activities are temporarily or permanently ceased on any portion of the site. Earth-disturbing activities are temporarily ceased when clearing, grading, and excavation within any area of a site that will not include a permanent structure will not resume for a period of 7 or more calendar days, but such activities will resume in the future.

In the context of this provision, "immediately" means as soon as practicable, but no later than the end of the next work day, following the day when the earth-disturbing activities have temporarily or permanently ceased. The following activities constitute the initiation of stabilization:

- Preparing the soil for vegetative or non-vegetative stabilization;
- Applying mulch or other non-vegetative product to the exposed area;
- Seeding or planting the exposed area;
- Starting any of the activities in listed above on a portion of the area to be stabilized, but not on the entire area; and
- Finalizing arrangements to have stabilization product fully installed in compliance with the applicable deadline for completing stabilization.

As soon as practicable, but no later than 7 calendar days after the initiation of soil stabilization measures the following activities are required to be completed:

- For vegetative stabilization, all activities necessary to initially seed or plant the area to be stabilized; and/or
- For non-vegetative stabilization, the installation or application of all such non-vegetative measures.

The following sections detail the management practices proposed to achieve final stabilization of the site.

6.1 **PERMANENT SEEDING**

Description:	Permanent seeding shall be applied immediately after the final design
	grades are achieved on portions of the site but no later than 7 days after
	construction activities have permanently ceased. After the entire site is
	stabilized, any sediment that has accumulated shall be removed and
	hauled off-site for disposal at an approved landfill. Construction debris,
	trash and temporary BMPs (including sedimentation controls, material
	storage areas, sanitary toilets, and inlet protection) shall also be removed
	and any areas disturbed during removal shall be seeded immediately.
	Seeding shall be performed in accordance to the Site Plans and Landscape
	Specifications for the project.
Installation	Seeding shall occur at portions of the site where construction activities
Schedule:	have permanently ceased shall be stabilized, as soon as possible but no
	later than 7 days after construction ceases.
Maintenance	All seeded areas shall be inspected weekly during construction activities
and	for failure and after storm events until a dense cover of vegetation has
Inspection:	been established. If failure is noticed at the seeded area, the area shall be
	reseeded in accordance with the plans. After construction is completed at
	the site, permanently stabilized areas shall be monitored until final
	stabilization is achieved.

7.0 INSPECTIONS AND MAINTENANCE

7.1 INSPECTIONS

7.1.1 Inspection Schedule and Procedures

Inspections of the site will be performed once every 7 days and within 24 hours of the end of a storm event of 0.25-inch) or greater unless otherwise specified. The inspections will verify that all BMPs required are implemented, maintained, and effectively minimizing erosion and preventing stormwater contamination from construction materials.

To determine if a storm event of 0.25 inches or greater has occurred on the site, either a properly maintained rain gauge will be kept on the site or the storm event information will be obtained from a weather station that is representative of the location. If an inspection is conducted because of rainfall measuring 0.25 inches or greater, the applicable rain gauge or weather station readings that triggered the inspection will be noted in the inspection report.

Inspections shall include all areas of the site disturbed by construction activity and areas used for storage of materials that are exposed to precipitation. Inspectors shall look for evidence of, or the potential for, pollutants entering the storm water conveyance system. Sedimentation and erosion control measures identified in the SWPPP shall be observed to ensure proper operation. Discharge locations shall be inspected to ascertain whether sediment and erosion control measures are effective in preventing significant impacts to waters of the United States, where accessible. Where discharge locations are inaccessible, nearby downstream location shall be inspected to the extent that such inspections are practicable. Locations where vehicles enter or exit the site shall be inspected for evidence of off-site sediment tracking.

For detailed inspection procedures, see Sections 4 and 5.

All inspections shall be coordinated with a representative from Owner Company. An Owner Company representative shall accompany the Inspector, when possible, during inspections.

