STORMWATER REPORT

Grace Lighthouse Church 2703 Cranberry Highway (Route 28) Wareham, MA 02571

Construction of a New Church

Prepared by:

Has Joined Tighe&Bond

260 Cranberry Highway Orleans, MA 02653

January 29, 2024

Prepared by DAV Checked by SMR

TABLE OF CONTENTS

Stormwater Check List

Narrative

- Project Description
- Existing Conditions
- Proposed Conditions
- Stormwater Design
- Stormwater Management Standards (MassDEP Checklist)

APPENDICES

- A. Maps & Rainfall
 - MassGIS Base Map
 - Environmental Constraint Map
 - FIRMette
 - NOAA Atlas 14 Rainfall Data
- B. NRCS Web Soil Survey
 - Soil Map
 - Soil Unit 255B
 - Soil Unit 665B
- C. Soil Exploration
 - Test Pit Location
 - Soil Logs
- D. Watershed Map
 - Existing Watershed Map
 - Proposed Watershed Map
- E. Calculations
 - Pre- and Post-Development Conditions Comparison
 - Existing Conditions HydroCAD Calculations
 - Proposed Conditions HydroCAD Calculations
 - Recharge Calculations
 - Drawdown Calculations
 - Water Quality Calculations
 - TSS Calculations
- F. Operation and Maintenance Plan
- G. Construction Period Operation and Maintenance Plan

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
X	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
M	Grass Channel
	Green Roof
	Other (describe): Pea stone diaphragm 24" x 12" at all parking edges adjacent to grass channel

Standard 1: No New Untreated Discharges

No new untreated discharges

Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth

Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static

Simple Dynamic

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Recharge BMPs have been sized to infiltrate the Required Recharge Volume.

Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum
extent practicable for the following reason:

- Site is comprised solely of C and D soils and/or bedrock at the land surface
- M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
- Solid Waste Landfill pursuant to 310 CMR 19.000
- Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.

A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.

Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:

is within the Zone II or Interim Wellhead Protection Area

is near or to other critical areas

is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)

involves runoff from land uses with higher potential pollutant loads.

The Required Water Quality Volume is reduced through use of the LID site Design Credits.

Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

	Checklist ((continued)
--	-------------	-------------

Standard 4: Water Quality (continued)

\mathbf{M}	The BMP is sized	and calculations	provided) based on:
--------------	------------------	------------------	----------	-------------

$\mathbf{\nabla}$	The 1/2"	or 1"	Water	Quality	Volume or
-------------------	----------	-------	-------	---------	-----------

- The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project	t
-----------------	---

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

The project is highly complex and information is included in the Stormwater Report that explains why
it is not possible to submit the Construction Period Pollution Prevention and Erosion and
Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and
Erosion and Sedimentation Control has not been included in the Stormwater Report but will be
submitted <i>before</i> land disturbance begins.

- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

\checkmark	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and
	includes the following information:

- Name of the stormwater management system owners;
- Party responsible for operation and maintenance;
- Schedule for implementation of routine and non-routine maintenance tasks;
- Plan showing the location of all stormwater BMPs maintenance access areas;
- Description and delineation of public safety features;
- Estimated operation and maintenance budget; and
- Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Narrative

Project Description

The project consists of site alterations and improvements that will allow the construction of a new church facility. The site is located directly off Cranberry Highway (Route 28). The locus of the site is included in appendix A.

The proposed Improvements include the construction of a building set on piles, gravel parking lot, concrete walkways, trash enclose and pad, fences, lighting, utilities, landscaping, and stormwater management and drainage improvements.

The stormwater management system is designed to minimize the use of manmade conveyance structures (catch basins, manholes, pipes, etc...). Instead, the system was designed to utilize the topography to convey stormwater into the leaching basins via grass channels that will be planted with a native pollinator seed mix. This will not only provide a low impact stormwater system, but also provide a natural habitat for animals. The stormwater is designed to infiltrate all the impervious surface runoff into the ground, promoting peak rate and volume attenuation, as well as water quality treatment.

Existing Conditions

The existing site is approximately 2.4 acres. The site used to be fully developed and paved, however it has been abandoned for quite some time and the remanence of pavement remains. Currently there are no stormwater management practices capturing runoff employed on the property. The majority of runoff flows uncontrolled towards natural depressions either off site or on site. The impervious surface is approximately 7,613 s.f. The rest of the site consists of grasses, bare soil, and wooded areas. See appendix D-1 Existing Watershed Map for the existing hydrology, and an aerial map depicting the ground conditions. The aerial image was taken on 2019-03-25. Note that the site has been modified since 2019. The wooded areas have been removed, and gravel parking has been added as a temporary event space (see existing conditions plan by Coastal Engineering Company dated 12-27-23 for conditions after the clearing and gravel parking addition). In this analysis we will be utilizing the existing conditions as depicted in the aerial imagery. The intent is to restore the runoff to the preclearing condition and provide a better overall stormwater management system.

See Appendix D-1 for existing watershed map as depicted below:

<u>Existing Watershed 1</u> is located at the upper northwest corner of the lot and is approximately 25,047 s.f. The Area includes 3,352 s.f. of pavement, 18,082 s.f. of poor condition grass, and 3,613 s.f. of a wooded area. The stormwater runoff collects at the edge of the property line via sheet flow, where it is collected in a natural depression and infiltrated into the ground (POA1).

<u>Existing Watershed 2</u> is located at the north edge of the lot and is approximately 1,282 s.f. The Area consists of grass in poor condition. The stormwater runoff collects at the edge of the property line via sheet flow, where it flows into the Cranberry Highway right of way (POA2).

<u>Existing Watershed 3 is located at the upper northeast corner of the lot and is approximately</u> 43,212 s.f. The Area includes 1,282 s.f. of pavement, 16,853 s.f. of grass in poor condition, and 24,705 s.f. of a wooded area. The stormwater runoff collects at the edge of the property line via sheet flow and discharges overland to the neighboring commercial property (POA3).

<u>Existing Watershed 4</u> is located at the bottom southeast corner of the lot and is approximately 6,540 s.f. The Area consists of a wooded area. The stormwater runoff collects at the edge of the property line via sheet flow and discharges overland to the neighboring residential property (POA4).

<u>Existing Watershed 5</u> is located at the bottom southwest corner of the lot and is approximately 20,380 s.f. The Area includes 2,607 s.f. of pavement, 1,731 s.f. of grass in poor condition, and 16,042 s.f. of a wooded area. The stormwater runoff collects at the edge of the property line via sheet flow where it is collected in a natural depression and infiltrated into the ground (POA5).

<u>Existing Watershed 6</u> is located at the west corner of the lot and is approximately 6,146 s.f. The Area consists of a wooded area. The stormwater runoff collects at the edge of the property line via sheet flow and discharges overland to the neighboring residential property (POA6).

Proposed Conditions

The proposed conditions will increase the impervious area of the site by approximately 33,570s.f. Impervious area consists of the following improvements roofs, graver parking, paved ADA parking, ADA ramps, dumpster pad, and sidewalks. To mitigate for the additional impervious area, the site will be regraded so that the parking lot runoff will be directed towards the peas stone diaphragm and the proposed grass channel swale. The swale is then directed towards two beehive grates that are connected to a leaching recharge basin. These BPM's will allow for groundwater recharge, attenuation of peak flows, and water quality treatment.

See Appendix D-2 for the proposed watershed map as depicted below:

<u>Proposed Watershed 1</u> is approximately 13,459 s.f. The area includes 1,107 s.f. of pavement, 1,675 s.f. of roof, 7,850 s.f. of good condition grass, and 2,827 s.f. of a wooded/grass area. The stormwater runoff collects at the edge of the property line via sheet flow, where it is collected in a natural depression and infiltrated into the ground (POA1).

<u>Proposed Watershed 2</u> is approximately 1,283 s.f. The area consists of a wooded/grass area. The watersheds exist due to the required berm adjacent to cranberry highway per town zoning bylaw. The stormwater runoff collects at the edge of the property line via sheet flow, where it discharges into the right of way and infiltrates into the ground (POA2).

<u>Proposed Watershed 3</u> is approximately 27,907 s.f. The area includes 15,374 s.f. of pavement, 181 s.f. of roof, 11,843 s.f. of good condition grass, and 509 s.f. of a wooded/grass area. The stormwater runoff is graded so that it passes the pea stone diaphragm after the parking lot, enters the grass channel, and enters the leaching recharge basin - 2 for infiltration into the ground.

<u>Proposed Watershed 4</u> is approximately 27,494 s.f. The area includes 16,346 s.f. of pavement, and 11,148 s.f. of good condition grass. The stormwater runoff is graded so that it passes the pea stone diaphragm after the parking lot, enters the grass channel, and then enters a deep sump catch basins that is routed to the leaching recharge basin – 2 for infiltration into the ground. Watershed 3 and 4 needed to be separated due to the proposed overflow access corridor. The only major difference is that watershed 4 proposes a catch basin.

<u>Proposed Watershed 5</u> is approximately 4,267 s.f. The area consists of only the roof to the modular building. The clean stormwater will collect from the roof and be conveyed to a 6" roof drain that will be routed to the leaching recharge basin — 1(LRB-1) for infiltration into the ground. An overflow grate is proposed for LRB-1 that will discharge to the edge of the property line, where it will be collected in a natural depression and infiltrated into the ground (POA1).

<u>Proposed Watershed 6</u> is approximately 2,910 s.f. The area consists of only a wood/grass combo. The stormwater runoff collects at the edge of the property line via sheet flow and discharges overland to the neighboring commercial property (POA3).

<u>Proposed Watershed 7</u> is approximately 6,385 s.f. The area consists of 1,109 s.f of grass in good condition and 5,276 s.f. wood/grass combo. The stormwater runoff collects at the edge of the property line via sheet flow and discharges overland to the residential property (POA4).

<u>Proposed Watershed 8</u> is approximately 18,395 s.f. The Area includes 2,414 s.f. of pavement and 15,981 s.f. of a wooded/grass combo area. The stormwater runoff collects at the edge of the property line via sheet flow where it is collected in a natural depression and infiltrated into the ground (POA5).

<u>Proposed Watershed 8</u> is approximately 507 s.f. The area consists of only a wood/grass combo. The stormwater runoff collects at the edge of the property line via sheet flow and discharges overland to the neighboring residential property (POA6).

Stormwater Design

Pre- and post-development drainage calculations were prepared utilizing the U.S. Soil Conservation Service Technical Release 20 — Urban Hydrology for Small Watersheds, the U.S. Soil Conservation Service National Engineering Hydrology Handbook, NOAA Atlas 14 rainfall data (see Appendix A), and accepted engineering design practice. These standards were applied in the use of HydroCAD stormwater modeling software to generate a representative model of existing hydrology and proposed stormwater management features for the 2-year, 10-year, 25-year, and 100-year storm events.

Coastal Engineering performed an on-site soil suitability assessment on 04-12-2022 and discovered that the existing soil is sand (8.27in/hr. Rawls Rate for infiltration) down to 11 feet from finish grade (limit of excavator). No groundwater or redoximorphic features were observed at the time of excavation. The coincides with the NRCS web soil survey results. See Appendix B for NRCS data, and Appendix C for Coastal Engineering soil logs for additional information.

Where applicable, MA Department of Environmental Protection (DEP) Stormwater Handbook performance standards, along with accepted engineering practices, are utilized in preparing a stormwater management system design. Furthermore, local regulations and performance standards are applied to the design, except for any noted waiver requests.

The proposed stormwater management along with site grading is designed to reduce the volume of runoff generated on site from pre to post conditions to the abutting properties and the state highway layout. BMP's are designed for 90% TSS removal within the redeveloped areas. The leaching systems was designed at a minimum to: provide the require recharge volume, provide a draw down to be less than 72 hours, and attenuate the 1" water quality volume. See appendix E for detailed calculations supporting the design.

Stage Storage Volume Peak Elevation and Outflow at LRB - 1

10'W X 20'L X 5.67'D stone with two 8'Dia X 4.67'D concrete leaching pits (LRB-1) Rawls Rate = 8.27 inches/hour, grate outlet Elev.=100 Bottom of structure el. = 93.82 Top of structure el. = 99.48 Storage (Including riser) = 707 c.f.

Storm	Rainfall (in.)	Peak Elevation	Infiltration (cfs)	Outlet (cfs)	Storage(c.f.)
2-year	3.44	96.91	.04	0.00	359
10-year	5.05	98.89	.04	0.00	625
50-year	6.05	100.00	.04	0.14	707
100-year	7.59	100.00	.04	0.77	707

Stage Storage Volume Peak Elevation and Outflow at LRB - 2

12'W X 46'L X 7.67'D stone with five 8'Dia X 6.67'D concrete leaching pits (LRB-2) Bottom of structure el. = 87.09 Top of structure el. = 94.76 Structure Storage = 2565 c.f.

Grass channel Grass Channel Bottom el. = 96.00 Grass Channel top el. = 99.00 Grass Channel Storage = 7,512 c.f.

Additional Parking Lot Storage area Parking Bottom el. = 99.00 Parking top el. = 99.50 Parking Storage = 3,790 c.f.

Rawls Rate = 8.27 inches/hour

Storm	Rainfall (in.)	Peak Elevation	Infiltration (cfs)	Outlet (cfs)	Storage(c.f.)
2-year	3.44	94.40	.11	0.00	2,384
10-year	5.05	98.28	.11	0.00	6,517
50-year	6.05	98.92	.11	0.00	9,612
100-year	7.59	99.40	.11	0.28	13,002

Stormwater Management Standards (MassDEP Checklist)

The following information summarizes compliance with the Stormwater Management Standards.

Standard 1: No New Untreated Discharges

There are no new untreated discharges.

Standard 2: Peak Rate Attenuation

The project standard has been met for peak runoff and peak volume. Calculations provided and summarized in Appendix E.

Standard 3: Recharge

The project standard has been for recharge. Calculations provided and summarized in Appendix E.

Standard 4: Water Quality

The project standard has been met for water quality volume. Calculations provided and summarized in Appendix E.

Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)

The project site is not a LUHPPLs.

Standard 6: Critical Areas

The site is not located within any critical areas.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project proposed to increase the impervious area; thus, it is not considered a redevelopment project, and was designed to comply with the stormwater management standards.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A detailed erosion and sediment control plan will be issued with construction documents that will incorporate the performance standards recommended in the DEP's Stormwater Management Policy. Additionally, the contractor will be required to procure the SWPPP prior to land disturbance.

Standard 9: Operation and Maintenance Plan

Operation and Maintenance plan is provided in Appendix F of this report.

Standard 10: Prohibition of Illicit Discharges

There are no known illicit discharges. See Appendix H for Illicit Discharge Compliance Statement

Appendices

Appendix A – Maps & Rainfall

- MassGIS Base Map
- Environmental Constraint Map
- FIRMette
- NOAA Atlas 14 Rainfall Data

Environmental Constraint Map

LEGEND

NHESP Estimated Habitats of Rare Wildlife

FEMA National Flood Hazard Layer Polygons

- 📒 1% Annual Chance Flood Hazard
- 💋 Regulatory Floodway
- Area of Undetermined Flood Hazard
- 📒 0.2% Annual Chance Flood Hazard
- 🌌 Area with Reduced Risk Due to Levee
- 🗌 Area Not Included

DEP Wetlands Detailed

- 🜜 Barrier Beach System
- 😥 Barrier Beach-Deep Marsh
- 🔀 Barrier Beach-Wooded Swamp Mixed Trees
- Barrier Beach-Coastal Beach
- * 🖥 Barrier Beach-Coastal Dune
- Barrier Beach-Marsh
- 🐮 Barrier Beach-Salt Marsh
- . Barrier Beach-Shrub Swamp
- · Barrier Beach-Wooded Swamp Coniferous
- 📩 Barrier Beach-Wooded Swamp Deciduous
- 🧎 Bog
- $\widetilde{\mathfrak{g}}$ Coastal Bank Bluff or Sea Cliff
- 🎊 Coastal Beach
- 💢 Coastal Dune
- 🎊 Cranberry Bog
- 🛃 Deep Marsh
- 🍸 Barrier Beach-Open Water
- 🔅 O**pe**n Water
- 🐨 Rocky Intertidal Shore
- ี่งแร่ง Marsh
- 😐 Shallow Marsh Meadow or Fen
- 😐 Shrub Swamp
- 🏹 Tidal Flat
- 紧 Wooded Swamp Coniferous
- 🛚 🏷 Wooded Swamp Deciduous
- 😢 Wooded Swamp Mixed Trees

National Flood Hazard Layer FIRMette

70°42'18"W 41°46'24"N

0

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Zone AE FLOOD HAZARD Area with Flood Risk due to Levee Zone D (EL 14 Feet) NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance AREA OF MINIMAL FLOOD HAZARD 17.5 Water Surface Elevation Zone X Town of Wareham **Coastal Transect** Mase Flood Elevation Line (BFE) 255223 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** 25023C0489 FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap Zone AE (EL14 Feet) accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 12/28/2023 at 10:10 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 70°41'40"W 41°45'57"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2,000

Basemap Imagery Source: USGS National Map 2023

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Wareham, Massachusetts, USA* Latitude: 41.7695°, Longitude: -70.6997° Elevation: 30 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
Duration	Average recurrence interval (years)											
Duration	1	2	5	10	25	50	100	200	500	1000		
5-min	0.294 (0.238-0.359)	0.364 (0.295-0.445)	0.479 (0.386-0.587)	0.575 (0.461-0.705)	0.706 (0.550-0.898)	0.804 (0.615-1.04)	0.908 (0.679-1.21)	1.03 (0.727-1.38)	1.21 (0.826-1.66)	1.37 (0.911-1.90)		
10-min	0.417 (0.337-0.508)	0.516 (0.418-0.630)	0.679 (0.547-0.830)	0.814 (0.653-1.00)	1.00 (0.780-1.27)	1.14 (0.873-1.47)	1.29 (0.963-1.71)	1.46 (1.03-1.95)	1.72 (1.17-2.35)	1.94 (1.29-2.68)		
15-min	0.490 (0.397-0.598)	0.607 (0.491-0.742)	0.799 (0.644-0.978)	0.958 (0.768-1.18)	1.18 (0.917-1.50)	1.34 (1.03-1.73)	1.51 (1.13-2.02)	1.72 (1.21-2.30)	2.02 (1.38-2.77)	2.28 (1.52-3.16)		
30-min	0.706 (0.572-0.862)	0.874 (0.707-1.07)	1.15 (0.925-1.41)	1.38 (1.10-1.69)	1.69 (1.32-2.15)	1.92 (1.47-2.48)	2.17 (1.62-2.89)	2.46 (1.74-3.29)	2.90 (1.97-3.97)	3.26 (2.18-4.53)		
60-min	0.923 (0.747-1.13)	1.14 (0.922-1.39)	1.50 (1.21-1.83)	1.79 (1.44-2.20)	2.20 (1.72-2.80)	2.50 (1.92-3.24)	2.83 (2.12-3.76)	3.21 (2.27-4.29)	3.77 (2.57-5.16)	4.25 (2.83-5.90)		
2-hr	1.24 (1.01-1.50)	1.54 (1.26-1.87)	2.03 (1.65-2.47)	2.44 (1.97-2.98)	3.00 (2.36-3.80)	3.42 (2.64-4.40)	3.87 (2.93-5.13)	4.41 (3.14-5.85)	5.23 (3.59-7.10)	5.93 (3.99-8.16)		
3-hr	1.46 (1.20-1.77)	1.81 (1.48-2.19)	2.38 (1.94-2.88)	2.86 (2.31-3.47)	3.51 (2.77-4.42)	3.99 (3.10-5.11)	4.52 (3.43-5.96)	5.15 (3.68-6.79)	6.11 (4.21-8.25)	6.93 (4.68-9.48)		
6-hr	1.91 (1.57-2.29)	2.33 (1.91-2.79)	3.01 (2.47-3.62)	3.58 (2.92-4.32)	4.37 (3.47-5.45)	4.95 (3.86-6.28)	5.58 (4.26-7.28)	6.32 (4.55-8.27)	7.44 (5.17-9.96)	8.38 (5.71-11.4)		
12-hr	2.42 (2.00-2.88)	2.89 (2.39-3.44)	3.66 (3.02-4.37)	4.30 (3.53-5.15)	5.17 (4.13-6.39)	5.83 (4.57-7.31)	6.53 (4.99-8.40)	7.32 (5.32-9.49)	8.46 (5.94-11.2)	9.41 (6.46-12.7)		
24-hr	2.91 (2.42-3.44)	3.44 (2.87-4.08)	4.32 (3.59-5.12)	5.05 (4.17-6.01)	6.05 (4.86-7.40)	6.80 (5.36-8.44)	7.59 (5.83-9.64)	8.46 (6.20-10.9)	9.69 (6.85-12.7)	10.7 (7.40-14.2)		
2-day	3.34 (2.81-3.93)	3.98 (3.34-4.68)	5.01 (4.19-5.90)	5.87 (4.88-6.93)	7.04 (5.70-8.56)	7.94 (6.30-9.77)	8.86 (6.86-11.2)	9.89 (7.30-12.6)	11.3 (8.09-14.8)	12.5 (8.75-16.5)		
3-day	3.67 (3.10-4.30)	4.34 (3.66-5.08)	5.43 (4.56-6.37)	6.34 (5.30-7.46)	7.58 (6.16-9.17)	8.53 (6.80-10.4)	9.50 (7.38-11.9)	10.6 (7.85-13.4)	12.1 (8.67-15.7)	13.3 (9.34-17.5)		
4-day	3.96 (3.35-4.62)	4.65 (3.93-5.43)	5.77 (4.86-6.75)	6.69 (5.61-7.86)	7.97 (6.49-9.60)	8.94 (7.14-10.9)	9.94 (7.73-12.4)	11.0 (8.21-13.9)	12.5 (9.02-16.2)	13.7 (9.67-18.0)		
7-day	4.73 (4.02-5.49)	5.44 (4.62-6.32)	6.61 (5.60-7.69)	7.57 (6.38-8.84)	8.90 (7.28-10.6)	9.92 (7.96-12.0)	10.9 (8.54-13.5)	12.0 (9.02-15.1)	13.5 (9.77-17.3)	14.6 (10.4-19.0)		
10-day	5.44 (4.64-6.29)	6.18 (5.26-7.15)	7.38 (6.27-8.56)	8.38 (7.09-9.74)	9.75 (8.00-11.6)	10.8 (8.70-13.0)	11.9 (9.27-14.5)	12.9 (9.75-16.2)	14.4 (10.5-18.3)	15.4 (11.0-19.9)		
20-day	7.55 (6.48-8.66)	8.37 (7.18-9.61)	9.71 (8.31-11.2)	10.8 (9.21-12.5)	12.4 (10.2-14.5)	13.6 (11.0-16.1)	14.7 (11.5-17.7)	15.8 (12.0-19.6)	17.2 (12.6-21.7)	18.2 (13.1-23.3)		
30-day	9.31 (8.03-10.6)	10.2 (8.80-11.7)	11.7 (10.0-13.4)	12.9 (11.0-14.8)	14.6 (12.1-17.0)	15.9 (12.9-18.7)	17.1 (13.5-20.5)	18.3 (14.0-22.5)	19.7 (14.5-24.7)	20.6 (14.9-26.3)		
45-day	11.5 (9.99-13.1)	12.5 (10.8-14.3)	14.1 (12.2-16.1)	15.5 (13.3-17.7)	17.3 (14.4-20.2)	18.8 (15.3-22.1)	20.2 (15.9-24.0)	21.4 (16.4-26.2)	22.8 (17.0-28.5)	23.7 (17.2-30.0)		
60-day	13.4 (11.7-15.2)	14.5 (12.6-16.5)	16.2 (14.1-18.5)	17.7 (15.2-20.2)	19.7 (16.4-22.8)	21.3 (17.4-24.9)	22.8 (18.0-26.9)	24.0 (18.5-29.3)	25.5 (19.0-31.7)	26.4 (19.2-33.3)		

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration					
5-min	2-day				
	— 3-day				
- 15-min	— 4-day				
	— 7-day				
- 60-min	— 10-day				
— 2-hr	— 20-day				
— 3-hr	— 30-day				
— 6-hr	— 45-day				
- 12-hr	- 60-day				
24-hr					

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Jan 10 21:12:02 2024

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale map

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Appendix B – NRCS Web Soil Survey

- Soil Map
- Soil Unit 255B
- Soil Unit 665B

Page 1 of 3

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

USDA

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
255B	Windsor loamy sand, 3 to 8 percent slopes	0.5	19.2%
665B	Udipsamments, 0 to 8 percent slopes	1.9	80.8%
Totals for Area of Interest		2.4	100.0%

Plymouth County, Massachusetts

255B—Windsor loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svkf Elevation: 0 to 1,210 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Windsor and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Windsor

Setting

Landform: Outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loose sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 3 inches:* loamy sand *Bw - 3 to 25 inches:* loamy sand

C - 25 to 65 inches: sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A

USDA

Ecological site: F145XY008MA - Dry Outwash *Hydric soil rating:* No

Minor Components

Hinckley

Percent of map unit: 10 percent Landform: Eskers Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Deerfield, loamy sand

Percent of map unit: 5 percent Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 16, Sep 10, 2023

Plymouth County, Massachusetts

665B—Udipsamments, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2pr8k Elevation: 0 to 390 feet Mean annual precipitation: 41 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udipsamments and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udipsamments

Setting

Landform: Dikes Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Sandy human transported material over sandy and gravelly glaciofluvial deposits

Typical profile

^Ap - 0 to 9 inches: loamy sand

C1 - 9 to 22 inches: sand

C2 - 22 to 49 inches: coarse sand

C3 - 49 to 54 inches: sand

C4 - 54 to 79 inches: coarse sand

Properties and qualities

Slope: 0 to 8 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 14.17 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A

USDA

Ecological site: F149BY100NY - Urban Site Complex *Hydric soil rating:* No

Minor Components

Udipsamments, wet substratum

Percent of map unit: 10 percent Landform: Dikes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Hydric soil rating: No

Tihonet

Percent of map unit: 5 percent Landform: Bogs Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

Udorthents, loamy

Percent of map unit: 5 percent Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Plymouth County, Massachusetts Survey Area Data: Version 16, Sep 10, 2023

Appendix C – Soil Exploration

- Test Pit Location
- Soil Logs

Commonwealth of Massachusetts City/Town of Wareham

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Information

	Grace Lighthouse Fellowship (Church)					
	Owner Name					
	2703 Cranberry Highway		Parcel ID: 133-0-1000B1 (Map 1			
	Street Address		Map/Lot #	Map/Lot #		
	Wareham	MA	02571			
	City	State	Zip Code			
В.	. Site Information					
1.	(Check one) 🛛 New Construction 🗌 Upg	rade 🗌 Repair				
2.	Soil Survey Available? 🛛 Yes 🗌 No	If yes:	NRCS W	eb Soil 665B Soil Map Unit		
	Udinsamments 0 to 8 percent slopes	None		·		
	Soil Name	Soil Limitations				
	Osus de sur el sur cuelles sis flux de la sur seite	Dilter				
	Sandy and gravelly glaciofluvial deposits	DIKES				
2	Sufferent Material Coolegical Papert Available 2 Vac Vac Vac If vac: 2018/Map 163 Wareham Classial Stratified Deposite/Coorse Deposite					
5.		Year Published	/Source Map Unit	allied Deposits/Coarse Deposits		
	Coarse deposits consist of gravel deposits, sand and gravel deposits, and sand deposits Description of Geologic Map Unit:					
4.	Flood Rate Insurance Map Within a regulatory	r floodway? 🗌 Yes 🛛 No	0			
5.	Within a velocity zone? 🗌 Yes 🛛 No					
6.	Within a Mapped Wetland Area?	No If yes, Mass	GIS Wetland Data Layer:	Wetland Type		
7.	Current Water Resource Conditions (USGS):	3/29/2022 WFW 51 Wareham Month/Day/ Year	Range: 🔲 Above Normal	🛛 Normal 🗌 Below Normal		
Q	Other references reviewed:					

City/Town of Wareham

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observation	Hole Numb	er: <u>1</u> Hole #	4/12/20	022	10:30 Time	am	drizzle,	cloudy 45 F	41.76954	40	<u>-70.700470</u>
	. parking	g lot (gravel)		Date	none	TITLE		none		Lalluue		2%
1. Land	Use (e.g., wo	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	cation:										
2. Soil P	arent Materia	ll: Sandy an	d gravelly glaciof	luvial dep	posits Di	ikes		gra	ded parking lo	ot/ upland loc	ation	
					La	Indform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body <u>></u>	<u>>200</u> feet		D	rainage W	/ay <u>>100</u> fe	et	Wet	tlands	<u>>100</u> feet
Property Line <u>>50</u> feet Drinking Water Well <u>>100</u> feet Other feet									feet			
4. Unsuita	. Unsuitable Materials Present: 🗌 Yes 🖾 No If Yes: 🗋 Disturbed Soil 📄 Fill Material 👘 Weathered/Fractured Rock 📄 Bedrock											
5. Grour	. Groundwater Observed: 🗌 Yes 🛛 No If yes: Depth Weeping from Pit Depth Standing Water in Hole											
	Soil Log											
Depth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	oximorphic Fea	atures	Coarse F % by	Fragments Volume	Soil Structure	Soil Consistence		Other
Deptil (iii)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones		(Moist)		Other
0-26	Fill	Sand	10 YR 4/3						single grain	loose		
26-38	В	Sand	10 YR 5/6						single grain	loose		
38-120	С	Sand	2.5 Y 6/4						single grain	loose		

Additional Notes:

No mottles. No groundwater observed. Test Hole Existing Ground Elevation = 102+/-, Percolation Test at a depth of 66" (less than 2 MPI)

City/Town of Wareham

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatio	n Hole Numl	ber: <u>2</u> Hole #	<u>4/*</u> Da	1 <u>2/22</u> te	11:00 am _{Time}	c	Irizzle,cloudy 45	F <u>41.7695</u> Latitude	40	_ <u>-70.700470</u> Longitude:
1. Land	Use: <u>par</u> l	king lot (grav	el)			ne		none			<u>2%</u>
Descr	iption of Loca	, woodland, agr ation:	gravel parking	p lot) veg	jetation		Surface Stor	es (e.g., cobbles,	stones, boulders,	etc.) Siope (%)
2. Soil P	arent Materia	al: Sandy a	and gravelly (glaciofluvi	al deposits	<u>.</u>	Dikes Landform			graded parkin Position on Lands	g lot/ upland location scape (SU, SH, BS, FS, TS)
3. Distar	nces from:	Open Wate	r Body <u>>200</u>	<u>)</u> feet		Drain	age Way	<u>>100</u> feet	Wetla	nds <u>>100</u> fee	t
4. Unsuita	Property Line <u>>50</u> feet Drinking Water Well <u>>100</u> feet Other feet Unsuitable										
Materia	lls Present: [□ Yes ⊠ I	No If Yes:	Distur	bed Soil	Fill Mate	erial	Weathered/	Fractured Rock	Bedrock	
5. Grour	ndwater Obse	erved: 🗌 Ye	s 🛛 No			ľ	f yes:	Depth Weeping	from Pit	Depth S	Standing Water in Hole
	Soil Log										
Denth (in)	nth (in) Soil Horizon	Soil Texture	Soil Matrix:	Redox	Redoximorphic Features		Coars % I	e Fragments by Volume	Soil Structure	Soil Consistence	Other
Deptil (ill)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones		(Moist)	Other
0-36	Fill	Sand					10%		single grain	loose	
36-120	С	Sand	2.5 Y 6/4						single grain	loose	

Additional Notes:

No mottles. No groundwater observed. Test Hole Existing Ground Elevation = 102+/-, Percolation Test at a depth of 72" (less than 2 MPI)

City/Town of Wareham

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observation	Hole Numb	er: <u>3</u>	4/12/20	022	<u>11:15</u>	am	cloudy	50 F	41.76954	40	<u>-70.700470</u>
	. parking	g lot (gravel)	Hole #	Date	none	lime		Weather none		Latitude		Longitude: 4%
1. Land	Use (e.g., wo	odland, agricultu	ıral field, vacant lot, e	tc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
Des	scription of Lo	cation:										
2. Soil P	arent Materia	l: Sandy an	d gravelly glaciof	luvial dep	oosits Di	ikes		gra	ded parking lo	ot/ upland loc	ation	
					La	Indform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distances from: Open Water Body <u>>200</u> feet Drainage Way <u>>100</u> feet Wetlands <u>>100</u> feet									<u>>100</u> feet			
Property Line <u>>50</u> feet Drinking Water Well <u>>100</u> feet Other feet									feet			
4. Unsuita	. Unsuitable Materials Present: 🗌 Yes 🛛 No If Yes: 🗋 Disturbed Soil 📄 Fill Material 🔤 Weathered/Fractured Rock 🗌 Bedrock											
5. Grour	Groundwater Observed: 🗌 Yes 🛛 No If yes: Depth Weeping from Pit Depth Standing Water in Hole											
						Soil Log			_		j ·	
Soil Horizon Soil Matrix: Color- Redoximorphic Features Coarse Fragments Soil								011				
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	(Moist)		Other
0-24	Fill	Sand										
24-36	В	Sand	10 YR 5/8						weak	friable		
36-132	С	Sand	2.5 Y 6/4						single grain	loose		

Additional Notes:

No mottles. No groundwater observed. Test Hole Existing Ground Elevation = 101+/-

City/Town of Wareham

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

0	Deep C	Observatior	Hole Num	Der: <u>4</u> Hole #	<u>4/</u> Da	12/22 te	11:30 am Time	<u>lic</u> W	ght rain 50 F eather	<u>41.7695</u> Latitude	540	<u>-70.700470</u>
1. L	and U	Jse: woo	d chips next , woodland, agr	to playgroun	d cant lot, etc.) <u>no</u>) Veç	ne getation		none Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
۵	Descrip	otion of Loca	ation:	wood chips n	ext to playgi	round						
2. 8	Soil Pa	irent Materia	al: Sandy a	and gravelly (glaciofluvi	al deposits	3	Dikes Landform			adjacent to pa	arking lot/ upland location
3. E	Distand	ces from:	Open Wate	r Body <u>>20(</u>	<u>)</u> feet		Drain	age Way	<u>>100</u> feet	Wetla	nds <u>>100</u> fee	t
4 Hr	Property Line <u>>30</u> feet Drinking Water Well <u>>100</u> feet Other feet											
Ma	Materials Present: Ves No If Yes: Disturbed Soil Fill Material Veathered/Fractured Rock Bedrock											
5. C	Ground	dwater Obse	erved: 🗌 Ye	s 🛛 No			I	f yes:	Depth Weepin	g from Pit	Depth S	Standing Water in Hole
							So	il Log	Fragmanta			
Dent	enth (in) Soil Horizon	on Soil Texture	Soil Texture Soil Matrix	Soil Matrix:	Redox	kimorphic Fe	eatures	% b	y Volume	Soil Structure Consistence		Other
Dept	un (ini)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0-	-12	Fill										
12	2-30	В	Sand	10 YR 5/8						weak	friable	
30-	-120	С	Sand	2.5 Y 6/4						single grain	loose	

Additional Notes:

No mottles. No groundwater observed. Test Hole Existing Ground Elevation = 102+/-

City/Town of Wareham

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observation	Hole Numb	er: <u>5</u>	4/12/20)22	11:45	am	cloudy	50 F	41.76954	40	-70.700470	
	. parking	g lot (gravel)	Hole #	Date	none	lime		Weather none		Latitude		Longitude: 2%	
1. Land	Use (e.g., wo	odland, agricultu	ıral field, vacant lot, e	tc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)	
Des	scription of Lo	ocation:											
2. Soil P	arent Materia	l: Sandy an	d gravelly glaciof	luvial dep	oosits Di	ikes		gra	ded parking lo	ot/ upland loc	ation		
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)		
3. Distances from: Open Water Body <u>>200</u> feet Drainage Way <u>>100</u> feet Wetlands <u>>100</u> feet									<u>>100</u> feet				
Property Line <u>>50</u> feet Drinking Water Well <u>>100</u> feet Other feet									feet				
4. Unsuita	. Unsuitable Materials Present: 🗌 Yes 🛛 No If Yes: 🗋 Disturbed Soil 📄 Fill Material 🔤 Weathered/Fractured Rock 🗌 Bedrock												
5. Grour	Groundwater Observed: 🗌 Yes 🛛 No If yes: Depth Weeping from Pit Depth Standing Water in Hole												
	Soil Log												
Donth (in)	Denth (in) Soil Horizon Soil Texture Soil Matrix: Color- Redoximorphic Features Soil Matrix: Color- Coarse Fragments Soil Coarse Fragments Soil Coarse Fragments Completence								Othor				
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	Consistence (Moist)		Other	
0-20	Fill	Sand											
20-32	В	Sand	10 YR 5/6				10%		single grain	loose			
32-120	С	Sand	2.5 Y 6/4						single grain	loose			

Additional Notes:

Drainage Test Hole. No mottles. No groundwater observed. Test Hole Existing Ground Elevation = 100.5+/-

City/Town of Wareham

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

	Deep C	Observatior	n Hole Numb	ber: <u>6</u>	<u>4/</u>	12/22	12:00 pm		udy 50 F	41.7695	540	-70.700470
		rea	of lot adjace	noie # ant to basketh	Da Dall court	le nor	nme Ne	vve	none	Latitude		Longitude: 2%
1.	Land U	lse: <u>real</u> (e.g.	, woodland, agri	icultural field, va	cant lot, etc.) Veg	etation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
	Descrip	otion of Loca	ation:	rear of lot adj	acent to bas	ketball court						
2.	Soil Pa	rent Materia	al: Sandy a	and gravelly o	glaciofluvi	al deposits		Dikes			rear of lot adja	acent to pavement
2	2 Distances from: Open Water Redy >200 fort					scape (SU, SH, BS, FS, TS)						
J.	Distant	ces nom.	Open wate	г Бойу <u>>200</u>	<u>J</u> teet	_	Drain	lage way <u>-</u>	• 100 feet	wella	nus <u>>100</u> fee	t
<i>1</i> I	Property Line <u>>20</u> feet Drinking Water Well <u>>100</u> feet Other feet											
4. C	Materials	s Present: [🗌 Yes 🖂 I	No If Yes:	Distur	bed Soil [] Fill Mat	erial	Weathered/	Fractured Rock	Bedrock	
5.	Ground	dwater Obse	erved: 🗌 Ye	s 🛛 No			ľ	f yes:	Depth Weepin	g from Pit	Depth S	Standing Water in Hole
		Soil Log										
De	epth (in) Soil Horizon	Soil Texture	Soil Texture Soil Mate	Soil Matrix:	Redoximorphic Fe		atures	Coarse % by	Fragments Volume	Soil Structure	Soil Consistence	Other
De	pui (iii)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
	0-8	Fill	Sand									
8	3-120	С	Sand	2.5 Y 6/4						single grain	loose	

Additional Notes:

Drainage Test Hole. No mottles. No groundwater observed. Test Hole Existing Ground Elevation = 101+/-

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:		Obs. Hole # <u>1</u>	Obs. H	Hole # <u>2</u>	
	Depth observed standing water in observation	on hole	<u>>120" - No GW</u> inches <u>>12</u>		<u>- No GW</u> inches	
	Depth weeping from side of observation hole	9	inches		inches	
	Depth to soil redoximorphic features (mottle	es)	inches		inches	
	 Depth to adjusted seasonal high groundwate (USGS methodology) 	er (S _h)	inches		inches	
	Index Well Number	Reading Date				
	$S_h = S_c - [S_r \ x \ (OW_c - OW_{max})/OW_r]$					
	Obs. Hole/Well# S _c	Sr	OWc	OW _{max}	OWr	Sh
2. E	stimated Depth to High Groundwater: <u>>120</u> inch	es				

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🛛 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude A and O	Upper boundary:	26	Lower boundary:	120
110			IIICHE5		Inches
C.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
			inches		inches

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:		Obs. Hole # <u>3</u>	Obs.	Hole # <u>4</u>		
	Depth observed standing water in observation	n hole	<u>>132" - No GW</u> inches	<u>>120'</u>	<u>>120" - No GW</u> inches		
	Depth weeping from side of observation hole		inches		_inches		
	Depth to soil redoximorphic features (mottles	s)	inches		_ inches		
	 Depth to adjusted seasonal high groundwater (USGS methodology) 	r (S _h)	inches		_inches		
	Index Well Number	Reading Date					
	$S_h = S_c - [S_r \ x \ (OW_c - OW_{max})/OW_r]$						
	Obs. Hole/Well# Sc	Sr	OWc 0	OW _{max}	OWr	Sh	
2. E	stimated Depth to High Groundwater: >132 inche	S					

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🛛 Yes 🗌 No

b. Ho	If yes, at what depth was it observed (exclude A and O rizons)?	Upper boundary:	12 inches	Lower boundary:	132 inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:	Obs. Hole # <u>5</u>	ole # <u>5</u> Obs. Hole # <u>6</u>				
	Depth observed standing water in observatio	n hole	<u>>120" - No GW</u> inches	<u>>120</u>	<u>>120" - No GW</u> inches		
	Depth weeping from side of observation hole	inches		_ inches			
	Depth to soil redoximorphic features (mottles	s)	inches		inches		
	 Depth to adjusted seasonal high groundwate (USGS methodology) 	r (S _h)	inches		_ inches		
	Index Well Number	Reading Date					
	$S_h = S_c - [S_r \ x \ (OW_c - OW_{max})/OW_r]$						
	Obs. Hole/Well# Sc	Sr	OWc	OW _{max}	OWr	Sh	
2. E	stimated Depth to High Groundwater: >120 inche	S					

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🛛 Yes 🗌 No

b. Horij	If yes, at what depth was it observed (exclude A and O zons)?	Upper boundary:	8 inches	Lower boundary:	120 inches
C.	If no, at what depth was impervious material observed?	Upper boundary:	inches	Lower boundary:	inches

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

- Billo-	April 12, 2022
Signature of Soil Evaluator	Date
Bryan J. Weiner, P.E. / SE 2566	6/30/2022
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License

Name of Approving Authority Witness

Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Important: When

filling out forms on the computer, use only the tab key to move your cursor - do not use the return

key.

Commonwealth of Massachusetts City/Town of Wareham **Percolation Test** Form 12

Percolation test results must be submitted with the Soil Suitability Assessment for On-site Sewage Disposal. DEP has provided this form for use by local Boards of Health. Other forms may be used, but the information must be substantially the same as that provided here. Before using this form, check with the local Board of Health to determine the form they use.

A. Site Information

Grace Lighthouse Fellowship (Church)			
Owner Name			
2703 Cranberry Highway			
Street Address or Lot #			-
Wareham	MA	02571	
City/Town	State	Zip Code	-
Coastal Engineering Company	508-255-6511		
Contact Person (if different from Owner)	Telephone Number		

B. Test Results

	4/12/2022	11:30 am	4/12/2022	11:45 am
		Time		Time
Observation Hole #	-		2	
Depth of Perc	66"		72"	
Start Pre-Soak	0 min		0 min	
End Pre-Soak	12 min 3 sec		12 min 15 sec	
Time at 12"				
Time at 9"				
Time at 6"				
Time (9"-6")				
Rate (Min./Inch)	< 2 MPI		< 2 MPI	
	Test Passed: Test Failed:	\square	Test Passed: Test Failed:	\square
Bryan J. Weiner, P.E. / SE2566				—
Test Performed By:				
Elias Estevez, Health Inspector				
Board of Health Witness				
Comments:				
Percolation Test performed in the	C Horizon.			

Appendix D – Watershed Map

- Existing Watershed Map
- Proposed Watershed Map

		MASS TH NADO	ACHUSETTS STATE PLANE MIERICAN DATUM OF ALL MIN CS OF ALLE PLANE OF ALL NO	SEAL	STAL ering co.
			EBO CH DO IN A THE A DO IN A DO		CHK
POA 3			100 TONE		NMQ
PRE-DEVELOPMEN (TOTAL WATERSHI	IT WATE ED 102,6	RSHED ARE 07 S.F LOT	A SUMMARY AREA)		
WATERSHED EX WS-1. PAVEMENT GRASS (POOR) WOOD/GRASS COMBO (POOR) TOTAL AREA	= 3,352 S.F = 18,082 S.F = 3,613 S.F = 25,047 S.F	LEC	GEND		RIPTION
CURVE NUMBER = 70 TIME OF CONCENTRATION (Tc) = 6	MIN				DESCF
GRASS (POOR) TOTAL AREA	<u>= 1,282 S.F</u> = 1,282 S.F				
CURVE NUMBER = 68 TIME OF CONCENTRATION (Tc) = 6	MIN		TIME OF CONCENTRATION FLOW PATH		
WATERSHED Ex Ws-3: PAVEMENT GRASS (POOR)	= 1,654 S.F = 16,853 S.F		NRCS SOIL DELINEATION LINE		
WOOD/GRASS COMBO (POOR) TOTAL AREA	= 24,705 S.F = 43,212 S.F	255B	SOIL CLASSIFICATION		
CURVE NUMBER = 63 TIME OF CONCENTRATION (Tc) = 6	MIN	Ex Ws 1	WATERSHED DESIGNATION		
WOOD/GRASS COMBO (POOR) TOTAL AREA	<u>= 6,540 S.F</u> = 6,540 S.F	POA-3	POINT OF ANALYSIS DESIGNATION		DATE
CURVE NUMBER = 57 TIME OF CONCENTRATION (Tc) = 6	MIN				
WATERSHED EX Ws-5: PAVEMENT GRASS (POOR)	= 2,607 S.F = 1,731 S.F	- - -			
TOTAL AREA	= 16,042 S.F = 20,380 S.F				
TIME OF CONCENTRATION (Tc) = 6 WATERSHED EX Ws-6 ^{\cdot}	MIN			ш	
WOOD/GRASS COMBO (POOR) TOTAL AREA	<u>= 6,146 S.F</u> = 6,146 S.F	<u>.</u>		l Sl	
CURVE NUMBER = 57 TIME OF CONCENTRATION (Tc) = 6	MIN				1 VAY
				ΙĬΙΙ	IGH 1257
					У Н Х МА 0
				5 Ĕ	А, К К К К К К
					ANB EHA
AREA DELI	NEATION	NOTE:		ЦщС	VAR (CR)
				D A	2703 V
GRAVEL PA	ONS AR -25 PRIC RKING,	E BASED ON R TO SITE C AND BUILDIN	AERIAL IMAGERY SHOT LEARING, ADDITION OF NGS.	G R G R	
THE INTEN CLEARING	T IS TO F CONDITI	RESTORE TH	IE RUNOFF TO PRE HIS SITE	PROJECT DATE	ADDRESS
6				2024- DRAWN BY DAV	O1-12 CHECKED BY
				PROJECT NUMBER	95-00
96° 09' 30' B6° 09' 30'					
<pre>viii</pre>				SHEET DESCRIPTIO	N
	1 SKC-1	EXISTING	SCALE: 1" = 20'		
Y.	20	10 0	20 60	EXIS WATE	TING RSHED
			1 inch = 20 ft.	M	AP
				JKL	آ – ر
				SHEET NUMBER SHEET (01 OF 02