Inspection reports are required to be completed within 24-hours of an inspection. If corrective actions are identified by the Inspector during the inspection, he/she shall notify and submit a copy of the inspection report to the Operator(s). For corrective actions identified, the Site Owner/Site Operator shall be responsible for initiating the corrective action within 24 hours of the report and completing maintenance as soon as possible or before the next storm event. For any corrective actions requiring a SWPPP amendment or change to a stormwater conveyance or control design, the

Site Owner/Site Operator shall notify Owner, as soon as possible, before initiating the corrective action.

The business days for the project construction are 7:00 am to 5:00 pm, Monday through Friday.

For a copy of the inspection report template, see Appendix E.

7.2 REDUCTIONS IN INSPECTION FREQUENCY

Once an area is stabilized, inspections may be reduced to twice per month for the first month, no more than 14 calendar days apart, then once per month. If construction resumes at the stabilized area the inspection frequency shall increase as outlined in Section 7.1.

If earth-disturbing activities are suspended due to frozen conditions inspections can be temporarily suspended until a thaw occurs.

7.3 CORRECTIVE ACTION LOG

The corrective action log describes repairs, replacements, and maintenance of BMPs undertaken as a result of the inspections and maintenance procedures. Additionally, remedies of permit violations and clean and proper disposal of spills, releases other deposits should be recorded.

If it is determined the stormwater controls have not been installed as required, or that they are not functioning adequately corrective action is required within 7 calendar days.

The operator will document the completion of the corrective action within 24 hours.

See Appendix F – Corrective Action Log.

8.0 RECORDKEEPING AND TRAINING

8.1 RECORDKEEPING

A copy of the SWPPP, along with all inspection reports and corrective action logs are required to be stored at an accessible location at the site or other location easily accessible during normal business hours, and shall be made available upon request of the EPA, or state or local agency approving stormwater management plans.

The following records shall be kept at the project site and shall be available for inspectors to review. These records shall be retained for a minimum period of at least 3 years after the permit is terminated.

Date(s) when major grading activities occur:

See Appendix I – Grading and Stabilization Activities Log

Date(s) when construction activities temporarily or permanently cease on a portion of the site:

See Appendix I – Grading and Stabilization Activities Log

Date(s) when an area is either temporarily or permanently stabilized: See Appendix I – Grading and Stabilization Activities Log

8.2 LOG OF CHANGES TO THE SWPPP

The log of changes to the SWPPP is maintained in Appendix G and includes additions of new BMPs, replacement of failed BMPs, significant changes in the activities or their timing on the project, changes in personnel, changes in inspection and maintenance procedures and updates to site plans.

8.3 TRAINING

Prior to the commencement of earth-disturbing activities or pollutant-generating activities, whichever occurs first, training on the pollution prevention measures outlined in this SWPPP shall be provided to staff and subcontractors.

8.3.1 Individual(s) Responsible for Training

Company/Organization: TBD Name: TBD

8.3.2 Description of Training Conducted

Informal training shall be conducted for all staff, including subcontractors, on the site. The training shall be conducted primarily via tailgate sessions and shall focus on avoiding damage to stormwater BMPs and preventing illicit discharges. The tailgate sessions shall be conducted biweekly and shall address the following topics: Erosion Control BMPs, Sediment Control BMPs, Non-Stormwater BMPs, Waste Management and Materials Storage BMPs, and Emergency Procedures specific to the construction site. (See Appendix J – Training Log)

Formal training shall be provided to all staff and subcontractors with specific stormwater responsibilities, such as installing and maintaining BMPs. The formal training shall cover all design and construction specifications for installing the BMPs and proper procedures for maintaining each BMP. Training shall also cover inspection schedules and procedures for personnel whose job duties are related to inspections. Formal training shall occur before any BMPs are installed on the site. (See Appendix J – Training Log)