Coastal Engineering Company, Inc., © 2024

				MASSACHUS AMERI		CO engi	AS	ב TAL 19 co.
					AN DATUM OF 1983. HONNATE SUST			
	3]				AG			CHK
	POST-DEVELOPM	IENT W	ATER	SHED ARI	EA SUMMARY			DWN
	(TOTAL WATERSH WATERSHED P Ws-1:	HED 102	2,607 \$	S.F LOT	AREA)			
	ROOF GRASS > 75% COVER (GOOD) WOOD/GRASS COMBO (GOOD)	= 1,107 = 1,675 = 7,850 = 2,827	S.F. S.F. S.F. S.F.	LEG	<u>END</u>			
	CURVE NUMBER = 50	= 13,459	S.F.		WATERSHED BOUNDARY			
	TIME OF CONCENTRATION (Tc) =	= 6 MIN	0.5		TIME OF CONCENTRATION			
	TOTAL AREA	= 1,283 = 1,283	<u>S.F.</u> S.F.		TIME OF CONCENTRATION FLOW PATH			RIPTION
	TIME OF CONCENTRATION (Tc) =	= 6 MIN			NRCS SOIL DELINEATION LINE			DESCI
	PAVEMENT ROOF GRASS > 75% COVER (GOOD)	= 15,374 = 181 = 11,843	S.F. S.F. S.F.	255B				
	WOOD/GRASS COMBO (GOOD) TOTAL AREA	= 509 S.F. = 27,907	S.F.	Ws 1	WATERSHED DESIGNATION			
	TIME OF CONCENTRATION (Tc) =	= 6 MIN			POND - LEACHING RECHARGE BASIN			
	PAVEMENT GRASS > 75% COVER (GOOD) TOTAL AREA	= 16,346 = 11,148 = 27,494	S.F. <u>S.F.</u> S.F.	POA-3	POINT OF ANALYSIS DESIGNATION			
	CURVE NUMBER = 74 TIME OF CONCENTRATION (Tc) =	6 MIN						Ш
	WATERSHED P Ws-5: ROOF TOTAL AREA	= 4,267	<u>S.F.</u> S.F.					DA
	CURVE NUMBER = 98 TIME OF CONCENTRATION (Tc) =	= 6 MIN						REV
	WATERSHED P Ws-6: WOOD/GRASS COMBO (GOOD)	= 2,910	S.F.					
	CURVE NUMBER = 32 TIME OF CONCENTRATION (Tc) =	= 2,910	З.г.					
	WATERSHED P Ws-7: GRASS > 75% COVER (GOOD) WOOD/GRASS COMBO (GOOD)	= 1,109 = 5,276	S.F. S.F			Ш		
 	TOTAL AREA	= 6,385	S.F.					ΑY
/	TIME OF CONCENTRATION (Tc) = WATERSHED P Ws-8:	= 6 MIN				P		:НW/ 571
/	PAVEMENT WOOD/GRASS COMBO (GOOD)_ TOTAL AREA	= 2,414 <u>= 15,981</u> = 18,395	S.F. <u>S.F.</u> S.F.			É	C T	⁄ НІС А 02
)+.	CURVE NUMBER = 41 TIME OF CONCENTRATION (Tc) =	= 6 MIN				Ц Ц	R	ERRY M, M
/ · ·	WATERSHED P Ws-9: WOOD/GRASS COMBO (GOOD)_ TOTAL AREA	= 507 S.F. = 507 S.F.					ЯНС	ANBI REHA
	CURVE NUMBER = 32 TIME OF CONCENTRATION (Tc) =	6 MIN				Ш	O	3 CR WAF
 						AC		2703
 E 								
/ 								ő
						PROJEC		ADDRES
ľ						DATE	2024-01-1	2
- 02						DRAWN BY	CHE	CKED BY
//////////////////////////////////////						PROJECT NU	MBER C19495-00	0
101.00 S36°09'3	POA 4					PROJECT ST	ATUS ED FOR PI	ERMIT
		\frown	חסם			SHEET DESC	RIPTION	
		SKC-2	FNUF		SCALE: 1" = 20'	PR		
		20 10	0	20	60	WA	TERS	HED
ļ				1 inch = 2	20 ft.		MAP	
	-					SHEET TITI F		
						CL		2
								- ∠

Coastal Engineering Company, Inc., © 2024

SHEET 02 OF 02

Appendix E – Calculations

- Pre and Post-Development Conditions Comparison
- Existing Conditions HydroCAD Calculations
- Proposed Conditions HydroCAD Calculations
- Recharge Calculations
- Drawdown Calculations
- Water Quality Calculations
- TSS Calculations

	Pre and Post Flow Comparison for POA 1						
Storm	Deinfall	Pre-	Post-	Deduction			
event	Raimau	Development	Development	Reduction			
2-year	3.44	0.6	0.02	0.58			
10-year	5.05	1.37	0.16	1.21			
25-year	6.05	1.91	0.34	1.57			
100-year	7.59	2.78	1.29	1.49			
	Pre and	Post Flow Comp	arison for POA 2				
Storm		Pre-	Post-				
event	Rainfall	Development	Development	Reduction			
2-year	3.44	3	0.00	3			
10-year	5.05	0.06	0.00	0.06			
25-year	6.05	0.09	0.00	0.09			
100-year	7.59	0.13	0.00	0.13			
,	Pre and	Post Flow Comp	arison for POA 3				
Storm		Pre-	Post-				
event	Rainfall	Development	Development	Reduction			
2-year	3.44	. 0.57	0.00	0.57			
10-year	5.05	1.68	0.00	1.68			
25-vear	6.05	2.49	0.00	2.49			
100-year	7.59	3.86	0.28	3.58			
-	Pre and Post Flow Comparison for POA 4						
Storm		Pre-	Post-				
Storm event	Rainfall	Pre- Development	Post- Development	Reduction			
Storm event 2-year	Rainfall 3.44	Pre- Development 0.03	Post- Development 0.00	Reduction			
Storm event 2-year 10-year	Rainfall 3.44 5.05	Pre- Development 0.03 0.17	Post- Development 0.00 0.00	Reduction 0.03 0.17			
Storm event 2-year 10-year 25-year	Rainfall 3.44 5.05 6.05	Pre- Development 0.03 0.17 0.28	Post- Development 0.00 0.00 0.00	Reduction 0.03 0.17 0.28			
Storm event 2-year 10-year 25-year 100-year	Rainfall 3.44 5.05 6.05 7.59	Pre- Development 0.03 0.17 0.28 0.46	Post- Development 0.00 0.00 0.00 0.03	Reduction 0.03 0.17 0.28 0.43			
Storm event 2-year 10-year 25-year 100-year	Rainfall 3.44 5.05 6.05 7.59 Pre and	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp	Post- Development 0.00 0.00 0.03 arison for POA 5	Reduction 0.03 0.17 0.28 0.43			
Storm event 2-year 10-year 25-year 100-year Storm	Rainfall 3.44 5.05 6.05 7.59 Pre and	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre-	Post- Development 0.00 0.00 0.00 0.03 arison for POA 5 Post-	Reduction 0.03 0.17 0.28 0.43			
Storm event 2-year 10-year 25-year 100-year Storm event	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development	Reduction 0.03 0.17 0.28 0.43 Reduction			
Storm event 2-year 10-year 25-year 100-year Storm event 2-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0	Reduction 0.03 0.17 0.28 0.43 Reduction			
Storm event 2-year 10-year 25-year 100-year Storm event 2-year 10-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0 0.04	Reduction 0.03 0.17 0.28 0.43 Reduction 0.27 0.75			
Storm event 2-year 10-year 25-year 100-year Storm event 2-year 10-year 25-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05 6.05	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0 0.04 0.11	Reduction 0.03 0.17 0.28 0.43 Reduction 0.27 0.75 1.06			
Storm event 2-year 10-year 25-year 100-year Storm event 2-year 10-year 25-year 100-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05 6.05 7.59	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17 1.82	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0 0.04 0.11 0.39	Reduction 0.03 0.17 0.28 0.43 Reduction 0.27 0.75 1.06 1.43			
Storm event 2-year 10-year 25-year 100-year 2-year 10-year 100-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05 6.05 7.59 Pre and 7.59 Pre and 7.59 Pre and 7.59 9	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17 1.82 Post Flow Comp	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0 0.04 0.11 0.39 arison for POA 6	Reduction 0.03 0.17 0.28 0.43 Reduction 0.27 0.75 1.06 1.43			
Storm event 2-year 10-year 25-year 100-year 2-year 10-year 25-year 100-year 100-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05 6.05 7.59 Pre and	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17 1.82 Post Flow Comp Pre-	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0.04 0.04 0.11 0.39 arison for POA 6 Post-	Reduction 0.03 0.17 0.28 0.43 Reduction 0.27 0.75 1.06 1.43			
Storm event 2-year 10-year 25-year 100-year 2-year 10-year 100-year 100-year Storm event	Rainfall 3.44 5.05 6.05 7.59 Pre and 3.44 5.05 6.05 7.59 Pre and Rainfall	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17 1.82 Post Flow Comp Pre- Development	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0.04 0.11 0.39 arison for POA 6 Post- Development	Reduction 0.03 0.17 0.28 0.43 Reduction 0.27 0.27 0.27 0.75 1.06 1.43 Reduction			
Storm event 2-year 10-year 25-year 100-year 2-year 10-year 25-year 100-year 25-year 100-year 25-year 25-year 22-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall Rainfall	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17 1.82 Post Flow Comp Pre- Development 0.03	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0.04 0.11 0.39 arison for POA 6 Post- Development 0.00	Reduction 0.03 0.17 0.28 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.27 0.75 1.06 1.43 0.27 0.75 1.06 0.23			
Storm event 2-year 10-year 25-year 100-year Storm event 2-year 100-year Storm event 2-year 100-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05 6.05 7.59 Pre and S.05 6.05 7.59 Pre and Rainfall Rainfall 3.44 5.05	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17 1.82 Post Flow Comp Pre- Development 0.03 0.16	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0.04 0.11 0.39 arison for POA 6 Post- Development 0.00 0.00	Reduction 0.03 0.17 0.28 0.43 0.43 Reduction 0.27 0.75 1.06 1.43 Reduction Reduction 0.03 0.03			
Storm event 2-year 10-year 25-year 100-year 2-year 10-year 25-year 100-year 25-year 22-year 100-year 2-year 10-year 2-year	Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall 3.44 5.05 6.05 7.59 Pre and Rainfall A.44 5.05 6.05 6.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Pre- Development 0.03 0.17 0.28 0.46 Post Flow Comp Pre- Development 0.27 0.79 1.17 1.82 Post Flow Comp Pre- Development 0.03 0.16 0.26	Post- Development 0.00 0.00 0.03 arison for POA 5 Post- Development 0.04 0.11 0.39 arison for POA 6 Post- Development 0.00 0.00	Reduction 0.03 0.17 0.28 0.43 0.43 Reduction 0.27 0.75 1.06 1.43 Reduction 0.03 0.03 0.16 0.26			

C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Printed 1/29/2024 Page 2

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	100-Yr	Type III 24-hr		Default	24.00	1	7.59	2
2	25-Yr	Type III 24-hr		Default	24.00	1	6.05	2
3	10-Yr	Type III 24-hr		Default	24.00	1	5.05	2
4	2-Yr	Type III 24-hr		Default	24.00	1	3.44	2

Rainfall Events Listing

2703 Cranberry Highway - Pre-Analysis

C19495		5	5	,	5
Prepared by Coastal Engineering Co.			F	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions I	LC				Page 3

Area Listing (selected nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
37,948	68	<50% Grass cover, Poor, HSG A (Ex Ws1, Ex Ws2, Ex Ws3, Ex Ws5)
7,613	98	Paved parking, HSG A (Ex Ws1, Ex Ws3, Ex Ws5)
57,042	57	Woods/grass comb., Poor, HSG A (Ex Ws1, Ex Ws3, Ex Ws4, Ex Ws5, Ex
		Ws6)
102,603	64	TOTAL AREA

Page 4

C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC Printed 1/29/2024

Soil Listing (selected nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
102,603	HSG A	Ex Ws1, Ex Ws2, Ex Ws3, Ex Ws4, Ex Ws5, Ex Ws6
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
102,603		TOTAL AREA

2703 Cranberry Hig	ghway -	Pre-Analy	/sis
	jiiway -	FIC-Analy	1313

C19495	-	· ·	5 5	,
Prepared by Coastal Engineering Co.			Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC				Page 5
				-

Ground Covers (selected nodes)

HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	
37,948	0	0	0	0	37,948	<50% Grass cover, Poor	
7,613	0	0	0	0	7,613	Paved parking	
57,042	0	0	0	0	57,042	Woods/grass comb., Poor	
102,603	0	0	0	0	102,603	TOTAL AREA	

S N

C19495	2703 Cranberry Highway - Pre-Analysis Type III 24-hr 100-Yr Rainfall=7.59"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 Hyd	roCAD Software Solutions LLC Page 6
Time span=0.00 Runoff by SCS T Reach routing by Stor-Ind+T	0-24.00 hrs, dt=0.01 hrs, 2401 points R-20 method, UH=SCS, Weighted-CN Trans method - Pond routing by Stor-Ind method
Subcatchment Ex Ws1: Ex Watershed 1	Runoff Area=25,047 sf 13.38% Impervious Runoff Depth>4.11" Tc=6.0 min CN=70 Runoff=2.78 cfs 8,577 cf
Subcatchment Ex Ws2: Ex Watershed 2	Runoff Area=1,282 sf 0.00% Impervious Runoff Depth>3.89" Tc=6.0 min CN=68 Runoff=0.13 cfs 415 cf
Subcatchment Ex Ws3: Ex Watershed 3	Runoff Area=43,212 sf 3.83% Impervious Runoff Depth>3.34" Tc=6.0 min CN=63 Runoff=3.86 cfs 12,045 cf
Subcatchment Ex Ws4: Ex Watershed 4	Runoff Area=6,536 sf 0.00% Impervious Runoff Depth>2.71" Tc=6.0 min CN=57 Runoff=0.46 cfs 1,476 cf
Subcatchment Ex Ws5: Ex Watershed 5	Runoff Area=20,380 sf 12.79% Impervious Runoff Depth>3.34" Tc=6.0 min CN=63 Runoff=1.82 cfs 5,681 cf
Subcatchment Ex Ws6: Ex Watershed 6	Runoff Area=6,146 sf 0.00% Impervious Runoff Depth>2.71" Tc=6.0 min CN=57 Runoff=0.43 cfs 1,388 cf
Link POA 1: POINT OF ANALYSIS 1	Inflow=2.78 cfs 8,577 cf Primary=2.78 cfs 8,577 cf
Link POA 2: POINT OF ANALYSIS 2	Inflow=0.13 cfs 415 cf Primary=0.13 cfs 415 cf
Link POA 3: POINT OF ANALYSIS 3	Inflow=3.86 cfs 12,045 cf Primary=3.86 cfs 12,045 cf
Link POA 4: POINT OF ANALYSIS 4	Inflow=0.46 cfs 1,476 cf Primary=0.46 cfs 1,476 cf
Link POA 5: POINT OF ANALYSIS 5	Inflow=1.82 cfs 5,681 cf Primary=1.82 cfs 5,681 cf
Link POA 6: POINT OF ANALYSIS 6	Inflow=0.43 cfs 1,388 cf Primary=0.43 cfs 1,388 cf
Total Runoff Area = 102,603	sf Runoff Volume = 29,582 cf Average Runoff Depth = 3.46"

 Runoff Volume = 29,582 cf
 Average Runoff Depth = 3.46"

 92.58% Pervious = 94,990 sf
 7.42% Impervious = 7,613 sf

	2703 Cranberry	Highway - Pr	e-Analysis
C19495	Type III 24-hr	100-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC		Page 7

Summary for Subcatchment Ex Ws1: Ex Watershed 1

Runoff = 2.78 cfs @ 12.09 hrs, Volume= 8,577 cf, De	pth> 4.11"
---	------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

Area (sf)	CN	Description				
3,352	98	Paved parkir	ng, HSG A	N .		
18,082	68	<50% Grass	<50% Grass cover, Poor, HSG A			
3,613	57	Woods/grass	s comb., P	Poor, HSG A		
25,047	70	Weighted Av	/erage			
21,695		86.62% Perv	ious Area			
3,352		13.38% Impe	ervious Are	ea		
	~		•	— • • •		
Tc Length	Slop	be Velocity	Capacity	Description		
(min) (feet)	(ft/	ft) (ft/sec)	(cfs)			
6.0				Direct Entry, Direct Entry		
Ic Length (min) (feet) 6.0	Slop (ft/	e Velocity ft) (ft/sec)	Capacity (cfs)	Description Direct Entry, Direct Entry		

Subcatchment Ex Ws1: Ex Watershed 1

	2703 Cranberry Highway - Pre-Analysis
C19495	Type III 24-hr 100-Yr Rainfall=7.59"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC Page 8

Summary for Subcatchment Ex Ws2: Ex Watershed 2

Runoff = 0.13 cfs @ 12.09 hrs, Volume= 415 cf, Depth> 3.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

	2703 Cranberry	Highway - Pr	e-Analysis
C19495	Type III 24-hr	100-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	ns LLC		Page 9

Summary for Subcatchment Ex Ws3: Ex Watershed 3

Runoff = 3.86 cfs @ 12.09 hrs, Volume= 12,045 cf, Depth> 3.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

Area (sf)	CN	Description				
1,654	98	Paved parkin	Paved parking, HSG A			
16,853	68	<50% Grass	<50% Grass cover, Poor, HSG A			
24,705	57	Woods/grass	s comb., P	Poor, HSG A		
43,212	63	Weighted Ave	erage			
41,558		96.17% Pervi	ious Area			
1,654		3.83% Imperv	vious Area	а		
-			o :.			
Ic Length	Slop	be Velocity (Capacity	Description		
(min) (feet)	(ft/	ft) (ft/sec)	(cts)			
6.0				Direct Entry, Direct Entry		

Subcatchment Ex Ws3: Ex Watershed 3

	2703 Cranberry Highway - Pre-Analysis
C19495	Type III 24-hr 100-Yr Rainfall=7.59"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC Page 10

Summary for Subcatchment Ex Ws4: Ex Watershed 4

Runoff = 0.46 cfs @ 12.09 hrs, Volume= 1,476 cf, Depth> 2.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

	2703 Cranberry Highwa	ay - Pre-Analysis
C19495	Type III 24-hr 100-Y	r Rainfall=7.59"
Prepared by Coastal Engineering Co.	Pi	rinted 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC	Page 11

Summary for Subcatchment Ex Ws5: Ex Watershed 5

Runoff = 1.82 cts (a) 12.09 nrs, Volume= 5,681 ct, Deptn> 3.	$crs(\omega)$ 12.09 hrs, volume= 5,681 cr, Depth> 3.34	ŧ
--	--	---

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

Area (s	sf) CN	Description				
2,60)7 98	Paved park	ing, HSG A	N Contraction of the second seco		
1,73	81 68	<50% Gras	s cover, Po	bor, HSG A		
16,04	2 57	Woods/gras	ss comb., P	Poor, HSG A		
20,38	30 63	Weighted A	verage			
17,77	73	87.21% Per	87.21% Pervious Area			
2,60)7	12.79% Imp	12.79% Impervious Area			
Tc Len	gth Slo	pe Velocity	Capacity	Description		
(min) (fe	et) (ft/	/ft) (ft/sec)	(cfs)			
6.0				Direct Entry, Direct Entry		

Subcatchment Ex Ws5: Ex Watershed 5

Summary for Subcatchment Ex Ws6: Ex Watershed 6

Runoff = 0.43 cfs @ 12.09 hrs, Volume= 1,388 cf, Depth> 2.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

Summary for Link POA 1: POINT OF ANALYSIS 1

Inflow Are	a =	25,047 sf, 13.38	% Impervious,	Inflow Depth >	4.11"	for 100-Yr event
Inflow	=	2.78 cfs @ 12.09 l	nrs, Volume=	8,577 cf		
Primary	=	2.78 cfs @ 12.09 l	nrs, Volume=	8,577 cf	, Atten=	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 1: POINT OF ANALYSIS 1

	2703 Cranberry Highway - Pre-Analysis
C19495	Type III 24-hr 100-Yr Rainfall=7.59'
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Soluti	ons LLC Page 14

Summary for Link POA 2: POINT OF ANALYSIS 2

Inflow A	Area	=	1,282 sf,	0.00% Ir	npervious,	Inflow Depth >	3.89"	for 100-Yr event
Inflow	:	=	0.13 cfs @	12.09 hrs,	Volume=	415 c	f	
Primary	/	=	0.13 cfs @	12.09 hrs,	Volume=	415 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 2: POINT OF ANALYSIS 2

	2703 Cranberry	Highway - Pr	e-Analysis
C19495	Type III 24-hr	100-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ons LLC		Page 15

Summary for Link POA 3: POINT OF ANALYSIS 3

Inflow Are	ea =	43,212 sf,	3.83% In	npervious,	Inflow Depth >	3.34"	for 100-Yr event
Inflow	=	3.86 cfs @ 1	2.09 hrs,	Volume=	12,045 c	f	
Primary	=	3.86 cfs @ 1	2.09 hrs,	Volume=	12,045 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 3: POINT OF ANALYSIS 3

	2703 Cranberry Highway - Pre-Analysis
C19495	Type III 24-hr 100-Yr Rainfall=7.59'
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	ns LLC Page 16

Summary for Link POA 4: POINT OF ANALYSIS 4

Inflow A	Area	=	6,536 sf,	0.00% Ir	mpervious,	Inflow Depth >	2.71"	for 100-Yr event
Inflow	=	=	0.46 cfs @	12.09 hrs,	Volume=	1,476 c	f	
Primary	/ =	=	0.46 cfs @	12.09 hrs,	Volume=	1,476 c	f, Atten	ı= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 4: POINT OF ANALYSIS 4

	2703 Cranberry	Highway - Pr	e-Analysis
C19495	Type III 24-hr	100-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC		Page 17

Summary for Link POA 5: POINT OF ANALYSIS 5

Inflow A	rea =	20,380 sf,	12.79% Ir	npervious,	Inflow Depth >	3.34"	for 100-Yr event
Inflow	=	1.82 cfs @	12.09 hrs,	Volume=	5,681 c	f	
Primary	=	1.82 cfs @	12.09 hrs,	Volume=	5,681 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 5: POINT OF ANALYSIS 5

Summary for Link POA 6: POINT OF ANALYSIS 6

Inflow Area	a =	6,146 sf,	0.00% In	npervious,	Inflow Depth >	2.71"	for 100-Yr event
Inflow	=	0.43 cfs @	12.09 hrs,	Volume=	1,388 c	f	
Primary	=	0.43 cfs @	12.09 hrs,	Volume=	1,388 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 6: POINT OF ANALYSIS 6

C19495	2703 Cranberry Hi Type III 24-hr	ghway - Pre-Analysis 25-Yr Rainfall=6.05"
Prepared by Coastal Engineering Co.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 Hyd	IroCAD Software Solutions LLC	Page 19
Time span=0.00 Runoff by SCS TI Reach routing by Stor-Ind+T	0-24.00 hrs, dt=0.01 hrs, 2401 points R-20 method, UH=SCS, Weighted-CN Trans method - Pond routing by Stor-Ind m	lethod
Subcatchment Ex Ws1: Ex Watershed 1	Runoff Area=25,047 sf 13.38% Impervious Tc=6.0 min CN=70 Ru	ℜ Runoff Depth>2.84" noff=1.91 cfs 5,931 cf
Subcatchment Ex Ws2: Ex Watershed 2	Runoff Area=1,282 sf 0.00% Impervious Tc=6.0 min CN=68 F	Runoff Depth>2.66" Runoff=0.09 cfs 284 cf
Subcatchment Ex Ws3: Ex Watershed 3	Runoff Area=43,212 sf 3.83% Impervious Tc=6.0 min CN=63 Ru	Runoff Depth>2.21" noff=2.49 cfs 7,952 cf
Subcatchment Ex Ws4: Ex Watershed 4	Runoff Area=6,536 sf 0.00% Impervious Tc=6.0 min CN=57 F	Runoff Depth>1.70" Runoff=0.28 cfs 928 cf
Subcatchment Ex Ws5: Ex Watershed 5	Runoff Area=20,380 sf 12.79% Impervious Tc=6.0 min CN=63 Ru	Runoff Depth>2.21" noff=1.17 cfs 3,750 cf
Subcatchment Ex Ws6: Ex Watershed 6	Runoff Area=6,146 sf 0.00% Impervious Tc=6.0 min CN=57 F	s Runoff Depth>1.70" ≀unoff=0.26 cfs 873 cf
Link POA 1: POINT OF ANALYSIS 1	In Prin	flow=1.91 cfs 5,931 cf nary=1.91 cfs 5,931 cf
Link POA 2: POINT OF ANALYSIS 2	Pr	Inflow=0.09 cfs 284 cf imary=0.09 cfs 284 cf
Link POA 3: POINT OF ANALYSIS 3	In Prin	flow=2.49 cfs 7,952 cf nary=2.49 cfs 7,952 cf
Link POA 4: POINT OF ANALYSIS 4	Pr	Inflow=0.28 cfs 928 cf imary=0.28 cfs 928 cf
Link POA 5: POINT OF ANALYSIS 5	In Prin	flow=1.17 cfs 3,750 cf nary=1.17 cfs 3,750 cf
Link POA 6: POINT OF ANALYSIS 6	Pr	Inflow=0.26 cfs 873 cf imary=0.26 cfs 873 cf
Total Runoff Area = 102,603	sf Runoff Volume = 19,717 cf Average I	Runoff Depth = 2.31"

 Runoff Volume = 19,717 cf
 Average Runoff Depth = 2.31"

 92.58% Pervious = 94,990 sf
 7.42% Impervious = 7,613 sf

	2703 Cranberry Highway - Pre-Analysis
C19495	Type III 24-hr 25-Yr Rainfall=6.05
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC Page 20

Summary for Subcatchment Ex Ws1: Ex Watershed 1

Runoff	=	1.91 cfs @	12.09 hrs.	Volume=	5.931 cf.	Depth>	2.84"
i tanon		1.01 010 (00)	12.001110,	voianio	0,00101,	Dopur	2.01

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Area (sf) C	<u>CN</u> D	Description					
3,3	52	98 P	Paved parking, HSG A					
18,0	82	68 <	<50% Grass cover, Poor, HSG A					
3,6	13	57 V	Woods/grass comb., Poor, HSG A					
25,0	47	70 Weighted Average						
21,6	95	8	86.62% Pervious Area					
3,3	52	1	13.38% Impervious Area					
T 1 1		0	\/.l!t	0				
IC Len	igth	Slope	velocity	Capacity	Description			
<u>(min)</u> (fe	eet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry, Direct Entry			

Subcatchment Ex Ws1: Ex Watershed 1

Summary for Subcatchment Ex Ws2: Ex Watershed 2

Runoff = 0.09 cfs @ 12.09 hrs, Volume= 284 cf, Depth> 2.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Summary for Subcatchment Ex Ws3: Ex Watershed 3

Runoff = 2.49 cfs @ 12.09 hrs, Volume= 7,952 cf, Depth> 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Area (sf)	CN	Description				
1,654	98	Paved parkin	g, HSG A			
16,853	68	<50% Grass	cover, Po	or, HSG A		
24,705	57	Woods/grass	s comb., P	Poor, HSG A		
43,212	63	Weighted Ave	erage			
41,558		96.17% Pervi	96.17% Pervious Area			
1,654		3.83% Imperv	3.83% Impervious Area			
-	01		o :.			
Ic Length	Slop	be Velocity (Capacity	Description		
(min) (feet)	(ft/	ft) (ft/sec)	(cts)			
6.0				Direct Entry, Direct Entry		

Subcatchment Ex Ws3: Ex Watershed 3

Summary for Subcatchment Ex Ws4: Ex Watershed 4

Runoff = 0.28 cfs @ 12.10 hrs, Volume= 928 cf, Depth> 1.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

	2703 Cranberry Highway - Pre-Analysis
C19495	Type III 24-hr 25-Yr Rainfall=6.05
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC Page 24

Summary for Subcatchment Ex Ws5: Ex Watershed 5

Runoff = 1.17 cfs @ 12.09 hrs, Volume= 3,750 cf, Depth	· 2.21"
--	---------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

6.0				Direct Entry, Direct Entry			
(min) (feet)) (ft/	ft) (ft/sec)	(cfs)				
ic Lengui		Je velocity	Capacity	Description			
To Longth	Slor	na Valacity	Capacity	Description			
2,607		12.79% Imp	12.79% Impervious Area				
17,773		87.21% Per	87.21% Pervious Area				
20,300	03		verage				
20,380	62	Woightod A	vorago	,			
16,042	57	Woods/gras	ss comb., P	Poor, HSG A			
1,731	68	<50% Gras	s cover, Po	bor, HSG A			
2,607	98	Paved park	ing, HSG A	N			
	UN	Description					
Area (sf)	CN	Description					

Subcatchment Ex Ws5: Ex Watershed 5

Summary for Subcatchment Ex Ws6: Ex Watershed 6

Runoff = 0.26 cfs @ 12.10 hrs, Volume= 873 cf, Depth> 1.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

	2703 Cranberry Highway - Pre-Analys	sis
C19495	Type III 24-hr 25-Yr Rainfall=6.0	5″
Prepared by Coastal Engineering Co.	Printed 1/29/202	24
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	ns LLC Page 2	<u>26</u>

Summary for Link POA 1: POINT OF ANALYSIS 1

Inflow Area	a =	25,047 sf,	13.38% In	npervious,	Inflow Depth >	2.84"	for 25-Yr event
Inflow	=	1.91 cfs @	12.09 hrs,	Volume=	5,931 c	f	
Primary	=	1.91 cfs @	12.09 hrs,	Volume=	5,931 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 1: POINT OF ANALYSIS 1

Summary for Link POA 2: POINT OF ANALYSIS 2

Inflow Are	ea =	1,282 sf,	0.00% Imper	rvious,	Inflow Depth >	2.66"	for 25-Yr event
Inflow	=	0.09 cfs @ 1	2.09 hrs, Vol	lume=	284 c	f	
Primary	=	0.09 cfs @ 1	12.09 hrs, Vol	lume=	284 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 2: POINT OF ANALYSIS 2

	2703 Cranberry H	lighway - Pr	e-Analysis
C19495	Type III 24-hr	25-Yr Rair	nfall=6.05"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC		Page 28

Summary for Link POA 3: POINT OF ANALYSIS 3

Inflow Are	a =	43,212 sf,	3.83% Ir	npervious,	Inflow Depth >	2.21"	for 25-Yr event
Inflow	=	2.49 cfs @	12.09 hrs,	Volume=	7,952 c	f	
Primary	=	2.49 cfs @	12.09 hrs,	Volume=	7,952 c	f, Atter	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 3: POINT OF ANALYSIS 3

Summary for Link POA 4: POINT OF ANALYSIS 4

Inflow A	rea =	6,536 sf,	0.00% li	mpervious,	Inflow Depth >	1.70"	for 25-Yr event
Inflow	=	0.28 cfs @	12.10 hrs,	Volume=	928 c	f	
Primary	=	0.28 cfs @	12.10 hrs,	Volume=	928 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 4: POINT OF ANALYSIS 4

	2703 Cranberry Highway - Pr	e-Analysis
C19495	Type III 24-hr 25-Yr Rair	nfall=6.05"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solu	itions LLC	Page 30

Summary for Link POA 5: POINT OF ANALYSIS 5

Inflow Area	a =	20,380 sf,	12.79% In	npervious,	Inflow Depth >	2.21"	for 25-Yr event
Inflow	=	1.17 cfs @	12.09 hrs,	Volume=	3,750 c	f	
Primary	=	1.17 cfs @	12.09 hrs,	Volume=	3,750 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 5: POINT OF ANALYSIS 5

Summary for Link POA 6: POINT OF ANALYSIS 6

Inflow A	rea =	6,146 sf,	0.00% Imp	pervious,	Inflow Depth >	1.70"	for 25-Yr event
Inflow	=	0.26 cfs @	12.10 hrs, V	/olume=	873 c	F	
Primary	=	0.26 cfs @	12.10 hrs, V	/olume=	873 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 6: POINT OF ANALYSIS 6

C19495	2703 Cranberry Highway - Pre-Analysis Type III 24-hr 10-Yr Rainfall=5.05"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 Hydro	CAD Software Solutions LLC Page 32
Time span=0.00-2 Runoff by SCS TR- Reach routing by Stor-Ind+Tra	24.00 hrs, dt=0.01 hrs, 2401 points 20 method, UH=SCS, Weighted-CN ins method - Pond routing by Stor-Ind method
Subcatchment Ex Ws1: Ex Watershed 1	Runoff Area=25,047 sf 13.38% Impervious Runoff Depth>2.07" Tc=6.0 min CN=70 Runoff=1.37 cfs 4,322 cf
Subcatchment Ex Ws2: Ex Watershed 2	Runoff Area=1,282 sf 0.00% Impervious Runoff Depth>1.91" Tc=6.0 min CN=68 Runoff=0.06 cfs 204 cf
Subcatchment Ex Ws3: Ex Watershed 3	Runoff Area=43,212 sf 3.83% Impervious Runoff Depth>1.54" Tc=6.0 min CN=63 Runoff=1.68 cfs 5,539 cf
Subcatchment Ex Ws4: Ex Watershed 4	Runoff Area=6,536 sf 0.00% Impervious Runoff Depth>1.13" Tc=6.0 min CN=57 Runoff=0.17 cfs 615 cf
Subcatchment Ex Ws5: Ex Watershed 5	Runoff Area=20,380 sf 12.79% Impervious Runoff Depth>1.54" Tc=6.0 min CN=63 Runoff=0.79 cfs 2,612 cf
Subcatchment Ex Ws6: Ex Watershed 6	Runoff Area=6,146 sf 0.00% Impervious Runoff Depth>1.13" Tc=6.0 min CN=57 Runoff=0.16 cfs 578 cf
Link POA 1: POINT OF ANALYSIS 1	Inflow=1.37 cfs 4,322 cf Primary=1.37 cfs 4,322 cf
Link POA 2: POINT OF ANALYSIS 2	Inflow=0.06 cfs 204 cf Primary=0.06 cfs 204 cf
Link POA 3: POINT OF ANALYSIS 3	Inflow=1.68 cfs 5,539 cf Primary=1.68 cfs 5,539 cf
Link POA 4: POINT OF ANALYSIS 4	Inflow=0.17 cfs 615 cf Primary=0.17 cfs 615 cf
Link POA 5: POINT OF ANALYSIS 5	Inflow=0.79 cfs 2,612 cf Primary=0.79 cfs 2,612 cf
Link POA 6: POINT OF ANALYSIS 6	Inflow=0.16 cfs 578 cf Primary=0.16 cfs 578 cf
Total Runoff Area = 102 603 sf	Runoff Volume = 13 871 cf Average Runoff Depth = 1 62"

Total Runoff Area = 102,603 sf Runoff Volume = 13,871 cf Average Runoff Depth = 1.62" 92.58% Pervious = 94,990 sf 7.42% Impervious = 7,613 sf

	2703 Cranberry Hig	ghway - Pr	e-Analysis
C19495	Type III 24-hr 1	0-Yr Rain	nfall=5.05"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	is LLC		Page 33

Summary for Subcatchment Ex Ws1: Ex Watershed 1

1.01 III = 1.01 III (0.01 IIII (0.01 IIIII)))))))))))))))))))))))))))))))	Runoff =	= 1.37 c	fs @ 12.09 hrs	, Volume=	4,322 cf,	Depth>	2.07"
---	----------	----------	----------------	-----------	-----------	--------	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Area (sf)	CN	Description			
3,352	98	Paved park	ing, HSG A	N Contraction of the second seco	
18,082	68	<50% Gras	s cover, Po	bor, HSG A	
3,613	57	Woods/gras	ss comb., P	Poor, HSG A	
25,047	70	Weighted A	verage		
21,695		86.62% Per	vious Area	l	
3,352		13.38% Imp	pervious Are	ea	
				_	
Tc Length	Slop	be Velocity	Capacity	Description	
(min) (feet)	(ft/	<u>ft) (ft/sec)</u>	(cfs)		
6.0				Direct Entry, Direct Entry	

Subcatchment Ex Ws1: Ex Watershed 1

Summary for Subcatchment Ex Ws2: Ex Watershed 2

Runoff = 0.06 cfs @ 12.09 hrs, Volume= 204 cf, Depth> 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

	2703 Cranberry H	ighway - Pr	e-Analysis
C19495	Type III 24-hr	10-Yr Rair	nfall=5.05"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC		Page 35

Summary for Subcatchment Ex Ws3: Ex Watershed 3

Runoff = 1.68 cfs @ 12.10 hrs, Volume= 5,539 cf, Depth> 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Area (s	sf) CN	Description		
1,6	54 98	Paved parki	ng, HSG A	N Contraction of the second
16,85	53 68	<50% Grass	s cover, Po	bor, HSG A
24,70)5 57	Woods/gras	s comb., P	Poor, HSG A
43,2	12 63	Weighted A	verage	
41,5	58	96.17% Per	vious Area	
1,65	54	3.83% Impe	rvious Area	a
Tc Len	gth Slo	pe Velocity	Capacity	Description
<u>(min)</u> (fe	et) (ft	/ft) (ft/sec)	(cfs)	
6.0				Direct Entry, Direct Entry

Subcatchment Ex Ws3: Ex Watershed 3

Summary for Subcatchment Ex Ws4: Ex Watershed 4

Runoff = 0.17 cfs @ 12.10 hrs, Volume= 615 cf, Depth> 1.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Summary for Subcatchment Ex Ws5: Ex Watershed 5

RUNDII – $0.79 \text{ cis}(\omega + 12.10 \text{ hrs. volume} - 2.012 \text{ ci. Deptn>1.5}$	Runoff	=	0.79 cfs @	12.10 hrs.	Volume=	2.612 cf.	Depth> 1.5	54"
--	--------	---	------------	------------	---------	-----------	------------	-----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Area (sf)	CN	Description		
2,607	98	Paved park	ing, HSG A	A
1,731	68	<50% Gras	s cover, Po	bor, HSG A
16,042	57	Woods/gras	ss comb., P	Poor, HSG A
20,380	63	Weighted A	verage	
17,773		87.21% Per	vious Area	a
2,607		12.79% Imp	pervious Are	ea
			.	
Tc Length	Slop	be Velocity	Capacity	Description
(min) (feet)	(ft/	ft) (ft/sec)	(cfs)	
6.0				Direct Entry, Direct Entry

Subcatchment Ex Ws5: Ex Watershed 5

Summary for Subcatchment Ex Ws6: Ex Watershed 6

Runoff = 0.16 cfs @ 12.10 hrs, Volume= 578 cf, Depth> 1.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

	2703 Cranberry H	lighway - Pr	e-Analysis
C19495	Type III 24-hr	10-Yr Rair	nfall=5.05"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ns LLC		Page 39

Summary for Link POA 1: POINT OF ANALYSIS 1

Inflow Are	ea =	25,047 sf, 13.38% Impervious	Inflow Depth > 2.07" for 10-Yr event
Inflow	=	1.37 cfs @ 12.09 hrs, Volume=	4,322 cf
Primary	=	1.37 cfs @ 12.09 hrs, Volume=	4,322 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 1: POINT OF ANALYSIS 1

Summary for Link POA 2: POINT OF ANALYSIS 2

Inflow Are	ea =	1,282 sf,	0.00% In	npervious,	Inflow Depth >	1.91"	for 10-Yr event
Inflow	=	0.06 cfs @ 1	12.09 hrs,	Volume=	204 c	f	
Primary	=	0.06 cfs @ 1	12.09 hrs,	Volume=	204 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 2: POINT OF ANALYSIS 2

	2703 Cranberry H	ighway - Pr	e-Analysis
C19495	Type III 24-hr	10-Yr Rain	nfall=5.05"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Soluti	ions LLC		Page 41

Summary for Link POA 3: POINT OF ANALYSIS 3

Inflow A	rea :	=	43,212 sf,	3.83% Ir	mpervious,	Inflow Depth >	1.54"	for 10-Yr event
Inflow	=	:	1.68 cfs @	12.10 hrs,	Volume=	5,539 c	f	
Primary	- =	:	1.68 cfs @	12.10 hrs,	Volume=	5,539 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 3: POINT OF ANALYSIS 3

Summary for Link POA 4: POINT OF ANALYSIS 4

Inflow A	Area	=	6,536 sf,	0.00% I	mpervious,	Inflow Depth >	1.13	for 10-Yr event
Inflow		=	0.17 cfs @	12.10 hrs,	Volume=	615 c	of	
Primary	/	=	0.17 cfs @	12.10 hrs,	Volume=	615 c	of, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 4: POINT OF ANALYSIS 4

Summary for Link POA 5: POINT OF ANALYSIS 5

Inflow A	rea =	20,380 sf, 12.799	% Impervious,	Inflow Depth >	1.54" for	10-Yr event
Inflow	=	0.79 cfs @ 12.10 h	rs, Volume=	2,612 cf		
Primary	=	0.79 cfs @ 12.10 h	rs, Volume=	2,612 cf,	, Atten= 0%	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 5: POINT OF ANALYSIS 5

Summary for Link POA 6: POINT OF ANALYSIS 6

Inflow A	Area :	=	6,146 sf,	0.00% Ir	mpervious,	Inflow Depth >	1.13"	for 10-Yr event
Inflow	=	:	0.16 cfs @	12.10 hrs,	Volume=	578 c	f	
Primary	/ =		0.16 cfs @	12.10 hrs,	Volume=	578 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 6: POINT OF ANALYSIS 6

C19495	2703 Cranberry Highway - Pre-Analysis Type III 24-hr 2-Yr Rainfall=3.44"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 Hyd	roCAD Software Solutions LLC Page 45
Time span=0.00 Runoff by SCS Tf Reach routing by Stor-Ind+T	0-24.00 hrs, dt=0.01 hrs, 2401 points R-20 method, UH=SCS, Weighted-CN Trans method - Pond routing by Stor-Ind method
Subcatchment Ex Ws1: Ex Watershed 1	Runoff Area=25,047 sf 13.38% Impervious Runoff Depth>0.97" Tc=6.0 min CN=70 Runoff=0.60 cfs 2,024 cf
Subcatchment Ex Ws2: Ex Watershed 2	Runoff Area=1,282 sf 0.00% Impervious Runoff Depth>0.87" Tc=6.0 min CN=68 Runoff=0.03 cfs 92 cf
Subcatchment Ex Ws3: Ex Watershed 3	Runoff Area=43,212 sf 3.83% Impervious Runoff Depth>0.63" Tc=6.0 min CN=63 Runoff=0.57 cfs 2,266 cf
Subcatchment Ex Ws4: Ex Watershed 4	Runoff Area=6,536 sf 0.00% Impervious Runoff Depth>0.39" Tc=6.0 min CN=57 Runoff=0.03 cfs 214 cf
Subcatchment Ex Ws5: Ex Watershed 5	Runoff Area=20,380 sf 12.79% Impervious Runoff Depth>0.63" Tc=6.0 min CN=63 Runoff=0.27 cfs 1,069 cf
Subcatchment Ex Ws6: Ex Watershed 6	Runoff Area=6,146 sf 0.00% Impervious Runoff Depth>0.39" Tc=6.0 min CN=57 Runoff=0.03 cfs 201 cf
Link POA 1: POINT OF ANALYSIS 1	Inflow=0.60 cfs 2,024 cf Primary=0.60 cfs 2,024 cf
Link POA 2: POINT OF ANALYSIS 2	Inflow=0.03 cfs 92 cf Primary=0.03 cfs 92 cf
Link POA 3: POINT OF ANALYSIS 3	Inflow=0.57 cfs 2,266 cf Primary=0.57 cfs 2,266 cf
Link POA 4: POINT OF ANALYSIS 4	Inflow=0.03 cfs 214 cf Primary=0.03 cfs 214 cf
Link POA 5: POINT OF ANALYSIS 5	Inflow=0.27 cfs 1,069 cf Primary=0.27 cfs 1,069 cf
Link POA 6: POINT OF ANALYSIS 6	Inflow=0.03 cfs 201 cf Primary=0.03 cfs 201 cf

Total Runoff Area = 102,603 sf Runoff Volume = 5,867 cf Average Runoff Depth = 0.69"92.58% Pervious = 94,990 sf7.42% Impervious = 7,613 sf

Summary for Subcatchment Ex Ws1: Ex Watershed 1

Runoff = 0.60 cfs @ 12.10 hrs, Volume= 2,024 cf, Depth> 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

vrea (sf)	CN	Description			
3,352	98	Paved park	ing, HSG A	A	
18,082	68	<50% Gras	s cover, Po	bor, HSG A	
3,613	57	Woods/gras	ss comb., P	Poor, HSG A	
25,047	70	Weighted A	verage		
21,695		86.62% Pe	vious Area	ì	
3,352		13.38% lmp	pervious Are	ea	
	~				
Length	Slop	e Velocity	Capacity	Description	
(feet)	(ft/f	t) (ft/sec)	(cts)		
				Direct Entry, Direct Entry	
	urea (sf) 3,352 18,082 3,613 25,047 21,695 3,352 Length (feet)	trea (sf) CN 3,352 98 18,082 68 3,613 57 25,047 70 21,695 3,352 Length Slop- (feet) (ft/ft)	trea (sf) CN Description 3,352 98 Paved park 18,082 68 <50% Gras	area (sf)CNDescription3,35298Paved parking, HSG A18,08268<50% Grass cover, Po	area (sf)CNDescription3,35298Paved parking, HSG A18,08268<50% Grass cover, Poor, HSG A

Subcatchment Ex Ws1: Ex Watershed 1

Summary for Subcatchment Ex Ws2: Ex Watershed 2

Runoff = 0.03 cfs @ 12.10 hrs, Volume= 92 cf, Depth> 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

Summary for Subcatchment Ex Ws3: Ex Watershed 3

Runoff = 0.57 cfs @ 12.11 hrs, Volume= 2,266 cf, Depth> 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

Area (sf)	CN	Description					
1,654	98	Paved park	ing, HSG A	A			
16,853	68	<50% Gras	s cover, Po	bor, HSG A			
24,705	57	Woods/gras	ss comb., P	Poor, HSG A			
43,212	63	Weighted A	verage				
41,558		96.17% Per	96.17% Pervious Area				
1,654		3.83% Impe	ervious Area	a			
Ic Length	n Slop	be Velocity	Capacity	Description			
(min) (feet) (ft/	ft) (ft/sec)	(cfs)				
6.0				Direct Entry, Direct Entry			

Subcatchment Ex Ws3: Ex Watershed 3

Summary for Subcatchment Ex Ws4: Ex Watershed 4

Runoff = 0.03 cfs @ 12.14 hrs, Volume= 214 cf, Depth> 0.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

Summary for Subcatchment Ex Ws5: Ex Watershed 5

Runoff = 0.27 cfs @ 12.11 hrs, Volume= 1,069 cf, Depth> 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

6.0					Direct Entry, Direct Entry		
(min) (fe	eet) (t	[ft/ft] ([ft/sec)	(cfs)			
IC LEI	yui Si	iohe v	elocity	Capacity	Description		
To lon	ath SI	lono V	alocity	Capacity	Description		
2,6	07	12.7	'9% Imp	ervious Are	ea		
17,7	73	87.2	87.21% Pervious Area				
20,5			Weighted Average				
20.3	80 63	3 W/oi	abted A	Verade			
16,0	42 57	7 Woo	ods/gras	s comb., P	Poor, HSG A		
1,7	31 68	8 <50	% Grass	s cover, Po	or, HSG A		
2,6	07 98	8 Pav	ed parki	ng, HSG A			
Alea (SI) CIN	v Des	сприон				
Area (ef) CN		crintion				

Subcatchment Ex Ws5: Ex Watershed 5

Summary for Subcatchment Ex Ws6: Ex Watershed 6

Runoff = 0.03 cfs @ 12.14 hrs, Volume= 201 cf, Depth> 0.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

Summary for Link POA 1: POINT OF ANALYSIS 1

Inflow A	rea =	25,047 sf,	13.38% Impervic	ous, Inflow Depth >	> 0.97"	for 2-Yr event
Inflow	=	0.60 cfs @	12.10 hrs, Volum	ie= 2,024	cf	
Primary	=	0.60 cfs @	12.10 hrs, Volum	ie= 2,024	cf, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 1: POINT OF ANALYSIS 1

Summary for Link POA 2: POINT OF ANALYSIS 2

Inflow A	rea	=	1,282 sf,	0.00% Ir	mpervious,	Inflow Depth >	0.87"	for 2-Yr event
Inflow	=	=	0.03 cfs @	12.10 hrs,	Volume=	92 c	f	
Primary		=	0.03 cfs @	12.10 hrs,	Volume=	92 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 2: POINT OF ANALYSIS 2

Summary for Link POA 3: POINT OF ANALYSIS 3

Inflow Are	a =	43,212 sf,	3.83% Impervious,	Inflow Depth > 0.63	for 2-Yr event
Inflow	=	0.57 cfs @ 1	12.11 hrs, Volume=	2,266 cf	
Primary	=	0.57 cfs @ 1	12.11 hrs, Volume=	2,266 cf, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 3: POINT OF ANALYSIS 3

Summary for Link POA 4: POINT OF ANALYSIS 4

Inflow A	Area	=	6,536 sf,	0.00% Ir	mpervious,	Inflow Depth >	0.39"	for 2-Yr event
Inflow	=	=	0.03 cfs @	12.14 hrs,	Volume=	214 c	f	
Primary	/ =	=	0.03 cfs @	12.14 hrs,	Volume=	214 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 4: POINT OF ANALYSIS 4

Summary for Link POA 5: POINT OF ANALYSIS 5

Inflow Are	a =	20,380 sf,	12.79% Im	pervious,	Inflow Depth >	0.63"	for 2-Yr event
Inflow	=	0.27 cfs @	12.11 hrs,	Volume=	1,069 c	f	
Primary	=	0.27 cfs @	12.11 hrs,	Volume=	1,069 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 5: POINT OF ANALYSIS 5
Summary for Link POA 6: POINT OF ANALYSIS 6

Inflow A	rea =	6,146 sf,	0.00% Impervious,	Inflow Depth > 0.39	" for 2-Yr event
Inflow	=	0.03 cfs @	12.14 hrs, Volume=	201 cf	
Primary	=	0.03 cfs @	12.14 hrs, Volume=	201 cf, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA 6: POINT OF ANALYSIS 6