9.0 CERTIFICATION AND NOTIFICATION

9.1 SIGNATURE, PLAN REVIEW, AND MAKING PLANS AVAILABLE

A copy of the SWPPP (including a copy of the Construction General Permit, NOI, and acknowledgement letter from EPA) shall be retained at the construction site (or other location easily accessible during normal business hours to EPA, a state, tribal or local agency approving sediment and erosion plans, grading plans, or storm water management plans; local government officials; the operator of a municipal separate storm sewer receiving discharges from the site; and representatives of the U.S. Fish and Wildlife Service or the National Marine Fisheries Service) from the date of commencement of construction activities to the date of final stabilization. A copy of the SWPPP shall be available at a central location on-site for the use of all those identified as having responsibilities under the SWPPP. If an on-site location is unavailable to store the SWPPP when no personnel are present, notice of the plan's location shall be posted near the main entrance at the construction site.

9.2 NOTICE OF PERMIT COVERAGE

A sign must be posted at a safe, publicly accessible location in close proximity to the construction site detailing the permit coverage. The notice must be located so that it is visible from the public road that is nearest to the active part of the construction site, and it must use a font large enough to be readily viewed from a public right-of-way. At a minimum, the notice must include:

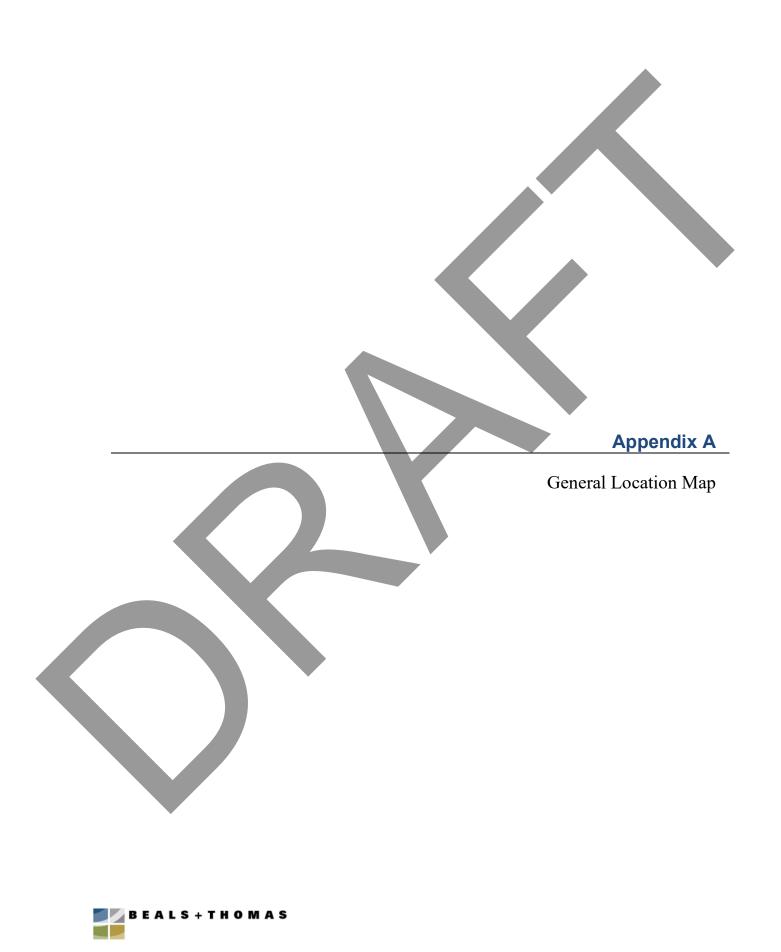
- The NPDES Permit Tracking Number,
- A contact name and phone number for obtaining additional construction site information,
- The Uniform Resource Locator (URL) for the SWPPP (if available), or the following statement: "If you would like to obtain a copy of the Stormwater Pollution Prevention Plan (SWPPP) for this site, contact the EPA Regional 1 Office at (617) 918-1038,
- The following statement "If you observe indicators of stormwater pollutants in the discharge or in the receiving waterbody, contact the EPA through the following website: https://www.epa.gov/enforcement/report-environmental-violations."