C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Printed 1/29/2024 Page 2

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	100-Yr	Type III 24-hr		Default	24.00	1	7.59	2
2	25-Yr	Type III 24-hr		Default	24.00	1	6.05	2
3	10-Yr	Type III 24-hr		Default	24.00	1	5.05	2
4	2-Yr	Type III 24-hr		Default	24.00	1	3.44	2

Rainfall Events Listing

2703 Cranberry Highway - Post-Analysis

C19495		, ,	,	,
Prepared by Coastal Engineering Co.			Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions	LLC			Page 3

Area Listing (selected nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
31,950	39	>75% Grass cover, Good, HSG A (P Ws1, P Ws3, P Ws4, P Ws7)
35,241	98	Paved parking, HSG A (P Ws1, P Ws3, P Ws4, P Ws8)
6,123	98	Roofs, HSG A (P Ws1, P Ws3, P Ws5)
29,293	32	Woods/grass comb., Good, HSG A (PWs1, PWs2, PWs3, PWs6, PWs7, P
		Ws8, P Ws9)
102,607	61	TOTAL AREA

C19495	,	5	,	,
Prepared by Coastal Engineering Co.			Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions	LLC			Page 4

Soil Listing (selected nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
102,607	HSG A	P Ws1, P Ws2, P Ws3, P Ws4, P Ws5, P Ws6, P Ws7, P Ws8, P Ws9
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
102,607		TOTAL AREA

2703 Cranherry H	iahway -	Post-Analy	veie
	ignway -	1 0367 (101	y 313

C19495		,	5	,	,
Prepared by Coastal Engineering Co.				Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions L	LC				Page 5

Gibana Govers (Selected hodes)						
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
31,950	0	0	0	0	31,950	>75% Grass
						cover, Good
35,241	0	0	0	0	35,241	Paved parking
6,123	0	0	0	0	6,123	Roofs
29,293	0	0	0	0	29,293	Woods/grass
						comb., Good
102,607	0	0	0	0	102,607	TOTAL AREA

Ground Covers (selected nodes)

C19495	2703 Cranberry Hig Type III 24-hr 1	hway - Post-Analysis 00-Yr Rainfall=7.59″
Prepared by Coastal Engineering Co.		Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 H	IydroCAD Software Solutions LLC	Page 6
Time span=0 Runoff by SCS Reach routing by Stor-Ind	0.00-24.00 hrs, dt=0.01 hrs, 2401 points TR-20 method, UH=SCS, Weighted-CN I+Trans method - Pond routing by Stor-Ind m	nethod
Subcatchment P Ws1: P Watershed 1	Runoff Area=13,459 sf 20.67% Imperviou Tc=6.0 min CN=50 Ru	s Runoff Depth>2.00" inoff=0.65 cfs 2,244 cf
Subcatchment P Ws2: P Watershed 2	Runoff Area=1,283 sf 0.00% Imperviou Tc=6.0 min CN=32	s Runoff Depth>0.45" Runoff=0.00 cfs 48 cf
Subcatchment P Ws3: P Watershed 3	Runoff Area=27,907 sf 55.74% Imperviou Tc=6.0 min CN=72 Rur	s Runoff Depth>4.33" hoff=3.26 cfs 10,074 cf
Subcatchment P Ws4: P Watershed 4	Runoff Area=27,494 sf 59.45% Imperviou Tc=6.0 min CN=74 Rur	s Runoff Depth>4.56" off=3.37 cfs 10,438 cf
Subcatchment P Ws5: P Watershed 5	Runoff Area=4,267 sf 100.00% Imperviou Tc=6.0 min CN=98 Ru	s Runoff Depth>7.34" inoff=0.73 cfs 2,612 cf
Subcatchment P Ws6: P Watershed 6	Runoff Area=2,910 sf 0.00% Imperviou Tc=6.0 min CN=32 F	s Runoff Depth>0.45" Runoff=0.01 cfs 110 cf
Subcatchment P Ws7: P Watershed 7	Runoff Area=6,385 sf 0.00% Imperviou Tc=6.0 min CN=33 F	s Runoff Depth>0.52" Runoff=0.03 cfs 277 cf
Subcatchment P Ws8: P Watershed 8	Runoff Area=18,395 sf 13.12% Imperviou Tc=6.0 min CN=41 Ru	s Runoff Depth>1.16" inoff=0.39 cfs 1,778 cf
Subcatchment P Ws9: P Watershed 9	Runoff Area=507 sf 0.00% Imperviou Tc=6.0 min CN=32	s Runoff Depth>0.45" Runoff=0.00 cfs 19 cf
Pond 1P: LRB-1 Discarded=0	Peak Elev=100.01' Storage=707 cf In 0.04 cfs 2,190 cf Primary=0.77 cfs 743 cf Out	flow=0.73 cfs 2,612 cf flow=0.81 cfs 2,933 cf
Pond 2P: LRB-2 Discarded=0.1	Peak Elev=99.40' Storage=13,002 cf Infl 11 cfs 5,753 cf Primary=0.28 cfs 1,970 cf Out	ow=6.63 cfs 20,511 cf flow=0.38 cfs 7,723 cf
Link POA-1: POINT OF ANALYSIS 1	In Prir	flow=1.29 cfs 2,987 cf nary=1.29 cfs 2,987 cf
Link POA-2: POINT OF ANALYSIS 2	I	Inflow=0.00 cfs 48 cf Primary=0.00 cfs 48 cf
Link POA-3: POINT OF ANALYSIS 3	In Prir	flow=0.28 cfs 2,080 cf nary=0.28 cfs 2,080 cf
Link POA-4: POINT OF ANALYSIS 4	P	Inflow=0.03 cfs 277 cf rimary=0.03 cfs 277 cf
Link POA-5: POINT OF ANALYSIS 5	In Prir	flow=0.39 cfs 1,778 cf nary=0.39 cfs 1,778 cf

Link POA-6: POINT OF ANALYSIS 6

Inflow=0.00 cfs 19 cf Primary=0.00 cfs 19 cf

Total Runoff Area = 102,607 sf Runoff Volume = 27,600 cf Average Runoff Depth = 3.23" 59.69% Pervious = 61,243 sf 40.31% Impervious = 41,364 sf

Summary for Subcatchment P Ws1: P Watershed 1

Runoff = 0.65 cfs (a) 12.10 hrs, Volume= 2,244 cf, Depth>	> 2.00"
---	---------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

A	rea (sf)	CN	Description					
	1,107	98	Paved park	ing, HSG A	Α			
	1,675	98	Roofs, HSC	Roofs, HSG A				
	7,850	39	>75% Gras	>75% Grass cover, Good, HSG A				
	2,827	32	Woods/gras	Noods/grass comb., Good, HSG A				
	13,459	50 Weighted Average						
	10,677	7 79.33% Pervious Area						
	2,782	2,782 20.67% Impervious Area						
Tc	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	:) (ft/sec)	(cfs)				
6.0					Direct Entry, Direct Entry			

Subcatchment P Ws1: P Watershed 1

Summary for Subcatchment P Ws2: P Watershed 2

Runoff = 0.00 cfs @ 12.39 hrs, Volume= 48 cf, Depth> 0.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

	2703 Cranberry Hig	ghway - Pos	st-Analysis
C19495	Type III 24-hr 1	00-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Soluti	ons LLC		Page 10

Summary for Subcatchment P Ws3: P Watershed 3

Runoff	=	3.26 cfs @	12.09 hrs,	Volume=	10,074 cf, Depth>	4.33"
--------	---	------------	------------	---------	-------------------	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

Area	(sf)	CN [Description		
15,3	374	98 F	Paved park	ing, HSG A	A
	181	98 F	Roofs, HSC	δĂ.	
11,8	843	39 >	75% Gras	s cover, Go	lood, HSG A
	509	32 \	Voods/gras	ss comb., G	Good, HSG A
27,9	907	72 \	Veighted A	verage	
12,3	352	2	4.26% Per	vious Area	а
15,	555	5	5.74% Imp	pervious Are	rea
Tc Le	ngth	Slope	Velocity	Capacity	Description
<u>(min)</u>	feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, Direct Entry

Subcatchment P Ws3: P Watershed 3

	2703 Cranberry I	lighway - Pos	st-Analysis
C19495	Type III 24-hr	100-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Soluti	ons LLC		Page 11

Summary for Subcatchment P Ws4: P Watershed 4

Runoff	=	3.37 cfs @	12.09 hrs,	Volume=	10,438 cf, Depth>	4.56"
1 MILLION	_	0.01 013 (0)	12.001113,	volume-		7.00

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

A	rea (sf)	CN	Description		
	16,346	98	Paved park	ing, HSG A	
	11,148	39	>75% Gras	s cover, Go	ood, HSG A
	27,494	74	Weighted A	verage	
	11,148		40.55% Per	vious Area	
	16,346		59.45% Imp	pervious Are	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry, Direct Entry

Subcatchment P Ws4: P Watershed 4

	2703 Cranberry Highway - Post-Analysis
C19495	Type III 24-hr 100-Yr Rainfall=7.59"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Sol	utions LLC Page 12
	-

Summary for Subcatchment P Ws5: P Watershed 5

Runoff = 0.73 cfs @ 12.08 hrs, Volume= 2,612 cf, Depth> 7.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

11 12 13

Time (hours)

8

9 10

7

14 15 16 17 18 19 20 21 22 23

24

0.001

0 1

2

3 4 5 6

C19495 Prepared by Coastal Engineering Co. <u>HydroCAD® 10.10-5a_s/n 04240 © 2020 HydroCAD Software Sol</u>	2703 Cranberry Highway - Post-Analysis <i>Type III 24-hr 100-Yr Rainfall=7.59"</i> Printed 1/29/2024 Jutions LLC Page 14
Summary for Subcatchment P W	/s7: P Watershed 7
Runoff = 0.03 cfs @ 12.36 hrs, Volume=	277 cf, Depth> 0.52"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Type III 24-hr 100-Yr Rainfall=7.59"	Span= 0.00-24.00 hrs, dt= 0.01 hrs
Area (sf) CN Description	
1,109 39 >75% Grass cover, Good, HSG A 5,276 32 Woods/grass comb., Good, HSG A	
6,385 33 Weighted Average 6,385 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry	, Direct Entry
Subcatchment P Ws7: P V Hydrograph	Vatershed 7
0.032 0.03 0.03	
0.026 100-Yr Rainfall=7.59 "	
0.024 0.022 Runoff Area=6 385 sf	
s 0.016 Runoff Depth>0.52"	
Tc=6.0 min	
0.012 0.01 CN=33	
0.008	
0.006	
0.004	
0.002	
0	16 17 18 19 20 21 22 23 24

	2703 Cranberry	Highway - Po	st-Analysis
C19495	Type III 24-hr	100-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	ns LLC		Page 15

Summary for Subcatchment P Ws8: P Watershed 8

Runoff = 0.39 cfs @ 12.12 hrs, Volume= 1,778 cf, Depth> 1.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=7.59"

Ar	ea (sf)	CN	Description		
	2,414	98	Paved park	ing, HSG A	N Contraction of the second seco
	15,981	32	Woods/gras	ss comb., G	Good, HSG A
-	18,395	41	Weighted A	verage	
	15,981		86.88% Per	vious Area	
	2,414		13.12% Imp	pervious Are	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry, Direct Entry

Subcatchment P Ws8: P Watershed 8

11 12 13

Time (hours)

8

9 10

7

14 15 16 17 18 19 20

21 22

23 24

0.000-0-0-

0 1

2

3 4 5 6

C194952703 Cranberry Highway - Post-Analysis
Type III 24-hr 100-Yr Rainfall=7.59"Prepared by Coastal Engineering Co.Printed 1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 17

Summary for Pond 1P: LRB-1

Inflow An Inflow Outflow Discarde Primary	rea = = 0. = 0. ed = 0. = 0.	4,267 sf,100.0 73 cfs @ 12.08 81 cfs @ 12.16 04 cfs @ 12.16 77 cfs @ 12.16	0% Impervious, Inflow Depth > 7.34" for 100-Yr event 3 hrs, Volume= 2,612 cf 5 hrs, Volume= 2,933 cf, Atten= 0%, Lag= 4.9 min 5 hrs, Volume= 2,190 cf 5 hrs, Volume= 743 cf				
Routing Peak Ele	by Stor-Ind m ev= 100.01' @	nethod, Time Sp) 12.16 hrs Su	an= 0.00-24.00 hrs, dt= 0.01 hrs / 2 f.Area= 203 sf Storage= 707 cf				
Plug-Flo Center-c	w detention ti of-Mass det. ti	me= (not calcula ime= 106.5 min	ated: outflow precedes inflow) (847.8 - 741.3)				
volume	Invert	Avall.Storage	e Storage Description				
#1	93.82'	236 c	10.00'W x 20.00'L x 5.67'H Stone				
			1,134 cf Overall - 530 cf Embedded = 604 cf x 39.0% Voids				
#2	94.82'	469 c	8.00'D x 4.67'H PCC Leaching Unit 8' Dia x 2 Inside #1				
			530 cf Overall - 3.0" Wall Thickness = 469 cf				
#3	99.48'	2 c	1 2.00'D x 0.55'H Riser				
		707 c	f Total Available Storage				
Device	Routing	Invert O	utlet Devices				
#1	Discarded	93.82' 8.	270 in/hr Exfiltration over Surface area				
#2	Primary	100.00' 2 4	I.0" Horiz. Overflow Grate				
		C	= 0.600 in 24.0" Grate (100% open area)				
Discarded OutFlow Max=0.04 cfs @ 12.16 hrs HW=100.01' (Free Discharge) ←1=Exfiltration (Exfiltration Controls 0.04 cfs)							
Primary	OutFlow Ma	av=1 34 cfs @ 1	2 16 brs HW=100 01' (Free Discharge)				

Primary OutFlow Max=1.34 cfs @ 12.16 hrs HW=100.01' (Free Discharge) -2=Overflow Grate (Orifice Controls 1.34 cfs @ 0.43 fps) C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Pond 1P: LRB-1

Pond 1P: LRB-1

C194952703 Cranberry Highway - Post-Analysis
Type III 24-hr 100-Yr Rainfall=7.59"Prepared by Coastal Engineering Co.Printed 1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 19

Summary for Pond 2P: LRB-2

Inflow Area	=	55,401 sf,	57.58% In	npervious,	Inflow Depth > 4.44	I" for 100)-Yr event
Inflow	=	6.63 cfs @	12.09 hrs,	Volume=	20,511 cf		
Outflow	=	0.38 cfs @	14.28 hrs,	Volume=	7,723 cf, At	ten= 94%,	Lag= 131.8 min
Discarded	=	0.11 cfs @	9.77 hrs,	Volume=	5,753 cf		
Primary	=	0.28 cfs @	14.28 hrs,	Volume=	1,970 cf		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 99.40' @ 14.28 hrs Surf.Area= 552 sf Storage= 13,002 cf

Plug-Flow detention time= 278.9 min calculated for 7,723 cf (38% of inflow) Center-of-Mass det. time= 155.4 min (975.4 - 819.9)

Volume	Invert	Avai	I.Storage	Storage	Descripti	on					
#1	87.09'		884 cf	12.00'W	/ x 46.00'L	. x 7.67'H	Stone				
				4,234 cf	f Overall -	1,967 cf l	Embedde	ed = 2,26	6 cf x 39	9.0% Voi	ds
#2	88.09'		1,676 cf	8.00'D >	6.67'H P	CC Leach	ning Unit	t 8' Dia >	5 Inside	e #1	
	04.70		- (1,967 cl	f Overall -	4.0" Wall	Thickne	ess = 1,67	76 cf		
#3	94.76		5 CT	2.00'D x	(1.74'H R	iser -Impe	ervious	1			
#4 #5	96.00		7,512 CT	Grass C	Shannel S	torage (Ir	regular)	LISTED D		caic) -im	pervious
#5	99.00		3,790 CT	Parking	Lot (Irre	gular) Lisi		w (Recald	c) -Imper	vious	
			13,867 cf	I otal Av	allable St	orage					
Elevatio	on Si	urf.Area	Perim.	Voids	Inc	.Store	Cum	n.Store	W	et.Area	
(fee	et)	(sq-ft)	(feet)	(%)	(cubi	c-feet)	(cubi	c-feet)		(sq-ft)	
96.0	00	453	152.0	0.0		0	•	0		453	
97.0	00	1,309	311.0	100.0		844		844		6,316	
98.0	00	3,094	576.0	100.0		2,138		2,983		25,026	
99.0	00	6,137	801.0	100.0		4,530		7,512		49,691	
Elevatio		urf Area	Dorim		no Store	Cur	n Store	١٨	lot Aroa		
Lievalio (foo	51	(sq_ft)	(foot)	ı (cu	hic_feet)	(cub	ic_feet)	vv	(sn_ft)		
	0	<u>(34-11)</u> 6 127	<u> </u>	(cu	<u>00-1001)</u>	(00)	<u>10-1001)</u> 0		<u>(34-11)</u> 6 127		
99.0 QQ 5	50	0,137	001.0		3 790		3 790		24 208		
33.5	0	3,120	352.0		5,750		5,730		24,200		
Device	Routing	In	vert Outle	et Device	es						
#0	Primary	99	.50' Auto	matic St	torage Ov	verflow (Discharg	ged witho	ut head)		
#1	Discarded	87	.09' 8.27	0 in/hr E	xfiltration	over Sur	face are	a			
#2	Primary	99	.40' Cus	tom Weiı	r/Orifice,	Cv= 2.62	(C= 3.28))			
			Head	d (feet) (0.00 0.10						
			Widt	h (feet)	157.70 1	57.70					

Discarded OutFlow Max=0.11 cfs @ 9.77 hrs HW=87.21' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=0.04 cfs @ 14.28 hrs HW=99.40' (Free Discharge) ←2=Custom Weir/Orifice (Weir Controls 0.04 cfs @ 0.13 fps)

C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Pond 2P: LRB-2

Pond 2P: LRB-2

	2703 Cranberry H	lighway - Pos	st-Analysis
C19495	Type III 24-hr	100-Yr Rair	nfall=7.59"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Soluti	ons LLC		Page 21

Summary for Link POA-1: POINT OF ANALYSIS 1

Inflow Are	ea =	17,726 sf, 39.77% Impervious,	Inflow Depth > 2.02"	for 100-Yr event
Inflow	=	1.29 cfs @ 12.16 hrs, Volume=	2,987 cf	
Primary	=	1.29 cfs @ 12.16 hrs, Volume=	2,987 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-1: POINT OF ANALYSIS 1

	2703 Cranberry Highway - Post-Analysis
C19495	Type III 24-hr 100-Yr Rainfall=7.59"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Soluti	ions LLC Page 22

Summary for Link POA-2: POINT OF ANALYSIS 2

Inflow Ar	rea =	1,283 sf,	0.00% Ir	mpervious,	Inflow Depth >	0.45"	for 100-Yr event
Inflow	=	0.00 cfs @	12.39 hrs,	Volume=	48 c	f	
Primary	=	0.00 cfs @	12.39 hrs,	Volume=	48 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-2: POINT OF ANALYSIS 2

	2703 Cranberry Highway - Post-Analysis
C19495	Type III 24-hr 100-Yr Rainfall=7.59"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Sol	utions LLC Page 23

Summary for Link POA-3: POINT OF ANALYSIS 3

Inflow Ar	rea =	58,311 sf, 54.71% Impervious,	Inflow Depth > 0.43" for 100-Yr eve	ent
Inflow	=	0.28 cfs @ 14.28 hrs, Volume=	2,080 cf	
Primary	=	0.28 cfs @ 14.28 hrs, Volume=	2,080 cf, Atten= 0%, Lag= 0.0	0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-3: POINT OF ANALYSIS 3

	2703 Cranberry Highway - Po	st-Analysis
C19495	Type III 24-hr 100-Yr Rai	nfall=7.59"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Sol	utions LLC	Page 24

Summary for Link POA-4: POINT OF ANALYSIS 4

Inflow A	rea =	6,385 sf,	0.00% Impervious	s, Inflow Depth >	0.52" for 100-Yr event
Inflow	=	0.03 cfs @	12.36 hrs, Volume=	= 277 cf	
Primary	=	0.03 cfs @	12.36 hrs, Volume=	= 277 cf,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-4: POINT OF ANALYSIS 4

Summary for Link POA-5: POINT OF ANALYSIS 5

Inflow Ar	ea =	18,395 sf, 13.12% Impervious,	Inflow Depth > 1.16" for 100-Yr event
Inflow	=	0.39 cfs @ 12.12 hrs, Volume=	1,778 cf
Primary	=	0.39 cfs @ 12.12 hrs, Volume=	1,778 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-5: POINT OF ANALYSIS 5

	2703 Cranberry Highway - Po	st-Analysis
C19495	Type III 24-hr 100-Yr Rai	nfall=7.59"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software So	lutions LLC	Page 26

Summary for Link POA-6: POINT OF ANALYSIS 6

Inflow A	rea =	507 sf,	0.00% Ir	npervious,	Inflow Depth >	0.45"	for 100-Yr event
Inflow	=	0.00 cfs @	12.39 hrs,	Volume=	19 c	f	
Primary	=	0.00 cfs @	12.39 hrs,	Volume=	19 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-6: POINT OF ANALYSIS 6

C19495	2703 Cranber 7 <i>Type III</i> 24	ry Highway - Post-Analysis 1 <i>-hr 25-Yr Rainfall=6.05"</i>
Prepared by Coastal Engineering Co.		Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 H	lydroCAD Software Solutions LLC	Page 27
Time span=0 Runoff by SCS Reach routing by Stor-Ind	0.00-24.00 hrs, dt=0.01 hrs, 2401 points TR-20 method, UH=SCS, Weighted-CN I+Trans method - Pond routing by Stor-	N Ind method
Subcatchment P Ws1: P Watershed 1	Runoff Area=13,459 sf 20.67% Impe Tc=6.0 min CN=5	ervious Runoff Depth>1.17" 0 Runoff=0.34 cfs 1,307 cf
Subcatchment P Ws2: P Watershed 2	Runoff Area=1,283 sf 0.00% Impe Tc=6.0 min CN	ervious Runoff Depth>0.14" I=32 Runoff=0.00 cfs 15 cf
Subcatchment P Ws3: P Watershed 3	Runoff Area=27,907 sf 55.74% Impe Tc=6.0 min CN=7	ervious Runoff Depth>3.03" 2 Runoff=2.28 cfs 7,048 cf
Subcatchment P Ws4: P Watershed 4	Runoff Area=27,494 sf 59.45% Impe Tc=6.0 min CN=7	ervious Runoff Depth>3.22" 4 Runoff=2.39 cfs 7,385 cf
Subcatchment P Ws5: P Watershed 5	Runoff Area=4,267 sf 100.00% Impe Tc=6.0 min CN=9	ervious Runoff Depth>5.81" 8 Runoff=0.58 cfs 2,065 cf
Subcatchment P Ws6: P Watershed 6	Runoff Area=2,910 sf 0.00% Impe Tc=6.0 min CN	ervious Runoff Depth>0.14" I=32 Runoff=0.00 cfs 34 cf
Subcatchment P Ws7: P Watershed 7	Runoff Area=6,385 sf 0.00% Impe Tc=6.0 min CN	ervious Runoff Depth>0.18" I=33 Runoff=0.00 cfs 94 cf
Subcatchment P Ws8: P Watershed 8	Runoff Area=18,395 sf 13.12% Impe Tc=6.0 min CN=	ervious Runoff Depth>0.57" -41 Runoff=0.11 cfs 876 cf
Subcatchment P Ws9: P Watershed 9	Runoff Area=507 sf 0.00% Impe Tc=6.0 min C	ervious Runoff Depth>0.14" N=32 Runoff=0.00 cfs 6 cf
Pond 1P: LRB-1 Discarded=	Peak Elev=100.00' Storage=707 =0.04 cfs 1,963 cf Primary=0.14 cfs 79 cf	cf Inflow=0.58 cfs 2,065 cf f Outflow=0.18 cfs 2,042 cf
Pond 2P: LRB-2 Discarded	Peak Elev=98.92' Storage=9,612 c d=0.11 cfs 5,428 cf Primary=0.00 cfs 0 cf	f Inflow=4.67 cfs 14,432 cf f Outflow=0.11 cfs 5,428 cf
Link POA-1: POINT OF ANALYSIS 1		Inflow=0.34 cfs 1,386 cf Primary=0.34 cfs 1,386 cf
Link POA-2: POINT OF ANALYSIS 2		Inflow=0.00 cfs 15 cf Primary=0.00 cfs 15 cf
Link POA-3: POINT OF ANALYSIS 3		Inflow=0.00 cfs 34 cf Primary=0.00 cfs 34 cf
Link POA-4: POINT OF ANALYSIS 4		Inflow=0.00 cfs 94 cf Primary=0.00 cfs 94 cf
Link POA-5: POINT OF ANALYSIS 5		Inflow=0.11 cfs 876 cf Primary=0.11 cfs 876 cf

Link POA-6: POINT OF ANALYSIS 6

Inflow=0.00 cfs 6 cf Primary=0.00 cfs 6 cf

Total Runoff Area = 102,607 sf Runoff Volume = 18,829 cf Average Runoff Depth = 2.20" 59.69% Pervious = 61,243 sf 40.31% Impervious = 41,364 sf

Summary for Subcatchment P Ws1: P Watershed 1

Runoff = 0.34 cfs @ 12.11 hrs, Volume= 1,307 cf, Depth> 1.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Area (sf)	CN	Description				
1,107	98	Paved parking, HSG A				
1,675	98	Roofs, HSC	Roofs, HSG A			
7,850	39	>75% Gras	>75% Grass cover, Good, HSG A			
2,827	32	Woods/gras	ss comb., G	Good, HSG A		
13,459	50	Weighted A	verage			
10,677		79.33% Per	vious Area	l		
2,782		20.67% Imp	pervious Are	ea		
			.			
Tc Lengt	h Sloj	be Velocity	Capacity	Description		
(min) (feet	:) (ft/	ft) (ft/sec)	(cfs)			
6.0				Direct Entry, Direct Entry		

Subcatchment P Ws1: P Watershed 1

Summary for Subcatchment P Ws2: P Watershed 2

Runoff = 0.00 cfs @ 14.78 hrs, Volume= 15 cf, Depth> 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Summary for Subcatchment P Ws3: P Watershed 3

Runoli = 2.28 cls (Q 12.09 hrs, volume= 7,048 cl, Depth > 3.0	Runoff =	= 2.28 cfs @	12.09 hrs,	Volume=	7,048 cf,	Depth> 3	3.03"
--	----------	--------------	------------	---------	-----------	----------	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Area	(sf)	CN E	Description				
15,3	374	98 F	Paved parking, HSG A				
	181	98 F	Roofs, HSG A				
11,8	343	39 >	75% Gras	s cover, Go	ood, HSG A		
5	509	32 V	Voods/gras	ss comb., G	Good, HSG A		
27,9	907	72 V	Veighted A	verage			
12,3	352	4	4.26% Per	vious Area	а		
15,5	555	5	5.74% Imp	pervious Are	rea		
Tc Le	ngth	Slope	Velocity	Capacity	Description		
<u>(min)</u> (1	feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry, Direct Entry		

Subcatchment P Ws3: P Watershed 3

	2703 Cranberry Highway - Pos	st-Analysis
C19495	Type III 24-hr 25-Yr Rain	fall=6.05"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	ns LLC	Page 32

Summary for Subcatchment P Ws4: P Watershed 4

Runoff = 2.39 cfs (a) 12.09 hrs, Volume= 7.385 cf, Depth>	th> 3.22"	7,385 cf, De	Volume=	12.09 hrs,	2.39 cfs @	=	Runoff
---	-----------	--------------	---------	------------	------------	---	--------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Area (sf) CN		escription			
16,3	46 98	8 Pa	Paved parking, HSG A			
11,1	48 39	9 >7	75% Grass	s cover, Go	ood, HSG A	
27,4	94 74	4 W	eighted A	verage		
11,1	48	40	40.55% Pervious Area			
16,3	46	59	9.45% Imp	ervious Are	ea	
Tc Ler	igth S	lope	Velocity	Capacity	Description	
(min) (f	eet) ((ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry, Direct Entry	

Subcatchment P Ws4: P Watershed 4

27	'03 Cranberry Hig	ghway - Pos	st-Analysis
C19495	Type III 24-hr	25-Yr Rain	fall=6.05"
Prepared by Coastal Engineering Co.		Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions	LLC		Page 33

Summary for Subcatchment P Ws5: P Watershed 5

Runoff = 0.58 cfs @ 12.08 hrs, Volume= 2,065 cf, Depth> 5.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

Summary for Subcatchment P Ws6: P Watershed 6

Runoff = 0.00 cfs @ 14.78 hrs, Volume= 34 cf, Depth> 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	2703 Cranberry Highway - Post-Analysis <i>Type III 24-hr 25-Yr Rainfall=6.05"</i> Printed 1/29/2024 ons LLC Page 35
Summary for Subcatchment P Ws7	: P Watershed 7
Runoff = 0.00 cfs @ 13.78 hrs, Volume=	94 cf, Depth> 0.18"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Spa Type III 24-hr 25-Yr Rainfall=6.05"	an= 0.00-24.00 hrs, dt= 0.01 hrs
Area (sf) CN Description	
1,109 39 >75% Grass cover, Good, HSG A	
6 385 33 Weighted Average	
6,385 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Di	irect Entry
(y)	tershed 7
0	5 17 18 19 20 21 22 23 24
Summary for Subcatchment P Ws8: P Watershed 8

RUIDII – $0.11 \text{ CIS} (W 12.29 \text{ IIIS}, VOIUITIE – 070 \text{ CI}, Deptite 12.39 \text{ CIS}$	Runoff =	0.11 cfs @	12.29 hrs,	Volume=	876 cf, I	Depth> 0.	57"
---	----------	------------	------------	---------	-----------	-----------	-----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

A	rea (sf)	CN	Description		
	2,414	98	Paved park	ing, HSG A	N
	15,981	32	Woods/gras	ss comb., G	Good, HSG A
	18,395	41	Weighted A	verage	
	15,981		86.88% Per	vious Area	
	2,414		13.12% Imp	pervious Are	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)	
6.0					Direct Entry, Direct Entry

Subcatchment P Ws8: P Watershed 8

Summary for Subcatchment P Ws9: P Watershed 9

Runoff = 0.00 cfs @ 14.78 hrs, Volume= 6 cf, Depth> 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.05"

C194952703 Cranberry Highway - Post-AnalysisC19495Type III 24-hr25-Yr Rainfall=6.05"Prepared by Coastal Engineering Co.Printed 1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 38

Summary for Pond 1P: LRB-1

Inflow Ar Inflow Outflow Discarde Primary	nflow Area = 4,267 sf,100.00% Impervious, Inflow Depth > 5.81" for 25-Yr event nflow = 0.58 cfs @ 12.08 hrs, Volume= 2,065 cf Outflow = 0.18 cfs @ 12.39 hrs, Volume= 2,042 cf, Atten= 69%, Lag= 18.7 min Discarded = 0.04 cfs @ 12.39 hrs, Volume= 1,963 cf Primary = 0.14 cfs @ 12.39 hrs, Volume= 79 cf								
Routing b Peak Ele	oy Stor-Ind v= 100.00'	method, Time @ 12.39 hrs	Span: Surf.A	= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Area= 203 sf Storage= 707 cf					
Plug-Flov Center-o	w detention f-Mass det.	time= 139.2 m time= 131.8 m	nin cal nin (8	lculated for 2,041 cf (99% of inflow) 76.3 - 744.5)					
Volume	Invert	Avail.Stor	rage	Storage Description					
#1	93.82'	23	36 cf	10.00'W x 20.00'L x 5.67'H Stone					
				1,134 cf Overall - 530 cf Embedded = 604 cf x 39.0% Voids					
#2	94.82'	46	69 cf	8.00'D x 4.67'H PCC Leaching Unit 8' Dia x 2 Inside #1					
				530 cf Overall - 3.0" Wall Thickness = 469 cf					
#3	99.48'		2 cf	2.00'D x 0.55'H Riser					
		70)7 cf	Total Available Storage					
Dovice	Douting	Invert		at Daviesa					
Device	Routing								
#1	Discarded	93.82	8.2/	U In/hr Exhitration over Surface area					
#2	Primary	100.00	24.0	"Horiz. Overflow Grate					
			C= (0.600 in 24.0" Grate (100% open area)					
Discarde Î─1=Exf	Discarded OutFlow Max=0.04 cfs @ 12.39 hrs HW=100.00' (Free Discharge) 								

Primary OutFlow Max=0.57 cfs @ 12.39 hrs HW=100.00' (Free Discharge) ←2=Overflow Grate (Orifice Controls 0.57 cfs @ 0.18 fps) C19495 *Type* Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Pond 1P: LRB-1

Pond 1P: LRB-1

C194952703 Cranberry Highway - Post-Analysis
Type III 24-hrPrepared by Coastal Engineering Co.Printed 1/29/2024
Printed 1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 40

Summary for Pond 2P: LRB-2

Inflow Area	a =	55,401 sf,	57.58% In	npervious,	Inflow Depth >	3.13"	for 25-	Yr event
Inflow	=	4.67 cfs @	12.09 hrs,	Volume=	14,432 c	f		
Outflow	=	0.11 cfs @	10.55 hrs,	Volume=	5,428 c	f, Atten	= 98%,	Lag= 0.0 min
Discarded	=	0.11 cfs @	10.55 hrs,	Volume=	5,428 c	f		
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0 c	f		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 98.92' @ 17.94 hrs Surf.Area= 552 sf Storage= 9,612 cf

Plug-Flow detention time= 306.1 min calculated for 5,426 cf (38% of inflow) Center-of-Mass det. time= 181.5 min (1,011.5 - 830.0)

Volume	Invert	Avai	il.Storage	Storage	Description	on				
#1	87.09'		884 cf	12.00'W	x 46.00'L	. x 7.67'H	Stone			
				4,234 cf	Overall -	1,967 cf I	Embedde	d = 2,266	cf x 39.0% Voi	ds
#2	88.09'		1,676 cf	8.00'D x	(6.67'H P	CC Leach	ning Unit	8' Dia x 5	5 Inside #1	
				1,967 cf	Overall -	4.0" Wall	Thicknes	ss = 1,676	cf	
#3	94.76'		5 cf	2.00'D x	x 1.74'H R	i ser -Impe	ervious			
#4	96.00'		7,512 cf	Grass C	Channel S	torage (Ir	regular)	Listed belo	ow (Recalc) -Im	pervious
#5	99.00'		3,790 cf	Parking	Lot (Irreg	gular) List	ed below	(Recalc)	-Impervious	
			13,867 cf	Total Av	vailable St	orage				
Elevatio	on S	urf.Area	Perim.	Voids	Inc	.Store	Cum	.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(%)	(cubi	c-feet)	(cubio	c-feet)	(sq-ft)	
96.0	00	453	152.0	0.0		0		0	453	
97.0	00	1,309	311.0	100.0		844		844	6,316	
98.0	00	3,094	576.0	100.0		2,138		2,983	25,026	
99.0	00	6,137	801.0	100.0		4,530		7,512	49,691	
Elevatio	on S	urf.Area	Perim.	h	nc.Store	Cun	n.Store	We	t.Area	
(fee	et)	(sq-ft)	(feet)	(cu	bic-feet)	(cub	ic-feet)		(sq-ft)	
99.0	00	6.137	801.0	•	0		0		6.137	
99.5	50	9,120	932.0		3,790		3,790	2	4,208	
Device	Routing	In	vert Outle	et Device	s					
#0	Primary	99	9.50' Auto	omatic St	torage Ov	erflow (Discharg	ed without	head)	
#1	Discarded	87	.09' 8.27	0 in/hr E	xfiltration	over Sur	face area	a		
#2	Primary	99	0.40' Cus	tom Weir	/Orifice, 0	Cv= 2.62 ((C= 3.28)			
			Hea	d (feet) ().00 0.10 157 70 14	57 70				
				(1001)						

Discarded OutFlow Max=0.11 cfs @ 10.55 hrs HW=87.22' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=87.09' (Free Discharge) ←2=Custom Weir/Orifice (Controls 0.00 cfs)

C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Hydrograph Inflow
Outflow 4.67 cfs Inflow Area=55,401 sf Discarded Primary 5-Peak Elev=98.92' Storage=9,612 cf 4-3 Flow (cfs) 2 1 0.11 cfs 0.11 cfs 0.0 0-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 2 3 5 9 Ó 1 4 6 Ż 8

Pond 2P: LRB-2

Pond 2P: LRB-2

Summary for Link POA-1: POINT OF ANALYSIS 1

Inflow A	rea =	17,726 sf, 39.77% Impervious,	Inflow Depth > 0.94" for 25-Yr event	
Inflow	=	0.34 cfs @ 12.11 hrs, Volume=	1,386 cf	
Primary	=	0.34 cfs @ 12.11 hrs, Volume=	1,386 cf, Atten= 0%, Lag= 0.0 mi	in

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-1: POINT OF ANALYSIS 1

	2703 Cranberry Highway - Po	st-Analysis
C19495	Type III 24-hr 25-Yr Rail	nfall=6.05"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solution	ons LLC	Page 43

Summary for Link POA-2: POINT OF ANALYSIS 2

Inflow A	rea =	:	1,283 sf,	, 0.00% Ir	mpervious,	Inflow Depth >	0.14"	for 25-Yr event
Inflow	=		0.00 cfs @	14.78 hrs,	Volume=	15 c	f	
Primary	=		0.00 cfs @	14.78 hrs,	Volume=	15 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-2: POINT OF ANALYSIS 2

	2703 Cranberry Highway - Po	st-Analysis
C19495	Type III 24-hr 25-Yr Rair	nfall=6.05"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solu	tions LLC	Page 44

Summary for Link POA-3: POINT OF ANALYSIS 3

Inflow Are	a =	58,311 sf, 54.71%	Impervious,	Inflow Depth >	0.01"	for 25-Yr event
Inflow	=	0.00 cfs @ 14.78 hrs	s, Volume=	34 c	f	
Primary	=	0.00 cfs @ 14.78 hrs	s, Volume=	34 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-3: POINT OF ANALYSIS 3

	2703 Cranberry Highway - Post-Analysis
C19495	Type III 24-hr 25-Yr Rainfall=6.05"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software	Solutions LLC Page 45

Summary for Link POA-4: POINT OF ANALYSIS 4

Inflow A	Area	=	6,385 sf,	0.00% Ir	mpervious,	Inflow Depth >	0.18"	for 25-Yr event
Inflow		=	0.00 cfs @	13.78 hrs,	Volume=	94 c	f	
Primary	/	=	0.00 cfs @	13.78 hrs,	Volume=	94 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-4: POINT OF ANALYSIS 4

Summary for Link POA-5: POINT OF ANALYSIS 5

Inflow Are	a =	18,395 sf,	13.12% In	npervious,	Inflow Depth >	0.57"	for 25-Yr event
Inflow	=	0.11 cfs @	12.29 hrs,	Volume=	876	of	
Primary	=	0.11 cfs @	12.29 hrs,	Volume=	876	of, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-5: POINT OF ANALYSIS 5

Summary for Link POA-6: POINT OF ANALYSIS 6

Inflow A	rea =	•	507 sf	, 0.00% l	mpervious,	Inflow Depth >	0.14"	for 25-Yr event
Inflow	=		0.00 cfs @	14.78 hrs	, Volume=	6 0	f	
Primary	=		0.00 cfs @	14.78 hrs	, Volume=	6 c	f, Atten	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-6: POINT OF ANALYSIS 6

C19495	2703 Cranberry -Type III 24	Highway - Post-Analysis hr 10-Yr Rainfall=5.05"
Prepared by Coastal Engineering Co.		Printed 1/29/2024
<u>HydroCAD® 10.10-5a s/n 04240 © 2020 H</u>	IydroCAD Software Solutions LLC	Page 48
Time span=0. Runoff by SCS Reach routing by Stor-Ind	.00-24.00 hrs, dt=0.01 hrs, 2401 points TR-20 method, UH=SCS, Weighted-CN +Trans method - Pond routing by Stor-Ir	nd method
Subcatchment P Ws1: P Watershed 1	Runoff Area=13,459 sf 20.67% Imperv Tc=6.0 min CN=5	vious Runoff Depth>0.71" 0 Runoff=0.16 cfs 798 cf
Subcatchment P Ws2: P Watershed 2	Runoff Area=1,283 sf 0.00% Imper Tc=6.0 min CN	vious Runoff Depth>0.03" =32 Runoff=0.00 cfs 3 cf
Subcatchment P Ws3: P Watershed 3	Runoff Area=27,907 sf 55.74% Imper Tc=6.0 min CN=72	vious Runoff Depth>2.23" Runoff=1.66 cfs 5,194 cf
Subcatchment P Ws4: P Watershed 4	Runoff Area=27,494 sf 59.45% Imper Tc=6.0 min CN=74	vious Runoff Depth>2.40" Runoff=1.77 cfs 5,501 cf
Subcatchment P Ws5: P Watershed 5	Runoff Area=4,267 sf 100.00% Imper Tc=6.0 min CN=98	vious Runoff Depth>4.81" Runoff=0.48 cfs 1,710 cf
Subcatchment P Ws6: P Watershed 6	Runoff Area=2,910 sf 0.00% Imper Tc=6.0 min CN	vious Runoff Depth>0.03" =32 Runoff=0.00 cfs 7 cf
Subcatchment P Ws7: P Watershed 7	Runoff Area=6,385 sf 0.00% Imper Tc=6.0 min CN=	vious Runoff Depth>0.05" 33 Runoff=0.00 cfs 24 cf
Subcatchment P Ws8: P Watershed 8	Runoff Area=18,395 sf 13.12% Imper Tc=6.0 min CN=4	vious Runoff Depth>0.28" 1 Runoff=0.04 cfs 435 cf
Subcatchment P Ws9: P Watershed 9	Runoff Area=507 sf 0.00% Impen Tc=6.0 min CN	vious Runoff Depth>0.03" =32 Runoff=0.00 cfs 1 cf
Pond 1P: LRB-1 Discarded	Peak Elev=98.89' Storage=625 cl I=0.04 cfs 1,709 cf Primary=0.00 cfs 0 cf	f Inflow=0.48 cfs 1,710 cf Outflow=0.04 cfs 1,709 cf
Pond 2P: LRB-2 Discarded	Peak Elev=98.28' Storage=6,517 cf l=0.11 cfs 5,188 cf Primary=0.00 cfs 0 cf	Inflow=3.44 cfs 10,696 cf Outflow=0.11 cfs 5,188 cf
Link POA-1: POINT OF ANALYSIS 1		Inflow=0.16 cfs 798 cf Primary=0.16 cfs 798 cf
Link POA-2: POINT OF ANALYSIS 2		Inflow=0.00 cfs 3 cf Primary=0.00 cfs 3 cf
Link POA-3: POINT OF ANALYSIS 3		Inflow=0.00 cfs 7 cf Primary=0.00 cfs 7 cf
Link POA-4: POINT OF ANALYSIS 4		Inflow=0.00 cfs 24 cf Primary=0.00 cfs 24 cf
Link POA-5: POINT OF ANALYSIS 5		Inflow=0.04 cfs 435 cf Primary=0.04 cfs 435 cf

Link POA-6: POINT OF ANALYSIS 6

Inflow=0.00 cfs 1 cf Primary=0.00 cfs 1 cf

Total Runoff Area = 102,607 sf Runoff Volume = 13,674 cf Average Runoff Depth = 1.60" 59.69% Pervious = 61,243 sf 40.31% Impervious = 41,364 sf

Summary for Subcatchment P Ws1: P Watershed 1

Runoff = 0.16 cfs @ 12.12 hrs, Volume= 798 cf, Depth> 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Are	ea (sf)	CN	Description				
	1,107	98	Paved park	ing, HSG A	4		
	1,675	98	Roofs, HSC	S A			
	7,850	39	>75% Grass cover, Good, HSG A				
	2,827	32	Woods/grass comb., Good, HSG A				
1	3,459	50	Weighted A	verage			
1	0,677		79.33% Pervious Area				
	2,782		20.67% Impervious Area				
				.			
Тс	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry, Direct Entry		

Subcatchment P Ws1: P Watershed 1

Summary for Subcatchment P Ws2: P Watershed 2

Runoff = 0.00 cfs @ 20.86 hrs, Volume= 3 cf, Depth> 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Summary for Subcatchment P Ws3: P Watershed 3

Runoff = 1.66 cfs @ 12.09 hrs, Volume= 5,194 cf, Depth> 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Area (s	f) CN	Description	Description				
15,37	74 98	Paved park	ing, HSG A	A			
18	81 98	Roofs, HSC	6 A				
11,84	3 39	>75% Gras	>75% Grass cover, Good, HSG A				
50)9 32	Woods/gras	Woods/grass comb., Good, HSG A				
27,90)7 72	Weighted A	verage				
12,35	52	44.26% Pervious Area					
15,55	55	55.74% Impervious Area					
			-				
Tc Len	gth Slo	pe Velocity	Capacity	Description			
(min) (fe	et) (ft	:/ft) (ft/sec)	(cfs)				
6.0				Direct Entry, Direct Entry			

Subcatchment P Ws3: P Watershed 3

	2703 Cranberry Highway - Post-Analysi
C19495	Type III 24-hr 10-Yr Rainfall=5.05
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	ns LLC Page 5

Summary for Subcatchment P Ws4: P Watershed 4

Runoff = 1.77 cfs (a) 12.09 hrs, Volume= 5.501 cf, Depth> 2	Runoff =	1.77 cfs @	12.09 hrs,	Volume=	5,501 cf,	Depth> 2.40
---	----------	------------	------------	---------	-----------	-------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Area	(sf)	CN	Description			
16,3	346	98	Paved park	ing, HSG A		
11,	148	39	>75% Grass cover, Good, HSG A			
27,4	494	74	Weighted A	verage		
11,	148		40.55% Pervious Area			
16,3	346		59.45% Impervious Area			
Tc Le (min) (`	ngth feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, Direct Entry	

Subcatchment P Ws4: P Watershed 4

2703	3 Cranberry Highway - Post-Analys	is
C19495 7	Type III 24-hr 10-Yr Rainfall=5.0	5″
Prepared by Coastal Engineering Co.	Printed 1/29/202	<u>2</u> 4
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LL	.C Page 5	<u>54</u>

Summary for Subcatchment P Ws5: P Watershed 5

Runoff = 0.48 cfs @ 12.08 hrs, Volume= 1,710 cf, Depth> 4.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

Summary for Subcatchment P Ws6: P Watershed 6

Runoff = 0.00 cfs @ 20.86 hrs, Volume= 7 cf, Depth> 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

C19495 Prepared by Co HydroCAD® 10.1	oastal Engineering Co. 0-5a_s/n 04240_© 2020 HydroCAD Software Soluti	2703 Cranberry Highway - Post-Analysis <i>Type III 24-hr 10-Yr Rainfall=5.05"</i> Printed 1/29/2024 ions LLC Page 56
	Summary for Subcatchment P Ws	7: P Watershed 7
Runoff =	0.00 cfs @ 16.78 hrs, Volume=	24 cf, Depth> 0.05"
Runoff by SCS T Type III 24-hr 10	FR-20 method, UH=SCS, Weighted-CN, Time Sj 0-Yr Rainfall=5.05"	pan= 0.00-24.00 hrs, dt= 0.01 hrs
Area (sf)	CN Description	
1,109 5,276	39 >75% Grass cover, Good, HSG A 32 Woods/grass comb, Good, HSG A	
6,385	33 Weighted Average	
0,000 To Length	Slope Velocity Capacity Description	
(min) (feet)) (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, D	Direct Entry
	Subcatchment P Ws7: P Wa	atershed 7
	Hydrograph	
0 001		Runoff
0.001	vpe III 24-hr	
0.001	0-Yr Rainfall=5.05"	
0.001	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
0.001		
0.000 E	Runoff Depth>0.05"	
0.000	⁻ c=6.0 min	
0.000	CN=33	
0.000		
0		
0 1	2 3 4 5 6 / 8 9 10 11 12 13 14 15 ² Time (hours)	17 18 19 20 21 22 23 24 19 20 21 22

Summary for Subcatchment P Ws8: P Watershed 8

Runoff = 0.04 cfs @ 12.40 hrs, Volume= 435 cf, Depth	> 0.28"
--	---------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

A	rea (sf)	CN	Description				
	2,414	98	Paved park	ing, HSG A	N Contraction of the second seco		
	15,981	32	Woods/grass comb., Good, HSG A				
	18,395	41	Weighted A	verage			
	15,981		86.88% Per	vious Area			
	2,414		13.12% Imp	pervious Are	ea		
Tc	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
6.0					Direct Entry, Direct Entry		