9.3 OWNER CERTIFICATION

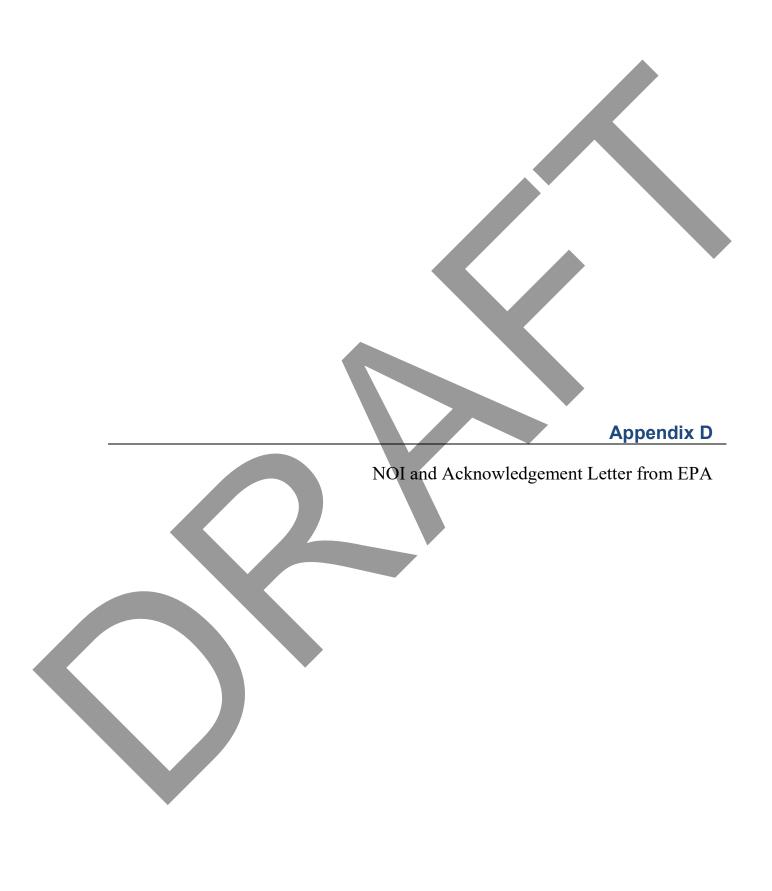
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Title	:	
Signature:	Date	:	

9.4 OPERATOR CERTIFICATION


I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Title:	
Signature:	Date:	
	The second secon	


Appendix C

Construction General Permit

https://www.epa.gov/sites/production/files/2017-02/documents/2017_cgp_final_permit_508.pdf

Appendix E

Inspection Reports

Inspections under this SWPPP shall be conducted in accordance with each installed BMPs recommended maintenance requirements. This inspection frequency may be reduced to at least once every month if: a) the entire site is temporarily stabilized, b) runoff is unlikely due to winter conditions (e.g. site is covered with snow, ice, or the ground is frozen), or c) construction is occurring during seasonal arid periods in arid areas and semi-arid areas. If an inspection report is filed according to this modified schedule it shall be noted at the end of the report under the "NOTES" section.

The following pages should be copied and completed for each inspection. All inspection forms should be compiled in a binder to prove compliance with this SWPPP.

	General Information
Project Name	
NPDES Tracking No.	Location
Date of Inspection	Start/End Time
Inspector's Name(s)	
Inspector's Title(s)	
Inspector's Contact Information	
Inspector's Qualifications	
Describe present phase of construction	
Type of Inspection:Image: RegularImage: Pre-storm event	During storm event Post-storm event
	Weather Information
Has there been a storm event since the If yes, provide:	e last inspection?
Storm Start Date & Time:	Storm Duration (hrs):
Approx. Amount of Precipitation (in):	
Weather at time of this inspection?	
□ Clear □Cloudy □ Rain □ S □ Other:	Sleet Grog Snowing High Winds Temperature:
Have any discharges occurred since th	e last inspection? Yes No
If yes, describe:	
	f inspection?