Subcatchment P Ws8: P Watershed 8

Summary for Subcatchment P Ws9: P Watershed 9

Runoff = 0.00 cfs @ 20.86 hrs, Volume= 1 cf, Depth> 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.05"

2703 Cranberry Highway - Post-Analysis Type III 24-hr 10-Yr Rainfall=5.05" C19495 Prepared by Coastal Engineering Co. Printed 1/29/2024 HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC Page 59

Summary for Pond 1P: LRB-1

Inflow Ar	rea =	4,267 sf,100.00	% Impervious, Inflow Depth > 4.81" for 10-Yr event			
Inflow	= 0	.48 cfs @ 12.08	hrs, Volume= 1,710 cf			
Outflow	= 0).04 cfs @11.21	hrs, Volume= 1,709 cf, Atten= 92%, Lag= 0.0 min			
Discarde	ed = 0).04 cfs @11.21	hrs, Volume= 1,709 cf			
Primary	= 0	0.00 cfs @ 0.00	hrs, Volume= 0 cf			
Routing Peak Ele	by Stor-Ind r ev= 98.89' @	nethod, Time Spar) 13.05 hrs Surf.A	n= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Area= 200 sf Storage= 625 cf			
Plug-Flo	w detention	time= 117.7 min ca	alculated for 1,709 cf (100% of inflow)			
Center-o	of-Mass det.	time= 117.2 min (864.5 - 747.3)			
Volume	Invert	Avail.Storage	Storage Description			
#1	93.82'	236 cf	10 00'W x 20 00'L x 5 67'H Stone			
πı	30.02	200 01	$1.134 \text{ cf} \text{ Overall} = 530 \text{ cf} \text{ Embedded} = 604 \text{ cf} \times 30.0\% \text{ Voids}$			
#2	04 92'	460 of	9.00'D x 4.67'H BCC L caching Unit 9' Dia x 2 Inside #1			
#2	94.02	409 01	520 of Overall 2.0" Well Thickness = 460 of			
#2	00 49'	2 of	2 00'D x 0 EE'H Dicer			
#3	99.40					
		707 cf	Total Available Storage			
Device	Routing	Invert Out	let Devices			
#1	Discarded	93.82' 8.2	70 in/hr Exfiltration over Surface area			
#2	Primary	100.00' 24.)" Horiz. Overflow Grate			
	,	C=	0.600 in 24.0" Grate (100% open area)			
Discarde	ed OutFlow filtration(E	Max=0.04 cfs @ xfiltration Controls	11.21 hrs HW=93.94' (Free Discharge) 0.04 cfs)			
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=93.82' (Free Discharge)						

C19495 Type III Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Page 60

Pond 1P: LRB-1

Pond 1P: LRB-1

C194952703 Cranberry Highway - Post-Analysis
Type III 24-hr 10-Yr Rainfall=5.05"Prepared by Coastal Engineering Co.Printed 1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 61

Summary for Pond 2P: LRB-2

Inflow Area	a =	55,401 sf,	57.58% In	npervious,	Inflow Depth >	2.32"	for 10-	Yr event
Inflow	=	3.44 cfs @	12.09 hrs,	Volume=	10,696 c	f		
Outflow	=	0.11 cfs @	11.11 hrs,	Volume=	5,188 c	f, Atten	= 97%,	Lag= 0.0 min
Discarded	=	0.11 cfs @	11.11 hrs,	Volume=	5,188 c	f		
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0 c	f		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 98.28' @ 16.99 hrs Surf.Area= 552 sf Storage= 6,517 cf

Plug-Flow detention time= 312.7 min calculated for 5,188 cf (49% of inflow) Center-of-Mass det. time= 191.9 min (1,030.6 - 838.6)

Volume	Invei	rt Ava	il.Storage	Storage	e Descripti	on				
#1	87.09)'	884 cf	12.00'W	/ x 46.00'L	x 7.67'⊢	Stone			,
	00.00		4.070	4,234 c	t Overall -	1,967 cf	Embedde	ed = 2,266	cf x 39.0% V	olds
#2	88.05	9.	1,676 Cf	8.00'D 3	6.67'H P	CC Leac	hing Unit	8' Dia X	5 Inside #1	
#2	04.70	21	E of	1,967 C		4.0° vvai		ss = 1,676	D CI	
#3 #4	94.70) יי	5 Cl 7 5 1 2 of	2.00 [°] D 3	(1./4 H K Shannal (iser -imp		Listad ba	law (Dagala)	Imponious
#4 #5	90.00	יר יר	7,312 Cl	Grass C	Snanner S	otorage (I	rregular)		low (Recald) -i	mpervious
#5	33.00)	<u>- 3,790 Cl</u>						-impervious	
			13,807 CI	Total A	valiable Si	orage				
Elevatio	on S	Surf.Area	Perim.	Voids	Inc	c.Store	Cum	.Store	Wet.Area	à
(fee	et)	(sq-ft)	(feet)	(%)	(cubi	ic-feet)	(cubi	c-feet)	(sq-ft))
96.0	00	453	152.0	0.0		0		0	453	3
97.0	00	1,309	311.0	100.0		844		844	6,316	3
98.0	00	3,094	576.0	100.0		2,138		2,983	25,026	3
99.0	00	6,137	801.0	100.0		4,530		7,512	49,691	l
Elevatio	n 9	Surf Area	Dorim		nc Store	Cu	m Store	Ma	t Aroa	
) ((eq_ft)	(feet)	י (כו	hic_feet)	(cut	nic_feet)	vve	(sq_ft)	
	20	<u>(34-11)</u> 6 127	901.0	(00		(cui	<u>00-1001)</u>		<u>(34-11)</u> 6 127	
99.0	50	0,137	001.0		2 700		2 700		0,137	
99.0	00	9,120	932.0		3,790		3,790		24,200	
Device	Routing	Ir	nvert Outl	et Device	es					
#0	Primary	99	9.50' Aut e	omatic S	torage Ov	verflow	(Discharg	ed withou	t head)	
#1	Discardeo	87	7.09' 8.27	0 in/hr E	xfiltration	over Su	rface are	а		
#2	Primary	99	9.40' Cus	tom Weir/Orifice, Cv= 2.62 (C= 3.28)						
			Hea	d (feet)	0.00 0.10					
			Wid	th (feet)	157.70 1	57.70				

Discarded OutFlow Max=0.11 cfs @ 11.11 hrs HW=87.21' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=87.09' (Free Discharge) ←2=Custom Weir/Orifice (Controls 0.00 cfs) C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Pond 2P: LRB-2

Pond 2P: LRB-2

	2703 Cranberry Highway -	Post-Analysis
C19495	Type III 24-hr 10-Yr R	ainfall=5.05"
Prepared by Coastal Engineering Co.	Print	ed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solut	tions LLC	Page 63

Summary for Link POA-1: POINT OF ANALYSIS 1

Inflow A	Area	=	17,726 sf,	39.77% I	mpervious,	Inflow Depth >	0.54"	for 10-Yr event
Inflow		=	0.16 cfs @	12.12 hrs,	Volume=	798 0	of	
Primary	/	=	0.16 cfs @	12.12 hrs,	Volume=	798 0	of, Atten	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-1: POINT OF ANALYSIS 1

	2703 Cranberry Highway - Post-Ar	nalysis
C19495	Type III 24-hr 10-Yr Rainfall=	=5.05"
Prepared by Coastal Engineering Co.	Printed 1/29	9/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software S	Solutions LLC Pa	<u>age 64</u>

Summary for Link POA-2: POINT OF ANALYSIS 2

Inflow A	Area	=	1,283 sf,	0.00% Ir	npervious,	Inflow Depth >	0.03"	for 10-Yr event
Inflow		=	0.00 cfs @	20.86 hrs,	Volume=	3 c	f	
Primar	у	=	0.00 cfs @	20.86 hrs,	Volume=	3 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-2: POINT OF ANALYSIS 2

	2703 Cranberry Highway - Post-Analy	/sis
C19495	Type III 24-hr 10-Yr Rainfall=5.	05"
Prepared by Coastal Engineering Co.	Printed 1/29/20	024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software S	Solutions LLC Page	; 65

Summary for Link POA-3: POINT OF ANALYSIS 3

Inflow A	Area =	58,311 sf, 54.71% Impervious	, Inflow Depth > 0.00" for 10-Yr event
Inflow	=	0.00 cfs @ 20.86 hrs, Volume=	7 cf
Primary	/ =	0.00 cfs @ 20.86 hrs, Volume=	7 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-3: POINT OF ANALYSIS 3

	2703 Cranberry Highway - Post-Ana	lysis
C19495	Type III 24-hr 10-Yr Rainfall=5	5.05"
Prepared by Coastal Engineering Co.	Printed 1/29/2	2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software S	Solutions LLC Page	<u>e 66</u>

Summary for Link POA-4: POINT OF ANALYSIS 4

Inflow Are	ea =	6,385 sf,	0.00% Ir	npervious,	Inflow Depth >	0.05"	for 10-Yr event
Inflow	=	0.00 cfs @	16.78 hrs,	Volume=	24 c	f	
Primary	=	0.00 cfs @	16.78 hrs,	Volume=	24 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-4: POINT OF ANALYSIS 4

	2703 Cranberry Highway - Post-Analysis
C19495	Type III 24-hr 10-Yr Rainfall=5.05
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software	Solutions LLC Page 6

Summary for Link POA-5: POINT OF ANALYSIS 5

Inflow Are	a =	18,395 sf,	, 13.12% Ir	npervious,	Inflow Depth >	0.28"	for 10-Yr event
Inflow	=	0.04 cfs @	12.40 hrs,	Volume=	435	cf	
Primary	=	0.04 cfs @	12.40 hrs,	Volume=	435	cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-5: POINT OF ANALYSIS 5

	2703 Cranberry Highway - Post-A	nalysis
C19495	Type III 24-hr 10-Yr Rainfal	=5.05"
Prepared by Coastal Engineering Co.	Printed 1/2	9/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software So	olutions LLC F	<u>age 68</u>

Summary for Link POA-6: POINT OF ANALYSIS 6

Inflow A	Area	=	507 sf	, 0.00% Ir	mpervious,	Inflow Depth >	0.03"	for 10-Yr event
Inflow		=	0.00 cfs @	20.86 hrs,	Volume=	1 c	f	
Primar	у	=	0.00 cfs @	20.86 hrs,	Volume=	1 c	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-6: POINT OF ANALYSIS 6

C19495	2703 Cranberry Hi <i>Type III 24-h</i>	ghway - Post-Analysis r 2-Yr Rainfall=3.44″
Prepared by Coastal Engineering Co.		Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 H	HydroCAD Software Solutions LLC	Page 69
Time span=0 Runoff by SCS Reach routing by Stor-Ind	0.00-24.00 hrs, dt=0.01 hrs, 2401 points 5 TR-20 method, UH=SCS, Weighted-CN I+Trans method - Pond routing by Stor-Ind	method
Subcatchment P Ws1: P Watershed 1	Runoff Area=13,459 sf 20.67% Impervio Tc=6.0 min CN=50	us Runoff Depth>0.18" Runoff=0.02 cfs 203 cf
Subcatchment P Ws2: P Watershed 2	Runoff Area=1,283 sf 0.00% Impervio Tc=6.0 min CN=3	us Runoff Depth=0.00" 2 Runoff=0.00 cfs 0 cf
Subcatchment P Ws3: P Watershed 3	Runoff Area=27,907 sf 55.74% Impervio Tc=6.0 min CN=72 R	us Runoff Depth>1.08" unoff=0.77 cfs 2,512 cf
Subcatchment P Ws4: P Watershed 4	Runoff Area=27,494 sf 59.45% Impervio Tc=6.0 min CN=74 R	us Runoff Depth>1.20" unoff=0.85 cfs 2,742 cf
Subcatchment P Ws5: P Watershed 5	Runoff Area=4,267 sf 100.00% Impervio Tc=6.0 min CN=98 R	us Runoff Depth>3.20" unoff=0.33 cfs 1,139 cf
Subcatchment P Ws6: P Watershed 6	Runoff Area=2,910 sf 0.00% Impervio Tc=6.0 min CN=3	us Runoff Depth=0.00" 2 Runoff=0.00 cfs 0 cf
Subcatchment P Ws7: P Watershed 7	Runoff Area=6,385 sf 0.00% Impervio Tc=6.0 min CN=3	us Runoff Depth=0.00" 3 Runoff=0.00 cfs 0 cf
Subcatchment P Ws8: P Watershed 8	Runoff Area=18,395 sf 13.12% Impervio Tc=6.0 min CN=41	us Runoff Depth>0.02" Runoff=0.00 cfs 32 cf
Subcatchment P Ws9: P Watershed 9	Runoff Area=507 sf 0.00% Impervio Tc=6.0 min CN=3	us Runoff Depth=0.00" 2 Runoff=0.00 cfs 0 cf
Pond 1P: LRB-1 Discarded	Peak Elev=96.91' Storage=359 cf I d=0.04 cfs 1,139 cf Primary=0.00 cfs 0 cf Ou	nflow=0.33 cfs 1,139 cf utflow=0.04 cfs 1,139 cf
Pond 2P: LRB-2 Discarded	Peak Elev=94.26' Storage=2,384 cf I d=0.11 cfs 4,795 cf Primary=0.00 cfs 0 cf Ou	nflow=1.62 cfs 5,254 cf utflow=0.11 cfs 4,795 cf
Link POA-1: POINT OF ANALYSIS 1	ł	Inflow=0.02 cfs 203 cf Primary=0.02 cfs 203 cf
Link POA-2: POINT OF ANALYSIS 2		Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POA-3: POINT OF ANALYSIS 3		Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POA-4: POINT OF ANALYSIS 4		Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link POA-5: POINT OF ANALYSIS 5		Inflow=0.00 cfs 32 cf Primary=0.00 cfs 32 cf

Link POA-6: POINT OF ANALYSIS 6

Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf

Total Runoff Area = 102,607 sf Runoff Volume = 6,628 cf Average Runoff Depth = 0.78" 59.69% Pervious = 61,243 sf 40.31% Impervious = 41,364 sf

Summary for Subcatchment P Ws1: P Watershed 1

$\pi u = 0.02 \text{ GS} (w = 12.42 \text{ HIS}, V = 0.02 \text{ GS} (w = 12.42 \text{ HIS}, V = 0.02 \text{ GS} (w = 0.02 \text{ GS})$	Runoff	=	0.02 cfs @	12.42 hrs,	Volume=	203 cf,	Depth> 0.7	18"
---	--------	---	------------	------------	---------	---------	------------	-----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

Are	ea (sf)	CN	Description		
	1,107	98	Paved park	ing, HSG A	4
	1,675	98	Roofs, HSC	S A	
	7,850	39	>75% Gras	s cover, Go	ood, HSG A
	2,827	32	Woods/gras	ss comb., G	Good, HSG A
1	3,459	50	Weighted A	verage	
1	0,677		79.33% Pe	vious Area	3
	2,782		20.67% Imp	pervious Are	rea
				.	
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry, Direct Entry

Subcatchment P Ws1: P Watershed 1

Summary for Subcatchment P Ws3: P Watershed 3

Runoii = $0.77 \text{ cis}(Q, 12.10 \text{ nrs}, \text{ volume} = 2,512 \text{ ci}, \text{ Deptn} > 1.03$	Runoff =	0.77 cfs @	12.10 hrs,	Volume=	2,512 cf, Depth	า> 1.08"
---	----------	------------	------------	---------	-----------------	----------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

Area (sf) CN	I De	escription								
15,3	74 98	B Pa	Paved parking, HSG A								
1	81 98	3 Ro	oofs, HSG	iΑ							
11,8	43 39) >7	75% Grass	s cover, Go	ood, HSG A						
5	09 32	2 W	oods/gras	s comb., G	Good, HSG A						
27,9	07 72 Weighted Average										
12,3	52	2 44.26% Pervious Area									
15,5	55	55	5.74% Imp	ervious Are	ea						
Tc Ler	ngth Sl	lope	Velocity	Capacity	Description						
<u>(min)</u> (fe	eet) (1	ft/ft)	(ft/sec)	(cfs)							
6.0					Direct Entry, Direct Entry						

Subcatchment P Ws3: P Watershed 3

Summary for Subcatchment P Ws4: P Watershed 4

Runoff = 0.85 cfs @ 12.09 hrs, Volume= 2,742 cf, Dept	oth> 1.20"
---	------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

A	rea (sf)	CN	Description								
	16,346	98	Paved park	ing, HSG A	N Contraction of the second						
	11,148	39	>75% Gras	>75% Grass cover, Good, HSG A							
	27,494	94 74 Weighted Average									
	11,148	1,148 40.55% Pervious Area									
	16,346 59.45% Impervious Area										
Tc	Length	Slop	e Velocity	Capacity	Description						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
6.0					Direct Entry, Direct Entry						

Subcatchment P Ws4: P Watershed 4

27	703 Cranberry Highway - Post-Analysis
C19495	Type III 24-hr 2-Yr Rainfall=3.44"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions	LLC Page 75

Summary for Subcatchment P Ws5: P Watershed 5

Runoff = 0.33 cfs @ 12.08 hrs, Volume= 1,139 cf, Depth> 3.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

C19495	2703 Cranberry Highway - Post-Analysis Type III 24-hr 2-Yr Rainfall=3.44"
Prepared by Coastal Engineering Co.	Printed 1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Soltware Soluti	ons LLC Page 76
Summary for Subcatchment P Ws	6: P Watershed 6
Runoff = 0.00 cfs @ 0.00 hrs, Volume=	0 cf, Depth= 0.00"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Sp Type III 24-hr 2-Yr Rainfall=3.44"	oan= 0.00-24.00 hrs, dt= 0.01 hrs
Area (sf) CN Description	
2,910 32 Woods/grass comb., Good, HSG A	
2,910 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, D	Direct Entry
Subcatchment P Ws6: P Wa	tershed 6
Hydrograph	
(J)	Type III 24-hr r Rainfall=3.44" ff Area=2,910 sf off Volume=0 cf off Depth=0.00" Tc=6.0 min CN=32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours)

C19495 Prepared k HydroCAD®	19495 repared by Coastal Engineering Co. _{ydroCAD®} 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio									anber e III 2	ry Hig 24-hr	hway - <i>2-Yr F</i> Print	Post-Analysis ? <i>ainfall=3.44"</i> ed 1/29/2024 <u>Page 77</u>
	S	Summary	for Su	bcatch	men	nt P	Ws7:	P١	Vate	ershe	ed 7		
Runoff	= 0.00	cfs @ ().00 hrs,	Volum	e=			0 c	f, De	epth=	0.00		
Runoff by S Type III 24-	CS TR-20 n nr 2-Yr Rair	nethod, UH nfall=3.44"	=SCS, \	Weighte	d-CN	, Tim	ie Spa	n= ().00-2	24.00	hrs, o	dt= 0.01	hrs
Area	(sf) CN	Descripti	on										
1.5	109 39 276 32	>75% Gr Woods/c	ass cov rass cor	er, Goo mb., Go	d, HS od, H	G A SG A	۸						
6.	385 33 385	Weightee 100.00%	d Averaç Perviou	ge is Area									
Tc Le (min)	ength Slo (feet) (ft/	pe Veloci ft) (ft/se	ty Cap c)	acity [(cfs)	Descri	iptior	l						
6.0]	Direct	Ent	ry, Dir	ect	Entry	/			
		Su	heatch	mont E) We	7. D	Wate	areł	hod	7			
		Ou	ocaton	Hydrogr	anh		vale	51 31	icu				
1-					- P								
								T	ур	e II	I 24	l-hr	
-						2	-Yr	Ra	ain [.]	fall	=3.	44"	
					F	Rur	noff	Α	rea	=6	38	5 sf	
Įs)						Rι	inot	ff \	Vol	um	e=) cf	
ow (c						Rı	ino	ff	Dei	nth	=0	00"	
ш.,											۰. ۱	nin	
										0			
-												=33	
0.00 cfs													
0	2 3 4	5 6 7	8 9	10 11 1 Time (2 13 hours)	14 1	15 16	17	18 19	20	21 22	23 24	

Summary for Subcatchment P Ws8: P Watershed 8

Runoff	=	0.00 cfs @	20.74 hrs.	Volume=	32 cf. Depth>	0.02"
1 Controlli			,	V OIGHINO		0.02

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.44"

A	rea (sf)	CN	Description								
	2,414	98	3 Paved parking, HSG A								
	15,981	32	Woods/grass comb., Good, HSG A								
	18,395	41	41 Weighted Average								
	15,981		86.88% Pervious Area								
	2,414		13.12% Impervious Area								
Tc	Length	Slop	e Velocity	Capacity	Description						
(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)							
6.0					Direct Entry, Direct Entry						

Subcatchment P Ws8: P Watershed 8

C194952703 Cranberry Highway - Post-AnalysisC19495Type III 24-hr2-Yr Rainfall=3.44"Prepared by Coastal Engineering Co.Printed1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 80

Summary for Pond 1P: LRB-1

Inflow A	rea =	4,267 sf,100.00	% Impervious, Inflow Depth > 3.20" for 2-Yr event
Inflow	= 0.	.33 cfs @ 12.08	hrs, Volume= 1,139 cf
Outflow	= 0.	.04 cfs @ 11.60	hrs, Volume= 1,139 cf, Atten= 88%, Lag= 0.0 min
Discarde	ed = 0.	.04 cfs @ 11.60	hrs. Volume= 1,139 cf
Primary	= 0		hrs, Volume= 0 cf
i iiinai y	- 0.		
Routing	by Stor-Ind n	nethod, Time Spa	n= 0.00-24.00 hrs, dt= 0.01 hrs / 2
Peak Ele	ev= 96.91' @	12.67 hrs Surf.A	Area= 200 sf Storage= 359 cf
Plug-Flo	w detention t	ime= 60.5 min cal	culated for 1,139 cf (100% of inflow)
Center-c	of-Mass det. t	ime= 60.1 min (8	14.5 - 754.4)
Volume	Invert	Avail.Storage	Storage Description
#1	93.82'	236 cf	10.00'W x 20.00'L x 5.67'H Stone
			1,134 cf Overall - 530 cf Embedded = 604 cf x 39.0% Voids
#2	94.82'	469 cf	8.00'D x 4.67'H PCC Leaching Unit 8' Dia x 2 Inside #1
			530 cf Overall - 3.0" Wall Thickness = 469 cf
#3	99.48'	2 cf	2.00'D x 0.55'H Riser
		707 cf	Total Available Storage
Device	Routing	Invert Out	tlet Devices
#1	Discarded	93.82' 8.2 '	70 in/hr Exfiltration over Surface area
#2	Primary	100.00' 24.	0" Horiz. Overflow Grate
	,	C=	0.600 in 24.0" Grate (100% open area)
		_	
Discard	ed OutFlow	Max=0.04 cfs @	11.60 hrs HW=93.95' (Free Discharge)
€1=Ex	filtration (F)	filtration Controls	0.04 cfs)
^	(Ľ		
Primary	OutFlow Ma	ax=0.00 cfs @ 0.0	0 hrs HW=93 82' (Free Discharge)
A			

←2=Overflow Grate (Controls 0.00 cfs)

C19495 Prepared by Coastal Engineering Co. HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLC

Hydrograph Inflow
Outflow 0.33 cfs Inflow Area=4,267 sf Discarded Primary 0.36 Peak Elev=96.91' 0.34 0.32 Storage=359 cf 0.3 0.28 0.26 0.24 0.22 (cfs) 0.2 Flow 0.18 0.16 0.14 0.12 0.1 0.04 cfs 0.08 0.04 cfs 0.06 0.04 0.<u>0.0</u> 0-10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours) 2 3 4 Ó 1 5 6 Ż 8 ģ

Pond 1P: LRB-1

Pond 1P: LRB-1

C194952703 Cranberry Highway - Post-Analysis
Type III 24-hrPrepared by Coastal Engineering Co.Printed 1/29/2024
Printed 1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 82

Summary for Pond 2P: LRB-2

Inflow Area	a =	55,401 sf,	57.58% In	npervious,	Inflow Depth >	1.14"	for 2-Y	r event
Inflow	=	1.62 cfs @	12.10 hrs,	Volume=	5,254 cf	F		
Outflow	=	0.11 cfs @	11.69 hrs,	Volume=	4,795 cf	, Atten	= 93%,	Lag= 0.0 min
Discarded	=	0.11 cfs @	11.69 hrs,	Volume=	4,795 cf	-		
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0 cf	F		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 94.26' @ 14.90 hrs Surf.Area= 552 sf Storage= 2,384 cf