C4 DL 1-1:44 р н n т

Site-specific BMPs

- Number the structural and non-structural BMPs identified in your SWPPP on your site map and list them below (add as many BMPs as necessary). Carry a copy of the numbered site map with you during your inspections. This list will ensure that you are inspecting all required BMPs at your site.
- Describe corrective actions initiated, date completed, and note the person that completed the work in the Corrective Action Log.

BMP	BMP Installed?	BMP Maintenance Required?	Corrective Action Needed and Notes
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	UYes UNo	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	U Yes U No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	□Yes □No	
	□Yes □No	U Yes U No	
	□Yes □No	□Yes □No	
	□Yes □No	U Yes U No	
¥	□Yes □No	□Yes □No	

Overall Site Issues

Below are some general site issues that should be assessed during inspections. Customize this list as needed for conditions at your site.

BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes
Are all slopes and disturbed areas not actively being worked properly stabilized?	□Yes □No	□Yes □No	
Are natural resource areas (e.g., streams, wetlands, mature trees, etc.) protected with barriers or similar BMPs?	□Yes □No	□Yes □No	
Are perimeter controls and sediment barriers adequately installed (keyed into substrate) and maintained?	□Yes □No	□Yes □No	
Are discharge points and receiving waters free of any sediment deposits?	□Yes □No	□Yes □No	
Are storm drain inlets properly protected?	□Yes □No	□Yes □No	
Is the construction exit preventing sediment from being tracked into the street?	Yes No	□Yes □No	
Is trash/litter from work areas collected and placed in covered dumpsters?	□Yes □No	□Yes □No	
Are washout facilities (e.g., paint, stucco, concrete) available, clearly marked, and maintained?	□Yes □No	□Yes □No	
Are vehicle and equipment fueling, cleaning, and maintenance areas free of spills, leaks, or any other deleterious material?	□Yes □No	□Yes □No	

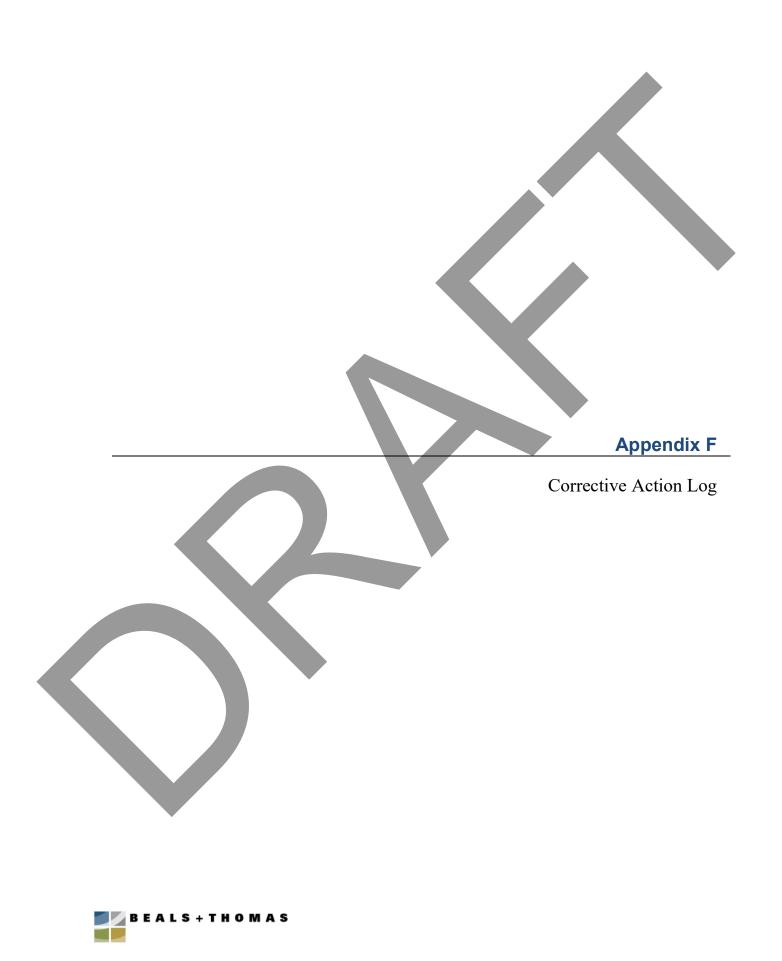
BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes
Are materials that are potential stormwater contaminants stored inside or under cover?	□Yes □No	□Yes □No	
Are non-stormwater discharges (e.g., wash water, dewatering) properly controlled?	□Yes □No	□Yes □No	
(Other)	□Yes □No	□Yes □No	