Plug-Flow detention time= 245.4 min calculated for 4,793 cf (91% of inflow) Center-of-Mass det. time= 202.2 min (1,062.0 - 859.8)

Volume	Invert	: Ava	il.Storage	Storage	Descripti	on						
#1	87.09	I	884 cf	12.00'W	2.00'W x 46.00'L x 7.67'H Stone							
40			4 070 -5	4,234 cl	1,234 cf Overall - 1,967 cf Embedded = 2,266 cf x 39.0% Voids							
#2	88.09		1,676 CT	8.00[°]D X			Thickno					
#3	94 76	I	5 cf	ין 1,907 כו סייי מייי מייי מייי מייי מייי מייי מייי	- 1 71'L D	4.0 VVali	arvious	55 - 1,070				
#3 #4	96.00	ı	7 512 cf	Grass	Channel S	torane (li	requilar)	l isted he	low (Recalc) -In	nnervious		
#5	99.00	ı	3.790 cf	Parking	Parking Lot (Irregular) Listed below (Recalc) -Impervious							
			13,867 cf	Total Av	/ailable St	orage						
Elevatio	n S	urf.Area	Perim.	Voids	Inc	.Store	Cum	Store	Wet.Area			
(fee	t)	(sq-ft)	(feet)	(%)	(cubi	c-feet)	(cubi	c-feet)	(sq-ft)			
96.0	0	453	152.0	0.0		0		0	453			
97.0	0	1,309	311.0	100.0		844		844	6,316			
98.0	0	3,094	576.0	0 100.0 2,138 2,983				25,026				
99.0	0	6,137	801.0	100.0		4,530		7,512	49,691			
Elevatio	n S	urf.Area	Perim.	I	nc.Store	Cur	n.Store	We	et.Area			
(fee	t)	(sq-ft)	(feet)	(cu	bic-feet)	(cub	ic-feet)		(sq-ft)			
99.0	0	6,137	801.0		0		0		6,137			
99.5	0	9,120	932.0		3,790		3,790		24,208			
Device	Routing	In	vert Outle	et Device	es							
#0	Primary	99	9.50' Auto	omatic St	torage Ov	erflow (Discharg	ed withou	t head)			
#1	Discarded	87	7.09' 8.27	0 in/hr E	xfiltration	over Sur	face are	а				
#2	Primary	99	0.40' Cus i	tom Weii	r/Orifice,	Cv= 2.62	(C= 3.28)					
Head (feet) 0.00 0.10 Width (feet) 157.70 157.70												

Discarded OutFlow Max=0.11 cfs @ 11.69 hrs HW=87.21' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=87.09' (Free Discharge) ←2=Custom Weir/Orifice (Controls 0.00 cfs) C194952703 Cranberry Highway - Post-Analysis
Type III 24-hrPrepared by Coastal Engineering Co.Printed 1/29/2024HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions LLCPage 83

Pond 2P: LRB-2

Pond 2P: LRB-2

Summary for Link POA-1: POINT OF ANALYSIS 1

Inflow Are	a =	17,726 sf, 39.77% Imperv	ious, Inflow Depth > 0	0.14" for 2-Yr event
Inflow	=	0.02 cfs @ 12.42 hrs, Volu	me= 203 cf	
Primary	=	0.02 cfs @ 12.42 hrs, Volu	me= 203 cf,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-1: POINT OF ANALYSIS 1

270	03 Cranberry Highway - Pos	t-Analysis
C19495	Type III 24-hr 2-Yr Rain	fall=3.44"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions L	LC	Page 85

Summary for Link POA-2: POINT OF ANALYSIS 2

Inflow A	Area	=	1,283 sf,	0.00% Impervious,	Inflow Depth = 0.00"	for 2-Yr event
Inflow		=	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Primary	/	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-2: POINT OF ANALYSIS 2

	2703 Cranberry Highway - Pos	t-Analysis
C19495	Type III 24-hr 2-Yr Rain	fall=3.44"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutio	ins LLC	Page 86

Summary for Link POA-3: POINT OF ANALYSIS 3

Inflow A	rea =	=	58,311 sf,	54.71% Impervious	, Inflow Depth = $0.00"$	for 2-Yr event
Inflow	=		0.00 cfs @	0.00 hrs, Volume=	0 cf	
Primary	' =		0.00 cfs @	0.00 hrs, Volume=	0 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-3: POINT OF ANALYSIS 3

2	703 Cranberry Highway - Pos	st-Analysis
C19495	Type III 24-hr 2-Yr Rair	nfall=3.44"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions	LLC	Page 87

Summary for Link POA-4: POINT OF ANALYSIS 4

Inflow A	Area	a =		6,385 sf,	0.00% Ir	npervious,	Inflow Depth =	0.00"	for 2-Yr event
Inflow		=	C).00 cfs @	0.00 hrs,	Volume=	0 c	f	
Primary	у	=	C).00 cfs @	0.00 hrs,	Volume=	0 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-4: POINT OF ANALYSIS 4

27	03 Cranberry Highway - Pos	st-Analysis
C19495	Type III 24-hr 2-Yr Rain	fall=3.44"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions I	LC	Page 88

Summary for Link POA-5: POINT OF ANALYSIS 5

Inflow Ar	rea =	18,395 sf, 13.12% Impervious,	Inflow Depth > 0.02"	for 2-Yr event
Inflow	=	0.00 cfs @ 20.74 hrs, Volume=	32 cf	
Primary	=	0.00 cfs @ 20.74 hrs, Volume=	32 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-5: POINT OF ANALYSIS 5

27	03 Cranberry Highway - Pos	st-Analysis
C19495	Type III 24-hr 2-Yr Rain	nfall=3.44"
Prepared by Coastal Engineering Co.	Printed	1/29/2024
HydroCAD® 10.10-5a s/n 04240 © 2020 HydroCAD Software Solutions L	LC	Page 89

Summary for Link POA-6: POINT OF ANALYSIS 6

Inflow A	Area	=	507 sf,	0.00% Impervious,	Inflow Depth = 0.00"	for 2-Yr event
Inflow	=	=	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Primary	/ =	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link POA-6: POINT OF ANALYSIS 6

Required Rehcarge				
NRCS Hydrologic Soil Type	Approximate Soil Texture	Target Depth Dactor (F) (in)		
А	sand	0.6		

Impervious Areas - LRB -1			
Type Area (s.f.)			
Pavement	0		
Roofs	4,267		
Total 4,26			

Impervious Areas - LRB -2			
Type Area (s.f.)			
Pavement	31,720		
Roofs 18			
Total	31,901		

Required Recharge Equation			
Rv = F x impervious area			
Rv (LRB-1) =	213 c.f.		
Rv (LRB-2) =	1,595 c.f.		
Rv (total)	1,808 c.f.		

Provided Rechrage Volume (HydroCAD)					
Pv (LRB - 1) 707 c.f.					
Pv (LRB - 2)*	2,560	c.f.			
Pv (total)	3,267	c.f.			

Provided > Required Requirement is met

Draw Down Calculation (Static Method)			
$Time_{drawdown} = \frac{1}{(K)}$	Rv (Bottom Area)		
Rv = Required Re	echrage Volume		
k = Rawls Rate	8.27 (in/hr)		
Bottom Area = Base area of sturcture			

Bottom Area					
Sturcture	В		L		Area (s.f.)
LRB - 1		10		20	200
LRB - 2		12		46	552

Draw Down Time				
Time (LRB-1) =	1.547884	hr		
Time (LRB-2) =	4.192866	hr		

Maximum allowable drawdown 72 hours

Requirement is met

Water Quality Equation				
$V_{WQ} = (D_{WQ}/12 \text{ inches/foot}) * (A_{IMP} * 43,560 \text{ square feet/acre})$				
Vwq = Required Water Quality Volume				
Dwq = Water Quality Depth	0.083 ft	1" Required		
A _{imp} = Impervious Area	36,168 s.f			
Pv = Provided Volume				

Required Water Quality Vol			
Vwq =	3,002	c.f.	
Pv	3,267	c.f.	

1" required due to rapidly draining soils

Provided > Required Requirement is met

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location:	2703 Cranberry Highway				
	В	С	D	E	F	
		TSS Removal	Starting TSS	Amount	Remaining	
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)	
heet	Grass Channel	0.50	1.00	0.50	0.50	
loval /orks	Infiltration Basin	0.80	0.50	0.40	0.10	
Rem on V		0.00	0.10	0.00	0.10	
TSS culat		0.00	0.10	0.00	0.10	
Calo		0.00	0.10	0.00	0.10	
		Total TSS Removal =			Separate Form Needs to be Completed for Each Outlet or BMP Train	
	Project: ^{C19495} Prepared By: DAV Date: 12/28/2023				<u>-</u>	
				*Equals remaining load from previous BMP (E)		
				which enters the BMP		
Non-automate	ed TSS Calculation Sheet					

Version 1, Automated: Mar. 4, 2008

Mass. Dept. of Environmental Protection

Appendix F – Operation and Maintenance Plan

OPERATION AND MAINTENANCE PLAN

Grace Lighthouse Church 2703 Cranberry Highway (Route 28) Wareham, MA 02571

Construction of a New Church

Prepared by:

260 Cranberry Highway Orleans, MA 02653

December 29, 2023

Prepared by DAV & DAP Checked by SMR Best Management Practices (BMPs) pursuant to the MA DEP Wetlands Protection Act and accepted design practice have been implemented and utilized for the project. The following information provided is to be used as a guideline for monitoring and maintaining the performance of the drainage facilities constructed as part of the site development. The structural Best Management Practices (BMPs) shall be inspected during rainfall conditions during the first year of operation to verify functionality. And to be inspected yearly.

Responsible Party

David Beguerie 3065 Cranberry Highway Wareham, MA 02538

Town of Wareham Contact Information:

Municipal Maintenance Dave Menard, Director of Municipal Maintenance 95 Char)ge Pond Road Wareham, MA 02571 Phone: (508)295-5300

Applied Stormwater Best Management Practices

The stormwater management system is designed to minimize the use of manmade conveyance structures (catch basins, manholes, pipes, etc...). Instead, the system was designed to utilize the topography to convey stormwater into the leaching basins via grass channels that will be planted with a native pollinator seed mix. This will not only provide a low impact stormwater system, but also provide a natural habitat for animals. The stormwater is designed to infiltrate most of the impervious surface runoff into the ground, promoting peak rate and volume attenuation, as well as water quality treatment.

The proposed stormwater management system consists of two grass channel swales that convey stormwater to two beehive grates set 6" above the lowest swale elevation. One of the grates is connected to a deep sump (4') catch basin that discharges into the sub surface infiltration basin. The other beehive is connected directly to the sub surface infiltration basin. The Infiltration basin collects runoff from the entirety of the parking lot, and landscape areas. The system is located in the south easterly corner on the edge of the proposed parking lot. The infiltration system consists of 5 - 8' diameter precast concrete leaching chambers set in a bed of double-washed, crushed stone.

Additional roof drywell is proposed at the north westerly corner of the property and is only to receive clean runoff from the roof of the proposed modular building via gutters and conveyance pipe. The infiltration system consists of 1 - 8' diameter precast concrete leaching chambers set in a bed of double-washed, crushed stone.

Due to the parent soil texture and NRCS soil classification, an infiltration rate of 8.27 inches per hour was used in modeling this system based upon the Rawls table published in the DEP Stormwater Management Regulations and standard practice for soils classified as Hydrologic Soil Group A.

<u>Maintenance</u>

1. Infiltration System and Drywell— Proper maintenance of the subsurface infiltration system is essential to the long-term effectiveness of the infiltration function. The subsurface infiltration system shall have inspection ports and additional inspections should be scheduled during the first few months to ensure proper stabilization and function. Thereafter, they shall be checked semiannually and following heavy rainfalls, defined as a 1-year storm event exceeding 2.5 inches of rainfall within a twenty-four-hour period. Water levels in the chambers shall be checked to verify proper drainage. Ponding water in a chamber indicates failure from the bottom. If water remains within the chambers after 48-hours following a storm event, steps to restore the infiltration function shall be taken, as directed by a qualified stormwater management professional. To rectify the problem, accumulated sediment must be removed from the bottom of the chamber. The stone aggregate and filter fabric must be removed and replaced, and the underlying soil layer must be scarified to encourage proper

infiltration. Material removed from the system shall be disposed of in accordance with all applicable local, state, and federal regulations. Please refer to the Manufacturer's Manual for additional detail on proper inspection and maintenance of the ACF-R Tank chambers. Cost: The property owner should consult local landscape contractors for a detailed cost estimate.

- The catch basins should be inspected or cleaned at least four times per year and at the end of foliage and snow removal seasons. Sediments must also be removed whenever the depth of deposits is greater than or equal to one half the depth of the sump.
- 3. The grass swales are to be cleared of trash and debris at all times. The accumulation of sediment is to be removed as needed using hand methods only. Swales are to be mown based on an at needed basis. The grass shall not exceed 6" nor be less than 4" in height. The swales are to be inspected at least semi annually for the first year, and yearly thereafter. Inspection shall be conducted for the health and growth of the grass, and any signs of erosion and the formation of rills and gullies. If the original grass cover is not successfully established, plant an alternate grass species.

Long Term Pollution Prevention Plan

• <u>Storage and disposal of Waste and Toxics:</u>

Failure to properly store hazardous materials dramatically increases the probability that they will end up in local waterways. Practices such as covering hazardous materials or even storing them properly, can have dramatic impacts.

The exterior storage of hazardous materials on site shall be prohibited. The following is a list of management considerations for hazardous materials as outlined by the EPA:

- Storing materials well away from high-traffic areas to reduce the likelihood of accidents that might cause spills or damage to drums, bags, or containers.
- Stacking containers in accordance with the manufacturers' directions to avoid damaging the container or the product itself;
- Storing containers on pallets or equivalent structures. This facilitates inspection for leaks and prevents the containers from coming into contact with wet floors, which can cause corrosion. This consideration also reduces the incidence of damage by pests.

• Landscape Maintenance:

Using proper landscaping techniques can effectively increase the value of a property while benefiting the environment. These practices can benefit the environment by

reducing water use; decreasing energy use (because less water pumping and treatment is required); minimizing runoff of storm and irrigation water that transports soils, fertilizers, and pesticides; and creating additional habitat for plants and wildlife. The following lawn and landscaping management practices will be encouraged:

- Mow lawn areas at the highest recommended height.
- Minimize lawn size and maintain existing native vegetation.
- Abide by water restrictions and other conservation measures implemented by the Town of Wareham.
- Water only when necessary.
- Use automatic irrigation systems to reduce water use.
- Vehicle Washing:

This management measure involves educating the general public on the water quality impacts of the outdoor washing of automobiles and how to avoid allowing polluted runoff to enter the storm drain system. Outdoor car washing has the potential to result in high loads of nutrients, metals, and hydrocarbons during dry weather conditions in many watersheds, as the detergent-rich water used to wash the grime off our cars flows down the street and into the storm drain. The following management practices will be encouraged:

- Washing cars on gravel, grass, or other permeable surfaces.
- Blocking off the storm drain during car washing and redirecting wash water onto grass or landscaping to provide filtration.
- Using hoses with nozzles that automatically turn off when left unattended.
- Using only biodegradable soaps.
- Minimize the amounts of soap and water used. Wash cars less frequently.
- Promote use of commercial car wash services.

Appendix G – Construction Period - Operation and Maintenance Plan

CONSTRUCTION PERIOD OPERATION AND MAINTENANCE PLAN

Grace Lighthouse Church 2703 Cranberry Highway (Route 28) Wareham, MA 02571

Construction of a New Church

Prepared by:

260 Cranberry Highway Orleans, MA 02653

December 29, 2023

Prepared by DAV & DAP Checked by SMR Erosion and Sedimentation will be controlled at the site by utilizing Structural Practices, Stabilization Practices, and Dust Control. These practices correspond with plans entitled Grace Lighthouse Church, Erosion and Sedimentation Control Plan, 2703 Cranberry Highway, Wareham, Massachusetts," dated December 29, 2023 and prepared by Coastal Engineering Company, Inc., hereinafter referred to as the Site Plans.

Responsible Party

David Beguerie 3065 Cranberry Highway Wareham, MA 02538

Town of Wareham Contact Information:

Municipal Maintenance Dave Menard, Director of Municipal Maintenance 95 Char)ge Pond Road Wareham, MA 02571 Phone: (508)295-5300

Emergency Contact Information:

Wareham Police Department Phone: 508-295-1212 Emergency: 911

Wareham Fire Department Phone: 508-295-2973 Emergency: 911

Massachusetts Department of Environmental Protection Emergency Phone: 617-556-1133 Northeast Region Phone: 978-694-3200 Wilmington Office

National Response Center Phone: 800-424-8802

Municipal Maintenance Dave Menard, Director of Municipal Maintenance 95 Char)ge Pond Road Wareham, MA 02571 Phone: 508-295-5300

Project Summary

The intent of the project is to construct a modular church building on a pile foundation with a parking lot and landscape features on the subject parcel (2.36 ac) at 2703 Cranberry Highway.

Site Description

The site is currently vacant with remanence of a parking lot, fences, and miscellaneous utilities. During the summer season the lot is used to host outdoor sermons in a temporary tent.

Existing utilities serving the parcel are limited to water and electricity. Public sewer is not available within the project area.

The existing topography is relatively flat with a minimum elevation 99.4' and maximum elevation of 102.7

There are no wetland resource areas that are jurisdictional under both MA DEP Wetland Protections Act and town of Wareham Wetlands Protection Bylaw.

Currently, there are no stormwater management practices capturing site runoff employed on the property and the majority of runoff flows uncontrolled toward the abutting properties.

Erosion and Sediment Control Practices

Structural Practices:

 <u>Sediment Silt Sock Barrier Controls</u> – A sediment silt sock barrier will be constructed along downward slopes at the limit of work in locations shown on the plans. This control will be installed prior to major soil disturbance on the site. The sediment silt sock should be installed as shown on the Erosion Control Detail Plan.

Sediment Silt Sock Design/Installation Requirements

- I. Locate the silt sock where identified on the plans.
- II. The silt sock line should be nearly level through most of its length to impound a broad, temporary pool. The last 10 to 20 feet at each end of the silt sock should be swung slightly uphill (approximately 0.5 feet in elevation) to provide storage capacity.
- III. The silt sock shall be staked every 8 linear feet with 1-inch by 1-inch stakes.
- IV. Sediment silt socks should be removed when they have served their useful purpose, but not before the upslope area has been permanently stabilized through one growing season. Retained sediment must be removed and properly disposed of, or mulched and seeded.

Sediment Silt Sock Inspection/Maintenance

- I. Silt socks should be inspected immediately after each rainfall event of 1-inch or greater, and at least daily during prolonged rainfall. Inspect the depth of sediment, fabric tears, and to see that the stakes are firmly in the ground. Repair or replace as necessary.
- II. Remove sediment deposits promptly after storm events to provide adequate storage volume for the next rain and to reduce pressure on the sock. Sediment will be removed from behind the silt sock when it becomes about ¹/₂ foot deep at the silt sock. Take care to avoid undermining the sock during cleanout.
- III. If the fabric tears, decomposes, or in any way becomes ineffective, replace it immediately.

Remove staking only after the contributing drainage areas have been properly stabilized. Sediment deposits and silt sock materials remaining after stakes have been removed should be graded to conform to the existing topography and vegetated. <u>Stabilized Construction Entrance</u> – A stabilized construction entrances will be placed at the entrance. The stabilized construction entrances will be installed immediately after the clearing and grubbing of the site entrance and associated roadway cut/fill to maintain access to the site are completed. The construction entrance will keep mud and sediment from being tracked off the construction site by vehicles leaving the site. The stabilized construction entrances shall be constructed as shown on the Erosion Control Plan.

Construction Entrance Design/Construction Requirements

- I. Stone for a stabilized construction entrance shall consist of 1 to 3-inch stone placed on a stable foundation.
- II. Pad dimensions: The minimum length of the gravel pad should be 50 feet. The pad should extend the full width of the proposed roadway, or wide enough so that the largest construction vehicle will fit in the entrance with room to spare; whichever is greater. If a large amount of traffic is expected at the entrance, then the stabilized construction entrance should be wide enough to fit two vehicles across with room to spare.
- III. A geotextile filter fabric shall be placed between the stone fill and the earth surface below the pad to reduce the migration of soil particles from the underlying soil into the stone and vice versa. The filter fabric should be Amoco woven polypropylene 1198 or equivalent.
- IV. Washing: If the site conditions are such that most of the mud is not removed from the vehicle tires by the gravel pad, then the tires should be washed before the vehicle enters the street. The wash area should be a level area with 3-inch washed stone minimum, or a commercial rack.
- V. Water employed in the washing process shall be directed to a sediment trap or approved sediment-trapping device prior to discharge to a temporary sedimentation basin along side the site entrance drive. Sediment should be prevented from entering any watercourses.

Construction Entrance Inspection/Maintenance

I. The entrance should be maintained in a condition that will prevent tracking or flowing of sediment onto the street. This may require periodic topdressing with additional stone.

- II. The construction entrance and sediment disposal area shall be inspected weekly and after heavy rains or heavy use.
- III. Mud and sediment tracked or washed onto public road shall be immediately removed by sweeping.
- IV. Once mud and soil particles clog the voids in the gravel and the effectiveness of the gravel pad is no longer satisfactory, the pad must be topdressed with new stone. Replacement of the entire pad may be necessary when the pad becomes completely clogged.
- V. If washing facilities are used, the sediment traps should be cleaned out as often as necessary to assure that adequate trapping efficiency and storage volume is available.
- VI. The pad shall be reshaped as needed for drainage and runoff control.
- VII. Broken road pavement on the access street shall be repaired immediately.
- VIII. All temporary erosion and sediment control measures shall be removed within 30 days after final site stabilization is achieved or after the temporary practices are no longer needed. Trapped sediment shall be removed or stabilized on site. Disturbed soil areas resulting from removal shall be permanently stabilized.
Inlet Protection — Inlet Protection will be utilized around the catch basin grates. The inlet protection will allow the storm drain inlets to be used before final stabilization. This structural practice will allow early use of the drainage system if the detention basin is already stabilized. Siltsack or equivalent will be utilized for the inlet protection. Siltsack is manufactured by ACF Environmental. Regular flow siltsack will be utilized, and if it does not allow enough storm water flow, hi-flow silt sack will be utilized.

<u>Silt Sack (or equivalent) Inlet Protection Inspection/Maintenance Requirements</u>

- I. All trapping devices and the structures they protect should be inspected after every rainstorm and repairs made as necessary.
- II. Sediment should be removed from the trapping devices after the sediment has reached a maximum depth of one-half the depth of the trap.
- III. Sediment should be disposed of in a suitable area and protected from erosion by either structural or vegetative means. Sediment removed shall be disposed of in accordance with all applicable local, state, and federal regulations.
- IV. The silt sack must be replaced if it is ripped or torn in any way.
- V. Temporary traps should be removed and the area repaired as soon as the contributing drainage area to the inlet has been completely stabilized.

Stabilization Practices:

Stabilization measures shall be implemented as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased, with the following exceptions.

Where the initiation of stabilization measures by the 14th day after construction activity temporary or permanently cease is precluded by snow cover, stabilization measures shall be initiated as soon as practicable.

Where construction activity will resume on a portion of the site within 21 days from when activities ceased, then stabilization measures do not have to be initiated on that portion of the site by the 14th day after construction activity temporarily ceased

 <u>Temporary Seeding</u> — Temporary seeding will allow a short-term vegetative cover on disturbed site areas that may be in danger of erosion. Temporary seeding will be done at stockpiles and disturbed portions of the site where construction activity will temporarily cease for at least 21 days. The temporary seedings will stabilize cleared and unvegetated areas that will not be brought into final grade for several weeks or months.

- <u>Dust Control</u> Dust control will be utilized throughout the entire construction process
 of the site. For example, keeping disturbed surfaces moist during windy periods will
 be an effective control measure, especially for construction haul roads. The use of
 dust control will prevent the movement of soil to offsite areas. However, care must be
 taken to not create runoff from excessive use of water to control dust. The following
 are methods of Dust Control that may be used on-site:
 - Vegetative Cover The most practical method for disturbed areas not subject to traffic.
 - Calcium Chloride Calcium chloride may be applied by mechanical spreader as loose, dry granules or flakes at a rate that keeps the surface moist but not so high as to cause water pollution or plant damage.
 - Sprinkling The site may be sprinkled until the surface is wet. Sprinkling will be effective for dust control on haul roads and other traffic routes.
 - Stone Stone will be used to stabilize construction roads; will also be effective for dust control.