Non-Compliance

Describe any incidents of non-compliance not described above:

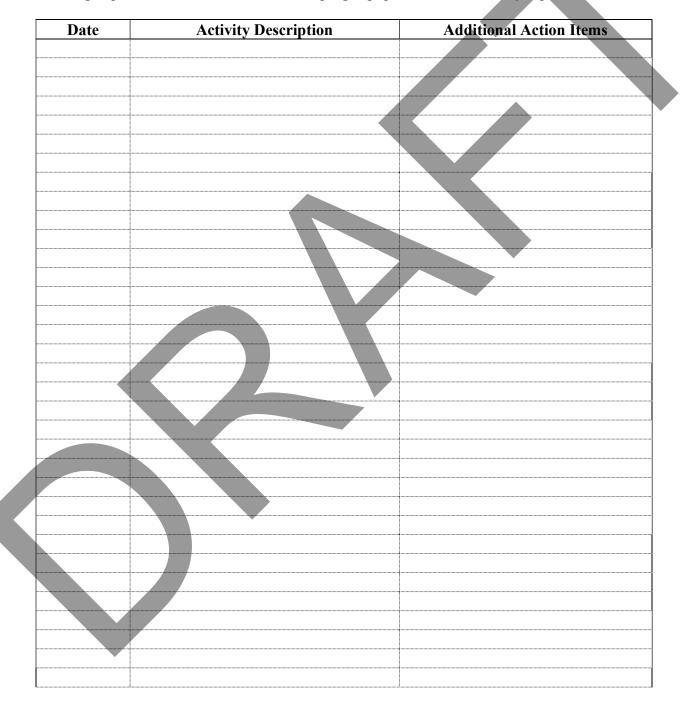
CERTIFICATION STATEMENT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."



Print	name	and	title:	

Signature:


Date:

Corrective Action Log

Use this form to note the date and activity for accurate record keeping (make additional copies as necessary). Examples include the restaking or reinforcement of the erosion control barrier, site watering to prevent dust erosion, street sweeping, equipment and machinery repair, etc.

Appendix G

SWPPP Amendment Log

The SWPPP, including the site plans, shall be amended whenever there is a change in design, construction, operation, or maintenance at the construction site that has or could have a significant effect on the discharge of pollutants to the waters of the United States that has not been previously addressed in the SWPPP.

The SWPPP shall be amended if during inspections or investigations by site staff, or by local, state, tribal or federal officials, it is determined that the SWPPP is ineffective in eliminating or significantly minimizing pollutants in storm water discharges from the construction site.

Based on the results of an inspection, the SWPPP shall be modified as necessary to include additional or modified BMPs designed to correct problems identified. Revisions to the SWPPP shall be completed within seven (7) calendar days following the inspection. Implementation of these additional or modified BMPs shall be accomplished as described in Subpart 3.6B of the Construction General Permit (located in Appendix C).

SWPPP Amendment Log

Subcontractor Certifications/Agreements

	Sample Subcontractor Certifications/Agreements
	SUBCONTRACTOR CERTIFICATION STORMWATER POLLUTION PREVENTION PLAN
Project Number:	
Operator(s):	

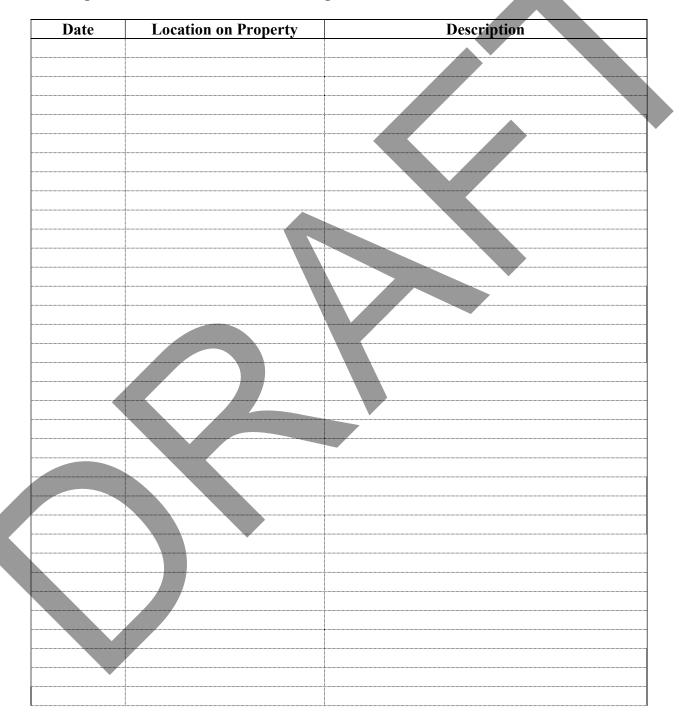
As a subcontractor, you are required to comply with the Stormwater Pollution Prevention Plan (SWPPP) for any work that you perform on-site. Any person or group who violates any condition of the SWPPP may be subject to substantial penalties or loss of contract. You are encouraged to advise each of your employees working on this project of the requirements of the SWPPP. A copy of the SWPPP is available for your review at the office trailer.

Each subcontractor engaged in activities at the construction site that could impact stormwater must be identified and sign the following certification statement:

I certify under the penalty of law that I have read and understand the terms and conditions of the SWPPP for the above designated project and agree to follow the practices described in the SWPPP.

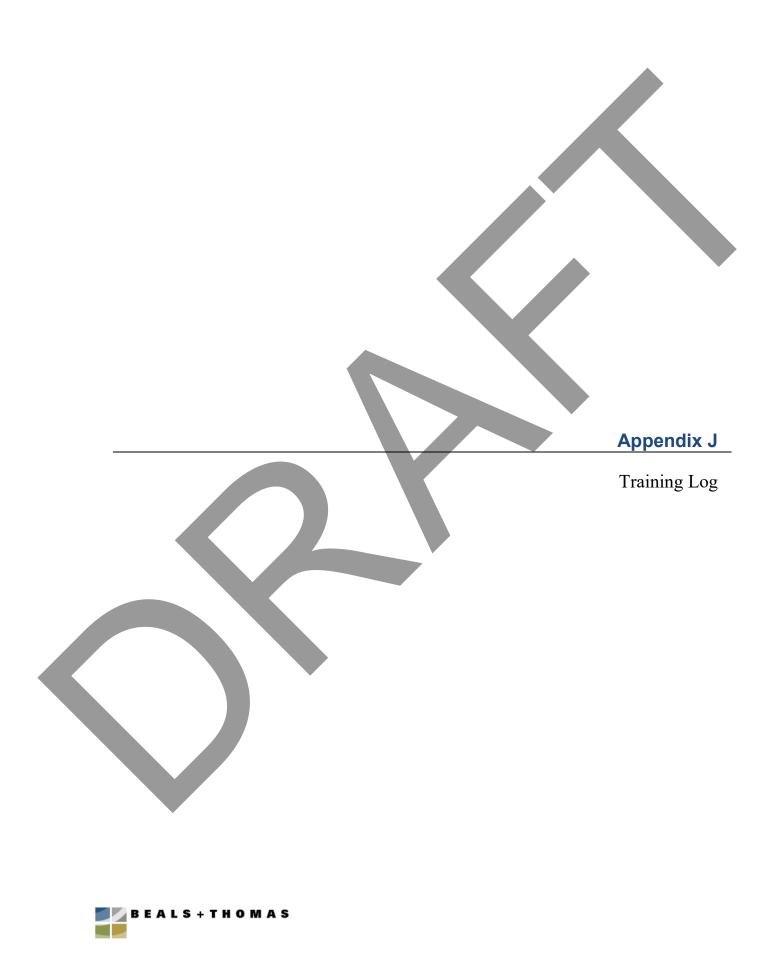
This certification is hereby signed in reference to the above named project:

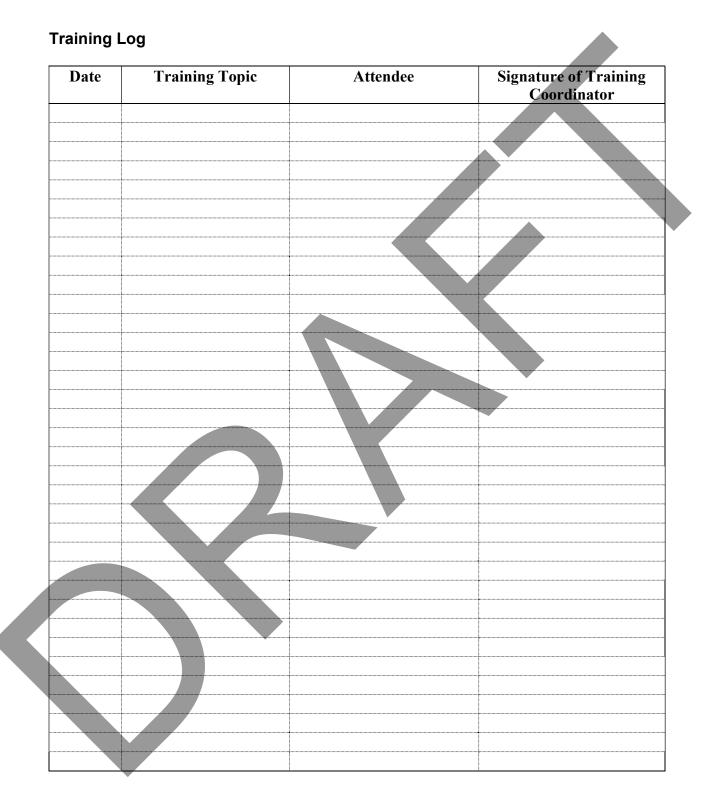
Company:
Address:
Telephone Number:
Type of construction service to be provided:
Signature:
Title:
Date:


Appendix I

Grading and Stabilization Activities Log

Site Plans in Appendix B should be annotated to indicate areas where final stabilization has been accomplished and no further construction-phase permit requirements apply.




The following records are to be kept by each Site Operator throughout the construction period and maintained in the SWPPP. Insert additional documentation for record keeping as necessary.

Grading and Stabilization Activities Log

Sample Delegation of Authority Form

Delegation of Authority

I, ______ (name), hereby designate the person or specifically described position below to be a duly authorized representative for the purpose of overseeing compliance with environmental requirements, including the Construction General Permit, at the construction site. The designee is authorized to sign any

reports, stormwater pollution prevention plans and all other documents required by the permit.

 (name of person or position)
 _(company)
 (address)
 _(city, state, zip)
(phone)

By signing this authorization, I confirm that I meet the requirements to make such a designation as set forth in Appendix I of EPA's Construction General Permit (CGP), and that the designee above meets the definition of a "duly authorized representative" as set forth in Appendix I.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	
Company:	
Title:	
Signature:	
Date:	

Endangered Species Documentation

Historic Preservation Documentation

